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Abstract— Robots that work alongside people in their
homes and workplaces could extend the time an elderly
person can live at home, provide physical assistance to
a worker on an assembly line, or help with household
chores. In order to assist people in these ways, robots
will need to successfully perform manipulation tasks within
human environments. Human environments present special
challenges for robot manipulation since they are complex,
dynamic, uncontrolled, and difficult to perceive reliably.

Our approach to robot manipulation overcomes these
challenges using a variety of techniques that we group
into three design themes: cooperative manipulation, task
relevant features, and let the body do the thinking. We have
previously illustrated these themes with a behavior-based
control system that enables a humanoid robot to help a
person place everyday objects on a shelf. Within this paper
we extend this control system to enable a robot to perform
bimanual tasks with everyday handheld objects. In our tests,
the robot successfully performs insertion tasks that are akin
to common activities such as pouring and stirring using a
wide variety of objects, including a bottle, spoon, box, and
cup. The success of this extended system suggests that our
approach to robot manipulation can support a broad array
of useful applications.1

I. INTRODUCTION

Robots that work alongside people in their homes and
workplaces could extend the time an elderly person can
live at home, provide physical assistance to a worker
on an assembly line, or help with household chores. In
order to assist people in these ways, robots will need
to successfully perform manipulation tasks within human
environments. Human environments present special chal-
lenges for robot manipulation since they are complex,
dynamic, uncontrolled, and difficult to perceive reliably.

Addressing these issues is a focus of several active
projects. The ARMAR project is investigating manip-
ulation in human environments and has shown results
including the bimanual opening of a jar [29]. Researchers
working with the NASA Robonaut [1] have demonstrated
a cooperative manipulation task where the robot employs
a power drill to tighten lugnuts under human direction.
Work at AIST has pursued fetch-and-carry tasks of every-
day objects under partial tele-operation[23], while work
at Stanford has recently investigated learning to grasp

1This work was sponsored by Toyota Motor Corporation: Au-
tonomous Manipulation Capabilities for Partner Robots in the Home.

unknown, everyday objects [21]. In addition, many groups
are pursuing research on autonomous mobile manipula-
tion in human environments [11], [27].

These projects often constrain the robot’s environment
in order to simplify to issue of perception. In contrast, our
approach to robot manipulation addresses the challenges
of human environments by using a variety of techniques
that can be divided into three design themes: cooperative
manipulation, task relevant features, and let the body
do the thinking. We have previously illustrated these
themes with a behavior-based control system that enables
a humanoid robot to help a person place everyday objects
on a shelf [5]. Within this paper we extend this control
system to enable a robot to perform bimanual tasks with
everyday handheld objects.

Our work is implemented on the 29 degree-of-freedom
humanoid robot, Domo, pictured in Figure 1. Domo is
mechanically distinctive in that it incorporates passive
compliance and force sensing throughout its body [6]. Its
Series Elastic Actuators lower the mechanical impedance
of its arms, allowing for safe physical interaction with
a person [19], [28]. Working with unmodeled objects
against a cluttered background, Domo is able to assist
a person in a task akin to preparing a drink. As shown
in Figure 1, Domo can socially cue a person to hand it a
cup and a bottle, grasp the objects that have been handed
to it, and conduct a visually guided insertion of the bottle
into the cup. It then repeats the process with a spoon,
and places the cup on a shelf. For an individual with
serious physical limitations, this type of help might allow
the person to maintain autonomy in everyday activities
that would otherwise require help from another person.
For a factory worker, this type of help could offload the
physically demanding aspects of a task on to the robot.

II. THREE THEMES FOR DESIGN

As previously described in [5], three themes charac-
terize our approach to manipulation in human environ-
ments. We review these themes here. The first theme,
cooperative manipulation, refers to the advantages that
can be gained by having the robot work with a person
to cooperatively perform manipulation tasks. The second
theme, task relevant features, emphasizes the benefits of
carefully selecting the aspects of the world that are to be
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Fig. 1. The humanoid robot Domo assisting a collaborator in a task akin to making a drink. (A-B) Working at a cluttered table, Domo physically
verifies the location of a shelf surface. (C-D) Upon request, Domo grasps a bottle and a cup. (E-F) It inserts the bottle into the cup, hands the bottle
back to the collaborator, and then grasps a spoon. (G-H) Domo inserts the spoon into the cup, stirs it, and then puts the cup on the shelf.

perceived and acted upon during a manipulation task. The
third theme, let the body do the thinking, encompasses
several ways in which a robot can use its body to simplify
manipulation tasks.

A. Cooperative manipulation

For at least the near term, robots in human environ-
ments will be dependent on people. Fortunately, people
tend to be present within human environments. As long
as the robot’s usefulness outweighs the efforts required
to help it, robot autonomy is unnecessary. Careful design
can make robots intuitive to use, thereby reducing the
required effort.

By treating tasks that involve manipulation as a coop-
erative process, people and robots can perform tasks that
neither one could perform as an individual. Researchers
have looked at techniques for cooperative manipulation
that physically couple the robot and the person, such as
carrying an object together [25], or guiding a person’s
actions with a Cobot manipulator [14].

B. Task relevant features

Donald Norman’s book The Design of Everyday Things
[13], indicates that objects found within human environ-
ments are likely to have common structural features that
simplify their use (see Figure 2). By developing behaviors
that are matched to these structural features, we can
simplify robot manipulation tasks. For example, we have
previously shown that the manipulation of a large set of

human tools can be specified in terms of the tool’s tip,
such as the tip of a screwdriver [10].

We can define manipulation tasks in terms of behaviors
that perform closed-loop control with respect to a feature.
Many researchers treat robot manipulation as a planning
problem performed with respect to the global state of
the world [24], [20]. In contrast, our work is influenced
by the work of researchers such as Jagersand, Platt and
Grupen, Connell, and Brooks [8], [17], [3], [2], who
make use of carefully chosen aspects of the world’s
state. Rather than attempting to reconstruct the world in
its entirety, we focus the robot’s sensory resources on
elements of the world that are relevant to the current
task. Other researchers have used task relevant features
for manipulation, although typically with fiducial markers
or simplified environments [16], [18]. In this paper, we
have not altered the world to accommodate perception.

C. Let the Body Do The Thinking

This theme bundles together design strategies that make
use of the robot’s body to simplify manipulation in three
ways.

First, human environments are well matched to the
human body. Domo’s human form allows it to intuitively
cue the person with whom it is working. Domo’s eye gaze,
arm gesture, and open hand are similar in appearance to a
human requesting an object. This can help communicate
Domo’s request and cue the appropriate response more
effectively than a wholly alien body.



Fig. 2. Donald Norman’s ”Coffeepot for Masochists”. Many objects
in human environments have been designed to match our physical and
cognitive abilities. The design of a traditional coffeepot, for example,
has evolved such that the pot and coffee can be easily controlled from
the handle, the handle is matched to a human-scale power grasp, and the
spout is positioned to accommodate perception and control of the spout
during pouring. (Personal collection of D. A. Norman. Photograph by
Norman. Reproduced with permission).

Second, we can mitigate perceptual uncertainty by
trading off perceptual computation for physical design.
This tradeoff is central to Pfeifer’s notion of morpho-
logical computation [15]. Morphological computation is
characterized as performing a “task distribution” between
the robot’s controller, body, and environment. This distri-
bution is designed through clever use of sensor placement,
material properties, body kinematics, and matching of the
robot’s body to its environment. This notion has been
previously applied to rhythmic manipulation tasks such as
hammering [26]. In Domo, the body’s passive compliance
allows it safely make contact with the world and to take
advantage of favorable contact dynamics, such as the
tendency of an object to stably align itself with a flat
surface.

Third, a physically embodied agent can use its body
to to test a perceptual hypothesis, gain a better view on
an item of interest, or increase the salience of a sensory
signal. For example, a person will tilt their head in order
to better hear a speaker. These types of actions can com-
pensate for a robot’s physical or perceptual limitations.
They can be designed to increase the robot’s ability to
sense and control important aspects of a task.

III. DESIGNING TASKS

A. Behavior System

Domo accomplishes an assistive task through the co-
ordination of its perceptual and motor behaviors over
time. These behaviors (denoted in italics) are composed
hierarchically, and run in a distributed, real-time archi-
tecture at 15 − 100hz on a 12 node Linux cluster. We
have adopted a layered architecture similar to that of
Brooks[2] and Connell[3]. We couple constant perceptual
feedback to many simple behaviors in order to increase
the task robustness and responsiveness to dynamics in the
environment. For example, if a person removes the object
from the robot’s grasp at anytime during task execution,
the active behavior will become inhibited and a lower-

PersonSeek

PersonDetect

VocalRequest

AssistedGrasp

AssistedGive

BimanualInsert

ShelfPlace

GraspDetect

VocalRequest

ContactDetect

Fig. 3. A collaborator can compose a task using four manipulation be-
haviors: ShelfPlace, BimanualInsert, AssistedGrasp, and AssistedGive.
Transitions (arrows) occur contingent on perceptual feedback (bars).
Exceptions from the expected feedback result in a reset transition
(dashed line). The collaborator coordinates the task through voice
cues (VocalRequest) while the robot tracks the person in the scene
(PersonSeek, PersonDetect). The person can ask the robot to take an
object (AssistedGrasp), give back an object (AssistedGive), insert one
object into another (BimanualInsert), or place an object on a shelf
(ShelfPlace). The robot can reattempt a manual skill if failure is signaled
(GraspDetect, VocalRequest, ContactDetect).

level behavior will attempt to reacquire the object or to
smoothly bring the arm to a relaxed posture.

B. Cooperative Design

A collaborator coordinates the robot’s manual skills to
accomplish a task. For example, the task of Figure 1 is
accomplished using four manual skills: ShelfPlace, Bi-
manualInsert, AssistedGrasp, and AssistedGive. As shown
in Figure 3, these behaviors run concurrently, allowing a
person to vocally request them at any time. If the col-
laborator notices that Domo is failing at a task, they can
provide vocal (VocalRequest) or contact (ContactDetect)
feedback to alert the robot. If Domo accidentally drops an
object (GraspDetect), the person can pick it up and ask
the robot to grasp it again (AssistedGrasp). Alternatively,
at anytime the person can ask Domo to hand them a
grasped object (AssistedGive). In this way, the robot and
the person work as a team. The person intuitively provides
task-level planning and guides the robot’s action selection.
In return, the robot accomplishes manual tasks for the
person.

The AssistedGrasp, AssistedGive, and ShelfPlace be-
haviors are fully described in [4] and [5]. In the next
section we describe the implementation of the Bimanu-
alInsert behavior in more detail.

IV. THE BIMANUAL INSERTION TASK

In the BimanualInsert behavior, Domo grasps a com-
mon object such as a stirring spoon or bottle in one
hand and a container such as cup or coffee mug in the
other hand. It inserts the object into the container and
then optionally stirs the contents. The specific geometric



properties and appearance of each object and container
are unknown, and their pose in the grasp is uncertain.
Consequently, the robot relies on visual sensing and
manipulator compliance to achieve the task.

This behavior is related to the classic peg-in-hole task
often studied in model-based manipulation under uncer-
tainty [12]. For this task a single manipulator controls
a peg with the goal of inserting it in a hole. Biman-
ual insertion is much less common. Bimanual insertion
requires a more complex body with two arms and two
end effectors. One might assume that the task would
also be more difficult, since this complex body must be
controlled. However, as we demonstrate in this paper,
bimanual manipulation can simplify a task in important
ways.

Through bimanual manipulation a robot can simultane-
ously control two grasped objects independently. In doing
so, the robot can actively control the objects in order to
dramatically simplify perception and action. For example,
Domo wiggles both objects so that it can more easily
perceive them through visual motion. Likewise, Domo is
able to stabilize the container on a flat surface in order
to more easily view its opening and hold it steady while
inserting the other object.

The following sections describe the sequential phases
of the task in order.

A. AssistedGrasp

By using AssistedGrasp, BimanualInsert is able to
secure a grasp on a utensil and a container for the task
by enlisting a person’s help. This is an important form of
collaboration. In handing Domo the objects, the person
directly specifies the objects that Domo will manipulate.
This is both intuitive and effective, and avoids the need
for the person to otherwise select objects through speech
or gesture. By handing the objects to the robot, the system
also avoids the need to autonomously grasp selected
objects. Robotic grasping of objects is still a very active
field of research and an open problem [22].

AssistedGrasp first locates a person in the scene, and
then extends its arm towards the person and opens its
hand. By reaching towards the person, the person only
needs to move a small amount when handing over the
object. In assistive applications for people with motor
impairments, this would allow the robot to effectively
amplify the person’s physical abilities as the robot is able
to manipulate the object over its full workspace.

In addition, the robot also cues the person when reach-
ing towards the person. This lets him or her know that
Domo is ready for an object and prepared to perform the
task. The robot monitors contact forces at the hand. If it
detects a significant change, it performs a power grasp in
an attempt to acquire an object. If the SVM based grasp
detector indicates that an object has been successfully
grasped, the robot attempts to acquire another object with
its free hand in the same way. Once the robot has an object
in each hand, it proceeds to the next phase of the task.

Fig. 4. Execution of the ContainerPlace behavior. (Top) The spatio-
temporal interest point operator finds the roughly circular opening of
a box, jar, and bowl. The detector is robust to cluttered backgrounds.
(Bottom) The robot exploits active and passive compliance to align the
container to the table.

B. ContainerPlace

The orientation of a grasped object in the hand is
typically uncertain. The ContainerPlace behavior assists
BimanualInsert by reducing the orientation uncertainty
of a grasped container. Using force control, the behavior
lowers the container onto a table while keeping the stiff-
ness of the wrist low. Through this action, the base of the
container aligns with the table in a stable configuration.
This is shown in Figure 4. Also, the table is used as a
stable support during insertion, much like a person resting
their cup on a table before pouring a cup of coffee.

C. TipEstimate

For a wide variety of tools and tasks, control of the
tool’s endpoint is sufficient for its use. For example, use
of a screwdriver requires precise control of the tool blade
relative to a screw head but depends little on the details
of the tool handle and shaft.

The tip of an object is an important task relevant
feature, and we have previously described a method to
rapidly localize and control this feature [10], [9]. This
method detects fast moving, convex shapes using a form
of spatio-temporal interest point operator. As the robot
rotates the object, it detects the most rapidly moving
convex shape between pairs of consecutive images. Due
to the tip’s shape and distance from the center of rotation
it will tend to produce the most rapidly moving, convex
shapes in the image. The robot uses its kinematic model
to estimate the 3D point in the hand’s coordinate system
that best explains these noisy 2D detections.

The TipEstimate behavior treats the tip of the grasped
object as a task relevant feature. The behavior brings the
object into the field of view, rotates its hand, and then
localizes the tip.

The robot uses the same spatio-temporal interest point
operator to detect the opening of the container as it is
aligned to the table. As shown in Figure 4, using visual
motion and the kinematic model enables the robot to
robustly detect this opening on a cluttered table. This
method works with a variety of objects such as drinking
glasses, bowls, small boxes, and coffee mugs.



D. TipPose

Once TipEstimate has localized the utensil tip within
the hand’s coordinate system, the TipPose behavior con-
trols the feature by essentially extending the robot’s
kinematic model by one link. This enables the robot to
use traditional Cartesian space control. As the grasped
object is moved, the spatio-temporal interest point opera-
tor provides visual detections of the tip. These enable the
robot to visually servo the tip in the image [4].

Within the insertion task, the TipPose behavior visually
servoes the object’s tip to the container’s opening. We
adopt an approach similar to [7] where the object is
aligned at a 45 degree angle to the table. This advan-
tageous pose prevents visual obstruction of the tip by the
hand and expands the range of acceptable misalignment
when performing the insertion. During servoing, the tip
is kept on the visual ray to the center of the container
opening. The depth of the tip is then increased along the
ray until the tip is just above the insertion location.

E. CompliantLower

CompliantLower performs the insertion phase of the
task by generating a constant downward force at the ob-
ject’s tip. The impedance of the manipulator wrist is also
zeroed in order to accommodate insertion misalignment.
Although the insertion forces are not used for control
feedback, the sensed force between the object and the
bottom of the container is used to detect task completion.

V. RESULTS

BimanualInsert can generalize across a variety of inser-
tion objects and containers due to our use of task relevant
features. In total, we have executed BimanualInsert in
nearly one hundred trials with a variety of objects. To
demonstrate its performance, we tested BimanualInsert
in two experiments. In the first experiment, we tested
the insertion of a mixing spoon, bottle, paint roller, and
paint brush into a paper cup. In the second experiment,
we tested the insertion of the mixing spoon into a paper
cup, bowl, coffee mug, and jar. On these objects, the size
of the container opening varies between 75-100mm and
the size of the tool tip varies between 40-60mm. In each
experiment, seven trials were conducted on each object
pairing.

In a single experiment trial, the object was handed to
the robot in an orientation that was deliberately varied
between ±20◦ along the axis of the hand’s power grasp.
The grasp location on the object was varied by approxi-
mately ±50mm along its length. Each trial took less than
20 seconds to complete and was performed over a visually
cluttered table. A trial was successful if the object was
fully inserted into the container. The success rates for both
experiments are shown in Figure 5. As the results show,
BimanualInsert was successful in roughly 90% of the
trials. When the visual detection of the tip was disabled,
the success rate fell to about 15%.

As a final example, we tested BimanualInsert using a
flexible hose. The hose has an unknown bend, making it
essential that Domo actively sense its distal tip in order
to orient the hose prior to insertion. The execution of
this test is shown in Figure 6. While BimanualInsert can
handle the flexible hose in many cases, a single point
representation doesn’t provide sufficient information to
reorient the hose when it has a large bend. In general,
if the 3D orientation of the object tip were sensed using
stereo or shape features, the object could be better aligned
with the container prior to insertion.

VI. DISCUSSION

We have presented design strategies for building robots
that can assist people in everyday tasks. These strategies
act to mitigate many of the challenges posed by human
environments, which are complex, dynamic, uncontrolled,
and difficult to perceive reliably.

In previous work we have shown that these strategies,
combined with a behavior-based control system, can
enable a robot to assist a person by placing objects on a
shelf. In this paper, we have shown that the same system
generalizes to bimanual insertion tasks given a variety
of everyday handheld objects. This extension provides
evidence that our approach is applicable to a broad set of
applications, can generalize across objects within a class,
can work autonomously without object models, and is
robust to the noise and clutter of everyday settings.
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