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Abstract 

 
We engineer an end-to-end music search system 
called MusicDB that supports query by 
humming.  We represent musical tunes and hums 
as time series and use a time warping distance 
metric for similarity comparisons.  A multi-
dimensional index structure is used to prune the 
search space of songs and efficiently return the 
top hits back to an intuitive UI.  Our user 
experiments on a database of fifty midis are 
promising; we find that MusicDB returns the 
desired song within the top 10 hits with 52% 
accuracy and as the top hit with 24% accuracy.  
Moreover, we believe that substantial room for 
improvement in search quality can be achieved 
with more accurate pitch extraction software and 
a more solid midi parsing library than the ones 
we used.  Because few query-by-humming 
solutions have been fully documented in the 
research literature, we document all the core 
components of the MusicDB architecture to 
enable readers to build and extend our system if 
desired. 

 
1. Introduction 
 
 Many people often remember a short tidbit 
of a song but fail to recall the song’s name.  If you 
can remember lyrics that correspond to the song you 
are trying to recall, finding the song is as easy as 
performing a text query on a web search engine.  
Alternatively, other music search services, such as 
the one iTunes provides, support querying 
capabilities on the basis of metadata tags (title, artist, 
genre, etc.) associated with music files.  Even more 
sophisticated systems such as Pandora [16] allow 
musicians and listeners to collectively annotate a 
music database to build customized online radio 
stations with similar songs. 
 
 A query by humming system allows a user 
to find a song even if he merely knows the tune from 
part of the melody.  The user simply hums the tune 

into a computer microphone, and the system searches 
through a database of songs for melodies containing 
the tune and returns a ranked list of search results.  
The user can then find the desired song by listening 
to the results. 
 
 Building such a system, however, presents 
some significantly greater challenges than creating a 
conventional text-based search engine.  Unlike lyrical 
content, there exists no intuitively obvious way to 
represent and store melodic content in a database.  
The chosen representation must be indexable for 
efficient searching.  Furthermore, several issues 
unique to query by humming systems pose significant 
challenges to creating an efficient and accurate music 
search system: 
 

1. Users may not make perfect queries.  Even if a 
user has a perfect memory of a particular tune, 
he may start at the wrong key, or he may hum 
a few notes off-pitch throughout the course of 
the tune.  Sometimes he may even drop some 
notes entirely or add notes that did not exist in 
the original melody.  Additionally, no user is 
expected to be able to perfectly hum at the 
same tempo as the songs stored in the 
database.  Finally, since none of these errors 
are mutually exclusive, a humming query may 
contain any combination of these errors. 

2. Accurately capturing pitches and notes from 
user hums is difficult, even if the user manages 
to submit a perfect query.  Currently existing 
software for converting raw audio data into 
discrete pitch information is mediocre at best 
and oftentimes will introduce a great deal of 
noise when extracting the pitches from a user’s 
hum. 

3. Similarly, accurately capturing melodic 
information from a pre-recorded music file is 
difficult.  Properly extracting the melody from 
a given song is a field of study on its own but 
is absolutely critical for an accurate query by 
humming database.  Creating a perfect query 



would be of little use if the database contains 
inaccurate representations of the target songs. 

 
 We designed and implemented MusicDB, a 
query by humming system that fuses together 
techniques from the melody extraction machinery 
developed by Uitdenbogerd and Zobel [22] and the 
query by humming system implemented by Zhu and 
Shasha [24].  These techniques enable us to build a 
searchable database of polyphonic midi files that can 
return the desired song within the top 10 hits with 
52% accuracy and as the top hit with 24% accuracy.  
Moreover, the quality and performance scales 
reasonably with increasing database size. 
 
 Our main contributions in architecting 
MusicDB and in writing this paper include: 
 

 Building an end-to-end music search system 
over a database of real songs that accepts user 
humming queries and returns quality results 
with reasonable response times. 

 Documenting, in detail, the core components 
of our system so that readers can recreate and 
extend our system in the future.  While some 
previous research has been conducted in this 
field, few people have written about the 
implementation of an end-to-end system, and 
reconstructing the work of those systems that 
are actually documented in the published 
literature is non-trivial.   

 Engineering an intuitive user interface that 
accepts user humming queries and returns a 
ranked list of results. 

 Independently verifying that Uitdenbogerd and 
Zobel’s melody extraction heuristics and Zhu 
and Shasha’s indexing schemes actually work 
in practice. 

 
 The rest of this paper is structured as 
follows.  We discuss related work to query by 
humming systems in Section 2 and introduce some 
core concepts involved in building a time series-
based query by humming system in Section 3.  We 
detail our MusicDB system’s architecture and 
implementation in Section 4 and describe the 
graphical user interface to MusicDB in Section 5.  In 
Section 6, we present the results of our tests on 
MusicDB’s performance and scalability.  We finally 
conclude in Section 7. 
 
2. Related Work 
 
 Melody extraction is an essential part of 
query by humming systems using polyphonic music 
since the user typically hums the melody.  Identifying 

the melody involves some music perception 
principles including: 1) the highest musical notes are 
generally perceived as the melody, and 2) notes close 
in pitch are usually grouped together mentally.  
Uitdenbogerd and Zobel created and tested four 
different melody extraction algorithms on a small set 
of midi files [24].  In their tests, they found the two 
best performing algorithms were: 
 

1. Combining all musical information into one 
stream of events and keeping only the highest 
note at each time interval, resulting in 
monophonic music.  This is also known as the 
skyline algorithm since it preserves the highest 
contour. 

2. Processing each midi channel separately, 
running the skyline algorithm on each channel, 
and then choosing the channel with the highest 
average pitch as the melody. 

 
 Chai used the skyline algorithm on 
polyphonic midis with labeled melody tracks to build 
a query by humming system [4].  Thus, the track 
labels saved her the work of identifying the correct 
melody track of the midi. 
 

The first generation of query by humming 
systems used a contour representation of melodies, 
usually in the form of string sequences representing 
the pitch intervals.  This representation was widely 
accepted because people are well-known to be able to 
precisely hum correct pitch intervals, but not always 
at the right key [5, 13, 16]. The first full query by 
humming system implemented this approach by 
using the letters “U”, “D”, and “S” to represent pitch 
values going up, down, or remaining the same [5]. A 
later system that took the same approach extended 
this by accompanying these UDS strings with interval 
sizes [13].  Another system called CubyHum simply 
stored strings of interval sizes, using positive and 
negative values to denote pitch direction [17].  In all 
of these systems, hummed queries are converted into 
UDS or UDS-like strings, and the search is then 
performed by sequence matching the query string 
with all the melody strings in the database.  To 
accommodate for user humming errors, some of these 
systems employed “fuzzy” string matching 
techniques that tolerated some degree of 
inconsistency between strings [5]. 

 
 Several problems make the above approach 
unattractive.  First, string matching is typically 
expensive even with the best algorithms.  Second, 
just using contour information to query is not 
scalable because pitch direction does not provide 
enough information to distinguish songs from each 



other in a sufficiently large database [13, 24].  Lastly, 
even with fuzzy string matching, contour-based 
systems remain heavily dependent on accurate note 
transcription tools that are not yet attainable with 
current technology. 
 
 Because of these issues with the contour 
approach, more recent systems have been developed 
to explore new ways of representing melodic 
information.  Chai found that a representation 
combining time signature, pitch contour, and 
rhythmic information was more effective than 
systems that relied solely on pitch information [4, 
11].  Most recently, Zhu and Shasha devised a 
method for representing melodies as time series [24].  
In a time series representation, songs and user hums 
are sampled for discrete pitch values at regular time 
intervals.  Using this system, they were able to 
leverage the existing body of research on time series 
indexing developed by the database community; their 
system also demonstrated superior performance to 
traditional contour-based systems.  It is because of 
the scalability benefits of a time series representation 
that we also choose to represent songs and hums as 
time series in our MusicDB implementation. 
 
 Lastly, some systems have also 
experimented with using whistling instead of 
humming for query by humming based systems.  For 
example, TANSEN only accepted whistling inputs 
from users and obtained comparable results to most 
humming systems [19].  Many other systems, such as 
Microsoft Research’s query by humming system, are 
geared towards humming input but also allow 
whistling input as an alternative [13].  Whether one 
method is actually better than the other remains 
unclear because comparative studies on the issue 
have yet to be performed.  This is possibly because 
many other variables besides humming versus 
whistling can affect query quality. 
 
3. Core Concepts in Efficient Similarity 

Search for Time Series 
 
 The architecture of MusicDB’s similarity 
search components draws heavily from previous 
work; in particular, it borrows the following three 
core techniques: 
 

1. Local dynamic time warping as a distance 
metric for comparing time series. 

2. Time-series indexing via dimensionality 
reduction to efficiently perform queries. 

3. Piecewise aggregate approximation as a 
mechanism for dimensionality reduction. 

 Zhu and Shasha combined these techniques 
to build a query by humming system for a database of 
fifty short Beatles songs stored in monophonic midi 
files with cleanly defined melodies.  MusicDB 
represents our engineering endeavor to extend their 
system with the ability to query over a database of 
pop songs that average three to four minutes in 
duration and that have polyphonic tracks where the 
melody is typically decorated with accompaniments. 
 
 In this section, we provide a high level 
explanation of each of these three techniques that 
function as a basis for MusicDB’s similarity search 
components and refer the reader to related work for 
additional detail. 
 
3.1 Local Dynamic Time Warping 
 
 If we treat each value in a time series as a 
separate dimension, then we can view a time series of 
length n as a point in n-dimensional space.  Given a 
set of points S in this space, a point x is most similar 
to the point in S that minimizes some distance 
function.  Simple functions such as Euclidean 
distance, however, are highly sensitive to one of its 
inputs being out-of-phase, missing a data point, or 
having additional noise points; all of these problems 
become critical in a query by humming scenario 
where hummers may miss notes, hum additional 
notes, or be off tempo and hum different portions of a 
song at a faster or slower pace than normal. 
 
 For MusicDB, we therefore use a distance 
metric called local dynamic time warping (LDTW) 
developed originally by the speech processing 
community [15, 18, 20] as dynamic time warping 
(DTW) and tweaked slightly by [24] in their query by 
humming system.  Mathematically, the LDTW 
distance between two time series x and y is defined 
recursively by Zhu and Shasha as: 
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 Intuitively, LDTW employs dynamic 
programming to elastically shrink and stretch 
different portions of the time series to create the best 
fit as illustrated in Figure 1.1  The “local” in LDTW 
refers to the parameter k, which constrains the 
amount of stretching that can occur and accounts for 
the fact that even the worst hummers have a limit to 
how far they can be off-tempo; it also reduces the 
computational complexity of LDTW from O(n2) to 
O(kn).  The interested reader is referred to [24] for 
further information regarding the LDTW algorithm. 
  
3.2 Efficient Indexing and Matching of Time 

Series 
 
 Armed with LDTW and a time series query 
q of length m, we could theoretically iterate over all 
possible time series x of length m for all the songs in 
the database, compute LDTW(q, x), and report the x 
with the minimum distance as the most similar 
match.  Such an approach would, however, take O(n · 
(d - m)) comparisons where n is the number of songs 
and d is the average duration in number of time 
points for a song; furthermore, the dynamic 
programming involved in an LDTW comparison is 
expensive. 
 
 Efficient similarity search methods on time 
series, as described by work done in [1, 7, 8, 10], 
typically involve applying some dimensionality 
reduction technique on the data and then indexing the 
transformed data in a multidimensional index 
structure such as an R-Tree.  The key optimization in 
this architecture is that at query time, an inexpensive 
lower bounding distance function D′ where  
 

D′ (Transform(q), Transform(x))  ≤ LDTW(q, x), 
 
is used to prune out unlikely candidates in the 
transformed space before applying the 
computationally more expensive metric in the 
original space. 

                                                 
1 Figure taken from E. Keogh and C.A. 
Ratanamahatana, Exact indexing of dynamic time 
warping, Knowledge and Information Systems, May 
2004. 

 
3.3 Piecewise Aggregate Approximation 
 
 A number of dimensionality reduction 
techniques have been used for indexing high 
dimensional data, including Discrete Fourier 
Transform (DFT), Discrete Wavelet Transform 
(DWT), and Singular Value Decomposition (SVD) 
[6].  We choose to use piecewise aggregate 
approximation (PAA), also known as piecewise 
constant approximation (PCA) [8], as our 
dimensionality reduction technique because both [24] 
and [9, 10] have shown that it offers a tighter lower 
bound to the true distance than the other techniques 
mentioned and therefore provides a higher pruning 
factor. 
 
 Mathematically, the PAA transform to 
reduce a length n time-series x into a compressed 
segment X of length N where N < n is defined as: 
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Intuitively, the PAA transform simply divides the 
time series into n/N equal-length windows and 
represents the time series with the average value 
within each window. 
 
4. Architecture of MusicDB 
 
 The MusicDB architecture consists of four 
processing pipelines connected to a graphical user 
interface.  We defer discussion of the UI to Section 5, 
and focus on the four components in this section.  
These pipelines, illustrated in the architectural 
diagram of Figure 2, include: 
 

1. A melody extraction pipeline that heuristically 
selects the likely melody channel from a 
polyphonic midi file and constructs a time 
series representation of the melody. 

2. A loading pipeline that accepts the time series 
representation of the midi, records the midi in 
the catalog, and inserts a searchable 
representation of the midi into an R-tree. 

3. A query input pipeline that accepts the user 
humming input and transforms it into our own 
storage representation. 

4. A searching pipeline that uses the output from 
the query input pipeline to probe the index and 
return a ranked list of results. 

 

Figure 1: In Euclidean distance, the ith point of one time series 
is directly compared to the ith point of the other and is highly 
sensitive to alignment errors.  LDTW accounts for 
misalignment by stretching and shrinking certain portions to 
provide the best match. 



 

 
 Together the four pipelines expose the 
following query API to the UI front end: 
 
// initializes the musicDB catalog and index  
// with the midis in the specified directory by 
// passing the midis through the melody extraction  
// and loading pipelines 
void initMusicDB(String midiDir) 
// convert a recorded user hum (.wav) into a 
// midi format – query input pipeline part 1 
void wavToMidi(String wavFile, String midiFile) 
// convert a user hum from a midi format to our 
// own storage representation – query input  
// pipeline part 2 
QuerySegment processQueryFromMidi( 
   String midifile, int maxQueryLength) 
// submit a query to the database and get a ranked 
// list of results –- searching pipeline 
List<MusicSegment> query(QuerySegment query) 

 
 We construct a searchable database of midis 
by calling initMusicDB on a folder of midis to 
send each midi through the melody extraction and 
loading pipelines.  Additional midis can be added to 
the database by feeding it through the same pipelines.  
This database is typically constructed offline, saved, 
and loaded prior to query time with a folder of midis.  
Executing a query against the database consists of 
two phases: transforming a user humming input into 
our basic segment data type with calls to 
wavToMidi and processQueryFromMidi and 
looking up the segment in MusicDB’s index with a 
call to query. 
 
 We first describe the basic data structures 
and operator interface used by MusicDB, and then 
proceed to explain the machinery and algorithms 
used within each pipeline. 
 
4.1 Segments and Filters 
 
 As in Zhu and Shasha’s work, we represent 
each melody in a musical score using a time series 
representation.  The basic data type in MusicDB is a 
time series of pitch values called a Segment, which 
we treat as a unit of data similar to a tuple in a 
traditional database but without a schema.  A  

segment exposes the following basic interface: 
 
int size() 
double getValueAt(int index) 
 
Segments may also be annotated with additional 
information not provided by the basic interface; for 
example, a MusicSegment stores additional 
information that links it back to the original midi file, 
such as the MidiId, start time, and duration. 
 
 Segments are processed by Filters, 
which correspond to the pull-based operators in 
traditional databases and export the familiar iterator 
interface: 
 
void open() 
Segment getNext() 
void close() 
 
Each filter processes input segments and outputs zero 
or more transformed segments for each input 
segment.  All three pipelines use segments as the 
underlying data representation.  The loading and 
search pipelines manipulate segments using filters, 
while the query input pipeline produces a segment 
from a user hum query. 
 
4.2 Extracting a Time-Series Representation of 

Melodies from Polyphonic Midi Files 
 
 We downloaded a collection of 400 
polyphonic midis from the web.  The purpose of the 
melody extractor is to determine a time series 
representation of a song’s melody to be used for 
similarity matching against humming samples.  To do 
so, the melody extractor uses the open-source JMusic 
library [3] to parse midi files into Java data 
structures, extracts the pitches of the song’s melody 
using a combination of channel selection heuristics 
and the skyline algorithm, and outputs a segment 
capturing the time series information of the melody. 
 
Midi Songs 
 We chose to create our database of songs 
using songs in the midi file format.  This was a 
natural choice because the midi representation 
already discretizes the notes, making it easier to 
extract the pitch and timing information necessary for 
our song matching.  Alternate music file formats such 
as wav, mp3, aiff, etc. would require complicated 
waveform and signal processing that could lead to 
many inaccuracies.  Each of our songs is also mapped 
to a set of metadata attributes such as song name and 
song artist for eventual display in the GUI result list. 

Figure 2: Architectural diagram of interactions between 
MusicDB pipelines. 



 

Melody Extraction 
 Converting the music from our midi 
collection into time series consists of several steps, 
illustrated in Figure 3.  Since the user queries we 
want to match are hums of parts of melodies, our 
queried data needs to be in melody form as well.  
This raises the major challenge of extracting the 
melody from our midi files.  Although the JMusic 
library makes extracting music information easier, it 
unfortunately also gives incorrect midi information at 
times, resulting in some inaccuracies in our 
transcriptions.  Our approach to melody extraction is 
similar to that used by Uitdenbogerd and Zobel, but 
we fuse together parts of their two best performing 
algorithms to heuristically choose the melody 
channel and to extract a time series representation. 
 
Channel Selection 
 Unlike Zhu and Shasha’s database, the midi 
files we use are polyphonic with multiple overlapping 
music track channels, since this kind is most common 
for the popular music.  However, the polyphonic 
midis introduce the challenge of finding a systematic 
way to choose the channel of the midi containing the 
melody. In our tests of 50 midi files, we find that the 
melody is usually contained in just one channel of the 
midi.  However, in a few cases the melody is actually 
split across multiple channels.  For simplicity, we 
work on the assumption that the melody will always 
be found in just one channel.   
 
 This channel is difficult to isolate because, 
unlike Chai’s system [4], none of our midi files take 
advantage of the labeling functionality in the midi 
format.  Thus, we use heuristics to analyze the 
attributes of each channel and to probabilistically 
determine the melody channel.  First, we filter the 
channels so that only channels with melody-carrying 
instruments remain.  For example, we remove all the 
drum channels since drums never carry the melody.  
We then analyze the music notes and estimate the 
average pitch of each channel.  Since the melody is 
typically higher in pitch than the rest of the notes 
[22], we isolate the channels with the top 3 average 
pitch values.  Finally, since some accompaniments 
can be higher pitched than the melody and either 
have very few notes (e.g.: a few high bells) or very 
many notes (chord accompaniments), we choose the 
channel with the most single notes per time segment 

as the melody. 
 
Skyline Algorithm 
 The melody channel obtained at the end of 
channel selection can still have many overlapping 
sections called phrases, but we want to have only one 
note per unit of time in our final representation in 
order to match incoming queries.  To do this we use 
the skyline algorithm [22], a simple approach to 
melody extraction.  This algorithm prunes music 
down to just one pitch per time unit essentially by 
keeping the top pitch whenever simultaneous notes 
occur. 
 
Function 
Skyline(Vector<Note> notes) 
1.  melody = new TimeSeries; 
2.    for each Note N in notes 
3.       //if there is any overlap between  
4.       //time of note N and one of the  
5.       //notes already contained in the  
6.       //melody series, keep only the note  
7.       //with the highest pitch 
8.       if hasOverlap(N, melody) and 
9.          N.pitch < melody[N.time].pitch 
10.        continue 
11.     melody[N.time] = N  
12. return melody; 
 
 In order to run the skyline algorithm, we 
first transform each of the phrases into time series 
form.  Since many of the time encodings of midi 
notes are not exact in rhythm, our transformation to 
time series involves forcing the notes into quarter 
note slots so that all notes can align properly for 
comparison. Each time sample represented a quarter 
note because that was the smallest interval our 
system could support while still maintaining fast 
search performance.  Rests in this form are indicated 
by the lack notes at times.  This representation makes 
it very easy to do the time overlap and relative pitch 
comparisons necessary for the Skyline algorithm. 
 
Function 
OrderIntoSlot(Phrase phrase) 
1.  pitches <- Vector<TimeSample> 
2.  time <- phrase.getStartTime() 
3.  lastAssignedTime <- -1; 
4.  for each Note N in phrase 
5.     noteStartTime <-  
6.      roundToNearestQuarter(time); 
7.     assignedTime <-0; 
8.     while (noteStartTime + assignedTime < 
9.     lastAssignedTime) 
10.   //the smallest note time used in  
11.      //our system was a quarter note 
12.      assignedTime+=smallestNoteTime; 
13.    while(noteStartTime + assignedTime 
14.     < time+N.getDuration()){ 
15.      //if the note is not a rest 
16.      //add the note at the calculated 
17.      //assigned time 
18.      if(pitch>0)      

Figure 3: Melody extraction pipeline. 



19.        pitches.add(TimeSample(N.pitch,  
20.         noteStartTime+assignedTime); 
21.      else 
22.        assignedTime +=smallestNoteTime; 
23.      //update the time counts 
24.      lastAssigned = noteStartTIme +  
25.       assignedTime; 
26.      time +=N.getDuration() 
27.  return pitches; 
 
The final result of the skyline algorithm and melody 
extraction is a time series representation of the music 
file, with a pitch and time for each note. 
 
4.3 Indexing a Time-Series 
 
 The goal of the loading pipeline, illustrated 
in Figure 4, is to index the extracted melody time 
series for efficient querying.  Prior to further 
processing, the extracted melody is inserted into the 
MidiCatalog, which assigns to it a unique 
MidiId.  The MidiId allows us to match processed 
segments with the original midis. 
 
 The output of the melody extraction pipeline 
is sliced into overlapping windows of a fixed length 
via the segmentor filter.  Each of these music 
segment windows carry the original MidiId and 
timing information pointing to its location in the 
original midi; each segment will eventually become a 
subsequence of the original that can be matched 
against user queries.  We chose to set our segment 
size to thirty data points, expecting the average user 
query to be seven to eight seconds in duration.  We 
experimentally determined a reasonable offset from 
the start of one window to the start of the next to be 
five time-series values, corresponding to roughly 
1.25 seconds of music.  After the time information is 
used for segmentation, the rests are discarded.   This 
decision was supported by the many systems such as 
[24] which found that rest information was not 
necessary for making query matches.  To account for 
humming queries being off-key, each window 
segment is normalized by a Mean Removal filter that 
subtracts the window’s average pitch value from each 
point in the window.  A humming query will be 
normalized in a similar fashion to remove the effects 
of the key. 
 
 Because multidimensional index structures 
typically degrade in performance past 8-10 
dimensions, rather than inserting the normalized 
window segments into an R-Tree, we pass the 
segments through a PAA Transform that applies the 
PAA dimensionality technique in order to reduce the 
size of the data.  Each of these compressed segments 
is then inserted into the R-Tree, along with 
information relating the segment back to the original 

midi file.  For our R-Tree index, we use the open-
source implementation of a Java Spatial Index 
Library [21], developed in UC Riverside.  We 
explain how the index supports efficient queries in 
Section 4.5. 

 
Figure 4:  MusicDB loading pipeline.  The arrows represent 
Filters and the time series represent Segments.  A midi file 
entering becomes stored in a segment after melody extraction. The 
segmentor chops the melody segment into overlapping windows, 
each of which undergoes a mean removal and PAA transformation 
before being indexed in an R-Tree. 
 
Processing a User’s Input Hum Query 
 
 In order to obtain the user’s hum, we used 
standard Java sound file streaming libraries to record 
the hum into monophonic wave format.  We then 
wanted to convert the hum into a midi format so that 
we could process it like we did all of our other midis 
via a wave to midi file converter.  Although there are 
many implementations of wave to midi converters, 
we used one of the few that run on Mac OS X since 
that was the platform we chose to support.  As a 
result, we decided to use WaoN, an open-source 
notes transcriber that samples the continuous sound 
in a wave file to make the discrete representation of 
the midi file [23]. 
 
 WaoN allowed us to convert the files and 
remove some of the noise while also increasing the 
volume of the query.  However a substantial amount 
of noise still remained, and as a result we passed the 
resulting midi through a band-pass filter to remove 
all the outlying high pitch and low pitch noise. 
 

 
Figure 5: Humming extraction pipeline. 



 
 Once the noise was all removed, we were 
left with a short melody midi segment, which we 
would put through the same processing pipeline we 
used for the midis in our database.  Figure 5 
illustrates this entire process. 
 
 
4.4 Efficient Querying Using the Database 
 
 Given a humming query, MusicDB returns 
the top K songs that match the query.  The intention 
of the multi-dimensional index structure is to save 
computation over a sequential scan of all the window 
segments constructed by the Segmentor filter in 
Section 4.2.  We use two techniques to calculate 
lower bounds on the true LDTW distance between 
the query segment and a music segment or a cluster 
of music segments in the transformed space; these 
techniques enable us to prune areas of the search 
space whose segments will definitely not make the 
top K songs without actually computing the LDTW 
distance for each segment. 
 
 The first technique, introduced by [10] but 
improved by [24], computes, in the transformed 
space, a lower bound of the distance between the 
query segment and an indexed segment using a 
mathematical construct called the query envelope.  
While a complete proof and explanation of the 
method is beyond the scope of this paper, we include 
the mathematical formula for this calculation for 
completeness. 
 
 First, we compute the K-envelope <l,u> of a 
query q: 
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Then, we calculate the PAA transform of each of the 
segments l and u as if each was its own time series, 
using the PAA equation from Section 3.3 to obtain 
two length N sequences L and U.  The lower 
bounding distance LB_PAA is then computed 
as:
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 The second technique, presented in [10], 
computes a lower bound between the query segment 

and the minimum bounding region R of an index 
node, with the possibility of pruning all segments in 
the search space beneath the index node. Letting RH 
denote the upper bound of R and RL denote the lower 
bound of R, the mathematics for this technique looks 
like: 
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 Combining the two techniques, we arrive at 
the K-NearestNeighborQuery algorithm, 
which is as follows: 
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Function  
K-NearestNeighborQuery(Query Q, Integer K): 
 
queue: MinPriorityQueue 
examined: SortedList<time-series, distance>  
          // sorted by distance 
best_so_far: Map<MidiId => distance> 
results <- Set<MidiId> 
 
queue.push(root_node, 0) 
while queue is not empty 

top <- queue.pop() 
  while examined is not empty 

closest <- first(examined) 
// any time-series closer than top is  
// closer than anything unexamined  
// and is therefore a nearest neighbor 

    if LDTW(Q, closest) <= top.dist 
      Add closest.MidiId to results 
      Remove closest from examined 
      if |results| = K 
        return results 
    else 
      // everything behind closest is  
      // farther because examined is sorted 
      break 
  if top is PAA point 
    if results contains top.MidiId 
      continue 

Retrieve from catalog the full time- 
 series T for top.MidiId 
T' <- slice of T from index at top.start 
      running for Q.length values 

    S <- NORMALIZE(T') 
    if LDTW(S,Q) < best_so_far.get(S.MidiId) 
      best_so_far.put(S.MidiId, LDTW(S,Q)) 
      Remove from examined any time-series 
        with MidiId = S.MidiId 
      examined.insert(S, LDTW(Q, S)) 
  else if top is a leaf node 
    for each data point D in top 
      queue.push(D, LB_PAA(Q, D)) 
  else 
    for each child C in top 
      queue.push(C, MINDIST(Q, C) 
     
while |results| < K and examined not empty 
  S = examined.removeFirst() 
 add S.MidiId to results 



 LB_PAA refers to the first technique, and 
MIN_DIST refers to the second.  The algorithm is 
adapted from the KNN-Search algorithm described in 
[10] but modified in three major ways: 1) rather than 
returning the top K matches, we return the top K 
matches with the constraint that each of the K 
matches must come from distinct songs, 2) we extend 
the algorithm in lines 21-24 based on the ideas in [9] 
to handle queries longer than the time-series 
originally indexed, and 3) we normalize the retrieved 
segments before comparing in order to account for 
off-key queries.  The implication of the second 
change is that a longer query should theoretically 
produce more accurate results.  Experimentally, we 
have found that our algorithm is often able to only 
calculate LDTW distances for under 60% of the total 
segments before determining the top K matches. 
 
 Note that this algorithm differs from the 
search algorithm used in the query by humming 
system of [24] because their system uses an ε-range 
query to find all segments with LDTW distance no 
greater than ε away from the query and because they 
do not use the second pruning technique.  We in fact 
implemented both algorithms and found our nearest 
neighbor algorithm to have better performance. 
 
 
5. UI discussion 
 
 For the purposes of this project we wanted 
to make a simple but friendly user interface so that 
users could make queries easily.  The UI comprises 
of two parts: one for obtaining user input for queries, 
and one for displaying query results. 
 
 Users can choose to input their queries 
either by humming or by playing the tune on an on-
screen piano.  In our implementation we decided to 
focus on the humming input usability since it was a 
more natural form of input, more efficient to use, and 
not limited only to users with prior training with a 
piano.  Our humming interface, shown in Figure 6, 
allows users record hums using a microphone and 
play hums back to check the quality.  Alternatively, 
the piano interface, as seen in Figure 7, is a simple 
piano where people can click on keys to play notes 
that will be transcribed into a query. These UI 
components included some extensions of the source 
code provided by the Java Sound Demo to render 
both the keyboard and waveform [14].  Once a query 
is ready, users can hit the “Search for Song” button to 
perform the query. 

 Upon completion of the query, the top 20 
results will show in a ranked list, with the closest 
match ranked first.  This listing also displays 
metadata such as the song name and artist who wrote 
or performed the song.  From there, the user can 
select a song in the listing for playback and even play 
the segment of the song that matches the query by 
pressing the “Play matching segment” button.  In 
essence, the results list can be viewed as a generated 
playlist of all songs found to be similar to the query. 
 

 

 

 
Figure 7: Query by piano input UI. 

Figure 6: Query by humming UI. 



6. Results 
 
 In this section, we discuss and analyze some 
experimental results on MusicDB.  These 
experiments focused on two major aspects of our 
query by humming system: quality and scalability.  
Quality is defined as how accurately our system 
returns results for a given query.  Scalability is 
measured in terms of both quality and performance of 
the system as we increase the number of songs in the 
database. 
 
6.1 Quality of Query by Humming 
 
 We created a database of 50 popular songs 
out of midi files collected from a popular Karaoke 
website.  The midi files were loaded into the database 
using MusicDB’s loading pipeline described Section 
4.2.  We then collected recordings of hums from 
different 10 users for a total of 50 humming samples.  
These recordings were pushed through the query 
input pipeline and the search pipeline to generate the 
results shown in Figure 8.  From the figure, we can 
see that MusicDB returns the correct result within the 
top 10 for 52% of the time, and returns the correct 
result as the top hit 24% of the time.  We compared 
our results against Zhu and Shasha’s results from 
experiments of 40 humming samples on a database of 
50 songs on their own query by humming system, 
shown in Figure 9. 
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 The graphs suggest that MusicDB does not 
match Zhu and Shasha’s system in terms of search 
quality.  However, several differences in the 
methodologies used for our experiments account for 
the discrepancy. 
 
 First, Zhu and Shasha manually entered 
single-channel, monophonic songs into their 
database.  As such, they avoided the melody 
extraction problem altogether and guaranteed that the 
correct melodies for their songs would be stored in 
the database. Our system used widely available 
multi-channel polyphonic midi files.  Even though 
our melody extraction techniques successfully 
retrieved large portions of the melody for most midis, 
some of the midis were either improperly labeled, 
had their melodies divided into multiple channels, or 
had high accompaniment pitches that would occlude 
the melody notes in the skyline heuristic.  Because 
our database did not have perfectly accurate 
representations of certain songs, MusicDB suffered 
from a loss in quality in rankings that Zhu and 
Shasha sidestepped completely, accounting for a 
significant amount of the discrepancies between our 
results. 
 
 Second, we also experienced some trouble 
with properly converting and extracting user midis 
from recorded wave files.  Zhu and Shasha used a 
piece of commercial software, AKoff Music 
Composer 2.0 [2], to record and transcribe notes from 
a user’s query.  In contrast, MusicDB utilizes a free 
open-source tool, WaoN v0.1, to transcribe notes.  It 
is highly likely that the commercial software affords 
much higher fidelity note transcription. 
 
 Third, Zhu and Shasha actually divided their 
40 humming samples into a group of “better hums” 
and “poorer hums” and used different parameters for 

Figure 8: Aggregate rankings of 50 user hums passed through 
the MusicDB pipeline. 

Figure 9: Zhu and Shasha’s reported results for passing 40 
user hums into their query by humming implementation. 



each batch to produce more optimal results.  We, 
however, felt that such a categorization of hummers 
was somewhat arbitrary and used a uniform set of 
parameters for all hummers, perhaps at the cost of 
reduced search quality. 
 
 Lastly, we did not entirely control for noise 
in the environments when collecting user hums.  
Consequently, the recordings varied in quality, and in 
general, recordings of low quality ended up returning 
bad results. 
 
 If we were to normalize for these 
differences, we believe that our search quality would 
increase substantially and that our results would 
actually be quite comparable to those reported by 
Zhu and Shasha. 
 
6.2 Scalability of MusicDB Quality 
 
 To measure how well quality scales with 
database size, we ran the same experiments from the 
previous section on a database of 100 songs (double 
the original 50).  We compare these results against 
our original experiment in Figure 10. 
 
 As illustrated by the chart, a general 
decrease in quality can be observed with the larger 
database.  The decrease is rather slight, however, and 
indicate that MusicDB scales quite well in terms of 
search quality. 
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6.3 Scalability of Indexing Infrastructure 
 
 We conducted a few experiments to measure 
the scalability of MusicDB’s performance as we 
increase the number of songs in the database.  We 
collected performance numbers over databases of 50, 
100, 200, 300, and 400 songs.  Figure 11 shows the 

size of the catalog and the index structure (in terms of 
KB) as a function of the number of songs in a 
database.  Each additional song increases the catalog 
and index size by roughly 35 KB, which is slightly 
less than the space used by a typical midi file.  Figure 
12 shows the total number of segments in the index, 
and Figure 13 shows the average fraction of all 
segments in the database examined by a single query.  
Figure 14 shows the average query time on 2.4 GHz 
Pentium 4 PC with 512 MB of RAM, 256 MB of 
which were reserved for the Java Eclipse 
environment. 
 
 Note that while the space overhead, the total 
number of segments, and the average query time 
increases roughly linearly with the number of songs 
in the database, the fraction of segments for which 
the true LDTW distance must be calculated actually 
decreases from 66% on a database of 50 songs to 
59% on a database of 400 songs.  We speculate the 
reason for this decrease to be that the parameters 
(page size, branching factor, etc.) for our R-tree is 
actually geared toward larger data sets.  While this 
fraction represents a reasonable amount of savings, 
we conclude that the time-series indexing 
architecture we adopted from the cutting-edge 
research literature does not scale well enough to 
search millions of songs unless the constant factor 
can be drastically reduced. 
 
 Another observation is that we can decrease 
the space overhead of the index without affecting 
accuracy by increasing the compression ratio used 
during dimensionality reduction.  For these 
experiments, we used a compression factor of 5.  The 
lower-bounding distance metric in the transformed 
space, however, becomes less tight in the transformed 
space with increasing compression ratios, which in 
turn would lead to an increased number of segments 
examined and an increased querying time.  Thus, a 
tradeoff exists between the space overhead of the 
index and query performance. 
 

Figure 10: Aggregate rankings of 50 user hums passed on 
databases of 50 and 100 hums. 
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7. Conclusion 
 
 We have developed an end-to-end music 
search system called MusicDB with a UI that accepts 
humming samples as user queries and returns a 
ranked list of the top matching songs.  Our system 
achieves reasonable performance, returning the 
desired song within the top 10 hits 52% of the time 
and as the top hit 24% of the time.  In a second 
version of this system, we expect the search quality 
of MusicDB to improve drastically if we use a more 
solid midi parser than the buggy JMusic library we 
used and if we used a higher fidelity wave to midi 
converter. 
 
 Our main contribution in this paper is a 
detailed documentation of the steps involved in 
building a working query-by-humming system.  We 
describe the channel selection and skyline algorithms 
involved in the extraction of melodies from 
polyphonic midis.  We detail the representation of 
tunes and hums as time series, the time warping 
distance metric used in the research literature to 
perform similarity comparisons between time series, 
and an efficient indexing method to prune the search 
space and return a ranked list of results.  We believe 
that our MusicDB demonstrates that query-by-
humming systems are a promising new way to 
support music search. 
 
 

Figure 11: Index and catalog size as a function of the number of 
songs in the database. 

Figure 12: Total segments indexed as a function of the number of 
songs in the database. 

Figure 13: Average percentage of total segments examined per 
query as a function of the number of songs in the database. 

Figure 14: Average query time as a function of the number of 
songs in the database. 
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