
MusicDB: A Query by Humming System

Edmond Lau, Annie Ding, Calvin On

6.830: Database Systems
Final Project Report

Massachusetts Institute of Technology
{edmond, annie_d, calvinon}@mit.edu

Abstract

We engineer an end-to-end music search system
called MusicDB that supports query by
humming. We represent musical tunes and hums
as time series and use a time warping distance
metric for similarity comparisons. A multi-
dimensional index structure is used to prune the
search space of songs and efficiently return the
top hits back to an intuitive UI. Our user
experiments on a database of fifty midis are
promising; we find that MusicDB returns the
desired song within the top 10 hits with 52%
accuracy and as the top hit with 24% accuracy.
Moreover, we believe that substantial room for
improvement in search quality can be achieved
with more accurate pitch extraction software and
a more solid midi parsing library than the ones
we used. Because few query-by-humming
solutions have been fully documented in the
research literature, we document all the core
components of the MusicDB architecture to
enable readers to build and extend our system if
desired.

1. Introduction

 Many people often remember a short tidbit
of a song but fail to recall the song’s name. If you
can remember lyrics that correspond to the song you
are trying to recall, finding the song is as easy as
performing a text query on a web search engine.
Alternatively, other music search services, such as
the one iTunes provides, support querying
capabilities on the basis of metadata tags (title, artist,
genre, etc.) associated with music files. Even more
sophisticated systems such as Pandora [16] allow
musicians and listeners to collectively annotate a
music database to build customized online radio
stations with similar songs.

 A query by humming system allows a user
to find a song even if he merely knows the tune from
part of the melody. The user simply hums the tune

into a computer microphone, and the system searches
through a database of songs for melodies containing
the tune and returns a ranked list of search results.
The user can then find the desired song by listening
to the results.

 Building such a system, however, presents
some significantly greater challenges than creating a
conventional text-based search engine. Unlike lyrical
content, there exists no intuitively obvious way to
represent and store melodic content in a database.
The chosen representation must be indexable for
efficient searching. Furthermore, several issues
unique to query by humming systems pose significant
challenges to creating an efficient and accurate music
search system:

1. Users may not make perfect queries. Even if a
user has a perfect memory of a particular tune,
he may start at the wrong key, or he may hum
a few notes off-pitch throughout the course of
the tune. Sometimes he may even drop some
notes entirely or add notes that did not exist in
the original melody. Additionally, no user is
expected to be able to perfectly hum at the
same tempo as the songs stored in the
database. Finally, since none of these errors
are mutually exclusive, a humming query may
contain any combination of these errors.

2. Accurately capturing pitches and notes from
user hums is difficult, even if the user manages
to submit a perfect query. Currently existing
software for converting raw audio data into
discrete pitch information is mediocre at best
and oftentimes will introduce a great deal of
noise when extracting the pitches from a user’s
hum.

3. Similarly, accurately capturing melodic
information from a pre-recorded music file is
difficult. Properly extracting the melody from
a given song is a field of study on its own but
is absolutely critical for an accurate query by
humming database. Creating a perfect query

would be of little use if the database contains
inaccurate representations of the target songs.

 We designed and implemented MusicDB, a
query by humming system that fuses together
techniques from the melody extraction machinery
developed by Uitdenbogerd and Zobel [22] and the
query by humming system implemented by Zhu and
Shasha [24]. These techniques enable us to build a
searchable database of polyphonic midi files that can
return the desired song within the top 10 hits with
52% accuracy and as the top hit with 24% accuracy.
Moreover, the quality and performance scales
reasonably with increasing database size.

 Our main contributions in architecting
MusicDB and in writing this paper include:

 Building an end-to-end music search system
over a database of real songs that accepts user
humming queries and returns quality results
with reasonable response times.

 Documenting, in detail, the core components
of our system so that readers can recreate and
extend our system in the future. While some
previous research has been conducted in this
field, few people have written about the
implementation of an end-to-end system, and
reconstructing the work of those systems that
are actually documented in the published
literature is non-trivial.

 Engineering an intuitive user interface that
accepts user humming queries and returns a
ranked list of results.

 Independently verifying that Uitdenbogerd and
Zobel’s melody extraction heuristics and Zhu
and Shasha’s indexing schemes actually work
in practice.

 The rest of this paper is structured as
follows. We discuss related work to query by
humming systems in Section 2 and introduce some
core concepts involved in building a time series-
based query by humming system in Section 3. We
detail our MusicDB system’s architecture and
implementation in Section 4 and describe the
graphical user interface to MusicDB in Section 5. In
Section 6, we present the results of our tests on
MusicDB’s performance and scalability. We finally
conclude in Section 7.

2. Related Work

 Melody extraction is an essential part of
query by humming systems using polyphonic music
since the user typically hums the melody. Identifying

the melody involves some music perception
principles including: 1) the highest musical notes are
generally perceived as the melody, and 2) notes close
in pitch are usually grouped together mentally.
Uitdenbogerd and Zobel created and tested four
different melody extraction algorithms on a small set
of midi files [24]. In their tests, they found the two
best performing algorithms were:

1. Combining all musical information into one
stream of events and keeping only the highest
note at each time interval, resulting in
monophonic music. This is also known as the
skyline algorithm since it preserves the highest
contour.

2. Processing each midi channel separately,
running the skyline algorithm on each channel,
and then choosing the channel with the highest
average pitch as the melody.

 Chai used the skyline algorithm on
polyphonic midis with labeled melody tracks to build
a query by humming system [4]. Thus, the track
labels saved her the work of identifying the correct
melody track of the midi.

The first generation of query by humming
systems used a contour representation of melodies,
usually in the form of string sequences representing
the pitch intervals. This representation was widely
accepted because people are well-known to be able to
precisely hum correct pitch intervals, but not always
at the right key [5, 13, 16]. The first full query by
humming system implemented this approach by
using the letters “U”, “D”, and “S” to represent pitch
values going up, down, or remaining the same [5]. A
later system that took the same approach extended
this by accompanying these UDS strings with interval
sizes [13]. Another system called CubyHum simply
stored strings of interval sizes, using positive and
negative values to denote pitch direction [17]. In all
of these systems, hummed queries are converted into
UDS or UDS-like strings, and the search is then
performed by sequence matching the query string
with all the melody strings in the database. To
accommodate for user humming errors, some of these
systems employed “fuzzy” string matching
techniques that tolerated some degree of
inconsistency between strings [5].

 Several problems make the above approach
unattractive. First, string matching is typically
expensive even with the best algorithms. Second,
just using contour information to query is not
scalable because pitch direction does not provide
enough information to distinguish songs from each

other in a sufficiently large database [13, 24]. Lastly,
even with fuzzy string matching, contour-based
systems remain heavily dependent on accurate note
transcription tools that are not yet attainable with
current technology.

 Because of these issues with the contour
approach, more recent systems have been developed
to explore new ways of representing melodic
information. Chai found that a representation
combining time signature, pitch contour, and
rhythmic information was more effective than
systems that relied solely on pitch information [4,
11]. Most recently, Zhu and Shasha devised a
method for representing melodies as time series [24].
In a time series representation, songs and user hums
are sampled for discrete pitch values at regular time
intervals. Using this system, they were able to
leverage the existing body of research on time series
indexing developed by the database community; their
system also demonstrated superior performance to
traditional contour-based systems. It is because of
the scalability benefits of a time series representation
that we also choose to represent songs and hums as
time series in our MusicDB implementation.

 Lastly, some systems have also
experimented with using whistling instead of
humming for query by humming based systems. For
example, TANSEN only accepted whistling inputs
from users and obtained comparable results to most
humming systems [19]. Many other systems, such as
Microsoft Research’s query by humming system, are
geared towards humming input but also allow
whistling input as an alternative [13]. Whether one
method is actually better than the other remains
unclear because comparative studies on the issue
have yet to be performed. This is possibly because
many other variables besides humming versus
whistling can affect query quality.

3. Core Concepts in Efficient Similarity

Search for Time Series

 The architecture of MusicDB’s similarity
search components draws heavily from previous
work; in particular, it borrows the following three
core techniques:

1. Local dynamic time warping as a distance
metric for comparing time series.

2. Time-series indexing via dimensionality
reduction to efficiently perform queries.

3. Piecewise aggregate approximation as a
mechanism for dimensionality reduction.

 Zhu and Shasha combined these techniques
to build a query by humming system for a database of
fifty short Beatles songs stored in monophonic midi
files with cleanly defined melodies. MusicDB
represents our engineering endeavor to extend their
system with the ability to query over a database of
pop songs that average three to four minutes in
duration and that have polyphonic tracks where the
melody is typically decorated with accompaniments.

 In this section, we provide a high level
explanation of each of these three techniques that
function as a basis for MusicDB’s similarity search
components and refer the reader to related work for
additional detail.

3.1 Local Dynamic Time Warping

 If we treat each value in a time series as a
separate dimension, then we can view a time series of
length n as a point in n-dimensional space. Given a
set of points S in this space, a point x is most similar
to the point in S that minimizes some distance
function. Simple functions such as Euclidean
distance, however, are highly sensitive to one of its
inputs being out-of-phase, missing a data point, or
having additional noise points; all of these problems
become critical in a query by humming scenario
where hummers may miss notes, hum additional
notes, or be off tempo and hum different portions of a
song at a faster or slower pace than normal.

 For MusicDB, we therefore use a distance
metric called local dynamic time warping (LDTW)
developed originally by the speech processing
community [15, 18, 20] as dynamic time warping
(DTW) and tweaked slightly by [24] in their query by
humming system. Mathematically, the LDTW
distance between two time series x and y is defined
recursively by Zhu and Shasha as:

2 2
()

2
()

2
()

2
()

2
2

(,) ((), ())

(())

min (())

(() ())

(,) if -
(,)

LDTW k constraint(k)

LDTW k

LDTW k

LDTW k

i j
constraint(k) i j

D x y D First x First y

D x,Rest y

D Rest x , y

D Rest x ,Rest y

D x y i j k
D x y

=

⎧ ⎫
⎪ ⎪⎪ ⎪+ ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

≤
=

∞

r ur r ur

r ur

r ur

r ur

2 2

 if -

(,) ()

i j k

D a b a b

⎧ ⎫
⎨ ⎬>⎩ ⎭

= −

 Intuitively, LDTW employs dynamic
programming to elastically shrink and stretch
different portions of the time series to create the best
fit as illustrated in Figure 1.1 The “local” in LDTW
refers to the parameter k, which constrains the
amount of stretching that can occur and accounts for
the fact that even the worst hummers have a limit to
how far they can be off-tempo; it also reduces the
computational complexity of LDTW from O(n2) to
O(kn). The interested reader is referred to [24] for
further information regarding the LDTW algorithm.

3.2 Efficient Indexing and Matching of Time

Series

 Armed with LDTW and a time series query
q of length m, we could theoretically iterate over all
possible time series x of length m for all the songs in
the database, compute LDTW(q, x), and report the x
with the minimum distance as the most similar
match. Such an approach would, however, take O(n ·
(d - m)) comparisons where n is the number of songs
and d is the average duration in number of time
points for a song; furthermore, the dynamic
programming involved in an LDTW comparison is
expensive.

 Efficient similarity search methods on time
series, as described by work done in [1, 7, 8, 10],
typically involve applying some dimensionality
reduction technique on the data and then indexing the
transformed data in a multidimensional index
structure such as an R-Tree. The key optimization in
this architecture is that at query time, an inexpensive
lower bounding distance function D′ where

D′ (Transform(q), Transform(x)) ≤ LDTW(q, x),

is used to prune out unlikely candidates in the
transformed space before applying the
computationally more expensive metric in the
original space.

1 Figure taken from E. Keogh and C.A.
Ratanamahatana, Exact indexing of dynamic time
warping, Knowledge and Information Systems, May
2004.

3.3 Piecewise Aggregate Approximation

 A number of dimensionality reduction
techniques have been used for indexing high
dimensional data, including Discrete Fourier
Transform (DFT), Discrete Wavelet Transform
(DWT), and Singular Value Decomposition (SVD)
[6]. We choose to use piecewise aggregate
approximation (PAA), also known as piecewise
constant approximation (PCA) [8], as our
dimensionality reduction technique because both [24]
and [9, 10] have shown that it offers a tighter lower
bound to the true distance than the other techniques
mentioned and therefore provides a higher pruning
factor.

 Mathematically, the PAA transform to
reduce a length n time-series x into a compressed
segment X of length N where N < n is defined as:

(1) 1

, 1,2,...,

n i
N

i j
nj i
N

NX x i N
n

= − +

= =∑ .

Intuitively, the PAA transform simply divides the
time series into n/N equal-length windows and
represents the time series with the average value
within each window.

4. Architecture of MusicDB

 The MusicDB architecture consists of four
processing pipelines connected to a graphical user
interface. We defer discussion of the UI to Section 5,
and focus on the four components in this section.
These pipelines, illustrated in the architectural
diagram of Figure 2, include:

1. A melody extraction pipeline that heuristically
selects the likely melody channel from a
polyphonic midi file and constructs a time
series representation of the melody.

2. A loading pipeline that accepts the time series
representation of the midi, records the midi in
the catalog, and inserts a searchable
representation of the midi into an R-tree.

3. A query input pipeline that accepts the user
humming input and transforms it into our own
storage representation.

4. A searching pipeline that uses the output from
the query input pipeline to probe the index and
return a ranked list of results.

Figure 1: In Euclidean distance, the ith point of one time series
is directly compared to the ith point of the other and is highly
sensitive to alignment errors. LDTW accounts for
misalignment by stretching and shrinking certain portions to
provide the best match.

 Together the four pipelines expose the
following query API to the UI front end:

// initializes the musicDB catalog and index
// with the midis in the specified directory by
// passing the midis through the melody extraction
// and loading pipelines
void initMusicDB(String midiDir)
// convert a recorded user hum (.wav) into a
// midi format – query input pipeline part 1
void wavToMidi(String wavFile, String midiFile)
// convert a user hum from a midi format to our
// own storage representation – query input
// pipeline part 2
QuerySegment processQueryFromMidi(
 String midifile, int maxQueryLength)
// submit a query to the database and get a ranked
// list of results –- searching pipeline
List<MusicSegment> query(QuerySegment query)

 We construct a searchable database of midis
by calling initMusicDB on a folder of midis to
send each midi through the melody extraction and
loading pipelines. Additional midis can be added to
the database by feeding it through the same pipelines.
This database is typically constructed offline, saved,
and loaded prior to query time with a folder of midis.
Executing a query against the database consists of
two phases: transforming a user humming input into
our basic segment data type with calls to
wavToMidi and processQueryFromMidi and
looking up the segment in MusicDB’s index with a
call to query.

 We first describe the basic data structures
and operator interface used by MusicDB, and then
proceed to explain the machinery and algorithms
used within each pipeline.

4.1 Segments and Filters

 As in Zhu and Shasha’s work, we represent
each melody in a musical score using a time series
representation. The basic data type in MusicDB is a
time series of pitch values called a Segment, which
we treat as a unit of data similar to a tuple in a
traditional database but without a schema. A

segment exposes the following basic interface:

int size()
double getValueAt(int index)

Segments may also be annotated with additional
information not provided by the basic interface; for
example, a MusicSegment stores additional
information that links it back to the original midi file,
such as the MidiId, start time, and duration.

 Segments are processed by Filters,
which correspond to the pull-based operators in
traditional databases and export the familiar iterator
interface:

void open()
Segment getNext()
void close()

Each filter processes input segments and outputs zero
or more transformed segments for each input
segment. All three pipelines use segments as the
underlying data representation. The loading and
search pipelines manipulate segments using filters,
while the query input pipeline produces a segment
from a user hum query.

4.2 Extracting a Time-Series Representation of

Melodies from Polyphonic Midi Files

 We downloaded a collection of 400
polyphonic midis from the web. The purpose of the
melody extractor is to determine a time series
representation of a song’s melody to be used for
similarity matching against humming samples. To do
so, the melody extractor uses the open-source JMusic
library [3] to parse midi files into Java data
structures, extracts the pitches of the song’s melody
using a combination of channel selection heuristics
and the skyline algorithm, and outputs a segment
capturing the time series information of the melody.

Midi Songs
 We chose to create our database of songs
using songs in the midi file format. This was a
natural choice because the midi representation
already discretizes the notes, making it easier to
extract the pitch and timing information necessary for
our song matching. Alternate music file formats such
as wav, mp3, aiff, etc. would require complicated
waveform and signal processing that could lead to
many inaccuracies. Each of our songs is also mapped
to a set of metadata attributes such as song name and
song artist for eventual display in the GUI result list.

Figure 2: Architectural diagram of interactions between
MusicDB pipelines.

Melody Extraction
 Converting the music from our midi
collection into time series consists of several steps,
illustrated in Figure 3. Since the user queries we
want to match are hums of parts of melodies, our
queried data needs to be in melody form as well.
This raises the major challenge of extracting the
melody from our midi files. Although the JMusic
library makes extracting music information easier, it
unfortunately also gives incorrect midi information at
times, resulting in some inaccuracies in our
transcriptions. Our approach to melody extraction is
similar to that used by Uitdenbogerd and Zobel, but
we fuse together parts of their two best performing
algorithms to heuristically choose the melody
channel and to extract a time series representation.

Channel Selection
 Unlike Zhu and Shasha’s database, the midi
files we use are polyphonic with multiple overlapping
music track channels, since this kind is most common
for the popular music. However, the polyphonic
midis introduce the challenge of finding a systematic
way to choose the channel of the midi containing the
melody. In our tests of 50 midi files, we find that the
melody is usually contained in just one channel of the
midi. However, in a few cases the melody is actually
split across multiple channels. For simplicity, we
work on the assumption that the melody will always
be found in just one channel.

 This channel is difficult to isolate because,
unlike Chai’s system [4], none of our midi files take
advantage of the labeling functionality in the midi
format. Thus, we use heuristics to analyze the
attributes of each channel and to probabilistically
determine the melody channel. First, we filter the
channels so that only channels with melody-carrying
instruments remain. For example, we remove all the
drum channels since drums never carry the melody.
We then analyze the music notes and estimate the
average pitch of each channel. Since the melody is
typically higher in pitch than the rest of the notes
[22], we isolate the channels with the top 3 average
pitch values. Finally, since some accompaniments
can be higher pitched than the melody and either
have very few notes (e.g.: a few high bells) or very
many notes (chord accompaniments), we choose the
channel with the most single notes per time segment

as the melody.

Skyline Algorithm
 The melody channel obtained at the end of
channel selection can still have many overlapping
sections called phrases, but we want to have only one
note per unit of time in our final representation in
order to match incoming queries. To do this we use
the skyline algorithm [22], a simple approach to
melody extraction. This algorithm prunes music
down to just one pitch per time unit essentially by
keeping the top pitch whenever simultaneous notes
occur.

Function
Skyline(Vector<Note> notes)
1. melody = new TimeSeries;
2. for each Note N in notes
3. //if there is any overlap between
4. //time of note N and one of the
5. //notes already contained in the
6. //melody series, keep only the note
7. //with the highest pitch
8. if hasOverlap(N, melody) and
9. N.pitch < melody[N.time].pitch
10. continue
11. melody[N.time] = N
12. return melody;

 In order to run the skyline algorithm, we
first transform each of the phrases into time series
form. Since many of the time encodings of midi
notes are not exact in rhythm, our transformation to
time series involves forcing the notes into quarter
note slots so that all notes can align properly for
comparison. Each time sample represented a quarter
note because that was the smallest interval our
system could support while still maintaining fast
search performance. Rests in this form are indicated
by the lack notes at times. This representation makes
it very easy to do the time overlap and relative pitch
comparisons necessary for the Skyline algorithm.

Function
OrderIntoSlot(Phrase phrase)
1. pitches <- Vector<TimeSample>
2. time <- phrase.getStartTime()
3. lastAssignedTime <- -1;
4. for each Note N in phrase
5. noteStartTime <-
6. roundToNearestQuarter(time);
7. assignedTime <-0;
8. while (noteStartTime + assignedTime <
9. lastAssignedTime)
10. //the smallest note time used in
11. //our system was a quarter note
12. assignedTime+=smallestNoteTime;
13. while(noteStartTime + assignedTime
14. < time+N.getDuration()){
15. //if the note is not a rest
16. //add the note at the calculated
17. //assigned time
18. if(pitch>0)

Figure 3: Melody extraction pipeline.

19. pitches.add(TimeSample(N.pitch,
20. noteStartTime+assignedTime);
21. else
22. assignedTime +=smallestNoteTime;
23. //update the time counts
24. lastAssigned = noteStartTIme +
25. assignedTime;
26. time +=N.getDuration()
27. return pitches;

The final result of the skyline algorithm and melody
extraction is a time series representation of the music
file, with a pitch and time for each note.

4.3 Indexing a Time-Series

 The goal of the loading pipeline, illustrated
in Figure 4, is to index the extracted melody time
series for efficient querying. Prior to further
processing, the extracted melody is inserted into the
MidiCatalog, which assigns to it a unique
MidiId. The MidiId allows us to match processed
segments with the original midis.

 The output of the melody extraction pipeline
is sliced into overlapping windows of a fixed length
via the segmentor filter. Each of these music
segment windows carry the original MidiId and
timing information pointing to its location in the
original midi; each segment will eventually become a
subsequence of the original that can be matched
against user queries. We chose to set our segment
size to thirty data points, expecting the average user
query to be seven to eight seconds in duration. We
experimentally determined a reasonable offset from
the start of one window to the start of the next to be
five time-series values, corresponding to roughly
1.25 seconds of music. After the time information is
used for segmentation, the rests are discarded. This
decision was supported by the many systems such as
[24] which found that rest information was not
necessary for making query matches. To account for
humming queries being off-key, each window
segment is normalized by a Mean Removal filter that
subtracts the window’s average pitch value from each
point in the window. A humming query will be
normalized in a similar fashion to remove the effects
of the key.

 Because multidimensional index structures
typically degrade in performance past 8-10
dimensions, rather than inserting the normalized
window segments into an R-Tree, we pass the
segments through a PAA Transform that applies the
PAA dimensionality technique in order to reduce the
size of the data. Each of these compressed segments
is then inserted into the R-Tree, along with
information relating the segment back to the original

midi file. For our R-Tree index, we use the open-
source implementation of a Java Spatial Index
Library [21], developed in UC Riverside. We
explain how the index supports efficient queries in
Section 4.5.

Figure 4: MusicDB loading pipeline. The arrows represent
Filters and the time series represent Segments. A midi file
entering becomes stored in a segment after melody extraction. The
segmentor chops the melody segment into overlapping windows,
each of which undergoes a mean removal and PAA transformation
before being indexed in an R-Tree.

Processing a User’s Input Hum Query

 In order to obtain the user’s hum, we used
standard Java sound file streaming libraries to record
the hum into monophonic wave format. We then
wanted to convert the hum into a midi format so that
we could process it like we did all of our other midis
via a wave to midi file converter. Although there are
many implementations of wave to midi converters,
we used one of the few that run on Mac OS X since
that was the platform we chose to support. As a
result, we decided to use WaoN, an open-source
notes transcriber that samples the continuous sound
in a wave file to make the discrete representation of
the midi file [23].

 WaoN allowed us to convert the files and
remove some of the noise while also increasing the
volume of the query. However a substantial amount
of noise still remained, and as a result we passed the
resulting midi through a band-pass filter to remove
all the outlying high pitch and low pitch noise.

Figure 5: Humming extraction pipeline.

 Once the noise was all removed, we were
left with a short melody midi segment, which we
would put through the same processing pipeline we
used for the midis in our database. Figure 5
illustrates this entire process.

4.4 Efficient Querying Using the Database

 Given a humming query, MusicDB returns
the top K songs that match the query. The intention
of the multi-dimensional index structure is to save
computation over a sequential scan of all the window
segments constructed by the Segmentor filter in
Section 4.2. We use two techniques to calculate
lower bounds on the true LDTW distance between
the query segment and a music segment or a cluster
of music segments in the transformed space; these
techniques enable us to prune areas of the search
space whose segments will definitely not make the
top K songs without actually computing the LDTW
distance for each segment.

 The first technique, introduced by [10] but
improved by [24], computes, in the transformed
space, a lower bound of the distance between the
query segment and an indexed segment using a
mathematical construct called the query envelope.
While a complete proof and explanation of the
method is beyond the scope of this paper, we include
the mathematical formula for this calculation for
completeness.

 First, we compute the K-envelope <l,u> of a
query q:

min (), 1,...,
max (), 1,...,

i k j k i j

i k j k i j

l q i n
u q i n

− ≤ ≤ +

− ≤ ≤ +

= =

= =

Then, we calculate the PAA transform of each of the
segments l and u as if each was its own time series,
using the PAA equation from Section 3.3 to obtain
two length N sequences L and U. The lower
bounding distance LB_PAA is then computed
as:

2

2

1

() if
_ (,) () if

0 otherwise

i i i in

i i i i
i

D U D U
nLB PAA Q D D L D L
N =

⎧ ⎫− >
⎪ ⎪= − <⎨ ⎬
⎪ ⎪
⎩ ⎭

∑

 The second technique, presented in [10],
computes a lower bound between the query segment

and the minimum bounding region R of an index
node, with the possibility of pruning all segments in
the search space beneath the index node. Letting RH
denote the upper bound of R and RL denote the lower
bound of R, the mathematics for this technique looks
like:

2

2

1

() if
(,) () if

0 otherwise

L L
i i i in
H H
i i i i

i

R U R U
nMINDIST Q R R L R L
N =

⎧ ⎫− >
⎪ ⎪= − <⎨ ⎬
⎪ ⎪
⎩ ⎭

∑

 Combining the two techniques, we arrive at
the K-NearestNeighborQuery algorithm,
which is as follows:

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

Function
K-NearestNeighborQuery(Query Q, Integer K):

queue: MinPriorityQueue
examined: SortedList<time-series, distance>
 // sorted by distance
best_so_far: Map<MidiId => distance>
results <- Set<MidiId>

queue.push(root_node, 0)
while queue is not empty

top <- queue.pop()
 while examined is not empty

closest <- first(examined)
// any time-series closer than top is
// closer than anything unexamined
// and is therefore a nearest neighbor

 if LDTW(Q, closest) <= top.dist
 Add closest.MidiId to results
 Remove closest from examined
 if |results| = K
 return results
 else
 // everything behind closest is
 // farther because examined is sorted
 break
 if top is PAA point
 if results contains top.MidiId
 continue

Retrieve from catalog the full time-
 series T for top.MidiId
T' <- slice of T from index at top.start
 running for Q.length values

 S <- NORMALIZE(T')
 if LDTW(S,Q) < best_so_far.get(S.MidiId)
 best_so_far.put(S.MidiId, LDTW(S,Q))
 Remove from examined any time-series
 with MidiId = S.MidiId
 examined.insert(S, LDTW(Q, S))
 else if top is a leaf node
 for each data point D in top
 queue.push(D, LB_PAA(Q, D))
 else
 for each child C in top
 queue.push(C, MINDIST(Q, C)

while |results| < K and examined not empty
 S = examined.removeFirst()
 add S.MidiId to results

 LB_PAA refers to the first technique, and
MIN_DIST refers to the second. The algorithm is
adapted from the KNN-Search algorithm described in
[10] but modified in three major ways: 1) rather than
returning the top K matches, we return the top K
matches with the constraint that each of the K
matches must come from distinct songs, 2) we extend
the algorithm in lines 21-24 based on the ideas in [9]
to handle queries longer than the time-series
originally indexed, and 3) we normalize the retrieved
segments before comparing in order to account for
off-key queries. The implication of the second
change is that a longer query should theoretically
produce more accurate results. Experimentally, we
have found that our algorithm is often able to only
calculate LDTW distances for under 60% of the total
segments before determining the top K matches.

 Note that this algorithm differs from the
search algorithm used in the query by humming
system of [24] because their system uses an ε-range
query to find all segments with LDTW distance no
greater than ε away from the query and because they
do not use the second pruning technique. We in fact
implemented both algorithms and found our nearest
neighbor algorithm to have better performance.

5. UI discussion

 For the purposes of this project we wanted
to make a simple but friendly user interface so that
users could make queries easily. The UI comprises
of two parts: one for obtaining user input for queries,
and one for displaying query results.

 Users can choose to input their queries
either by humming or by playing the tune on an on-
screen piano. In our implementation we decided to
focus on the humming input usability since it was a
more natural form of input, more efficient to use, and
not limited only to users with prior training with a
piano. Our humming interface, shown in Figure 6,
allows users record hums using a microphone and
play hums back to check the quality. Alternatively,
the piano interface, as seen in Figure 7, is a simple
piano where people can click on keys to play notes
that will be transcribed into a query. These UI
components included some extensions of the source
code provided by the Java Sound Demo to render
both the keyboard and waveform [14]. Once a query
is ready, users can hit the “Search for Song” button to
perform the query.

 Upon completion of the query, the top 20
results will show in a ranked list, with the closest
match ranked first. This listing also displays
metadata such as the song name and artist who wrote
or performed the song. From there, the user can
select a song in the listing for playback and even play
the segment of the song that matches the query by
pressing the “Play matching segment” button. In
essence, the results list can be viewed as a generated
playlist of all songs found to be similar to the query.

Figure 7: Query by piano input UI.

Figure 6: Query by humming UI.

6. Results

 In this section, we discuss and analyze some
experimental results on MusicDB. These
experiments focused on two major aspects of our
query by humming system: quality and scalability.
Quality is defined as how accurately our system
returns results for a given query. Scalability is
measured in terms of both quality and performance of
the system as we increase the number of songs in the
database.

6.1 Quality of Query by Humming

 We created a database of 50 popular songs
out of midi files collected from a popular Karaoke
website. The midi files were loaded into the database
using MusicDB’s loading pipeline described Section
4.2. We then collected recordings of hums from
different 10 users for a total of 50 humming samples.
These recordings were pushed through the query
input pipeline and the search pipeline to generate the
results shown in Figure 8. From the figure, we can
see that MusicDB returns the correct result within the
top 10 for 52% of the time, and returns the correct
result as the top hit 24% of the time. We compared
our results against Zhu and Shasha’s results from
experiments of 40 humming samples on a database of
50 songs on their own query by humming system,
shown in Figure 9.

Quality of MusicDB

0

5

10

15

20

25

30

1 2-3 4-5 6-10 10-
Rankings

N
um

be
r o

f Q
ue

rie
s

(5
0

to
ta

l)

50-song DB

Zhu and Shasha's QBH System

0

5

10

15

20

25

30

1 2-3 4-5 6-10 10-
Rankings

N
um

be
r o

f Q
ue

rie
s

(4
0

to
ta

l)

50-song DB

 The graphs suggest that MusicDB does not
match Zhu and Shasha’s system in terms of search
quality. However, several differences in the
methodologies used for our experiments account for
the discrepancy.

 First, Zhu and Shasha manually entered
single-channel, monophonic songs into their
database. As such, they avoided the melody
extraction problem altogether and guaranteed that the
correct melodies for their songs would be stored in
the database. Our system used widely available
multi-channel polyphonic midi files. Even though
our melody extraction techniques successfully
retrieved large portions of the melody for most midis,
some of the midis were either improperly labeled,
had their melodies divided into multiple channels, or
had high accompaniment pitches that would occlude
the melody notes in the skyline heuristic. Because
our database did not have perfectly accurate
representations of certain songs, MusicDB suffered
from a loss in quality in rankings that Zhu and
Shasha sidestepped completely, accounting for a
significant amount of the discrepancies between our
results.

 Second, we also experienced some trouble
with properly converting and extracting user midis
from recorded wave files. Zhu and Shasha used a
piece of commercial software, AKoff Music
Composer 2.0 [2], to record and transcribe notes from
a user’s query. In contrast, MusicDB utilizes a free
open-source tool, WaoN v0.1, to transcribe notes. It
is highly likely that the commercial software affords
much higher fidelity note transcription.

 Third, Zhu and Shasha actually divided their
40 humming samples into a group of “better hums”
and “poorer hums” and used different parameters for

Figure 8: Aggregate rankings of 50 user hums passed through
the MusicDB pipeline.

Figure 9: Zhu and Shasha’s reported results for passing 40
user hums into their query by humming implementation.

each batch to produce more optimal results. We,
however, felt that such a categorization of hummers
was somewhat arbitrary and used a uniform set of
parameters for all hummers, perhaps at the cost of
reduced search quality.

 Lastly, we did not entirely control for noise
in the environments when collecting user hums.
Consequently, the recordings varied in quality, and in
general, recordings of low quality ended up returning
bad results.

 If we were to normalize for these
differences, we believe that our search quality would
increase substantially and that our results would
actually be quite comparable to those reported by
Zhu and Shasha.

6.2 Scalability of MusicDB Quality

 To measure how well quality scales with
database size, we ran the same experiments from the
previous section on a database of 100 songs (double
the original 50). We compare these results against
our original experiment in Figure 10.

 As illustrated by the chart, a general
decrease in quality can be observed with the larger
database. The decrease is rather slight, however, and
indicate that MusicDB scales quite well in terms of
search quality.

MusicDB Scalability of Quality

0

5

10

15

20

25

30

35

1 2-3 4-5 6-10 10-
Rankings

N
um

be
r o

f Q
ue

rie
s

(5
0

to
ta

l)

50-song DB
100-song DB

6.3 Scalability of Indexing Infrastructure

 We conducted a few experiments to measure
the scalability of MusicDB’s performance as we
increase the number of songs in the database. We
collected performance numbers over databases of 50,
100, 200, 300, and 400 songs. Figure 11 shows the

size of the catalog and the index structure (in terms of
KB) as a function of the number of songs in a
database. Each additional song increases the catalog
and index size by roughly 35 KB, which is slightly
less than the space used by a typical midi file. Figure
12 shows the total number of segments in the index,
and Figure 13 shows the average fraction of all
segments in the database examined by a single query.
Figure 14 shows the average query time on 2.4 GHz
Pentium 4 PC with 512 MB of RAM, 256 MB of
which were reserved for the Java Eclipse
environment.

 Note that while the space overhead, the total
number of segments, and the average query time
increases roughly linearly with the number of songs
in the database, the fraction of segments for which
the true LDTW distance must be calculated actually
decreases from 66% on a database of 50 songs to
59% on a database of 400 songs. We speculate the
reason for this decrease to be that the parameters
(page size, branching factor, etc.) for our R-tree is
actually geared toward larger data sets. While this
fraction represents a reasonable amount of savings,
we conclude that the time-series indexing
architecture we adopted from the cutting-edge
research literature does not scale well enough to
search millions of songs unless the constant factor
can be drastically reduced.

 Another observation is that we can decrease
the space overhead of the index without affecting
accuracy by increasing the compression ratio used
during dimensionality reduction. For these
experiments, we used a compression factor of 5. The
lower-bounding distance metric in the transformed
space, however, becomes less tight in the transformed
space with increasing compression ratios, which in
turn would lead to an increased number of segments
examined and an increased querying time. Thus, a
tradeoff exists between the space overhead of the
index and query performance.

Figure 10: Aggregate rankings of 50 user hums passed on
databases of 50 and 100 hums.

Index and Catalog Size

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

50 100 200 300 400
Database Size (# Songs)

K

B Index Size
Catalog Size

Number of Segments Indexed

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

50 100 200 300 400
Database Size (# Songs)

Se

gm
en

ts

Average Percentage of Segments Examined Per Query

0
10
20
30
40
50
60
70
80
90

100

50 100 200 300 400
Database Size (# Songs)

P
er

ce
nt

ag
e

of
 T

ot
al

 S
eg

m
en

ts
E

xa
m

in
ed

Average Query Time

0

1000

2000

3000

4000

5000

6000

7000

50 100 200 300 400
Database Size (# Songs)

Ti
m

e
(m

s)

7. Conclusion

 We have developed an end-to-end music
search system called MusicDB with a UI that accepts
humming samples as user queries and returns a
ranked list of the top matching songs. Our system
achieves reasonable performance, returning the
desired song within the top 10 hits 52% of the time
and as the top hit 24% of the time. In a second
version of this system, we expect the search quality
of MusicDB to improve drastically if we use a more
solid midi parser than the buggy JMusic library we
used and if we used a higher fidelity wave to midi
converter.

 Our main contribution in this paper is a
detailed documentation of the steps involved in
building a working query-by-humming system. We
describe the channel selection and skyline algorithms
involved in the extraction of melodies from
polyphonic midis. We detail the representation of
tunes and hums as time series, the time warping
distance metric used in the research literature to
perform similarity comparisons between time series,
and an efficient indexing method to prune the search
space and return a ranked list of results. We believe
that our MusicDB demonstrates that query-by-
humming systems are a promising new way to
support music search.

Figure 11: Index and catalog size as a function of the number of
songs in the database.

Figure 12: Total segments indexed as a function of the number of
songs in the database.

Figure 13: Average percentage of total segments examined per
query as a function of the number of songs in the database.

Figure 14: Average query time as a function of the number of
songs in the database.

8. References

[1] R. Agrawal, C. Faloutsos, and A. Swami,
Efficient similarity search in sequence database. In
Proceedings of the 4th Conference on Foundations of
Data Organization and Algorithm, 1993.

[2] AKoff Sound Labs, Akoff music composer
version 2.0. http://www.akoff.com/music-
composer.html, 2000.

[3] A. Brown and A. Sorenson, JMusic: Music
Composition in Java. http://jmusic.ci.qut.edu.au

[4] W. Chai. Melody Retrieval On The Web, Master
thesis, 2001,
http://web.media.mit.edu/~chaiwei/papers.html

[5] A. Ghias, J. Logan, D. Chamberlin, and B. Smith,
Query By Humming – Musical Information Retrieval
in an Audio Database. In ACM Multimedia 95 –
Electronic Proceedings, 1993.

[6] K. V. R. Kanth, D. Agrawal, and A. Singh,
Dimensionality Reduction for Similarity Searching in
Dynamic Databases. In SIGMOD, 1998.

[7] E. Keogh et. al. Locally Adaptive Dimensionality
Reduction for Indexing Large Time Series Databases.
In SIGMOD, 2001.

[8] E. Keogh et. al., Dimensionality reduction for fast
similarity search in large time series databases. In
Journal of Knowledge and Information Systems,
2000.

[9] E. Keogh and M. J. Pazzani, A Simple
Dimensionality Reduction Technique for Fast
Similarity Search in Large Time Series Databases. In
Proceedings of the 4th Pacific-Asia Conference on
Knowledge Discovery and Data Mining, Current
Issues and New Applications, 2000.

[10] E. Keogh and C.A. Ratanamahatana, Exact
indexing of dynamic time warping. In Knowledge
and Information Systems, May 2004.

[11] Y. Kim, W. Chai, R. Garcia, B. Vercoe,
Analysis of a contour-based representation for
melody. In Proc. IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing,
1999.

[12] N. Kosugi, Y. Nishihara, T. Sakata, M.
Yamamuro, and K. Kushima, A Practical Query-By-

Humming System for a Large Music Database. In 8th
ACM International Conference on Multimedia, 2000

[13] L. Lue, H. You, and H. Zhiang, A New
Approach To Query By Humming In Music
Retrieval. In IEEE International Conference on
Multimedia and Expo, 2001.

[14] Java Sound Demo, Sun Microsystems, Inc.,
http://java.sun.com/products/java-
media/sound/samples/JavaSoundDemo/

[15] C. Myers, L. Rabiner, and A. Rosenberg,
Performance tradeoffs in dynamic time warping
algorithms for isolated word recognition. In IEEE
Transactions on Acoustics, Speech, and Signal
Processing, December 1980.

[16] Pandora, Music Genome Project,
http://www.pandora.com

[17] S. Pauws, CubyHum: A Fully Operational Query
by Humming System. In ISMIR 2002, 3rd
International Conference on Music Information
Retrieval, 2002.

[18] L. Rabiner, A. Rosenberg, and S. Levinson,
Considerations in dynamic time warping algorithms
for discrete word recognition. In IEEE Transactions
on Acoustics, Speech, and Signal Processing, 1978.

[19] M. A. Raju, B. Sundaram, and P. Rao,
TANSEN: A Query-By-Humming based Music
Retrieval System, In Proc. National Conference on
Communications (NCC), 2003.

[20] H. Sakoe and S. Chiba Dynamic programming
algorithm optimization for spoken word recognition.
In IEEE Transactions on Acoustics, Speech, and
Signal Processing, 1978.

[21] Spatial Index Library, Java v0.44.2b,
http://www.cs.ucr.edu/~marioh/spatialindex/

[22] A. Uitdenbogerd and J. Zobel, Manipulation of
Music For Melody Matching. In ACM Multimedia,
Electronic Proceedings, 1998.

[23] WaoN – a wave-to-notes transcriber, Kengo
Ichiki. http://www.kichiki.com/WAON/waon.html

[24] Y. Zhu and D. Shasha, Query by Humming: A
Time-Series Database Approach. In SIGMOD 2003.

