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Abstract
Robots that use human tools could more easily work with people, per-

form tasks that are important to people, and bene�t from human strate-
gies for accomplishing these tasks. For a wide variety of tools and tasks,
control of the tool's endpoint is su�cient for its use. In this paper we
present a straight-forward method for rapidly detecting the endpoint of
an unmodeled tool and estimating its position with respect to the robot's
hand. The robot rotates the tool while using optical �ow to detect the
most rapidly moving image points, and then �nds the 3D position with
respect to its hand that best explains these noisy 2D detections. The re-
sulting 3D position estimate allows the robot to control the position of the
tool endpoint and predict its visual location. We show successful results
for this method using a humanoid robot with a variety of traditional tools,
including a pen, a hammer, and pliers, as well as more general tools such
as a bottle and the robot's own �nger.1

1 Introduction

Consumer robots are now successfully performing specialized tasks in everyday
human environments. Research is gradually leading towards general purpose
robots that perform well in human environments and take advantage of the
common objects found within them [7, 19]. Robots that use the human tools
found within these environments could more easily work with people, perform
tasks that are important to people, and bene�t from human strategies for ac-
complishing these tasks. Ideally, a robot would autonomously learn how to use
a new tool, since the set of human tools is large, varies widely in appearance,
and continues to grow.

1This work was sponsored by the NASA Systems Mission Directorate, Technical Develop-
ment Program under contract 012461-001.
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Figure 1: [A] The humanoid robot, Domo, used in this work. [B] A typical view
from the robot's camera of the hand holding a pair of pliers. A naturally lit,
cluttered background ensures a non-trivial unstructured environment for per-
ception. [C] The tool-tip is detected as the maximum of the motion estimator's
weighted edge map. [D] The raw motion-based detection (black), the hand-
labeled tool tip (white), and a prediction based on the estimated tool position
(grey) are annotated.
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Figure 2: The approach was evaluated on a hot-glue gun, screwdriver, bottle,
electrical plug, paint brush, robot �nger, pen, pliers, hammer, and scissors.

For a wide variety of tools and tasks, control of the tool's endpoint is suf-
�cient for its use. For example, use of a screwdriver requires precise control of
the tool blade relative to a screw head but depends little on the details of the
tool handle and shaft. Radwin [26] describes 19 categories of common power
and hand tools. Approximately 13 of these tool types feature a distal point on
the tool which can be considered the primary interface between the tool and the
world. In this paper, we present a straight-forward method for rapidly detecting
the endpoint of an unmodeled tool and estimating its position with respect to
the robot's hand. This allows the robot to control the position of the tool end-
point and predict its visual location. These basic skills can enable rudimentary
use of the tool and assist further learning by helping the robot to actively test
and observe the endpoint. We show successful results for this estimation method
using the humanoid robot pictured in Figure 1A with a variety of traditional
tools shown in Figure 2, including a pen, a hammer, and pliers, as well as more
general tools such as a bottle and the robot's own �nger.

To �nd the tip of a tool held in the hand, the robot rotates the tool while
detecting the most rapidly moving point between pairs of consecutive images.
An estimation process then �nds the 3D point in the hand's coordinate system
that best explains these noisy detections. Given this protocol, motion serves
as a powerful cue for detecting the endpoint of a wide assortment of human
tools. The method makes few assumptions about the size and shape of the
tool, its position in the robot's hand, or the environment in which the tool is
being manipulated. The method requires a calibrated camera and a model of
the kinematic chain from the robot's camera to its hand.

We start by discussing related work in Section 2. We then describe the
tool tip detection method in Section 3. Next, in Section 4, we present our
experimental results with the robot and 10 di�erent human tools. We conclude
with a discussion of the approach in Section 5.
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2 Related Work

Research involving robot tool use often assumes a prior model of the tool or
constructs a model using complex perceptual processing. Industrial robot arms
typically use specialized, well-modeled tools that are rigidly mounted using ex-
changeable end-e�ectors [21]. For example, Ruf [27] has demonstrated a real-
time system that can visually localize the tool end of a manipulator using a
polyhedral model of the tool. A recent review of robot tool use by Amant [29]
fails to �nd signi�cant examples of robots using human tools outside of work at
NASA. NASA has explored the use of human tools by robots with the Robonaut
platform [5]. They used a detailed set of tool templates combined with stereo
depth information to successfully guide a standard power drill to fasten a series
of lugnuts [16]. These approaches are not likely to scale to the wide variety of
human tools since they depend on detailed models.

In the work of Brooks [8], perception is directly coupled to action in the form
of modular behaviours that eschew complex intermediate representations. Our
method relates to this work in three ways. First, the robot's action is used to
simplify the perceptual problem. Second, the method directly detects the tip of
the tool without requiring an initial segmentation of the tool or reconstruction
of its shape. Third, our approach is suitable for implementation as a real-time
modular behaviour.

The robot hand can be considered as a specialized type of tool, and many
researchers have created autonomous methods of visual hand detection through
motion. Fitzpatrick and Metta [12, 22] used image di�erencing to detect ballistic
motion and optic-�ow to detect periodic motion of the robot hand. For the
case of image di�erencing they also detected the tip of the hand by selecting
the motion pixel closest to the top of the image. Natale [24] applied image
di�erencing for detection of periodic hand motion with a known frequency, while
Arsenio [4] used the periodic motion of tracked points. Michel et. al. used image
di�erencing to �nd motion that is coincident with the robot's body motion
[23]. Kemp [18] combined the motion model described in Section 3.1 with a
wearable system to detect the hand of the wearer and learn a kinematic model.
These methods localize the hand or arm, but do not select the endpoint of the
manipulator in a robust way.

A long history of work in AI and computer vision has focused on learning tool
function [34]. For example, Duric [10] looked at associating a tool's function
with its prototypical motion. Robots that can actively learn about tool use
have been the subject of more recent work. Bogoni [6] investigated relating the
physical properties of the tool to the perceptual outcomes of its use when tested
by a robot. Stoytchev [31] has explored learning a tool's function through its
interactions with objects. This body of work typically assumes that a clean
segmentation of the tool can be extracted from the image or that the tool
features are known in advance.

Our tool tip detection method makes use of optic �ow to build an a�ne
global motion model and a per-pixel Gaussian measurement error model. The
method bears many similarities to optic �ow algorithms in the literature, such as
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global motion modeling with 2D a�ne models [15, 33, 32, 25, 30] and modeling
measurement error from block matching [1, 28]. We are currently unaware of
previous work outside of [18] that estimates the signi�cance of observed motion
in real-time using our speci�c method.

In our work, we use our knowledge of how the robot's hand rotates while
holding the tool to make 3D estimations about the location of the tool tip. This
relates to methods for 3D scanning in which objects are placed on a rotating
platform in front of a single camera [3]. These methods, however, typically rely
on a well modeled background to cleanly segment the object, simple platform
motion, and occlusion free views of the object. More generally, our estimation
technique relates to the well-studied area of 3D estimation from multiple views
[13].

3 Detecting the Tool Tip

We wish to detect the end point of a tool in a general way. The detection process
combines two types of information. First, the detection process looks for points
that are moving rapidly while the hand is moving. This ignores points that are
not controlled by the hand and highlights points under the hand's control that
are far from the hand's center of rotation. Typically tool tips are the most distal
component of the tool relative to the hand's center of rotation, and consequently
have higher velocity. The hand is also held close to the camera, so projection
tends to increase the speed of the tool tip in the image relative to background
motion. Second, the detection process makes use of 3D information provided
by a kinematic model of the robot in order to �lter out noise and combine
detections from multiple 2D views of the object.

3.1 2D Tool Tip Detection From Motion

In order to �nd the tool tip, we �nd points that are moving signi�cantly with
respect to the background. We model global image motion using a 2D a�ne
model and then weight edges by how much their motion di�ers from this model.
This di�erence is measured using the Mahalanobis distance between each edge's
Gaussian error measurement model and the motion predicted by the 2D a�ne
motion model. We then select the edge point with the largest weight as the
most likely location for the tool tip. This weight re�ects both the estimated
speed of the edge point and the certainty of the estimate.

The global motion model, A, can be represented as a 2x3 a�ne matrix that
transforms an image position p1 = (u1, v1) at time step 1 into an image position
p2 = (u2, v2) at time step 2,

[
u2

v2

]
=

[
a1 a2 a3

a4 a5 a6

] u1

v1

1

 . (1)
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Figure 3: This �gure shows a visualization of block matching with a Gaussian
error model. The parameter values are identical to those used for this paper.

This model can account for global changes in translation, scale, rotation, and
shearing. We use weighted linear least squares to �t the model A to a set of
estimated translations, ti, each of which has an associated covariance matrix,
Ci, that represents the estimate's error.

We use the standard technique of block matching to estimate the motion
of points between consecutive images. This technique searches for point corre-
spondences between consecutive images using image blocks as point descriptors.
We compare two locations, p1 and p2, in the consecutive images, I1 and I2, by
computing the sum of absolute di�erences, s12, between the 5x5 blocks of pix-
els surrounding the two locations, s12 =

∑
x |I1(x− p1)− I2(x− p2)|. Block

matching is only performed at edge points detected in I1 with a Canny edge de-
tector [9] in order to achieve real-time rates and reduce the use of uninformative
points.

We compare each of the edge points in the �rst image to each location within
an 11x11 search window in the second image. As visualized in Figure 3, this
results in an 11x11 array of error values, sj , describing the similarity between the
location in the �rst image and the locations in the second image. We then select
the best matching location, pb, which has the lowest error value, sb, and �nd
the covariance matrix, C, for a Gaussian model of the matching error around
this best match using

C = αI +
1∑
j wj

∑
j

wj(pj − pb)(pj − pb)T where wj =
1 if sj < sb + τ
0 if sj ≥ sb + τ

, (2)

which thresholds the errors sj with sb + τ to create a binary error map wj from
which this Gaussian error model is computed. We set τ = 200. This hand-tuned
value works su�ciently well for our purposes, but estimating τ from measured
pixel errors, especially as a function of brightness and contrast, might improve
the algorithm's performance. To avoid over-con�dence in the estimated error
distribution, we also add αI to C, which is equivalent to convolving the error
Gaussian with a circular Gaussian with variance α. We use α = 1

4 .
We use weighted linear least squares to incorporate the error covariance

matrices, Ci, generated by the block matching process into the estimation of
the motion model A. We solve a = (XT

1 Σ−1X1)−1XT
1 Σ−1x2, which minimizes

(X1a− x2)T Σ−1(X1a− x2) where we de�ne the terms as
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X1 =



u1 v1 1 0 0 0
0 0 0 u1 v1 1
u2 v2 1 0 0 0
0 0 0 u2 v2 1
...

...
...

...
...

...
un vn 1 0 0 0
0 0 0 un vn 1


, a =


a1

a2

a3

a4

a5

a6

 , x2 =



u1 + tu1

v1 + tv1

u2 + tu2

v2 + tv2

...
un + tun

vn + tvn


, (3)

where a is the vectorized form of the matrix A, (ui, vi) is the location of an edge
point i in image I1, and (tui, tvi) is the lowest error translation of edge point
i into image I2. We de�ne Σ to be a sparse block diagonal matrix with 2x2
matrices Ci along the diagonal, where Ci is the covariance matrix describing
the match error for edge point i,

Σ−1 =


C−1

1 0 0 · · · 0
0 C−1

2 0 · · · 0
...

...
...

...
...

0 0 0 · · · C−1
n

 . (4)

Due to the sparse block form of the matrices, these equations can be sig-
ni�cantly simpli�ed and solved in real-time as shown in Appendix A. We can
consider this weighted linear least squares solution to be the maximum likeli-
hood estimation of our model a where the error is Gaussian distributed, N , with
covariance matrix Σ,

N (Σ, X1a) (x2) = (2π)−
n
2 |Σ|−

1
2 e−

1
2 (X1a−x2)

T Σ−1(X1a−x2). (5)

The �tting process is iterated in order to remove the in�uence of edge points
that are not likely to be part of the motion background. On each iteration we
remove the worst �tting edge points and reestimate a, which is computationally
reasonable since we only need to perform block matching once. We determine
how well the motion of each edge point �ts the model by calculating the Ma-
halanobis distance, hi, between the best match translation vector, ti, and the

translation predicted by the model, A

 ui

vi

1

, with

hi =


A

 ui

vi

1

−
[

ui + tui

vi + tvi

]T

C−1
i

A

 ui

vi

1

−
[

ui + tui

vi + tvi

]


1
2

.

(6)
The Mahalanobis distance, hi, is in units of image pixels, so working with these
distances is intuitive. The Mahalanobis distance also ranks the edge points,
which allows us to ignore the points that �t the model poorly.
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These distances give us a weighted edge map where edge points with larger
weights are deemed less likely to be moving with the background. We select the
edge point with the largest weight as the most likely location for the tool tip.
If this weight is below a conservative threshold, the detection is ignored. This
weight re�ects both the estimated speed of the edge point and the certainty of
the estimate, so the tendency of the tool tip to be a corner may also help with
detection since the estimated motion will tend to be more certain with corners.

3.2 Probabilistic Estimation of the 3D Tool Tip Position

c1

x t

c2

{H }

T c1
x t T c2

x t

Figure 4: The geometry of the tool tip 3D estimation problem. With respect
to the hand's coordinate system, {H}, the camera moves around the hand. In
an ideal situation, only two distinct 2D detections would be necessary to obtain
the 3D estimate. Given two observations with kinematic con�gurations c1 and
c2, the tool tip, xt, appears in the image at Tc1(xt) and Tc2(xt).

In the previous section we presented a method for detecting motion feature
points that are likely to correspond with the tip of the tool in the robot's hand.
After detecting these points in a series of images with distinct views, we use the
robot's kinematic model to combine these 2D points into a single 3D estimate
of the tool tip's position in the hand's coordinate system. With respect to the
hand's coordinate system, {H}, the camera moves around the hand while the
hand and tool tip remain stationary. This is equivalent to a multiple view 3D
estimation problem where we wish to estimate the constant 3D position of the
tool tip, xt, with respect to {H}. In an ideal situation, only two distinct 2D
detections would be necessary to obtain the 3D estimate, as illustrated in Figure
4. However, we have several sources of error, including noise in the detection
process and an imperfect kinematic model.

A variety of approaches would be appropriate for this estimation, since only
three parameters need to be estimated and we have plenty of data from a mod-

8



erately noisy source. In this paper, we estimate xt by performing maximum
likelihood estimation with respect to a generative probabilistic model.

We �rst model the conditional probability distribution, p(di|xt, ci), which
gives the probability of a detection at a location in the image, di, given the true
position of the tool tip, xt, and the robot's con�guration during the detection,
ci. We model the detection error that is dependent on xt with a 2D circular
Gaussian, Nt, centered on the true projected location of the tool tip in the image,
Tci

(xt), with variance σt. Tc is the transformation that projects the position of
the tool tip, xt, onto the image plane given the con�guration of the robot, ci.
Tci

is de�ned by the robot's kinematic model and the pin hole camera model
for the robot's calibrated camera. This 2D Gaussian error model on the image
plane can coarsely represent a number of error sources, including the selection
of motion edges around the ideal location, and inaccuracies in the kinematic
model. We mix this Gaussian with another 2D Gaussian, Nf , centered on the
image with mean 0 and a large variance σf . This Gaussian accounts for false
detections across the image that are independent of the location of the tool tip.
In summary,

p(di|xt, ci) = (1−m)Nt(Tci(xt), σ2
t I)(di) + mNf (0, σ2

fI)(di), (7)

where m is the mixing parameter for these two Gaussians.
We model a series of detections d1 . . . dn with corresponding con�gurations

of the robot, c1 . . . cn, as being independently drawn from this distribution, so
that

p(d1 . . . dn|xt, c1 . . . cn) =
∏

i

p(di|xt, ci). (8)

Using Bayes rule we have

p(xt|d1 . . . dn, c1 . . . cn) =
p(d1 . . . dn|xt, c1 . . . cn)p(xt, c1 . . . cn)

p(d1 . . . dn, c1 . . . cn)
. (9)

Since we are only looking for relative maxima, we can maximize

p(d1 . . . dn|xt, c1 . . . cn)p(xt, c1 . . . cn). (10)

We also assume that the tool tip position in the hand's coordinate system is
independent of the con�gurations of the system at which the images were cap-
tured, so that p(xt, c1 . . . cn) = p(xt)p(c1 . . . cn). Since c1 . . . cn are known and
constant for the data set, we can drop their distribution from the maximization
to end up with

x̂t = Argmaxxt
(p(d1 . . . dn|xt, c1 . . . cn)p(xt))

= Argmaxxt
(log (p(xt)) +

∑
i log (p(di|xt, ci))) .

(11)

We de�ne p(xt) as being approximately zero for positions that are inside the
robot's hand or wrist, or are greater than 1 meter from the center of the hand.
p(xt) is uniform everywhere else.
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A variety of methods could be used to �nd our estimate x̂t given expression
11, including gradient ascent and brute force sampling. We use the Nelder-
Mead Simplex algorithm implemented in the open source SciPy scienti�c library
[17] to optimize this cost function. More e�cient optimization algorithms are
applicable, but this algorithm is easy to use since it only requires function
evaluations. Even though each evaluation of the cost function requires O(n)
computation, where n is the number of detections, we found it to converge
quickly given our small set of moderately noisy observations.

There are many sources of error that we ignore in our model, including un-
certainty about the hand's rotation (which will have a larger impact on long
objects), the projection dependent aspects of the kinematic uncertainty, and
uncertainty in the temporal alignment of the kinematic con�guration measure-
ments and the motion-based detections.

4 Experimental Results

The described approach was evaluated on a 29 DOF humanoid robot at the
MIT CSAIL Humanoid Robotics Group [11]. The robot, named Domo, has
4 DOF in each arm, 2 DOF in each wrist, 4 DOF in each hand, and 9 DOF
in the active vision head. Domo is equipped with compliant and force sensing
actuators throughout most of the body. It has two Point Grey Firewire cameras
with di�ering focal lengths (2.8mm and 3.6mm ) for a wide �eld-of-view and
high resolution imaging.

4.1 Setup

Experiments were conducted on a variety of tools with di�ering lengths and
endpoints, see Figure 2. For each experiment, the 11 DOF kinematic chain
from the camera to the robot wrist was servoed to maintain a �xed pose that
ensured tool visibility in the wide-angle camera. The tool was placed in the
robot's hand and the 2 DOF (pitch,roll) of the wrist were ramped smoothly
to random positions in the range of ±60 degrees for a short duration. The
robot's joint angles and camera images were sampled at 30hz. Approximately
500 samples (15 seconds of motion) were captured for each tool and randomly
distributed into a training set of 400 samples and a test set of 100 samples. We
then hand labeled the tool tip location for each frame of the test set.
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Figure 5: An example of the tip prediction for each tool. The white cross is
centered at the prediction point and measures 40 pixels across for scale. The
radius of the white circle indicates the tool's mean pixel error. The black cross
indicates the hand labeled tool tip.
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Figure 6: [Left] Error histogram, in pixels, for raw motion-based detection of the
tool tip with respect to the hand-labeled tool tip for all tools. [Right] Detailed
view of the left graph.

4.2 Tool Tip Detection

Visual detection of the tool tip was computed using the motion model from
Section 3.1. In our experiments, the localization was computed o�ine for each
pair of sequential images, though real-time rates are achievable with little adap-
tation. As shown in Figure 1B, a naturally lit, cluttered background was used
to ensure a non-trivial unstructured environment for perception. The detection
method is noisy, but as shown in Figure 6, the detections tended to match the
hand-labeled tool tip locations. In the experiments we present, the camera and
environment were nearly stationary and the a�ne model of background motion
was estimated as close to identity. Without modi�cation the model could be
used in situations with a non-stationary camera and other causes of global a�ne
motion.

4.3 Tool Position Estimation

The position estimation accuracy was evaluated by �rst estimating the 3D tool
position in the hand on the training data set as described in Section 3.2. We
used the parameter values σt = 5.0, σf = 150.0, and m = 0.5. The 3D posi-
tion was projected onto the image plane for each sample in the test set. The
predicted appearance of the tool tip was then compared to the hand labelled lo-
cation to compute the mean pixel error. A baseline comparison can be made by
performing the estimation process on the hand labeled data set. The resulting
error is indicative of inaccuracies in the kinematic model and the camera model.
The algorithm performs favorably with respect to this baseline error. Figure 7
illustrates the mean prediction error, in pixels, across the set of tools. Figure 5
illustrates the typical tip prediction for each tool.
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Figure 7: The mean prediction error, in pixels, for each tool. The 3D tool tip
position in the hand is estimated using two data sets: 2D motion-based tool tip
detection and hand-labelled tool tips. The 3D positions for both estimates are
then projected onto the image plane for each sample in the test set and compared
to the hand labelled location. The left (dark) bar indicates the detector error
and the right (light) bar indicates the hand labelled, baseline error. The baseline
errors are an indication of inaccuracies in the kinematic model and the camera
model.

4.4 Discussion of the Results

As Figure 5 illustrates, the prediction performed well. The wide angle camera
from which the images were captured allows a larger variety of tool sizes to be
explored, but the resolution of the tip was often low, on the order of 10 pixels.
Errors can originate from the kinematic and camera model, as the baseline errors
in Figure 7 demonstrate. On the Domo robot, the transform Tc was computed
from a hand tuned model. The electro-mechanical details of the robot make
precise calibration di�cult. An autonomous method for the hand-eye calibration
problem [14, 2] could potentially reduce this error component. We analyzed the
estimated 3D position of each tool by its prediction in the image. The accuracy
of these predictions indicate that the 3D estimate could be incorporated into
a Cartesian space controller where the tool becomes a natural extension of the
robot's body. We trained each estimator on a data set of 400 samples which is
conservatively high given the e�ectiveness of the motion-based detector and the
ideal requirement of only two distinct views. An online, iterative extension of
the estimation process could be implemented with little modi�cation in order to
provide real-time position estimation. It is important that the wrist sample a
large space of poses. In the extreme case of hand rotation occurring only in the
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image plane, the depth of the tool position would be indeterminate. Finally, it
is useful to limit the rotational velocity of the wrist to reduce signi�cant motion
blur at the tool tip and to avoid moving outside the search window used in
block-matching.

5 Discussion

We have presented a straight-forward approach to detecting the end point of
a tool in a robot hand and estimating its 3D position. The strength of our
approach is that it assumes little prior knowledge about the tool or its position
in the hand and avoids complex perceptual processing. Rather than segmenting
the tool, estimating the 3D shape of the tool, or otherwise representing the
details of the tool prior to detecting the tip, this method jumps directly to
detecting the tip of the tool.

The success of the method relies on two main observations. First, the natural
utility of many human tools depends on the tool's endpoint. Second, for many
of these tools the endpoint can be detected by its rapid motion in the image
when the robot moves its hand while holding the tool.

For the results we present, the robot's hand is roughly human in size and
shape and thus well-matched to human tools. This detection method might not
perform as well with robot end-e�ectors that di�er signi�cantly from a human
hand (for example they might be large with respect to the tool).

Our method requires that the robot already have the tool �rmly in its grasp.
It is appropriate for applications where the tool is placed within the hand of
the robot, such as by an instructor who is teaching the robot. It may also be
useful in situations where the robot has already perceived the tool in order to
grasp it. The details of the tool's position in the hand after grasping may be
uncertain. Also, many plausible grasping methods could be successful without
identifying the endpoint of the tool. If the grasp happens to occlude the tool
tip our method will not work, and may instead detect the end of the tool's
handle. Although the dependency of the method on the details of the grasp
merits further investigation, we believe that the method will tend to work with
stable grasps on human tools.

Other perceptual cues could be bene�cially integrated with this method,
such as stereo vision and extra visual features. Motion does, however, have
some especially bene�cial properties for this type of detection. First, motion
helps us to �nd elements of the world that are controlled by the robot's hand.
Stereo analysis of a static scene could be used to select elements of the scene that
are close to the hand, but without motion, stereo could not detect which points
are under the hand's control. Second, by moving the hand and tool we are able
to observe them from several distinct views, which reduces sensitivity to the par-
ticular position of the hand and increases overall robustness. Finally, although
not used in this paper, the motion of the hand could be used to visually estimate
the center of the hand's rotation and reduce the method's dependence on the
kinematic model. Likewise, motion could be further exploited in the estimation
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process by tracking features over multiple frames or otherwise incorporating a
model of the expected dynamics of the tool tip.

Our work a�ords many avenues for further exploration. The reliable predic-
tion of the tool tip in the visual scene could allow us to construct a model of the
tool's visual features. This, in turn, could be used to more precisely detect and
control the tool. A large literature exists for visually servoing a robot hand to
an object [20] and these approaches could be readily extended to include control
of the tool tip. In addition, the estimate of the tool's 3D position in the hand
can be applied to a traditional Cartesian space control scheme.

The approach described in this paper can help the robot to actively test and
observe the endpoint during interactions with the world. As such, it is a �rst
step towards robots that autonomously learn to use novel, unmodeled human
tools in human-centric environments.

A Weighted Linear Least Squares Simpli�cation

In this appendix we provide the results of simplifying the weighted linear least
squares formulation we use for motion processing. As explained within sub-
section 3.1 of the main article, we wish to solve a = (XT

1 Σ−1X1)−1XT
1 Σ−1x2,

which minimizes (X1a− x2)T Σ−1(X1a− x2).
The computation of XT

1 Σ−1X1 only requires that we sum n 6x6 symmetric
matrices, where n is the number of edge points i used in the estimation. The
21 distinct terms have the simple and redundant form

XT
1 Σ−1X1 =

∑
i


u2

i c1i . . . . .
viuic1i v2

i c1i . . . .
uic1i vic1i c1i . . .
u2

i c3i uivic3i uic3i u2
i c4i . .

viuic3i v2
i c3i vic3i viuic4i v2

i c4i .
uic3i vic3i c3i uic4i vic4i c4i

 , (12)

where each . represents the corresponding lower diagonal value and C−1
i =[

c1i c2i

c3i c4i

]
with c2i = c3i due to symmetry. The structure of this matrix is

more clear when written in block form with pT
i =

[
ui vi 1

]
,

XT
1 Σ−1X1 =

∑
i

[
c1ipip

T
i c3ipip

T
i

c3ipip
T
i c4ipip

T
i

]
. (13)

The resulting symmetric 6x6 matrix, XT
1 Σ−1X1, will be positive de�nite except

for extreme circumstances that can be detected by the matrix inversion code,
such as when not enough edges are provided due to darkness. We compute
(XT

1 Σ−1X1)−1 using fast 6x6 matrix inversion code specialized for symmetric
and positive de�nite matrices.

XT
1 Σ−1x2 is also computationally simple with
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XT
1 Σ−1x2 =

∑
i


(ui + txi)uic1i + (vi + tyi)uic3i

(ui + txi)vic1i + (vi + tyi)vic3i

(ui + txi)c1i + (vi + tyi)c3i

(ui + txi)uic3i + (vi + tyi)uic4i

(ui + txi)vic3i + (vi + tyi)vic4i

(ui + txi)c3i + (vi + tyi)c4i

 , (14)

which can also be more clearly written in block form with pi, so that

XT
1 Σ−1x2 =

∑
i

[
pic1i pic3i

pic3i pic4i

] [
ui + txi

vi + tyi

]
. (15)
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