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Why manipulation in human
environments?

Extend the time an elderly person can live at homeSocial

Robots that can work with people could…

Europe 1950

Changing Demographics           Worldwide shortage of qualified nurses…

2000 2050

Economic Provide assistance to a worker on an assembly line

Laziness Help with household chores



Where we are today…

Dynamic Pen Spinning Using a High-
speed Multifingered Hand with High-
speed Tactile Sensor
(Ishihara, 2006)

           At, and beyond, human levels in specialized domains



Domo



What does Domo do?



Helping with chores



•Real robot
•Force sensing and compliance
•Intrinsic safety
•Single, integrated behavior system

•Strategies for human environments
•Let the body do the thinking
•Cooperative manipulation
•Task relevant features

•Accomplish useful, everyday tasks
•Dynamics and variability
•No object models

Contributions

Collaborators
Charles Kemp
Jeff Weber
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Controlled environments

• World can be sensed and described with a 3D model
• Actions are mostly pre-planned
• Sensing within engineered constraints

Robust Perception and Control for Humanoid Robots in
Unstructured Environments Using Vision (Taylor, 2004)

Adapt the world to the robot

Vision Based Behavior Verification System of
Humanoid Robot for Daily Environment Tasks
(Okada et al., 2006)



Human environments

    If it works here             …       will it work here as well? 

• Beyond control of the robot engineer
• Unknown dynamics and variation

• Sensory noise and clutter
• Piecemeal view of the world

Adapt the robot to the world

Uncertainty

Sensing



Human environments

•Variety of everyday objects
•Variability in lighting
•Human dynamics
•Cluttered background
•No 3D object models
•No environment engineering

Human dynamics Lighting variability

Cluttered 
background

•Naïve collaborators
•Multiple environments
•Autonomous grasping
•Autonomous task-planning
•Differing classes of objects

What we do… What we don’t do…

Scope of work



Strategies for human environments

• Let the body do the thinking
• robot as more than a passive observer

• Cooperative manipulation 
• accomplish tasks as a human-robot team

• Task Relevant Features
• structure in everyday objects and environments



Let the body do the thinking
Compensatory actions under uncertainty

•﻿Use arms as feelers in the dark 
•Stiffen arm before inserting a key 
•Rest a cup on a table before pouring  
•Brace a hand on table while writing



Let the body do the thinking
Leverage compliance to reduce geometric uncertainty

(Stanford, 1959)

A body of human form can:
•work with human tools
•view countertops and shelves
•generate social cues



Cooperative manipulation

•Leverage human perception and planning
•Exploit natural social cues

•Eye gaze
•Reaching
•Physical contact

•Smooth path to autonomy

Manipulation as team effort



Task relevant features

1. Commonalities in everyday objects
2. Use sparse perceptual features
3. Features describe task, not object
4. Generalize across objects
5. Motor equivalence

﻿Carefully select the aspects of the world that are to be
perceived and acted upon…

The Design of Everyday Things,
(Norman, 1990)

Learning to Grasp Novel Objects Using Vision
(Saxena et al., 2006)



Task relevant features
﻿Carefully select the aspects of the world that are to be
perceived and acted upon…



Pieces of the puzzle…
Exploiting environment
structure

Sparse features for grasping Working with people and tools

Learning to Grasp Novel Objects Using Vision
(Saxena et al., 2006)

A Behavior Based Arm
Controller
(Connell, 1989)

Building an Autonomous Humanoid Tool User
(Bluethmann et al., 2004)

Learning and Generalizing Control-Based
Grasping and Manipulation Skills
(Platt, 2006)

Using action to
assist perception

Better Vision Through
Manipulation
(Metta and Fitzpatrick, 2003)

Learning to grasp
everyday objects



Roadmap
•Approach
 
•Robot design
•Visual system
•Control architecture
 
•Working with object tips
•Working with people
•Manual skills

•Helping with chores
 
•Conclusions and future work



Domo
•29 Degrees-of-Freedom

•7 DOF head
•2 DOF SEA neck
•6 DOF SEA arms
•4 DOF SEA hands

•Passive Compliance
•Force sensing
•12 Linux PCs

Domo: A Force Sensing Humanoid Robot
for  Manipulation Research
(Edsinger and Weber, 2004)



Series Elastic Actuators
(Pratt and Williamson, 1995)

Arms and neck Hands

motor motorsensor
sensorspring

spring

Impedance above closed-loop bandwidth
SEA

Impedance

Traditional



Head

Copy of the Mertz head, Designed by Jeff Weber
Mertz: A Quest for a Robust and Scalable Active Vision
Humanoid Head Robot (Aryananda and Weber, 2004)

          

•9 DOF
•SEA Neck
•Synchronized Firewire Cameras
•Gyroscope
•Encoders and potentiometers
•1KHz DSP control
•Visual smooth-pursuit controllerCalibrated camera model



Hands

Design of a compliant and Force Sensing Hand for a
Humanoid Robot (Edsinger, 2004)

•4 DOF
•Series Elastic Actuators
•Force and angle sensing
•1KHz DSP control
•0.4 kg
•Compliant skin
•Compliant fingertips



Lightweight compliant
manipulators

Design in collaboration with Jeff Weber

•6 DOF
•Cable drive
•Series Elastic Actuators
•Force and angle sensing
•1KHz DSP control
•2.2 kg
•Intrinsic safety
•2 kg payloadCable routing

Controllers for:
•Joint Force
•Gravity compensation
•Joint Angle
•Virtual spring
•Inverse kinematics
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Using motion cues…

Robust to lighting and clutter

Predictions to increase salience

Generating motion to assist
perception

Regions of interest



Visual attention system

Directs eye gaze

Motion prediction

Motion model

Motion features  
Short-term “memory”  

﻿Consolidate perceptual streams into a
single spotlight of attention

Salient features



Affine motion model

1. Canny edge detector on consecutive images
2. Block matching to estimate translation of each edge
3. Compute covariance matrix C of block matching error for each edge
4. Fit model A to translations when weighted by C (weighted linear-least-

squares)
5. Iterate the fitting process
6. Weight each edge by how well translation fits A (Mahalanobis distance)

•Estimate global motion of edges (A)
•Select for edges that violate model 

A

Generates weighted edge map of foreground motion

Work by Charles Kemp



Interest regions

•Weighted edge map from motion model
•Select strongest responding regions at
multiple-scales

Convex edges define circular region
in given scale-space

Selects regions important for
interaction and manipulation

Work by Charles Kemp



Sensory Ego-Sphere
The Sensory Ego-Sphere as a Short-Term
Memory for Humanoids
(R. A. Peters et al., 2001)

•Short term memory
•Improves stability
•Multi-modal registration
•Learn spatial distributions
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Slate

1Gb LAN YARP

Linux Node

Linux Node

100Hz

Python
C/C++
YARP

Slate process

•Scheduler
•Modules ~= behaviors
•Threads
•Wires and Arbitrators
•Monostables
•FSAs with timing

Components

•Tools for rapid prototyping
•Libraries for vision, learning

A tool for specifying time
contingent behaviors



Designing manipulation  tasks

Module interaction
•Adjust activation priorities
•Communicate through the world

Module
•Local task knowledge
•Estimate readiness

Compose tasks through coordination of
perception and control modules

Models and learning
•Simple prior models
•Control feedback to correct for model errors
•Offline learning for detectors



Task decomposition within Slate
 

Detectors and motor
primitives

Task relevant features
Compensatory actions

Manual skills

Integrated tasks

Single, integrated system

125 Threads, 40 Wires, 35 FSAs, 10 Arbitrators
Main Process



Manual skill algorithm

Integration
•Let the body do the thinking
•Cooperative manipulation
•Task relevant features



Manual skill algorithm

Basic control loop

Integration
•Let the body do the thinking
•Cooperative manipulation
•Task relevant features



Manual skill algorithm

Integration
•Let the body do the thinking
•Cooperative manipulation
•Task relevant features



Example: Bimanual insertion task

•Activation of modules that create
readiness
•Monitor readiness



Example: Bimanual insertion task

•Prepare body to assist perception
•Take action to reduce uncertainty



Example: Bimanual insertion task

•Detect task relevant features
•Use learned models in detectors



Example: Bimanual insertion task

•Control feature
•Include perceptual feedback



Example: Bimanual insertion task

Detect controller success
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The task relevant tip
Detect and control the distal tip of a wide

range of everyday objects

•Single point of attention
•Improves visual observation by reducing occlusions
•Localize interaction forces
•Natural extension of controlling hand and finger

Why the prevalence of the tip?



The task relevant tip

Tip detected as the fastest
moving convex edge in image

Goal: quickly localize and control the tip 
of an unknown object

Work with Charles Kemp



Estimating the tip location

Bayes ruleDetections3D tip 
location

Kinematic 
configurations

Work with Charles Kemp



Estimating the tip location

Solve in batch mode (N=50) using Nelder-Mead Simplex optimization

Maximum likelihood

Uniform near hand

Work with Charles Kemp



Estimating the tip location

2D Gaussian error model in image

Gaussian at tipMixing parameter Detection noise

Work with Charles Kemp



Detecting tips of everyday tools

Estimated

Hand labeled

Pixel error of tip prediction in image

Robot Manipulation of Human Tools: Autonomous
Detection and Control of Task Relevant Features
(Kemp and Edsinger, 2005)

Work with Charles Kemp



Tip open-loop control

Virtual forces on object

Virtual force in hand frame

Virtual force in world frame

Controller update rule

Force moment transform

Cross product operator



Tip open-loop control

Virtual forces on object

Desired

Actual

Controller

Error histogram (pixels)Image trajectory (pixels)



Tip servo control

Leverage strong prior on tip location

﻿whenever the wrist rotates:
detect tip in image as 

                 estimate probability is tip detection as

If                                              :
       initialize block-matching visual tracker at
      

estimate tip location         using closest point of          to tracker ray

substitute         for       in the open-loop controller



Tip servo control
Open-loop

Visual feedback

Desired

Actual

Controller

Error histogram (pixels)Image trajectory (pixels)

Desired

Actual

Controller

Error histogram (pixels)Image trajectory (pixels)
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Intrinsic safety

The Head Injury Criterion

Rigid link stiffness
Spring stiffness

Passive compliance
lowers effective mass



Detecting contact motion

Learn velocity prediction:
(Support Vector Regression) 

Arm stiffness: 

Signal contact when
prediction violation:

and



Contact

Joint space dynamic model

No contact

Prediction error histograms

Prediction error 

Signal contact when prediction violation: 

Detecting contact force



Assisted grasping

Social cues to request
assistance
•Reach direction
•Eye contact
•Grasp preshape



Can we design
naïve

collaborators into
a task?

•10 subjects
•6 trials each
•Naïve to task
•Varied experience with
robots
•Incentive during release

Cues:
•Voice “ok”
•Eye-gaze
•Reach direction
•Reach length
•Wrist orientation

grasp box “inspection” offer box release box

Give and take experiment

Will people give an object aligned with the
robot’s grasp?

Will people take an object when offered
by the robot?



Can we design naive collaborators into a
task?

     No               Yes

time

degrees

Grasp orientation errors (6 trials,
one subject)

Mean grasp orientation errors
(10 subjects)

•Very good at matching
grasp
•Incentive increases
likelihood of taking back
•Unrelated to expertise

Take-back rate
(10 subjects)

Incentive
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Reaching in the dark…
•Uncertain detection of surface
•Use body to verify location
•Represent location in joint space

Reach trajectories

Vary shelf pose and height



Switching hands

•Estimation of object tip
•Object realignment
•Visual servo of the palm
•Exploit compliance during contact

Expand the manipulation workspace



Switching hands
Expand the manipulation workspace



Placing objects on flat surfaces

•Estimate placement stability
•Place upright or lying down
•Leverage compliance to self-align to surface



Placing objects on flat surfaces

•Estimate placement stability
•Place upright or lying down
•Leverage compliance to self-align to surface



Placing objects on flat surfaces
Misalignment toleranceStability estimate

Wrist stiffness v.s. 
misalignment

3 trials ea.

Predicted: 



Finding an opening

Compensatory action 
Use the table for:

•Stability
•Alignment

•Localize near hand
•Detect convex edge



Bimanual insertion



Bimanual fixture

Disturbance response
Right arm controller

Constant error creates “squeezing” force
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Helping with chores



Helping with chores
Putting away groceries

Cleaning up
Making a drink

Assisted
grasping

Collaborator
interaction

Collaborator composes task plan



Putting away groceries

Assisted grasping

Collaborator
interaction

Putting away

1. Find a flat surface
2. Verify it is reachable
3. Take item from person
4. Switch item to closest hand
5. Place item on shelf

“Domo, shelf”

“Domo, take”



Making a drink

Bimanual Insertion

Assisted graspingCollaborator
interaction

Putting away

1. Take bottle from person
2. Take cup from person
3. Insert bottle tip into cup
4. Give bottle to person
5. Take spoon from person
6. Insert spoon tip into cup
7. Put cup on shelf

“Domo, insert”

“Domo, give it”

“Domo, shelf”

“Domo, insert”



Cleaning up

     
Bimanual fixture Assisted graspingCollaborator

interaction

1. Cue person to hand the box
2. Detect contact cue during hand-off
3. Form bimanual grasp
4. Track person as they move
5. Position box near the person as items

are placed in it
6. Lower the box onto the table

“Domo, box”

“Domo, done”
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Further details…

A. Edsinger and C. Kemp. "Manipulation in Human Environments", Proceedings of the IEEE/RSJ
International Conference on Humanoid Robotics, 2006.

C. Kemp and A. Edsinger. "Robot Manipulation of Human Tools: Autonomous Detection and Control of
Task Relevant Features". Proceedings of the Fifth International Conference on Development and Learning,
Special Session on Classifying Activities in Manual Tasks, 2006.

A. Edsinger and J. Weber. "Domo: A Force Sensing Humanoid Robot for Manipulation Research",
Proceedings of the IEEE/RSJ International Conference on Humanoid Robotics, 2004

A. Edsinger.  "Design of a Compliant and Force Sensing Hand for a Humanoid Robot", Proceedings of the
International Conference on Intelligent Manipulation and Grasping, 2004.

Best paper award

C. Kemp, A. Edsinger, and E. Torres-Jara. ”Challenges for Manipulation in Human Environments", IEEE
Robotics & Automation Magazine, To Appear, 2007.

R. Brooks, L. Aryananda, A. Edsinger, P. Fitzpatrick, C. Kemp, U. O'Reilly, E. Torres-Jara, P.  Varshavskaya,
and J. Weber. "Sensing and Manipulating Built-for-Human Environments", International Journal of Humanoid
Robotics, Vol 1, No. 1, 2004.



Caveats and Extensions
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•Rely on benign collaborator
•Objects within a class
•Adaptation to failure



Caveats and Extensions

•Variety of everyday objects
•Variability in lighting
•Human dynamics
•Cluttered background
•No 3D object models
•No environment engineering

•Naïve collaborators
•Multiple environments
•Autonomous grasping
•Autonomous task-planning
•Differing classes of objects

What we do… What we don’t do…

•Task planning without models
•Dealing with arbitrary objects



Future Work

Learning by demonstration
via task relevant features

•A suite of task relevant features
•Tactile shape features
•Local 3D features
•Flat surfaces, handles

•A suite of social cues
•Pointing
•Force guidance
•Gestures

•A suite of manual skills
•Opening door
•Stacking

More dynamics, more adaptation



Conclusions
Human environments pose unique challenges

Lesson: People leverage structure in 
human environments to reduce cognitive load

…robots can do the same

Rather than solve impressive, dexterous tasks…

…focus on basic manual skills that account for these
challenges



•Real robot
•Force sensing and compliance
•Intrinsic safety
•Single, integrated behavior system

•Strategies for human environments
•Let the body do the thinking
•Cooperative manipulation
•Task relevant features

•Accomplish useful, everyday tasks
•Dynamics and variability
•No object models

Contributions
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