
An Integrated Approach to Recovery and High Availability
in an Updatable, Distributed Data Warehouse

Edmond Lau Samuel Madden
MIT CSAIL MIT CSAIL

edmondlau@alum.mit.edu madden@csail.mit.edu

ABSTRACT
Any highly available data warehouse will use some form of
data replication to tolerate machine failures. In this paper,
we demonstrate that we can leverage this data redundancy
to build an integrated approach to recovery and high avail-
ability. Our approach, called HARBOR, revives a crashed
site by querying remote, online sites for missing updates and
uses timestamps to determine which tuples need to be copied
or updated. HARBOR does not require a stable log, recov-
ers without quiescing the system, allows replicated data to
be stored non-identically, and is simpler than a log-based
recovery algorithm.

We compare the runtime overhead and recovery perfor-
mance of HARBOR to those of two-phase commit and ARIES,
the gold standard for log-based recovery, on a three-node
distributed database system. Our experiments demonstrate
that HARBOR suffers lower runtime overhead, has recovery
performance comparable to ARIES’s, and can tolerate the
fault of a worker and efficiently bring it back online.

1. INTRODUCTION
A traditional data warehouse consists of a large distributed

database system that processes read-only analytical queries
over historical data loaded from an operational database.
Such warehouses often do not need traditional database re-
covery or concurrency control features because they are up-
dated via bulk-load utilities rather than standard SQL IN-
SERT/UPDATE commands. They do, however, require
high availability and disaster recovery mechanisms so that
they can provide always-on access [3].

Recent years have seen increasing interest in warehouse-
like systems that support fine-granularity insertions of new
data and even occasional updates of incorrect or missing
historical data; these modifications need to be supported
concurrently using traditional updates [8]. Such systems
are useful for providing flexible load support in traditional
warehouse settings, for reducing the delay for real-time data
visibility, and for supporting other specialized domains such

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

as customer relationship management (CRM) and data min-
ing where there is a large quantity of data that is frequently
added to the database in addition to a substantial number
of read-only analytical queries to generate reports and to
mine relationships.

These “updatable warehouses” have the same requirements
of high availability and disaster recovery as traditional ware-
houses but also require some form of concurrency control
and recovery to ensure transactional semantics. One com-
monly used approach is to implement snapshot isolation [4],
which allows read-only queries to avoid setting any locks
by having them read a historical snapshot of the database
starting from some point in recent history.

In such updatable environments, it can also be useful to
provide some form of time travel; for example, users may
wish to save a version of the database before they insert a
number of records so that they can compare the outcome of
some report before and after a particular set of changes was
made to the database.

In this paper, we look at the performance of a new ap-
proach to recoverability, high availability, and disaster recov-
ery in such an updatable warehouse. Our approach, called
HARBOR (High Availability and Replication-Based Online
Recovery), is loosely inspired by the column-oriented C-
Store system [33], which also seeks to provide an updatable,
read-mostly store. Our evaluation is conducted, however,
on a row-oriented database system to separate the perfor-
mance differences due to our unusual approach to recovery
from those that result from a column-oriented approach.

The gist of our approach is that any highly available data
warehouse will use some form of replication to provide avail-
ability; we show that it is possible to exploit this redundancy
to provide efficient crash recovery without the use of a stable
log, forced-writes during commit processing, or a complex
recovery protocol like ARIES [23]. We accomplish this by
periodically ensuring, during runtime, that replicas are con-
sistent up to some point in history via a simple checkpoint
operation and then using, during recovery time, standard
database queries to copy any changes from that point for-
ward into a replica. As a side effect of this approach to re-
covery, our system also provides versioning and time travel
up to a user-configurable amount of history.

Though conceptually simple, there are challenges to im-
plementing this approach:

• If done naively, recovery queries can be very slow. Our
approach attempts to ensure that relatively little work
needs to be done during recovery and that little state
needs to be copied over the network.

• To provide high availability, remaining replicas must
be able to process updates while recovery is occurring.
The details of bringing a recovering node online dur-
ing active updates while still preserving ACID (atom-
icity, consistency, isolation, and durability) semantics
are quite subtle.

In this paper, we compare the runtime overhead and re-
covery performance of HARBOR to those of ARIES and
two-phase commit on a three-node distributed database. We
show that our system has substantially lower runtime over-
head (because we do not require disk writes to be forced at
transaction commit) and equivalent recovery performance.
Moreover, we show that our system can tolerate site fail-
ure and recovery without significantly impacting transac-
tion throughput. Though our evaluation in this paper fo-
cuses specifically on distributed databases on a local area
network, our approach also works with wide area networks.
Finally, our approach is substantially simpler than ARIES.

The remainder of this paper is organized as follows. In
Section 2, we lay out our fault tolerance model and provide
a high level summary of the techniques and steps used by
HARBOR. We describe the mechanics behind query exe-
cution and commit processing in our approach in Section 3
and then detail the three phases of our recovery algorithm in
Section 4. In Section 5, we show results of evaluating HAR-
BOR against two-phase commit and ARIES. We summarize
related work in Section 6 and conclude with our contribu-
tions in Section 7.

2. APPROACH OVERVIEW
In this section, we first discuss two features of highly avail-

able data warehouses—the requirement for data replication
and the concurrency control issues associated with ware-
house workloads. We then present a fault tolerance model
based on data redundancy and an isolation method based
on a technique called historical queries; together, these two
components form the bedrock of our crash recovery algo-
rithm. We conclude the section by providing a high-level
overview of how our recovery algorithm works.

2.1 Data Warehousing Techniques
Data warehouse systems share two important character-

istics. First, any highly available database system will use
data replication to ensure that data access can continue with
little interruption if some machine fails. Each database ob-
ject, whether it be at the granularity of a tuple, a partition,
or a table, will be replicated some number of times and dis-
tributed among different sites. Unlike many high availability
approaches [25, 27, 22], HARBOR does not require that dif-
ferent sites be physically identical replicas or that redundant
copies be stored, partitioned, or distributed in the same way,
as long as they logically represent the same data.

This flexibility is key to research efforts that argue for
storing data redundantly in different sort orders [33], in dif-
ferent compression formats [33, 1], or in different updat-
able materialized views [9] so that the query optimizer and
executor can efficiently answer a wider variety of queries
than they would be able to in situations where the database
stores redundant copies using identical representations. C-
Store [33], for example, achieves one to two orders of mag-
nitude faster performance over commercial databases on a
seven-query benchmark by storing data in multiple sort or-

ders and in different compression formats. Data redundancy
can therefore provide both higher retrieval performance and
high availability under HARBOR.

The second characteristic is that data warehouses cater
specifically to large ad-hoc query workloads over large read
data sets intermingled with a smaller number of OLTP (on-
line transaction processing) transactions. Such OLTP trans-
actions typically touch relatively few records and only affect
the most recent data; for example, they may be used to cor-
rect errors made during a recent ETL (extract, transform,
and load) session. Under such environments, conventional
locking techniques can cause substantial lock contention and
result in poor query performance. A common solution is to
use snapshot isolation [4], in which read-only transactions
read data without locks, and update transactions modify a
copy of the data and either resolve conflicts with an opti-
mistic concurrency control protocol or with locks.

Our approach uses a time travel mechanism similar to
snapshot isolation that involves using an explicit versioned
and timestamped representation of data to isolate read-only
transactions. Historical queries as of some past time T read
time slices of the data that are guaranteed to remain unaf-
fected by subsequent transactions and hence proceed with-
out acquiring read locks. Update transactions and read-only
transactions that wish to read the most up-to-date data can
use conventional read and write locks as in strict two-phase
locking for isolation purposes. The mechanism was first in-
troduced in C-Store [33]; we explain the details behind such
an mechanism in Section 2.3.

2.2 Fault Tolerance Model
A highly available database system will employ some form

of replication to tolerate failures. We say that a system
provides K-safety if up to K sites can fail, and the system can
still continue to service any query. The minimum number
of sites required for K-safety is K + 1, namely in the case
where the K + 1 workers store the same replicated data.
In our approach, we assume that the database designer has
replicated the data and structured the database in such a
way as to provide K-safety. Our high availability guarantee
is that we can tolerate up to K simultaneous failures and
still bring the failed sites online.

If more than K sites fail simultaneously, our approach no
longer applies, and the recovery mechanism must rely on
other methods, such as restoring from some archival copy
or rolling back changes to restore some globally consistent
state. However, because our recovery approach can be ap-
plied to bring sites online as they fail, the database designer
can choose an appropriate value of K to reduce the probabil-
ity of K simultaneous failures down to some value acceptable
for the specific application.

In our fault tolerance model, we assume fail-stop failures
and do not deal with Byzantine failures. We do not deal with
network partitions, corrupted data, or incompletely written
disk pages. We also assume reliable network transfers via a
protocol such as TCP.

2.3 Historical Queries
We first describe how historical queries can be supported

in a database system before proceeding to provide a high
level description of our recovery algorithm. A historical
query as of some past time T is a read-only query that
returns a result as if the query had been executed on the

database at time T ; in other words, a historical query at
time T sees neither committed updates after time T nor
any uncommitted updates. This time travel feature allows
clients to inspect past states of the database.

We can support historical queries by using a versioned rep-
resentation of data in which timestamps are associated with
each tuple. We internally augment a tuple <a1, a2, ..., aN>
with an insertion timestamp field and a deletion timestamp
field to create a tuple of the form <insertion-time, deletion-
time, a1, a2, ..., aN>. Timestamp values are assigned at
commit time as part of the commit protocol. When a trans-
action inserts a tuple, we assign the transaction’s commit
time to the tuple’s insertion timestamp; we set the dele-
tion timestamp to 0 to indicate that the tuple has not been
deleted. When a transaction deletes a tuple, rather than re-
moving the tuple, we assign the transaction’s commit time
to the tuple’s deletion timestamp. When a transaction up-
dates a tuple, rather than updating the tuple in place, we
represent the update as a deletion of the old tuple and an
insertion of the new tuple.

Structuring the database in this manner is reminiscent of
version histories [28] and preserves the information neces-
sary to answer historical queries. The problem of answering
a historical query as of some past time T then reduces to
determining whether a particular tuple is visible at time T .
A tuple is visible at time T if 1) it was inserted at or before
T and if 2) it is either not deleted or deleted after T . This
predicate can be straightforwardly pushed down into access
methods as a SARGable predicate [29].

Because historical queries view an old time slice of the
database and all subsequent update transactions use later
timestamps, no update transactions will affect the output
of a historical query for some past time; for this reason, his-
torical queries do not require locks. The amount of history
maintained by the system can be user-configurable either by
having a background process remove all tuples deleted be-
fore a certain point in time or by using a simple “bulk drop”
mechanism that we introduce in Section 3.1.

2.4 Recovery Approach
Having established the fault tolerance model and a frame-

work for historical queries, we proceed to describe our recov-
ery algorithm to bring a crashed site online; we defer elab-
oration of the details to Section 4. The algorithm consists
of three phases and uses the timestamps associated with tu-
ples to answer time-based range queries for tuples inserted
or deleted during a specified time range.

In the first phase, we use a checkpointing mechanism to
determine the most recent time T such that we can guaran-
tee that all updates up to and including time T have been
flushed to disk. The crashed site then uses the timestamps
available for historical queries to run local update trans-
actions to restore itself to the time of its last checkpoint.
In order to record checkpoints, we assume that the buffer
pool maintains a standard dirty pages table with the iden-
tity of all in-memory pages and a flag for each page indicat-
ing whether it contains any changes not yet flushed to disk.
During normal processing, the database periodically writes
a checkpoint for some past time T by first taking a snapshot
of the dirty pages table at time T +1. For each page that is
dirty in the snapshot, the system obtains a write latch for
the page, flushes the page to disk, and releases the latch. Af-
ter all dirty pages have been flushed, we record T onto some

well-known location on disk, and the checkpoint is complete.
In the event that we are recovering a disk from scratch or
that the checkpoint has become corrupted, we can recover
with a checkpoint time of 0.

In the second phase, the site executes historical queries on
other live sites that contain replicated copies of its data in
order to catch up with any changes made between the last
checkpoint and some time closer to the present. The fact
that historical queries can be run without obtaining read
locks ensures that the system is not quiesced while large
amounts of data are copied over the network; our approach
would not be a viable solution if read locks needed to be
obtained for the recovery query.

In the third and final phase, the site executes standard
non-historical queries with read locks to catch up with any
committed changes between the start of the second phase
and the current time. Because the historical queries in the
second phase tend to substantially reduce the number of
remaining changes, this phase causes relatively little disrup-
tion to ongoing transactions, as we show in Section 5.3. The
coordinator then forwards any relevant update requests of
ongoing transactions to the site to enable the crashed site
to join any pending transactions and come online; this step
requires that the coordinator maintain a queue of update
requests for each ongoing transaction.

Our results show that our recovery approach works well in
data warehouse-like environments where the update work-
loads consist primarily of insertions with relatively few up-
dates to historical data. Its performance surpasses the re-
covery performance of a log-based processing protocol like
ARIES under these conditions.

3. QUERY EXECUTION
In our framework, each transaction originates from a coor-

dinator site responsible for distributing work corresponding
to the transaction to one or more worker sites and for deter-
mining the ultimate state of the transaction. Read queries
may be distributed to any sites with the relevant data that
the query optimizer deems most efficient. Update queries,
however, must be distributed to all live sites that contain a
copy of the relevant data in order to keep all sites consistent.

To facilitate recovery, the coordinator maintains an in-
memory queue of logical update requests for each transac-
tion it coordinates. A queue for a particular transaction is
deleted when the transaction commits or aborts.

In order to support historical queries, the coordinator de-
termines the insertion and deletion timestamps that must be
assigned to tuples at commit time. If the database supports
more than one coordinator site, we require a time synchro-
nization protocol, such as the one described in [33], for the
coordinators to agree on the current time. If there are time
lags between sites, the system must ensure that a historical
query is run as of a time less than the current time at any
worker site handling the query.

For our system, we use timestamps corresponding to coarse
granularity epochs that span a few seconds each. We ad-
vance epochs synchronously across sites by having a coordi-
nator node periodically send out “advance epoch” announce-
ments to ensure that sites are time synchronized. Finer
granularity timestamps would allow for more fine-grained
historical queries but would require more synchronization
overhead. The database frontend holds responsibility for
mapping the times used for historical queries by clients to

the internal representation of timestamps in the database.
Because timestamps are assigned at commit time, a worker

must keep some in-memory state for each update transaction
designating the tuples whose timestamps must be assigned.
A worker site can do this by maintaining, for each transac-
tion, an in-memory list of tuple identifiers for tuples inserted
by the transaction and another list for those deleted by the
transaction (note that an updated tuple would go in both
lists). To commit the transaction, the worker assigns the
commit time to the insertion time or deletion time of the
tuples in the insertion list or deletion list, respectively. The
in-memory lists also contain sufficient information to double
as in-memory undo logs for handling aborts.

One caveat is that if the buffer pool supports a STEAL
policy [12], uncommitted inserts written to the database
should contain a special value in its insertion timestamp
field so that the uncommitted data can be identified during
recovery and also ignored by queries.

Aside from the versioned representation and the support
for historical queries, query execution in HARBOR differs
from standard distributed databases in two respects. First,
in order to improve performance of recovery queries that
must apply range predicates on timestamps, we partition
all database objects by insertion time into smaller segments.
We describe this segment architecture and its implications
in Section 3.1. Second, because our recovery approach does
not require a stable log, we can reduce commit processing
overhead by eliminating workers’ forced-writes when using
two-phase commit and all forced-writes when using three-
phase commit, both of which we describe in Section 3.2.

3.1 Partitioning Objects by Insertion Times-
tamp into Segments

During normal transaction processing, the insertion and
deletion timestamps associated with tuples are used solely
to determine a tuple’s visibility as of some time T . In data
warehouse environments, where historical queries are run
relatively close to the present time and where updates to
historical data happen infrequently, most of the tuples ex-
amined by a query will be visible and relevant. Thus, little
overhead will be incurred scanning invisible tuples, and we
do not need to build indexing structures on timestamps for
this purpose.

As we will see later in the discussion on recovery, how-
ever, recovery queries require identifying those tuples mod-
ified during specific timestamp ranges and may be poten-
tially inefficient. For recovery, we would like to be able to
efficiently execute three types of range predicates on times-
tamps: insertion-time≤ T, insertion-time > T, and deletion-
time > T. Moreover, given that recovery is a relatively in-
frequent operation, we would like to be able support these
range predicates without requiring a primary index on times-
tamps (a secondary index would not be useful in this case).

Our architectural solution to this problem is to partition
any large relations, vertical partitions, or horizontal parti-
tions stored on a site by insertion timestamp into smaller
chunks called segments. For example, a horizontal parti-
tion for the relation products sorted by the field name that
is stored on one site might be further partitioned into one
segment containing all tuples inserted between times t and
t + ∆t, the next segment containing all tuples inserted be-
tween t+∆t and t+2∆t, etc., as illustrated in Figure 1. The
size of the time ranges need not be fixed, and we may in-

t + ∆t

t + ∆t

t + 2∆t

t + 2∆t

t + 3∆t

t

segments partitioned
by insertion timestamp

relation, partition,
or column

Tmin-insertion
Tmax-deletion

Tmin-insertion
Tmax-deletion

Tmin-insertion
Tmax-deletion

Figure 1: Database object partitioned by insertion
timestamp into segments.

stead choose to limit the size of each segment by the number
of pages. Each segment in this example would then individ-
ually be sorted according to name. If the original products
table required an index on some other field, say price, each
segment would individually maintain an index on that field.
New tuples are added onto the last segment until either the
segment reaches some pre-specified size or until we reach the
end of the segment’s time range, at which point, we create
a new segment to insert subsequent tuples.

To efficiently support the desired range predicates, we
annotate each segment with its minimum insertion time
Tmin−insertion, which is determined when the first tuple is
added to a newly created segment. An upper bound on
the insertion timestamps contained within a segment can
be deduced from the Tmin−insertion timestamp of the next
segment or is equal to the current time if no next segment
exists. We also annotate each segment with the most recent
time Tmax−deletion that a tuple has been deleted or updated
from that segment; recall that an update is represented as a
deletion from the tuple’s old segment and an insertion into
the most recent segment.

With this structure, we can efficiently identify those seg-
ments with insertions during some time range and also those
segments updated since some time T . Note that even with-
out this segment architecture, the recovery approach re-
mains correct but may be inefficient.

These changes to the physical representation require some
modification to the query execution engine. Read queries
on an object must now be conducted on multiple segments,
and the results from each segment must be merged together;
however, this merge operation is no different from the merge
operation that must occur on any distributed database to
combine results from different nodes, except that it is per-
formed locally on a single node with results from different
segments. Update queries may similarly need to examine
multiple segments or traverse multiple indices to find de-
sired tuples.

In return for the segment processing overhead, this solu-
tion also provides two concrete benefits to data warehouse
environments. Many warehouse systems require regular bulk
loading of new data into their databases. Under a segment
representation, we can easily accommodate bulk loads of ad-
ditional data by creating a new segment with the new data
and transparently adding it to the database as the last seg-
ment with an atomic operation.

Recent years have also seen the rise of massive clickthrough
warehouses, such as Priceline, Yahoo, and Google, that must
store upwards of one terabyte of information regarding user
clicks on websites. These warehouse systems are only de-
signed to store the most recent N days worth of click-through
data. Our time-partitioned segment architecture supports a

symmetric “bulk drop” feature whereby we can, for instance,
create segments with time ranges of a day and schedule a
daily drop of the oldest segment. These bulk load and bulk
drop features would require substantially more engineering
work under other architectures.

3.2 Commit Processing
One significant benefit that our recovery mechanism con-

fers is the ability to support more efficient commit protocols
for update transactions by eliminating forced-writes to a sta-
ble log. In this section, we first show how we can tweak the
traditional two-phase commit protocol (2PC) [24] to support
our timestamped representation of data. We then exam-
ine how we can exploit K-safety and our recovery approach
to build more efficient variants of 2PC and also of a less
widely used, but non-blocking, three-phase commit proto-
col (3PC) [30]. HARBOR supports both 2PC and 3PC.

3.2.1 Two-Phase Commit Protocol
In the first phase of traditional 2PC, the coordinator sends

PREPARE messages to worker sites and requests votes for
the transaction. In the second phase, the coordinator force-
writes a COMMIT log record and sends COMMIT messages
to the workers if it had received YES votes from all the
sites; otherwise, it force-writes an ABORT record and sends
ABORT messages. During 2PC, worker sites need to force-
write PREPARE log records prior to sending out a YES
vote, and they need to force-write COMMIT or ABORT
records prior to locally committing or aborting a particular
transaction.

To support our timestamped representation of data, we
augment this framework with two minor changes: 1) COM-
MIT messages also include a commit time to be used for
modified tuples, and 2) the in-memory lists of modified tu-
ple identifiers that a worker maintains for a transaction can
be deleted when the transaction commits or aborts.

3.2.2 An Optimized Two-Phase Commit Protocol
Each of the three non-overlapping forced-writes (two by

each worker and one by the coordinator) lengthens transac-
tion latency by a few milliseconds. Modern systems use a
technique known as group commit [10, 13] to batch together
the log records for multiple transactions and to write them
to disk using a single disk I/O. Group commit can help in-
crease transaction throughput for non-conflicting concurrent
transactions but does not improve latency.

Our key observation regarding 2PC is that the forced-
writes by the worker sites are necessary only because log-
based recovery requires examination of the local log to de-
termine the status of old transactions. After a worker fails
and restarts, the forced COMMIT or ABORT record for a
transaction lets the recovering site know the transaction’s
outcome, while the PREPARE record in the absence of any
COMMIT or ABORT record lets the recovering site know
that it may need to ask another site for the final consensus.

When K-safety exists, however, a crashed worker does not
need to determine the final status of transactions. As long
as all uncommitted changes on disk can be identified from
the special insertion timestamp value associated with un-
committed tuples, worker sites can roll back uncommitted
changes and query remote replicas for all committed updates
at recovery time. It is this realization that enables worker
sites under our approach to eliminate the forced-writes to

prepare

commit (T)

finish actionsvote Y/N

FW(COMMIT)
commit with time T

release locksack
all acks?

coordinator worker

forget transaction state
rollback changes

W(END)

prepare

abort

finish actionsvote Y/N

FW(ABORT)

release locksack
all acks?

coordinator worker

forget transaction state

W(END)

a NO vote?all YES votes?

forget transaction state forget transaction state

Commit Scenario Abort Scenario

Figure 2: Commit and abort scenarios of our opti-
mized two-phase commit protocol. FW means force-
write and W means a normal log write.

prepare (worker-ids)

commit

check constraintsvote Y/N

commit with time T

release locksack
all acks?

coordinator worker

forget transaction state

forget transaction state

all YES votes?
prepare-to-commit (T)

ack

all acks?

prepare (worker-ids)

vote Y/N

coordinator worker

a NO vote?

roll back changes

abort

release locksack
all acks?

forget transaction state

forget transaction state

Commit Scenario Abort Scenario

check constraints

Figure 3: Commit and abort scenarios of our opti-
mized three-phase commit protocol.

stable storage and the use of an on-disk log all together.
Our optimized 2PC therefore looks like the interaction

shown in Figure 2. A worker site, upon receiving a PRE-
PARE message, simply finishes its role in the transaction
and votes YES or NO. When a worker site receives a COM-
MIT or ABORT message, it simply assigns the commit time
to the modified tuples or rolls back all changes and sends an
ACK to the coordinator. No forced-writes or log writes are
necessary by the workers because consistency after a fail-
ure can be restored by our recovery protocol. We examine
the performance implications of eliminating the workers’ two
forced-writes in Section 5.1.

3.2.3 An Optimized Three-Phase Commit Protocol
Under our modified 2PC, the coordinator is still required

to force-write a COMMIT or ABORT log record prior to
sending out COMMIT or ABORT messages to workers. The
reason is that if a coordinator fails after informing the client
of the transaction’s outcome but before receiving ACKs from
all of the workers, it needs to know what to respond to
worker inquiries upon rebooting. In this section, we show
that by leveraging a less widely used 3PC protocol, we can
actually eliminate all forced-writes and all on-disk logs and
further improve transaction processing performance.

The key observation behind the canonical 3PC protocol [30]
is that by introducing an additional prepared-to-commit state
between the prepared state and the committed state, we can
enable workers to agree on a consistent outcome for a trans-
action without depending on the coordinator to ever come
back online. This non-blocking property of 3PC means that
coordinators do not need to maintain stable logs because
they do not need to recover the transaction state.

We optimize the canonical 3PC protocol by eliminating all
forced-writes and log writes by all participants. Our opti-
mized version of the 3PC protocol is illustrated in Figure 3

and works as follows. In the first phase, the coordinator
sends a PREPARE message to all workers with a list of the
workers participating in the transaction. Each worker then
enters the prepared state and responds with a YES or NO
vote indicating its ability to commit the transaction.

In the second phase, if the coordinator receives all YES
votes in the first phase, it sends a PREPARE-TO-COMMIT
message with the commit time to all the workers. A worker
enters the prepared-to-commit state after receiving the mes-
sage and replies with an ACK. When all ACKs have been
received, the coordinator has reached the commit point in
the transaction. If the coordinator had instead received a
NO vote, it sends an ABORT message to the workers and
the interaction proceeds as in 2PC.

Finally in the third phase, after all ACKs have been re-
ceived, the coordinator sends the final COMMIT message.
Upon receiving the COMMIT, workers enter the committed
state and can assign the commit time to modified tuples,
forget any state for the transaction, and release its locks.

If a coordinator site fails, we can use a consensus building
protocol as described in [30] and whose correctness is proven
in [31]. A backup coordinator is chosen by some arbitrar-
ily pre-assigned ranking (or some other voting mechanism)
and then decides from its local state how to obtain a con-
sistent transaction outcome, as follows. If the backup had
not sent a vote in the first phase, had voted NO, or had
aborted, it sends an ABORT message to all workers because
no site could have reached the prepared-to-commit state. If
the backup is in the prepared state and had voted YES, it
asks all sites to transition to the prepared state and waits for
an ACK from each worker; it then sends an ABORT mes-
sage to each worker. If it is in the prepared-to-commit state,
it replays the last two phases of 3PC, reusing the same com-
mit time it received from the old coordinator. If it is in the
committed state, it sends a COMMIT message to all work-
ers. Workers can safely disregard any duplicate messages
they receive.

Using this 3PC in conjunction with our recovery approach,
we can support transaction processing and recovery without
forced-writes and without maintaining a stable log for any
sites. When the network is much faster than the disk, as
in true on all modern database clusters, the extra round of
messages introduces less overhead than a forced disk write.
We evaluate the runtime performance implications of using
this 3PC in Section 5.1.

4. RECOVERY
In this section, we first introduce some terminology to be

used in our recovery discussion and then present the three
phases of the algorithm for bringing a crashed site online.

Let S be the site that failed. We describe recovery in terms
of bringing a particular database object rec on S online,
where rec may be a table, a horizontal or vertical partition,
or any other queryable representation of data. Indices on an
object can be recovered as a side effect of adding or deleting
tuples from the object during recovery. Site recovery then
reduces to bringing all such database objects on S online,
and objects can be recovered in parallel.

Assuming that S crashed while the system still had K-
safety for K ≥ 1, we can still continue to answer any query.
Therefore, there must exist at least one collection of objects
C distributed on other sites that together cover the data of
rec. Call each of these objects in C a recovery object, and

call a site containing a recovery object a recovery buddy.
For each recovery object, we can compute a recovery pred-
icate such that 1) the sets of tuples obtained by applying
the recovery predicate on each recovery object are mutually
exclusive, and 2) the union of all such sets collectively cover
the object rec. We assume that this knowledge is stored in
the catalog.

For example, suppose that we have two replicated tables
EMP1 and EMP2 representing the logical table employees.
EMP1 has a primary index on salary, and EMP2 has a pri-
mary index on employee id, where the different primary in-
dices are used to more efficiently answer a wider variety
of queries. Suppose EMP2A and EMP2B are the two and
only horizontal partitions of EMP2; EMP2A is on site S1
and contains all employees with employee id < 1000, and
EMP2B is on site S2 and contains all employees with em-
ployee id ≥ 1000. Finally, let rec on S be the horizontal
partition of EMP1 with salary < 5000. In this example,
S1 would be a recovery buddy with the recovery object
EMP2A and the recovery predicate salary < 5000; similarly,
S2 would be another recovery buddy with the recovery ob-
ject EMP2B and the same recovery predicate. Note that this
computation is no different than the computation that the
query optimizer would perform in determining which sites
to use to answer a distributed query for all employees with
salary < 5000 when S is down.

Having established this terminology, we now discuss in de-
tail the three phases of our recovery approach. We describe
virtually all steps of recovery using simple SQL queries.
Note that all INSERT, DELETE, and UPDATE statements
in the recovery queries refer to their normal SQL semantics
rather than the special semantics that we assign to them in
our support for historical queries.

4.1 Phase 1: Restore local state to the last
checkpoint

Recall from Section 2.4 that a site writes checkpoints by
periodically flushing all dirty pages to disk. Call the time of
S’s most recent checkpoint Tcheckpoint. During recovery, we
temporarily disable any new checkpoints from being written.
We can guarantee that all updates that committed at or
before Tcheckpoint have been flushed to disk, but we do not
know whether changes from subsequent transactions have
partially or fully reached disk or if uncommitted changes
also remain. In Phase 1, we discard all updates after the
checkpoint as well as any uncommitted changes to restore
the state of all committed transactions as of Tcheckpoint.

First, we delete all tuples inserted after the checkpoint
and all uncommitted tuples by running the following query:

DELETE LOCALLY FROM rec

SEE DELETED

WHERE insertion_time > T_checkpoint

OR insertion_time = uncommitted

The LOCALLY keyword indicates that this query will be run
on the local site; we will use the keyword REMOTELY later on
to indicate queries that need to run on remote replicas. The
semantics of SEE DELETED is that rather than filtering out
deleted tuples as a standard query would do, we run the
query in a special mode that allows us to turn off the delete
filtering and to see both insertion and deletion timestamps.
Also, note that by DELETE, we mean the standard notion of
removing a tuple rather than recording the deletion times-
tamp. The uncommitted value refers to the special value

assigned to the insertion timestamp of uncommitted tuples;
in practice, the special value can simply be a high value
greater than the value of any valid timestamp.

Using the Tmin−insertion associated with segments, we can
efficiently find the tuples specified by the range predicate on
insertion time. Assuming that the database is configured
to record checkpoints somewhat frequently, executing this
query should only involve scanning the last few segments;
we evaluate the cost of this scan later in Section 5.

Next, we undelete all tuples deleted after the checkpoint
using the following query:

UPDATE LOCALLY rec SET deletion_time = 0

SEE DELETED

WHERE deletion_time > T_checkpoint

Like the DELETE in the previous query, the UPDATE in this
query corresponds to the standard update operation, i.e., an
update in place, rather than a delete and an insert. Using
the Tmax−deletion recorded on each segment, we can prune
out any segments whose most recent deletion time is less
than or equal to the Tcheckpoint. Thus, we pay the price of
sequentially scanning a segment to perform the update if
and only if a tuple in some segment was updated or deleted
after the last checkpoint. In a typical data warehouse work-
load, we expect updates and deletions to be relatively rare
compared to reads and that the updates and deletions would
happen primarily in the most recently inserted tuples, i.e.,
in the most recent segment. Thus, we expect that in the
common case, either no segment or only the last segment
should need to be scanned.

4.2 Phase 2: Catch up with historical queries
The strategy in the second phase is to leverage historical

queries that do not require locks to rebuild the object rec up
to some time close to the present. Let the high water mark
(HWM) be the time right before S begins Phase 2; thus, if
S begins Phase 2 at time T , let the HWM be T − 1. Recall
that a historical query as of the time HWM means that all
tuples inserted after HWM are not visible and that all tuples
deleted after HWM appear as if they had not been deleted
(i.e., their deletion times would appear to be 0).

First, we find all deletions that happened between the
Tcheckpoint and the HWM to the tuples that were inserted
at or prior to Tcheckpoint. We require that each tuple have a
unique tuple identifier (such as a primary key) to associate
a particular tuple on one site with the same replicated tuple
on another. We can then run a set of historical queries
as of the time HWM for each recovery object and recovery
predicate that we have computed for rec:

{(tup_id, del_time)} =

SELECT REMOTELY tuple_id, deletion_time

FROM recovery_object

SEE DELETED HISTORICAL WITH TIME HWM

WHERE recovery_predicate

AND insertion_time <= T_checkpoint

AND deletion_time > T_checkpoint

The HISTORICAL WITH TIME HWM syntax indicates that the
query is a historical query as of the time HWM. The query
outputs a set of tuples of the type <tuple id, deletion time>,
where all the tuples were inserted at or before Tcheckpoint

and deleted after Tcheckpoint. Both of the Tmin−insertion and
Tmax−deletion timestamps on segments reduce the number of

segments that must be scanned to answer the range predi-
cates on insertion and deletion times; on typical warehouse
workloads where historical updates are rare, few segments
need to be scanned. For each (tup id, del time) tuple that
S receives, we run the following query to locally update the
deletion time of the corresponding tuples in rec:

for each (tup_id, del_time) in result:

UPDATE LOCALLY rec

SET deletion_time = del_time

WHERE tuple_id = tup_id

AND deletion_time = 0

The predicate on the deletion time ensures that we are
updating the most recent tuple in the event that the tuple
has been updated and more than one version exists. We
assume that we have an index on tuple id, which usually
exists on a primary key, to speed up the query.

Next, we query for the rest of the data inserted between
the checkpoint and the HWM using a series of historical
queries as of the HWM on each recovery object and asso-
ciated recovery predicate, and we insert that data into the
local copy of rec on S:

INSERT LOCALLY INTO rec

(SELECT REMOTELY * FROM recovery_object

SEE DELETED HISTORICAL WITH TIME HWM

WHERE recovery_predicate

AND insertion_time > T_checkpoint

AND insertion_time <= hwm)

The semantics of the INSERT LOCALLY statement are in
the sense of a traditional SQL insert, without the reassign-
ment of insertion times as would occur under our versioned
representation; it reflects the idea that S is merely copying
the requested data into its copy of rec. While the second
predicate on insertion time is implicit by the definition of a
historical query as of the HWM, we make explicit that we
can again use the Tmin−insertion timestamps on segments to
prune the search space.

After running this query, the recovery object rec is up to
date as of the HWM. At this point, if we have recovered all
database objects in parallel up to the HWM, S can option-
ally record a new checkpoint as of the time HWM to reflect
that it is consistent up to the HWM.

4.3 Phase 3: Catch up to the current time with
locks

Phase 3 consists of two parts: running non-historical read
queries with locks to catch up to with all committed updates
at the current time and joining any ongoing transactions
dealing with rec. The structure of the read queries highly
parallel the structure of those in Phase 2, except that we do
not run them in historical mode.

4.3.1 Query for committed data with locks
First, we acquire a transactional read lock on every recov-

ery object at once to ensure consistency:

for all recovery_objects:

ACQUIRE REMOTELY READ LOCK

ON recovery_object ON SITE recovery_buddy

The lock acquisition can deadlock, and we assume that the
system has some distributed deadlock detection mechanism,

by using time-outs for instance, to resolve any deadlocks.
Site S retries until it succeeds in acquiring all of the locks.

When the read locks for all recovery objects have been
granted, all running transactions are either a) not deal-
ing with rec’s data, b) running read queries on copies of
rec’s data, or c) waiting for an exclusive lock on a recovery
buddy’s copy of rec’s data (recall that update transactions
must update all live copies of the data). In other words,
after site S acquires read locks on copies of data that to-
gether cover rec, no pending update transactions that affect
rec’s data can commit until S releases its locks. Moreover,
S’s successful acquisition of read locks implies that any non-
pending transactions that updated rec’s data must have al-
ready completed commit processing and released their locks.

At this point, we are missing, for all tuples inserted be-
fore HWM, any deletions that happened to them after the
time HWM. To find the missing deletions, we use a similar
strategy to the one used at the start of Phase 2. For each
recovery object and recovery predicate pair, we execute the
following query:

{(tup_id, del_time)} =

SELECT REMOTELY tuple_id, deletion_time

FROM recovery_object

SEE DELETED

WHERE recovery_predicate

AND insertion_time <= hwm

AND deletion_time > hwm

We again rely on the segment architecture to make the
two timestamp range predicates efficient to solve. For each
(tup id, del time) tuple in the result, we locally update the
deletion time of the corresponding tuple in rec:

for each (tup_id, del_time) in result:

UPDATE LOCALLY rec

SET deletion_time = del_time

WHERE tuple_id = tup_id

AND deletion_time = 0

Finally, to retrieve any new data inserted after the HWM,
we run the following insertion query that uses a non-historical
read subquery:

INSERT LOCALLY INTO rec

(SELECT REMOTELY * FROM recovery_object

SEE DELETED

WHERE recovery_predicate

AND insertion_time > hwm

AND insertion_time != uncommitted)

The check insertion time != uncommitted is needed as-
suming that the special uncommitted insertion timestamp
is represented by some value larger than any valid times-
tamp and would otherwise satisfy the insertion time >

hwm predicate. In the common case, we expect the query
to only examine the last segment, but we may need to ex-
amine more segments depending on whether segments were
created since the beginning of Phase 2. After this query, S
has caught up with all committed data as of the current time
and is still holding locks. If we have recovered all objects
on S in parallel up to the current time, S can then write a
checkpoint for one less than the current time.

4.3.2 Join ongoing transactions and come online
At this point, there may still be some ongoing transactions

that the recovering site S needs to join. The simple approach
would be to abort all ongoing non-historical transactions at
coordinator sites and restart them with knowledge that rec
on S is online; however, we would like to save the work that
has already been completed at other worker sites.

The protocol for joining all ongoing transactions begins
with site S sending a message M to each coordinator saying
“rec on S is coming online.” Any subsequent transactions
that originate from the coordinator and that involve updat-
ing rec’s data must also include S as a worker; read-only
transactions can optionally use rec on S because it already
contains all committed data up to this point. As previously
mentioned in Section 3, each coordinator maintains a queue
of logical update requests for each transaction that it coor-
dinates; we now use this queue to complete recovery.

Let P be the set of all pending update transactions at a
coordinator when message M is received. To complete recov-
ery, S needs to join all relevant transactions in P. A trans-
action T is relevant if at some point during the transaction,
it deletes a tuple from, inserts a tuple to, or updates a tuple
in the recovering object rec. The coordinator determines if
a transaction T is relevant by checking if any updates in
the transaction’s update queue modify some data covered
by rec. To have S join a relevant transaction, the coordina-
tor forwards all queued update requests that affect rec to S.
When the transaction is ready to commit, the coordinator
includes S during the commit protocol by sending it a PRE-
PARE message and waiting for its vote, as if rec on S had
been online since the beginning of the transaction.

The coordinator cannot conclude that S will not join a
particular transaction T until either the client commits the
transaction or the transaction aborts. After all transactions
in P have been deemed either relevant or irrelevant to rec,
and after S has begun joining all relevant transactions, the
coordinator sends an “all done” message to S. When S re-
ceives all such messages from all coordinators, it releases its
locks on the recovery objects for rec on remote sites:

for all recovery_objects:

RELEASE REMOTELY LOCK ON recovery_object

ON SITE recovery_buddy

Object rec on S is then fully online. Transactions waiting
for locks on the recovery objects can then continue.

4.4 Failures during Recovery
If the recovering site S fails during recovery, it restarts

recovery upon rebooting, using a more recent checkpoint if
available. If S fails during Phase 3, however, it may still be
holding onto remote locks on its recovery objects, and the
coordinator may have been attempting to let S join ongo-
ing transactions. To handle this situation, we require some
failure detection mechanism between nodes, which already
exists in most distributed database systems. The mechanism
may be some type of heartbeat protocol in which nodes pe-
riodically send each other “I’m alive messages”; or, it may
be, as in our implementation, the detection of an abruptly
closed TCP socket connection as a signal for failure. When a
recovery buddy detects failure of a recovering node, it over-
rides the node’s ownership of the locks and releases them so
that other transactions can progress. The coordinator treats
any transactions that S had been joining as having aborted.

If a recovery buddy fails during recovery, the set of recov-
ery objects and recovery predicates computed at the start
of recovery are no longer valid; thus, the recovering node S
simply releases any locks that it may be holding and restarts
recovery with a new set of recovery buddies. The coordina-
tor aborts any transactions S was in the middle of joining.

Coordinator failure during recovery is handled using the
consensus building protocol previously described.

5. EVALUATION
In order to evaluate the runtime overhead and recovery

performance of our approach, we have implemented a dis-
tributed database system, consisting of 11.2 K lines of Java
code. The system supports most of the standard database
operators and also special versions of the scan, insert, delete,
and update operators to support historical queries. We im-
plement distributed transactions and messages using Java’s
TCP socket library and build special network operators that
insert and read tuples to and from socket connections. Both
coordinators and workers are multi-threaded and can sup-
port concurrent transactions. We have implemented all of
the components described in the paper except the consen-
sus building protocol to tolerate coordinator failures and the
mechanism to handle failures during recovery. Additional
implementation details can be found in [19].

In this section, we compare the runtime overhead and re-
covery performance of HARBOR to the performance of tra-
ditional 2PC and ARIES, both of which we have also imple-
mented, on a three-node distributed database. ARIES [23],
the gold standard for log-based database recovery, uses a
stable undo/redo log to support atomicity and crash recov-
ery. The buffer pool uses write-ahead logging and forces
log records describing modifications to disk before writing
a modified page. The ARIES algorithm for crash recovery
consists of three phases: an analysis pass over the log from
the last checkpoint onward to determine the status of trans-
actions and to identify dirty pages, a redo phase that em-
ploys a repeating history paradigm to restore a crashed sys-
tem to its state directly prior to the crash, and an undo pass
that scans the log in reverse and rolls back all uncommit-
ted changes. Unlike HARBOR’s recovery algorithm, which
relies on a logical interface to the data, ARIES requires in-
timate interaction with the disk and log file format.

Each node in the system is a 3 GHz Pentium IV machine
with 2 GB of memory running RedHat Linux. In addition
to a 200 GB disk with 60 MB/s bandwidth, each machine
is also equipped with a three-disk 750 GB RAID with 180
MB/s bandwidth. The RAID disk was not used except as
a separate disk for the log. The machines are connected
together in a local area network with 85 Mb/s bandwidth,
as measured experimentally.

We implement each table as a heap file with a segment size
of 10 MB. The tuples in each table contain 16 4-byte integer
fields, including the insertion and deletion timestamp fields.

5.1 Runtime Overhead of Logging
In the first experiment, we compare the runtime overhead

of our commit processing against 2PC and 3PC with write-
ahead logging using ARIES. Whenever a logging operation
is involved, we use group commit [13].

One coordinator node sends update transactions to the
other two worker nodes. For simplicity, both workers store
the same replicated data in the same format; in general, this

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 2 4 6 8 10 12 14 16 18 20

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

Number of Concurrent Transactions

Transaction Processing Performance of Different Commit Protocols

3PC without logging
2PC without worker logging

3PC with logging
2PC with logging

Figure 4: Transaction processing performance of
various commit protocols.

need not be the case. We vary the number of concurrent
transactions running to observe the effect of group commit
in alleviating the overhead of forced-writes. To eliminate the
effect of deadlocks on the results, concurrent transactions
insert tuples into different tables.

Figure 4 shows the transactions per second (tps) in four
cases: our optimized 3PC without logging, our optimized
2PC without logging at worker sites, canonical 3PC [30]
with logging at workers and no logging at the coordina-
tor, and traditional 2PC with logging. In the case of one
transaction running at a time, which illustrates the aver-
age latency of a transaction, we observe that our optimized
3PC (latency = 1.8 ms) runs 10.2 times faster than tradi-
tional 2PC (18.8 ms). Even in the case of 10–20 concurrent
transactions, the throughput of optimized 3PC remains 2–
2.9 higher than that of traditional 2PC. Other experiments
show that without replication, an ARIES-based system at-
tains only 2-23% higher throughput for various concurrency
levels [19]. Our results are encouraging and demonstrate
that we can eliminate substantial commit processing over-
head using our integrated approach. Of course, with a less
update intensive workload, these differences would be less
dramatic. Additional experiments on CPU-intensive trans-
actions confirm that optimized 3PC still runs 1.7 faster than
traditional 2PC with 4 ms of additional processing time per
transaction for 5 concurrent transactions [19].

5.2 Recovery Performance
In the next two experiments, we compare the performance

of HARBOR’s recovery approach against ARIES and show
that our recovery performance is indeed comparable. We be-
lieve our benchmark ARIES recovery protocol to be a faith-
ful implementation of ARIES as specified in [23]. Although
modern implementations of ARIES and other log-based re-
covery algorithms include many optimizations that we have
omitted, the fact that the performance of our recovery im-
plementation is on par with our ARIES implementation is
still highly encouraging.

Both experiments follow a similar setup. The worker sites
start by each flushing all dirty pages to disk and writing a
checkpoint. Each table on the workers consumes roughly
1 GB, using 101 segments with the last segment half full.
The coordinator then runs some number of insert/update
transactions with both worker sites; the workers are not al-
lowed to flush dirty pages during these transactions. After
the coordinator finishes the transactions, we crash a worker
site and measure the time for the crashed worker to recover,

 0

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000 30000 35000 40000

Re
co

ve
ry

 T
im

e
(s

ec
on

ds
)

Number of Insert Transactions

Recovery Performance as Function of Insert Transactions to Recover

HARBOR
ARIES

Figure 5: Recovery performance as a function of
insert transactions to recover.

both under HARBOR and under ARIES. Because no trans-
actions occur during recovery, HARBOR does not need to
spend time in Phase 3; we show the performance impact of
all three phases later in Section 5.3.

Regardless of ARIES’s checkpoint frequency, other sites
may still receive updates after a site crashes. ARIES’s re-
covery time thus also corresponds to the time ARIES would
take to recover after using a conventional recovery mecha-
nism like log shipping [21] to transfer any missing log records.

In the first recovery experiment, the coordinator sends
only insert transactions, with one insertion per transaction,
and we vary the number of transactions performed. Because
newly inserted tuples are appended to the heap file, the new
tuples affect only the last segment, though the worker may
create a new segment given sufficient insertions. Figure 5
illustrates the results of this experiment.

HARBOR takes 5.3 s to recover 2 insert transactions be-
cause the system must scan the most recent segment in
Phase 1 for uncommitted data or data committed after the
checkpoint. While ARIES performs well on a small number
of transactions, ARIES performance degrades over 3 times
more rapidly than HARBOR performance, showing that log
processing for committed transactions suffers from higher
overhead than querying for the committed data from a re-
mote site. In our system, the crossover point where ARIES
falls behind HARBOR performance happens at 4581 insert
transactions. If our system were to be saturated with insert
transactions, this corresponds to 9 s of transactions. Typi-
cally, we would expect crashes to last substantially longer.

In the second experiment, we fix the number of transac-
tions at 20 K, but we vary the number of historical segments
updated by introducing update transactions that update tu-
ples in older segments of the table. The experiment mea-
sures the cost of scanning additional segments for updates
that happened to the original 1 GB of data after the time of
the last checkpoint, as required by Phase 2. As we can see
from the results in Figure 6, HARBOR does well in the cases
where few historical segments have been updated and does
poorly as the number of segments updated increases. Be-
cause ARIES only requires scanning the tail of the log since
the last checkpoint rather than scanning the actual data for
modifications, its recovery time remains constant regardless
of the number of segments updated.

To better understand the performance characteristics of
our recovery approach in this second experiment, Figure 7
decomposes our recovery times into their constituent phases

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12 14 16

Re
co

ve
ry

 T
im

e
(s

ec
on

ds
)

Total Historical Segments Updated

Recovery Performance as Function of Historical Segments Updated

HARBOR
ARIES

Figure 6: Recovery performance as a function of
historical segments updated.

 0

 5

 10

 15

 20

 25

 30

 35

 40

1614121086420

Re
co

ve
ry

 T
im

e
(s

ec
on

ds
)

Number of Historical Segments Updated

Decomposition of HARBOR Recovery Performance Time

Phase 3
Phase 2 SELECT + INSERT

Phase 2 SELECT + UPDATE
Phase 1

Figure 7: Decomposition of recovery performance
by phases, for different numbers of historical seg-
ments updated.

for different numbers of updated segments. Phase 1 con-
sumes a constant 3.1 s to scan the last segment for tuples
inserted after the checkpoint; because no updates reached
disk after the checkpoint, the worker uses the Tmax−deletion

timestamp associated with segments to avoid scanning seg-
ments for deletions after the checkpoint. The time spent by
the recovery buddy in Phase 2 to identify updates made to
older segments increases roughly linearly with the number of
segments updated. A fairly constant 3.7 s is spent in Phase
2 copying over the roughly 20K newly inserted tuples. The
cost of Phase 3 is barely visible in this experiment because
no updates occurred during recovery.

Additional results in [19] show that recovering multiple
database objects in parallel with HARBOR can reduce re-
covery time significantly over recovering them sequentially.

Our results indicate that when the update transactions
that occurred since the crash consist primarily of insertions
and relatively few updates to historical updates, HARBOR
actually performs better than ARIES.

5.3 Performance during Failure and Recovery
In our last experiment, we observe the runtime perfor-

mance of our system in the midst of a site failure and sub-
sequent recovery. The coordinator site continuously inserts
tuples into a 1 GB table replicated on two worker sites.
Thirty seconds into the experiment, we crash a worker pro-
cess. Another thirty seconds after the crash, we start the
recovery process on the worker.

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

Time (seconds)

Transaction Processing Performance During Failure

Worker crash
Recovery phase 1

Recovery phase 2

Recovery phase 3

Worker online

Figure 8: Transaction processing performance dur-
ing site failure and recovery.

Figure 8 illustrates transaction processing performance as
a function of time. The first major dip at time 30 corre-
sponds to the worker crash, the coordinator’s detection of
the failure, and the abort of any ongoing transaction. After
the worker fails, the throughput by the remaining live worker
increases by roughly 40 tps because commit processing now
only involves one worker participant rather than two. At
time 60, the crashed worker begins Phase 1 of recovery, but
recovery does not yet affect the overall throughput because
the Phase 1 is performed locally. Between time 65 and 81,
the system exhibits sporadic but lower average performance
as the recovering worker runs historical queries on the live
worker to catch up with the HWM in Phase 2. At time
83, an even larger dip in performance appears as Phase 3
begins; the recovering worker queries with a read lock over
the data needed by the insertion transactions and obstructs
progress for a short time. At time 86, recovery is complete
and performance steadies soon back to its initial point.

The small bump between times 86 and 91, where the sys-
tem averages roughly 25 tps, results due to TCP slow-start
and Java’s overhead for opening new socket connections.
Though not shown by this experiment, any read-only trans-
actions or transactions dealing with other tables would not
have suffered from this bump nor the performance dip be-
tween times 83 and 86.

6. RELATED WORK
A typical high availability framework might involve a pri-

mary database server that asynchronously ships update re-
quests or transaction logs to some number of identical sec-
ondary replicas, any of which can be promoted to the pri-
mary as a failover mechanism [7]. This primary copy ap-
proach suffers from the setback that the secondary replicas
store temporarily inconsistent copies of data and therefore
cannot support up-to-date read queries; the replicas play a
major role only in the rare case of failover, and some other
recovery protocol is necessary to restore a failed site. This
approach is widely used in the distributed systems com-
munity [20] as well as in many distributed databases (e.g.,
Sybase’s Replication Server [34], Oracle Database with Data
Guard [26], and Microsoft SQL Server [21]).

Another approach to high availability is to maintain mul-
tiple identical replicas that are updated synchronously, using
a 2PC protocol in conjunction with write-ahead logging to
guarantee atomicity. Many places in the literature describe
this protocol; see Gray [12] or Bernstein [5] for an overview.

This second approach unfortunately suffers in transaction
throughput due to the forced-writes of log records required
by 2PC; it also requires correctly implementing a complex
recovery protocol like ARIES, which is non-trivial.

ClustRa [15] uses a neighbor write-ahead logging [14] tech-
nique, in which a node redundantly logs records to main
memory both locally and on a remote neighbor, to avoid
forced-writes; HARBOR uses redundancy in a similar way
but avoids the log all together during crash recovery whereas
ClustRa processes a distributed log. Jiménez-Peris et al. [16,
18] describe a recovery approach similar to ours in structure,
but with many shortcomings. Their scheme requires main-
taining an undo/redo log, assumes a middleware communi-
cation layer with reliable causal multicast to handle joining
pending transactions, and assumes that all sites store data
identically; HARBOR imposes none of these assumptions.

In our replication approach, we propagate all writes to
K + 1 sites, which allows us to tolerate failures of up to K
sites without sacrificing availability and allows us to process
read-only queries at just a single site. Voting-based [11, 17]
approaches could be applied to allow us to send updates to
fewer machines by reading from several sites and compar-
ing timestamps from those sites. View-change protocols [2]
build on these ideas to allow replicated systems to poten-
tially tolerate network partitions and other failures that we
do not address here. Allowing the system to proceed with-
out ensuring replicas have all seen the same transactions
may make it difficult to achieve one-copy serializability [6].

Most highly available database systems rely on special
purpose tools (e.g., the one described in Snoeren et al.[32])
to handle failover in the event that a site the client is talking
to fails. To enable our system to seamlessly failover and
prevent the client from seeing a broken connection, we would
need similar tools.

7. CONCLUSIONS
Our core contribution in this paper is recognizing that we

can leverage the technique of historical queries and the re-
quirement of data replication in highly available data ware-
house environments to build a simple yet efficient crash re-
covery mechanism. HARBOR, our integrated approach to
high availability and recovery, avoids the complexities and
costs of an on-disk log. Most of our recovery approach can be
described by a few fairly standard SQL queries, and our ex-
periments indicate that our recovery performance is compa-
rable to ARIES and even surpasses ARIES when the work-
load consists primarily of inserts and updates to recent data,
which is the case in data warehouse environments.

By eliminating recovery logs, we also eliminate forced-
writes during commit processing, thereby increasing trans-
action throughput. Our experiments demonstrate that on
our distributed database implementation, the optimized three-
phase commit protocol that we support can increase trans-
action throughput by a factor of 2 to 10 over traditional
two-phase commit with ARIES on a simple update-intensive
workload. The results are encouraging and suggest that our
approach to updatable data warehouses is quite tenable.

Acknowledgements We would like to thank David De-
Witt, Michael Stonebraker, and Chen Xiao for their helpful
feedback and ideas. This material is based upon work sup-
ported by the National Science Foundation under Grants
0520032, 0448124, and 0325525.

8. REFERENCES
[1] D. J. Abadi, S. Madden, and M. Ferreira. Integrating

compression and execution in column-oriented
database systems. In SIGMOD, June 2006.

[2] A. E. Abbadi and S. Toueg. Maintaining availability
in partitioned replicated databases. ACM TODS,
14(2):264–290, 1989.

[3] H. Alam. High-availability data warehouse design. DM
Direct Newsletter, Dec. 2001. http://www.dmreview.
com/article sub.cfm?articleId=4374.

[4] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ANSI SQL
isolation levels. In SIGMOD, pages 1–10, 1995.

[5] P. A. Bernstein and N. Goodman. Concurrency
control in distributed database systems. ACM
Computing Surveys, 13(2):185–221, 1981.

[6] P. A. Bernstein and N. Goodman. The failure and
recovery problem for replicated databases. In PODC,
pages 114–122. ACM Press, 1983.

[7] A. Bhide, A. Goyal, H.-I. Hsiao, and A. Jhingran. An
efficient scheme for providing high availability. In
SIGMOD, pages 236–245. ACM Press, 1992.

[8] M. Bokun and C. Taglienti. Incremental data
warehouse updates. DM Direct Newsletter, May 1998.
http://www.dmreview.com/article sub.cfm?

articleId=609.

[9] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and
K. Shim. Optimizing queries with materialized views.
In ICDE, pages 190–200, 1995.

[10] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro,
M. R. Stonebraker, and D. Wood. Implementation
techniques for main memory database systems. In
SIGMOD, pages 1–8. ACM Press, 1984.

[11] D. K. Gifford. Weighted voting for replicated data. In
SOSP, pages 150–162. ACM Press, Dec 1979.

[12] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufman, 1992.

[13] P. Helland, H. Sammer, J. Lyon, R. Carr, P. Garrett,
and A. Reuter. Group commit timers and high volume
transaction systems. In HPTS, pages 301–329, 1989.

[14] S.-O. Hvasshovd. HypRa/TR - A Tuple Oriented
Recovery Method for a Continuously Available
Distributed DBMS on a Shared Nothing
Multi-Computer. PhD thesis, Norwegian University of
Science and Technology, 1992.

[15] S.-O. Hvasshovd, Ø. Torbjørnsen, S. E. Bratsberg,
and P. Holager. The clustra telecom database: High
availability, high throughput, and real-time response.
In VLDB, pages 469–477. ACM Press, 1995.

[16] R. Jiménez-Peris, M. Patino-Mart́ınez, and G. Alonso.
An algorithm for non-intrusive, parallel recovery of
replicated data and its correctness. In SRDS, 2002.

[17] R. Jiménez-Peris, M. Patino-Mart́ınez, G. Alonso, and
B. Kemme. Are quorums an alternative for data
replication? ACM TODS, 28(3):257–294, 2003.

[18] B. Kemme. Database Replication for Clusters of
Workstations. PhD dissertation, Swiss Federal
Institute of Technology, Zurich, Germany, 2000.

[19] E. Lau. HARBOR: An integrated approach to
recovery and high availability in an updatable,
distributed data warehouse. MEng thesis, MIT,

Cambridge, MA, 2006.

[20] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, and
L. Shrira. Replication in the harp file system. In
SOSP, pages 226–238. ACM Press, 1991.

[21] Microsoft Corp. Log shipping.
http://www.microsoft.com/technet/

prodtechnol/sql/2000/reskit/part4/c1361.mspx.

[22] Microsoft Corp. SQL server 2000 high availability
series: Minimizing downtime with redundant servers,
November 2002.
http://www.microsoft.com/technet/prodtechnol/

sql/2000/deploy/harag05.mspx.

[23] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: a transaction recovery method
supporting fine-granularity locking and partial
rollbacks using write-ahead logging. ACM TODS,
17(1):94–162, 1992.

[24] C. Mohan, B. Lindsay, and R. Obermarck.
Transaction management in the R* distributed
database management system. ACM TODS,
11(4):378–396, 1986.

[25] Oracle Corp. Oracle database 10g release 2 high
availability, May 2005. http://www.oracle.com/
technology/deploy/availability/pdf/

TWP HA 10gR2 HA Overview.pdf.

[26] Oracle Inc. Oracle database 10g Oracle Data Guard.
http://www.oracle.com/technology/deploy/

availability/htdocs/DataGuardOverview.html.

[27] P. Russom. Strategies and Sybase solutions for
database availability, Nov 2001. http:
//www.sybase.com/content/1016063/sybase.pdf.

[28] J. H. Saltzer and M. F. Kaashoek. Topics in the
engineering of computer systems. MIT 6.033 class
notes, draft release 3.0, Feb. 2006.

[29] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selection in
a relational database management system. In
SIGMOD, pages 23–34. ACM Press, 1979.

[30] D. Skeen. Nonblocking commit protocols. In
SIGMOD, pages 133–142. ACM Press, 1981.

[31] D. Skeen. Crash recovery in a distributed database
system. PhD thesis, UC Berkeley, May 1982.

[32] A. Snoeren, D. Andersen, and H. Balakrishnan.
Fine-grained failover using connection migration. In
USITS, 2001.

[33] M. Stonebraker, D. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin,
S. Madden, E. O‘Neil, P. O‘Neil, A. Rasin, N. Tran,
and S. Zdonik. C-Store: A column-oriented DBMS. In
VLDB, pages 553–564. ACM, 2005.

[34] Sybase, Inc. Replicating data into Sybase IQ with
replication server.
http://www.sybase.com/detail?id=1038854.

