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Abstract

In this paper, we look at several metrics for
keystroke-enhanced user authentication. We
begin by introducing keystroke biometrics and
looking at its advantages and disadvantages.
We examine a statistical analysis method de-
scribed in the current literature and show
through experimental data how the metric
of consecutive keystroke latencies is inade-
quate for user authentication. The insuffi-
ciency gives the motivation for exploring other
keystroke metrics. We design, test, and evalu-
ate four different metrics relating to keystroke
analysis.

1 Introduction

Keystroke biometrics refers to the art and sci-
ence of recognizing an individual based on
an analysis of his typing patterns. Biometric
authentication and classification procedures
have traditionally been implemented using
physiological traits such as fingerprints, reti-
nas, and face, or using behavioral traits such
as voice. The concept of keystroke biometrics
has arisen as a hot topic of research only in
the past two decades.

1.1 Advantages of Keystroke Bio-
metrics

Biometrics based on typing patterns are dis-
tinctive in that they are cheaper to imple-
ment, more distributed, and more unobtrusive

than conventional biometric procedures. Col-
lecting data regarding a person’s typing pat-
terns simply requires a keyboard and some
basic software to collect data. Two authors
were able to implement basic functionality for
this purpose using Java’s Swing package in
less than 10 hours of combined work. Con-
trast this relatively cheap investment with fin-
gerprint or retinal scan technology, which re-
quires the manufacturing of expensive hard-
ware for data collection. Moreover, data col-
lection software is easily replicable whereas
hardware is not.

Because the primary hardware require-
ment for keystroke biometrics is a keyboard,
keystroke biometrics can be collected from
virtually anywhere throughout the world via
an Internet connection without requiring an
individual to be at certain locations with ac-
cess to specialized hardware. Keystroke col-
lection software can be distributed via client-
side Java applets as proposed by Ke et al. in
[1]. Moreover, because each keystroke is cap-
tured entirely by the key pressed, the press
time, and the release time, the data can also
be transmitted using low bandwidth. Ac-
cording to a 2000 U.S. Census report [2],
51.0% of U.S. households have a computer
and 41.5% have Internet access. These num-
bers have continued to skyrocket in the past
four years. The growth of Internet connectiv-
ity thus makes distributed mechanisms for au-
thentication increasingly feasible and attrac-
tive.

A final advantage of keystroke biometrics



is that it is a relatively unobtrusive measure.
Fingerprint, retina, and face scans all incon-
venience the user by requiring him to place
a particular body feature either within or in
front of some machinery. By contrast, typing
on a keyboard is already a daily activity for
many people; thus, keystroke biometrics can
be easily integrated into a person’s daily rou-
tine.

1.2 Disadvantages of Keystroke
Biometrics

The advantages of keystroke biometrics come
at the tradeoff of significant variability and
an uncontrolled authentication environment.
Unlike other physiological biometrics such as
fingerprints, retinas, and facial features, all of
which remain fairly consistent over long peri-
ods of time, typing patterns can be rather er-
ratic. Even though any biometric can change
over time, typing patterns have an intrinsi-
cally smaller time scale for changes. Not
only are typing patterns rather inconsistent
as compared to other biometrics, a person’s
hands can get tired or sweaty after prolonged
periods of typing, often resulting in major pat-
tern differences over the course of a day.

Another substantial problem is that typing
patterns vary based on the type of the key-
board being used, the keyboard layout (i.e.
qwerty or dvorak), whether the individual is
sitting or standing, the person’s posture if sit-
ting, etc. The fact is that the distributed na-
ture of keyboard biometrics also means that
additional inconsistencies may be introduced
into typing pattern data.

1.3 The Problem of Keystroke-
Enhanced Login Systems

In our project, we consider the prob-
lem of keystroke-enhanced login systems.
The username-password paradigm is common
throughout virtually all web services and sys-
tem login programs. Currently, a user’s ac-
count is entirely compromised if an adversary
somehow discovers the user’s username and
password. Under a keystroke-enhanced login
system, the system would still be able to re-
ject the adversary if his typing patterns for the

two phrases differed from the pattern stored
for that user. The system could then conceiv-
ably prompt the user with a personal ques-
tion if the typing patterns differed. Thus,
a keystroke-enhanced authentication scheme
would provide an additional layer of security.

The keystroke-enhanced login problem dif-
fers from classification problems in that a
system cannot merely say which known user
the typist most likely resembles but must de-
cide whether the typist is sufficiently close to
a stored template of his claimed identity to
minimize false positives and false negatives.
The authentication problem therefore appears
more difficult.

The keystroke-enhanced login problem dif-
fers from other keystroke authentication prob-
lems, such as continuous user authentication,
in that the training data and the test sample
available is relatively small. Problems such
as continuous user authentication have avail-
able hours or days of training data per user.
By contrast, a keystroke-enhanced login sys-
tem must be capable of learning a user’s typ-
ing pattern for a short username and pass-
word pair within 10-15 samples of roughly 20-
40 characters each, over a course of 3-5 min-
utes. The small training set means that more
patterns must be mined from the samples to
generate adequate information to produce a
template of the user’s typing pattern.

The rest of this paper proceeds as fol-
lows. Section 2 describes an implementation
of a statistical analysis model for keystroke-
enhanced login and motivates a need for more
refined metrics to distinguish between users.
Section 3 then discusses four proposed met-
rics for distinguishing users and supports the
metrics with data analyses from experimental
data. We summarize in Section 4 related work
that has been done in this area of research,
and we conclude with a list of our research
contributions in Section 5.

2 A Proposed Model for User
Authentication

In [1], Ke describes the statistical analysis
model as a viable solution to the keystroke-
enhanced login problem. The model takes the



latencies between adjacent keystrokes among
several samples of a user and then computes
a vector of means and standard deviations for
the latencies between each pair of keystrokes.
The vector of means and standard deviations
then represents the user’s profile.

The model then sets two parameters:

1. How close each latency must be to the
mean.

2. What percentage of the latencies must
fall within the “similarity band.”

The model sets the first parameter by set-
ting the number of standard deviations that
each element in the latency vector of a new
input sample must fall within the mean. Con-
sequently, a band of allowed latencies form
around the mean of each pair of consecutive
keystrokes. The model sets the second pa-
rameter, a similarity threshold, by setting the
number of keystroke latencies in the input vec-
tor that must fall within the allowed band.
To gauge the effectiveness of the statistical
model, two commonly used standards in bio-
metrics were employed:

e False Rejection Rate (FRR) - the per-
centage of times that a valid user is la-
belled as an adversary and denied access;
also known as the false negatives rate.

e False Acceptance Rate (FAR) - the per-
centage of times that an adversary gains
access as a user; also known as the false
positive rate.

Seeking to minimize both the FRR and
FAR, Ke et al. tweaked the two aforemen-
tioned parameters (number of standard devi-
ations and percent similar) of the statistical
model. They conducted experimental tests
on the model, but only on a samples size of
4 users. When analyzing the data of 4 users,
their model maximized performance when the
band pass was 2.0 standard deviations and the
percent similar was 75%. At these settings,
the model achieved 3% FRR and 2% FAR.

Since Ke only used samples from 4 users,
we wanted to verify the results of the statisti-
cal model to see if it scaled to more users. We

1.0 1.5 2.0 2.5
50 | 7% 074% | 0% 0%
551 17% | 3% | 0% 0%
60 | 31% | 3% 22% | .074%
65 | 45% | 6% 96% | .67%
70 1 61% | 12% 3% 1%
T5 1 77% | 26% 6% 2%
80 | 8% | 46% 16% | 6%
85 196% | 67% 34% | 15%
90 | 99% | 84% 58% | 35%
95 | 100% | 95% 89% | 5%
1.0 | 100% | 100% | 100% | 100%

Table 1: FFR of various parameter values
(similarity threshold on the left column vs
number of standard deviations on the top
row).

implemented a similar statistical model, us-
ing latencies between every other keystroke,
but extended the sample size to 15 users.
We collected 10 samples from each user, each
typing in “A quick brown fox jumps over
the lazy dog.” To calculate the FFR, we
took all possible combinations of 8 samples
for each user and calculated the statistics on
those samples. Then we used the remaining
two samples for cross-validation to simulate a
user attempting to access his own account. To
calculate the FAR, we used all 10 samples of
a particular user to build his statistical pro-
file and used the remaining 140 samples of 14
users (10 each) to simulate an adversary try-
ing to access the user’s account. We varied
the two parameters, standard deviation and
the similarity threshold, to find the best pa-
rameters for minimizing FRR and FAR. Table
1 and 2 show our results.

From our experimental results, we observe
that the statistical model performs the best
with the number of standard deviations set to
1.5 and the percent similar set to 70%. We
achieve a FFR of 12% and a FAR of 10%.
However, even at these values, the statistical
model does not perform as well as described
in [1]. While several factors could account for
this discrepancy, we believe that the statis-
tical model running on a larger sample size
shows that the statistical model runs into scal-
ability problems for the keystroke-enhanced



1.0 1.5 2.0 2.5

.50 | 20% 61% | 81% 87%
55 1 9% 50% | 74% 83%
.60 | 3% 33% | 64% %
65 | 1% 20% | 51% 1%
70 1 .52% | 10% | 37% 62%
75 1 .095% | 4% 22% 47%
.80 | 0% 1% 11% 29%
.85 | 0% A3% | 4% 14%
90 | 0% 0% 86% | 5%

95 | 0% 0% .095% | .62%
1.0 | 0% 0% 0% 0%

Table 2: FAR of various parameter values
(similarity threshold on the left column vs
number of standard deviations on the top
row).

login problem. Intuitively, as the the num-
ber of users increase, FAR would potentially
increase because there are more potential ad-
versaries. The results also lead us to believe
that looking at latencies between keystrokes
may be too general of a metric when faced
with a large pool of users each with a small
amount of training data. Poor performance of
the statistical model motivates us to explore
more specific metrics.

3 Metric Proposals

In this section, we propose and assess exper-
imentally the soundness of four metrics: one
based on key press duration, a second based
on whether a key is released prior to press-
ing the next key, a third based on relative
keystroke speeds, and a fourth based on Shift
key usage patterns.

3.1 Key Press Duration

Most experiments described in previous re-
search literature did not allow users to correct
their errors by using the 'delete’ or ’backspace’
buttons and forbade users to pause while pro-
viding a typing sample. Statistical models
used by Ke [1], and Wong [6] relied on di-
graph latency (the latency between a pair of
consecutive keystrokes) to profile users, and
accurate profiling of users depended heavily

upon little errors in the data. We hypothesize
that key press duration does not suffer from
the same limitations as keystroke latency, and
conduct the following experiment to test key
press durations robustness to user correction
on erroneous input.

3.1.1 Key Press Duration Parameters

For each user, we compute the mean and stan-
dard deviation of the key press duration for
each key they typed from a predetermined
sentence. We then compare typing samples
between users, specifying that a threshold
percentage of key presses for the unknown
sample must fall within a some standard devi-
ation of the mean for a known user. Samples
that do not meet the percentage threshold do
not successfully authenticate the user and are
rejected.

3.1.2 Experiment

We collect typing samples from 15 differ-
ent users. Each user typed the follow-
ing 43-key-press passphrase either 10 or
11 times: “A quick brown fox jumps over
the lazy dog.” During data extraction,
we require that each user type the sentence
exactly as shown, but that they may use
backspace for any corrections. We filter each
user’s typing samples for common key presses,
and then apply the statistical model to find
the False Acceptance Rate (FAR) and False
Rejection Rate (FRR) for key press duration
profiling.

3.1.3 Results of Key Press Duration

In general, we can observe qualitatively that
a user’s key press durations are consistent
across several samples, and that key press du-
rations vary across different users. An exam-
ple of this consistency can be see in Figure
1 and Figure 2, which depict the typing pat-
terns of User 15 in 11 total samples of the
sample sentence. For readability, the x-axis
denotes the z-th key in the sequence of key
presses to complete the sample sentence. Fig-
ure 3 shows the variations for mean key press



Keypress Durations Across 11 Samples by User 15
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Figure 1: Key press durations for User 15 on
the first half of the sample sentence: “A quick
brown fox ”

duration between 5 different users for the first
10 characters of the sample sentence.

The results for False Acceptance Rate and
False Rejection Rate using key press duration
are shown in Tables 3 and 4, respectively. Our
results are consistent with previous research
and tests performed on the statistical analy-
sis model by Ke [1] and D’Souza [3]: as the
number of standard deviations increases the
FAR increases and FRR decreases. Standard
deviation measures the range of key-press du-
rations that is acceptable for each particular
key in the sample sequence, thus increasing
this range also increases the likelihood that
an unknown user’s typing samples will over-
lap with the distribution of a legitimate user’s
key press duration distribution and causes the
FAR to increase. Likewise, variations within
the user’s own typing samples are also more
likely to fall within an increased range, thus
FRR decreases.

Another trend to note is that as the thresh-
old percentage increases, FAR decreases and
FRR increases. Threshold percentage mea-
sures the proportion of the intruder’s sample
that must match a user’s reference pattern
in order to impersonate the user successfully.
Thus, increasing the threshold percentage im-
poses more stringent requirements for success-
ful authentication, which means that a user is
also more likely to be rejected due to natural

Keypress Durations Across 11 Samples by User 15
T T T

Duration (ms)

. . .
20 25 30 35 40
Key Number

Figure 2: Key press durations for User 15
on the second half of the sample sentence:
“jumps over the lazy dog”

\ [10]15 [20 |25 |

0.75 || 0% | 0.61% | 8.26% | 25.0
0.80 || 0% | 0% 3.45% | 16.79%
0.85 || 0% | 0% 1.01% | 7.39%
0.90 || 0% | 0% 0% 2.01%

Table 3: False Acceptance Rate for users
typing “A quick brown fox jumps over
the lazy dog.”

variations in his or her own typing.

From the our results, we conclude that
a threshold of 0.8 and standard deviation
of 2.0 is the best combination of parame-
ters for aiding the authentication problem us-
ing key-press duration metrics. Even though
thresholds of 0.75 and 0.8 (standard devia-
tion=2.0) minimizes FRR and FAR at 1.25%
and 1.01%, respectively, the corresponding
values for FAR and FRR are unacceptable for
these parameters.

3.2 Relative Key Event
Order

The relative order in which users press and re-
lease keys can vary greatly from user to user,
especially while typing words or phrases in
which each user has a more established typ-
ing pattern. We call the press of a key and



Average Keypress Durations of 5 Users

200

Duration (ms)
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Key Number

Figure 3: Graphical representation of varia-
tion in average key press durations for the
first 10 keystrokes of the sample sentence of
D users.

\ [10 [15 20 [25 |
0.75 [ 96.35% [ 31.41% | 1.25% | 0%
0.80 || 99.43% | 52.47% | 8.95% | 0%
0.85 || 100% | 84.85% | 24.16% | 4.03%
0.90 [| 100% [ 94.97% | 64.01% | 19.59%

Table 4: False Rejection Rate for users typing
” A quick brown fox jumps over the lazy dog.”

the release of the key each a keyevent.

We hypothesize that while the pattern in
which users press and release keys differ from
user to user, the key event ordering would re-
main consistent for one user. For example,
when typing the word “the,” one user may re-
lease may press t, release t, press h, release h,
press e, release e, in that order, another user
may press all three keys quickly in sequential
order before releasing all three keys at the end.

3.2.1 Distance Metric And Authoriza-
tion Scheme for Key Press and
Release Orderings

A distance metric for two typing samples, or
trials, was developed to compare their simi-
larity. Given two samples a and b, the dis-
tance between sample a and sample b equals
the number of key events that are swapped
between the two samples. For instance, if one

user types “h-i” by pressing h, releasing h,
pressing ¢, and releasing 7, while the second
user presses h, presses i, releases h, releases i,
the distance between the two samples is 1.

To find the distance between two trials, we
first order the key events of each trial by time.
Second, we find the sum of the absolute value
of the difference in the positions for each key
event in the two trials. Since every swap will
cause two key events to be out of position,
divide this sum by two to find the distance
between the trials. Two trials with distance
equal to one would feature very similar key or-
derings. A distance equal to the total number
of letters typed would indicate a very different
typing pattern.

Consider a trial £ and a data set S of trials
of one user to which we compare t. Let the
distance between the elements of S to other
elements of S have mean and standard devia-
tion m and n. If the average distance from ¢
to the elements of S is at most one standard
deviation greater than m, then we say that ¢
is a member of S.

3.2.2 Experiment

For this experiment, data samples were col-
lected from 15 users. Each user typed the sen-
tence “A quick brown fox jumps over the lazy
dog” up to eleven times and the key press and
release times were recorded. The delete op-
erations and irrelevant shift key presses were
eliminated from the data.

The analysis portion of this experiment is
broken up into three parts. The first two were
to find the false acceptance rate and false fail-
ure rates according to the data found. The
last portion involves examining the average
distance between all trials.

3.2.3 Results for Key Press and Re-
lease Comparisons

The distance between the trials of the same
user has a mean and standard deviation of
6.72 and 3.48, while the distance between tri-
als of different users has a mean and standard
deviation of 12.88 and 8.51. Figures 4 and
5 show histograms of the distances between



same user data and different user data, re-
spectively.

Distributions of the Distances of Samples from the Same User
200 . : . . :
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Figure 4: Distributions of Distances from
Same User

Distributions of the Distances of Samples from the Different Users
1200 : . . . .
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Figure 5: Distributions of Distances of Differ-
ent Users

These results show that the high inconsis-
tency between the data of different users pre-
vent a general mean and standard deviation
model from being used. Instead, the mean
and standard deviation for each user was com-
puted. The false failure rate of each user was
found by using the identification scheme pro-
posed earlier on each trial of that user. The
group that each trial is compared to consists
of all other data from that user. The max fail-
ure rate was found to be 1/10. That is, a user
will be incorrectly rejected at most once out

of ten tries.

The false acceptance rate of each user was
found by first finding the mean and standard
deviation of User A. Compare every trial of
the other users to User A’s data. For one stan-
dard deviation, while many users had a FAR
of less than 5% (a few even had a FAR of 0.0),
the false acceptance rate of some grew as high
as 57%. The possible FAR for this metric is
too high to be of use on its own, but the great
rates for some users indicate that this metric
could be a valuable addition to other schemes.
While the FAR was very high, when user data
was compared separately, it was observed that
there was only four cases in which the mean
distance to the same user’s data was less than
the mean distance to other user’s data.

As seen from the FAR data, the limita-
tion of key event orderings is for a given cor-
rectly typed phrase, the number of possible
variations of key presses and releases is small.
Thus, by itself, key event orderings cannot be
trusted with the entire authorization problem.
However, the low FAR’s of several trials indi-
cate that key event orderings could be a good
support metric.

With more data, this scheme could be mod-
ified to account for specific swaps, not just the
total number of swaps. An average distance
could be recorded for each keyboard event.
Another variation which requires longer input
data would record the mean and standard de-
viation for every letter individually.

3.3 Relative Keystroke Speeds

Significant variability can occur between two
consecutive typing samples even if the user
has not undergone any observable psycholog-
ical or physiological change. A wuser’s typ-
ing speed likely fluctuates rather than remains
constant, even for the same typing sample.
Many keystroke recognition models in the
current literature, however, fail to adequately
address this variation. Models such as those
used by D’Souza [3], Ke [1], and Joyce and
Gupta [4] all develop a profile using a sta-
tistical analysis method involving means and
standard deviations of latencies between con-
secutive keystrokes. Under these types of sta-
tistical models, if a user were to type each key



much faster than usual, then he would most
likely be rejected because the timing mea-
surement of each of his pairs of consecutive
keystrokes would fall beyond the stored mean
of his trained profile.

We hypothesize that even if a user’s abso-
lute typing speed of a particular phrase varied
between typing samples, the speed with which
he typed particular keys relative to other keys
in any given sample may actually remain con-
sistent. For example, a user who types the
word “fruit” at different speeds each time may
still consistently type the letter pair r-t faster
than f-r, the pair f-r faster than u-i, the pair
u-i faster than i-t, and the pair i-t faster than
r-u.

If this hypothesis is true, then it may be fea-
sible to adopt a metric that analyzes the rel-
ative speed of keystroke pairs rather than the
absolute speed with which the user typed each
letter pair. We call such a metric a metric for
relative keystroke speeds. A good metric for
this purpose would be one that identified con-
sistency across the relative typing speeds of
particular keystrokes for a given user, but that
also distinguished one user’s relative speeds of
particular keystrokes from another user.

3.3.1 Distance Metric for Relative
Keystroke Speeds

To explore our hypothesis, we adopted a dis-
tance metric proposed by Bergadano [5] to
quantify the similarity or difference between
two typing samples, based purely on the rela-
tive latencies between every other keystroke,
though we modify the metric to apply to
latencies between consecutive keystrokes in-
stead because consecutive pairs of keys are
more intuitive.

Bergadano implemented a system that
achieved an FRR of about 4% and an FAR of
less than 0.01%, but with a text length of 683
characters. For the keystroke-enhanced login
problem, such a large body of text is infeasible
for the length of a username and password,
and we wanted to test whether the distance
metric also worked well for short phrases.

To compute the distance between two typ-
ing samples S and S, we represent each sam-
ple as a vector of key pairs, filter out all key

pairs that are not shared between the samples
to handle backspaces and deleted characters,
and then sort the remaining pairs in each sam-
ple based on their latencies (the press time of
the second key minus the release time of the
first key). Letting S[i] denote the location of
key pair 7 in the sorted sample .S, we compute
the distance between S and S’ as:

distance = Z |S[i] — S"[4]]

We also normalize the distance to a number
between 0 and 1 by dividing the greatest pos-
sible distance of the two samples of length |S].

A distance of 0 between two samples means
that the two samples have very consistent rel-
ative keystroke speeds, while a distance of 1
means that the two samples have very incon-
sistent relative keystroke speeds.

3.3.2 Experiment

For our experiment, we collected typing sam-
ples from 15 different users. Each user typed
the following 42-character passphrase either
10 or 11 times, for a total of 153 typing sam-
ples: “A quick brown fox jumps over the
lazy dog.” The length of this passphrase
is approximately the length of a username-
password pair. We then compared the dis-
tance between each pair of samples from the
same user and each pair of samples from dif-
ferent users.

3.3.3 Consistency Results of Relative
Keystroke Speeds

The distance between any two samples of the
same user has a mean of 0.3192 and a stan-
dard deviation of 0.0732; the distance be-
tween any two samples of different users has
a mean of 0.5290 and a standard deviation of
0.0828. These results are illustrated graphi-
cally in Figure 6.

Figures 7 and 8 show histograms of the dis-
tances between any two samples of the same
user and different users, respectively. We ob-
serve that the distance between two samples
of the same user ranges primarily from 0.2 to
0.45, whereas the distance between two sam-
ples of the different users ranges from 0.35 to
0.7.



Graphical Representation of Mean Distances Between Same and Different Users
T

6

c

S 51

k3]

c

> A\

[ \
ar \

=

© \

o \

z3 \

3 \

© \

8 \

g2 \

© \

E

S
0 L L L \
0 0.2 0.4 0.6 0.8 1

Normalized Distance

Figure 6: Graphical representation of distri-
bution of mean distances between typing sam-
ples of the same user and different users.

From these experimental results, we can
make two important conclusions regarding the
use of relative keystroke speeds as a met-
ric. First, we find that a user’s relative typ-
ing speed of particular keys across different
typing samples does in fact exhibit some de-
gree of consistency and that different people
indeed have different relative typing speeds
across particular keys; otherwise, the two his-
tograms would have had similar distributions.
Bergadano was able to achieve a higher degree
of separation between the two distributions,
and we attribute the larger overlap in the dis-
tance distributions in our experiments to the
shorter passphrase text length that we use.

Second, for a given typing sample S, if we
approximate the sorted key pairs of another
user S’ as being randomly sorted with respect
to S, then we have confirmed Bergadano’s
observation that the distance distribution of
randomly sorted vectors is non-uniform; in-
stead, it has a form similar to the one shown
in Figure 8, therefore allowing us to use rel-
ative keystroke speeds as a metric to distin-
guish users.

We conclude that relative keystroke speeds
can be an effective metric for a keystroke-
enhanced authentication system for distin-
guishing users when the distances between
typing samples are either low (less than 0.35)
or high (greater than 0.45). A distance value
that falls within the overlapping metric would
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Figure 7: Histogram of distances of samples
from same user.
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Figure 8: Histogram of distances of samples
from different users.

require additional metrics to aid in authenti-
cation.

3.4 Classes of Shift Key Usage

For each key used in conjunction with the
Shift key, the user can either use the right
or left Shift key. For users who habitually
type on a keyboard, consistent trends in the
same Shift key used for a particular letter,
number, punctuation, or other symbol may be
used to distinguish users.



3.4.1 Hypotheses for Shift Key Usage

Patterns

We hypothesized prior to any investigation
that users would consistently use the same
Shift key (left or right) for each different key,
and we expected this trend to carry through
all of a user’s typing samples. For example,
it seemed reasonable to expect that a user
may regularly use the left Shift key to type
“A”, while typing “P” with the right Shift
key. In addition, we postulated the exis-
tence of four different categories of Shift key
users: strictly left-shift users, strictly right-
shift users, opposite-shift users, and erratic
users.  Strictly left-shift users and strictly
right-shift users consistently use the respec-
tive Shift key regardless of the key combi-
nation. Opposite-shift users press the Shift
key opposite the combination key to maximize
typing efficieny, and erratic users exhibit no
pattern in Shift key usage.

Surveying the current literature, we did not
find any models that use Shift key patterns
as a metric. If our hypothesis proved to be
correct, we therefore hoped that an analysis
of users’” Shift key habits and separate the
users into different categories. Since there a
finite number of categories, the classfication
as the only metric in user authentication is
not viable. However, the classification as a
metric can be valuable as an added layer in
user authentication. A good metric for this
purpose hinge upon the fact that users use
the same Shift keys across samples and these
Shift key patterns form distinct categories.

3.4.2 Experiment

To test our hypothesis, we looked at the use
of Shift keys strictly for the capitalization of
letters. We decided to focus on the capitalized
letters because letters occur more commonly
in typing and users are more likely to have
developed Shift key preferences for letters. In
our experiment, we recorded typing samples
from 15 different users. Each user typed in
the following sentence 5 times: “Another
Quick Brown Fox Jumps Over The Lazy
Dog Yet Round Cats Eat Plain Goldfish
Heartily In Maine Not Kansas Under
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Figure 9: Histogram of user taxonomy classi-
fied by Shift key patterns.

Some Vain Zealous Xena Warrior.” The
sentence contains capitalized versions of each
of the 26 letters in the alphabet. We studied
the Shift key used for each capitalized letter
and then compared the Shift key sequence
between samples of the same user. From
this analysis, we created a taxonomy of users
based on the their Shift key usage patterns.

3.4.3 Actual Taxonomy of Shift Key
Usage Patterns

Figure 9 shows a histogram of the distribution
of the Shift key classes among the 15 users.
In the experiment, we observed four types of
users: Type 1 users strictly pressed the left
Shift key; Type 2 users strictly pressed the
right Shift keys; Type 3 users utilized both
right and left Shift keys but were consistent
with respect to a particular letter; Type 4
users, however, were consistent on a majority
of letters, but on a small subset of the letters,
pressed both left and right Shift keys across
the 5 samples.

From the experiments, we observe that al-
though 4 classes of Shift key users do ex-
ist, the experimental categories differ from
those hypothesized. While strictly left and
strictly right Shift users exist, Type 3 users
do not correspond exactly to the hypothesized
opposite-shift category. While Type 3 users
do use both right and left Shift keys, the



choice was not determined solely on the loca-
tion of the target key. In addition, Type 4
users were not truly erratic and were incon-
sistent only on some subset of the letters.

3.4.4 Shift Key Patterns as a Viable
Metric

Based on the existence of these four cate-
gories, we conclude that the Shift key met-
ric is a viable metric for user authentication.
By classifying a user as a particular Shift
key user, an authentication scheme can reject
users who do not type their password using
the correct Shift key pattern. For example,
if a user presses only left Shift keys for eight
different capitalized letters but right Shift
keys for all the remaining letters, an adversary
who obtains the user’s username and pass-
word must also know to use the correct Shift
key pattern. Moreover, in the case of Type 1,
Type 2, and Type 3 users, the Shift key met-
ric is actually quite reliable; thus, the Shift
key metric provides an additional layer of user
authentication.

However, we should note two weakness in
the Shift key metric. First, in most user-
names and passwords, capital letters do not
represent a large proportion of the characters.
Based on the capital letters present, the au-
thentication scheme may not be able to ex-
tract sufficient information to classify the per-
son at login. For example, consider a Type 3
user who uses left Shift for the first half of
the alphabet and right Shift for the second
half of the alphabet. The Type 3 user has the
password " Apple.” An adversary who is Type
1 and has the user’s password will be able to
spoof as the user because both the user and
the adversary use the left Shift key to type
“A.” Second, once a user’s Shift key cate-
gory is known, except in the case of the cat-
egory being Type 3, the adversary can easily
spoof as the user. In the case of Type 3 users,
knowing the category is not sufficient, the ad-
versary must also use the correct Shift key
associated with each letter. Therefore, for dic-
tionary attacks where the adversary does not
have any additional knowledge about the user,
the Shift key metric still does add a layer of
protection.
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The Shift key metric opens up several ar-
eas of research and exploration. Future exper-
iments should take more samples and test on
more users in order to look at further refining
the categories, specifically in the classification
of Type 3 and Type 4 users. We may find that
users consistently type part of the alphabet
with the left Shift key and the other part
with the right Shift key. We may also find
that users are always inconsistent on partic-
ular letters. Additionally, we can look at the
particular letters that are inconsistently being
capitalized and use these characteristics to la-
bel the user. Furthermore, we can extend test-
ing to explore the use of the Shift key with
symbols and punctuation marks. Differences
in such usages may prove useful in categoriz-
ing users.

4 Related Work

In addition to the analysis techniques cited in
previous sections of this paper, several ear-
lier works on keystroke biometrics have al-
ready adopted approaches based on different
metrics, sampling methodologies, and data
analysis techniques. One of the first studies
on keystroke authentication was keystroke la-
tency analysis by Gaines et al. [11] in 1980, in
which seven users each provided two samples
of a three-paragraph text, 4 months apart. In
1985, Umphress and Williams pioneered the
digraph latency approach for keystroke anal-
ysis, and this approach was again improved
upon by Leggett and Williams [10] in 1988.
A few years later, Joyce and Gupta adopted
an approach for rejecting and accepting sam-
ples based on threshold parameters and ap-
plied cross-validation within a user’s own sam-
ple set to test more accurately for False Re-
jection Rates.

In the mid-nineties, researchers gradu-
ally augmented pure statistical analysis of
keystroke latencies with newer classification
techniques and algorithms. Marcus Brown
and Samuel Rogers [9] use keystroke latency
and duration to authenticate users via statis-
tical analysis on Euclidean distance/vectors
and two different kinds of neural networks.
Unlike previous work, Brown and Rogers per-



formed their analysis on much shorter text
samples and were able to produce fairly low
FARs and FRRs.

Recently, several papers propose techniques
for username/password access control systems
using keystroke biometrics. Tapiador and
Sigenza [8] propose a system that utilizes
keystroke biometrics with standard web tech-
nologies such as CGI and Java applets to ob-
tain user data in nonintrusive ways. Stan-
ford Research Institute (SRI)s BioPassword
provides the first commercial client-server im-
plementation of keystroke biometrics that en-
hances log-on security on Windows NT and
Windows 2000 platforms.

5 Contributions

In our project, we have:

e Verified that a naive, statistical analysis
model cannot, by itself, handle well the
limited training and testing data avail-
able for a keystroke-enhanced login pro-
gram.

e Proposed four new keystroke metrics for
identifying consistency within a user’s
typing patterns and for distinguishing
one user from another.

e Experimented with and analyzed typing
samples to validate and assess the good-
ness of each proposed metric.
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