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Abstract
Robots that are able to use human tools could more easily work with

people, perform tasks that are important to people, and bene�t from
human strategies for accomplishing these tasks. For a wide variety of
tools and tasks, control of only the tool's endpoint is su�cient for its use.
In this paper, we present a straight-forward method for rapidly detecting
the endpoint of an unmodeled tool and estimating its position with respect
to the robot's hand. This allows the robot to control the position of the
tool endpoint and predict its visual location. We evaluate the approach
on a humanoid robot across a variety of human tools.

1 Introduction

Consumer robots are now successfully performing specialized tasks in everyday
human environments. Research is gradually leading towards general purpose
robots that perform well in human environments and take advantage of the
common objects found within them [7]. Robots that are able to use human
tools found within these environments could more easily work with people, per-
form tasks that are important to people, and bene�t from human strategies for
accomplishing these tasks. Ideally, a robot would quickly learn how to use a
new tool autonomously, since the set of human tools is large, varies widely in
appearance, and continues to grow. For a wide variety of tools and tasks, control
of only the tool's endpoint is su�cient for its use. These basic skills not only
enable rudimentary use of the tool, but also assist further learning by allowing
the robot to actively test and observe the endpoint.

In this paper, we present a straight-forward method for rapidly detecting the
endpoint of an unmodeled tool and estimating its position with respect to the
robot's hand. This allows the robot to control the position of the tool endpoint
and predict its visual location. We show successful results for this method using
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Figure 1: [Left] The humanoid robot, Domo, used in this work. [Middle] A
typical view from the robot's camera of the hand holding a pair of pliers. A
naturally lit, cluttered background ensures a non-trivial unstructured environ-
ment for perception. [Right] A magni�ed view of the hand and tool. The motion
interest point (black), hand labeled tool tip (white), and the estimation results
(green) are annotated.

Figure 2: The approach was evaluated on a hot-glue gun, screwdriver, bottle,
electrical plug, paint brush, robot �nger, pen, pliers, hammer, and scissors.
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the humanoid robot pictured in Figure 1 with a variety of traditional tools shown
in Figure 2, including a pen, a hammer, and pliers, as well as more general tools
such as a bottle and the robot's own �nger.

To �nd the tip of the tool, the robot rotates the tool while detecting the most
rapidly moving point between pairs of consecutive images. An estimation pro-
cess then �nds the 3D point in the hand's coordinate system that best explains
these noisy detections. Given this protocol, motion serves as a powerful cue
for detecting the endpoint of a wide assortment of human tools. The method
makes few assumptions about the size and shape of the tool, its pose in the
robot's hand, or the environment in which the tool is being manipulated. The
method requires a calibrated camera and a model of the kinematic chain from
the robot's camera to its hand.

We start by discussing related work in Section 2. We then describe the
tool tip detection method in Section 3. Next, in Section 4, we present our
experimental results with the robot and 10 di�erent human tools. We conclude
with a discussion of the approach in Section 5.

2 Related Work

Research involving robot tool use often assumes a prior model of the tool or
constructs a model using complex perceptual processing. Industrial robot arms
use specialized, well-modeled tools that are rigidly mounted using exchangeable
end-e�ectors [17]. For example, Ruf [1] has demonstrated a real-time system
that can visually localize the tool end of a manipulator using a polyhedral model
of the tool. A recent review of robot tool use by Amant [24] fails to �nd signi�-
cant examples of robots using human tools outside of work at NASA. NASA has
explored the use of human tools by robots with the Robonaut platform[5]. They
used a detailed set of tool templates combined with stereo depth information to
successfully guide a standard power drill to fasten a series of lugnuts [14]. These
approaches are not likely to scale to the wide variety of human tools since they
depend on detailed models.

The robot hand can be considered as a specialized type of tool, and many
researchers have created autonomous methods of visual hand detection through
motion. Fitzpatrick and Metta [10, 19] used image di�erencing to detect ballistic
motion and optic-�ow to detect periodic motion of the robot hand. For the case
of image di�erencing they also detected the tip of the hand by selecting the
motion pixel closest to the top of the image. Natale [21] used image di�erencing
to detect periodic hand motion with a known frequency, while Arsenio [4] used
the periodic motion of tracked points. Michel et. al. used image di�erencing
to �nd motion that is coincident with the robot's body motion [20]. Kemp [15]
combined the motion model described in Section 3.1 with a wearable system
to detect the hand of the wearer and learn a kinematic model. These methods
localize the hand or arm, but do not select the endpoint of the manipulator in
a robust way.

A long history of work in AI and computer vision has focused on learning
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tool function [29]. For example, Duric [8] looked at associating a tool's function
with its prototypical motion. Robots that can actively learn about tool use
has been the subject of more recent work. Bogoni [6] investigated relating the
physical properties of the tool to the perceptual outcomes of its use when tested
by a robot. Stoytchev [26] has explored learning a tool's function through its
interactions with objects. This body of work typically assumes that a clean
segmentation of the tool can be readily extracted from the image or that the
tool features are known in advance.

In our work, we use our knowledge of how the robot's hand rotates while
holding the tool to make 3D estimations about the location of the tool tip. This
relates to methods for 3D scanning in which objects are placed on a rotating
platform in front of a single camera [18]. However, these methods typically
use a known or well-modeled background to cleanly segment the object, simple
platform motion, and occlusion free views of the object. Instead of attempting
to create a 3D reconstruction of the object for all views, we skip directly to
analyzing the feature of interest under a short period of random hand motion.
More generally, our 3D estimation technique relates to the well-studied area of
3D estimation from multiple views [11].

Our tool tip detection method makes use of optic �ow with an a�ne global
motion model and a per-pixel Gaussian measurement error model. The method
bears many similarities to optic �ow algorithms in the literature, such as global
motion modeling with 2D a�ne models [13, 28, 27, 22, 25], and modeling mea-
surement error from block matching [2, 23]. However, we are unaware of pre-
vious work outside of [15] that estimates the signi�cance of observed motion in
real-time using our speci�c method.

3 Detecting the Tool Tip

We wish to detect the end point of a tool in a general way. The detection process
combines two types of information. First, the detection process looks for points
that are moving rapidly when the hand is moving. This throws out points that
are not controlled by the hand and highlights points under the hand's control
that are far from the hand's center of rotation. Typically tool tips are the
most distal component of the tool relative to the hand's center of rotation, and
consequently have higher velocity. The hand is also held close to the camera, so
projection increases the speed of the tool tip in the image. Second, the detection
process makes use of 3D information provided by a kinematic model of the robot
in order to �lter out noise and combine detections from multiple 2D views of
the object.

3.1 2D Tool Tip Detection Using Motion

In order to �nd the tool tip, we �nd points that are moving signi�cantly with
respect to the background. We model global image motion using a 2D a�ne
model and then weight edges by how much their motion di�ers from this model.
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This di�erence is measured using the Mahalanobis distance between each edge's
Gaussian error measurement model and the motion predicted by the 2D a�ne
motion model. We then select the edge point with the largest weight as the
most likely location for the tool tip. This weight re�ects both the estimated
speed of the edge point and the certainty of the estimate.

The global motion model, A, can be represented as a 2x3 a�ne matrix that
transforms an image position p1 = (u1, v1) at time step 1 into an image position
p2 = (u2, v2) at time step 2,

[
u2

v2

]
=
[

a1 a2 a3

a4 a5 a6

] u1

v1

1


The model can account for global changes in translation, scale, rotation, and

shearing. We use weighted linear least squares to �t the model A to a set of
estimated translations, ti, each of which has an associated covariance matrix, Ci,
that represents the estimate's error. After we have our model, A, we compute
the Mahalanobis distance between estimates ti and model A in order to estimate
how likely it is that each translation was generated by the model.

We use the standard technique of block matching to estimate the motion
of points between consecutive images. This technique searches for point corre-
spondences between consecutive images using image blocks as point descriptors.
We compare two locations, p1 and p2, in the consecutive images, I1 and I2, by
computing the sum of absolute di�erences, s12, between the 5x5 blocks of pix-
els surrounding the two locations, s12 =

∑
x |I1(x− p1)− I2(x− p2)|. Block

matching is only performed at edge points detected in I1 with a Canny edge
detector in order to achieve real-time rates and reduce the use of uninformative
points. We compare each of these edge points in the �rst image to each loca-
tion within an 11x11 search window in the second image. This results in an
11x11 array of error values, sj , describing the similarity between the location in
the �rst image and the locations in the second image. We then select the best
matching location, pb, which has the lowest value, sb, and �nd the covariance
matrix, C, for a Gaussian model of the matching error around this best match
using

C = αI +
1∑
j wj

∑
j

wj(pj − pb)(pj − pb)T where wj =
1 if sj < sb + τ
0 if sj ≥ sb + τ

which thresholds the errors sj with sb + τ to create a binary error map wj

from which this Gaussian error model is computed 1. To avoid over-con�dence
in the estimated error distribution, we also add αI to C, which is equivalent

1For the blocks of size 5x5 that we use we set τ = 200 which assumes that we should see no
more than 4 units of additional error per pixel in a block that truly matches, since 5x5x4=200
. We set τ to this constant value by hand. It works su�ciently well for our purposes, but
estimating τ from measured pixel errors, especially as a function of brightness and contrast,
might improve the algorithm's performance.
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to convolving the error Gaussian with a circular Gaussian with variance α. We
use α = 1

4 .
We use weighted linear least squares to incorporate the error covariance

matrices, Ci, generated by the block matching process into the estimation of
the motion model A. We solve a = (XT

1 Σ−1X1)−1XT
1 Σ−1x2, which minimizes

(X1a− x2)T Σ−1(X1a− x2) where we de�ne the terms as follows:

X1 =



u1 v1 1 0 0 0
0 0 0 u1 v1 1
u2 v2 1 0 0 0
0 0 0 u2 v2 1
...

...
...

...
...

...
un vn 1 0 0 0
0 0 0 un vn 1


, a =


a1

a2

a3

a4

a5

a6

 , x2 =



u1 + tu1

v1 + tv1

u2 + tu2

v2 + tv2

...
un + tun

vn + tvn


a is the vectorized form of the matrix A, (ui, vi) is the location of an edge

point i in image I1, and (tui, tvi) is the lowest error translation of edge point i
into image I2. We now de�ne Σ to be a sparse block diagonal matrix with 2x2
matrices Ci along the diagonal, where Ci is the covariance matrix describing
the match error for edge point i.

Σ−1 =


C−1

1 0 0 · · · 0
0 C−1

2 0 · · · 0
...

...
...

...
...

0 0 0 · · · C−1
n


Due to the sparse block form of the matrices, these equations can be sig-

ni�cantly simpli�ed and solved in real-time as shown in detail in Appendix A.
We can consider this weighted linear least squares solution to be the maximum
likelihood estimation of our model a where the error is Gaussian distributed,
N , with covariance matrix Σ.

N (Σ, X1a) (x2) = (2π)−
n
2 |Σ|−

1
2 e−

1
2 (X1a−x2)

T Σ−1(X1a−x2)

The �tting process is iterated in order to remove the in�uence of edge points
that are not likely to be part of the motion background. On each iteration we
remove the worst �tting edge points and reestimate a, which is computationally
reasonable since we only need to perform block matching once. We determine
how well each edge point matches the model by calculating the Mahalanobis
distance, di, between the best match translation vector, ti, for edge point i and
the translation predicted by the model, Avi, relative to the edge point's error
model de�ned by the covariance matrix Ci.

di =

((
Avi −

[
ui + tui

vi + tvi

])T

C−1
i

(
Avi −

[
ui + tui

vi + tvi

])) 1
2
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The units of Mahalanobis distance, di, are image pixels, so working with
these distances is intuitive. The Mahalanobis distances also ranks the edge
points, which allows us to throw out the points that �t the model poorly.

The motion processing gives us a weighted edge map, where edge points with
larger weights are deemed less likely to be moving with the background. We
select the edge point with the largest weight as the most likely location for the
tool tip. This weight re�ects both the estimated speed of the edge point and
the certainty of the estimate, so the tendency of the tool tip to be a corner may
also help with detection since the estimated motion by block matching will tend
to be more certain with corners.

3.2 Using the Kinematic Model to Interpret the Detected

Points

T c1

x1

x t

T c2

{H }

x2

r1 r2

xm

Figure 3: 3D estimation of the tool tip, xt given two observations. Within the
hand's coordinate system, {H}, the hand remains stationary and the camera
moves around the hand. The kinematic model is known such that T−1

c xt is the
tool tip in the camera frame for robot con�guration c. At each observation, the
rays r1 and r2, de�ned in frame {H}, pass through the tip detection pixel and
the optical center of the camera. The points xα1 and xα2 on these rays de�nes
the minimal distance between them. The estimate of intersection between these
rays, xm, is the midpoint between xα1 and xα2 .

In the previous subsection we presented a method for detecting motion fea-
ture points that are likely to correspond with the tip of the tool in the robot's
hand. After detecting these 2D motion feature points from a series of frames
with distinct views, we use the robot's kinematic model to combine these 2D
feature points into a single 3D estimate of the tool tip's position in the hand's
coordinate system. This is illustrated in Figure 3.
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Figure 4: Estimation results for the pliers. The sphere is at the point of the
largest cluster and corresponds to the estimated tool tip position in the robot's
hand frame of reference. Each ray indicates a data sample and emanates from
the camera focal point through the tip estimation pixel. [Left] Clustering results
on the training data using motion based tip estimation. [Right] Clustering
results on the test data using hand labeled tip estimation. While noise in the
motion estimation process is apparent, the approach �nds a tool pose close to
the hand labeled solution.

Each feature detection speci�es a pixel on an image. Given the kinematic
model, a pin-hole camera model for the calibrated camera, and the robot's
con�guration when the image was captured, each of these pixels can be converted
into a ray with a known relationship to the robot's hand in world coordinates.
Each ray starts at the corresponding pixel on the image plane of the pin-hole
camera model and points into the world through the optical center of the pin-
hole camera2. We can then use the kinematic model to transform this ray
into the coordinate system of the robot's hand. Within the hand's coordinate
system, the hand remains stationary and the camera moves around the hand
acquiring distinct views. Since the tool is rigidly grasped by the hand, the tool
and its tip remain stationary with respect to the hand's coordinate system.

As with traditional multi-view estimation, pixels that correspond with the
same 3D point will have associated rays that intersect one another at that 3D
point. If the detection of the tool's endpoint, the camera model, and the kine-
matic model were all perfect, only two views of the endpoint (that produce
non-parallel rays) would be needed in order to know its 3D location. The de-
tection method, the camera model, and the kinematic model are all imperfect,
so we estimate the relevant 3D location from many samples.

A variety of approaches would be appropriate for this estimation, since only

2Technically, the ray should start after the outer lens of the camera, since the detected
point could not be closer than that.
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three parameters need to be estimated and we have plenty of data from a mod-
erately noisy source. In this work we perform K-means clustering on a set of
3D points in the hand's coordinate system, where each 3D point corresponds to
two rays that intersect or nearly intersect with one another, see Figure 4. This
method is computationally e�cient, easy to visualize, and produces satisfactory
results.

For each image we have an associated kinematic con�guration, c, and a
transform, Tc, that transforms a point in the camera's coordinate system to a
point in the hand's coordinate system. Using a pin-hole camera model with
optical center (up, vp) and focal length, f , we can transform a pixel location
of a detection, (u, v), with an arbitrary depth, z, into the camera's coordinate
system. We combine these two transformations to �nd a point in the hand's
coordinate system on the ray, ru,v, associated with pixel (u, v).

ru,v(z) = Tc


(u−up)z

f
(v−vp)z

f

z


Given this function of z, we can de�ne the ray with two points s = ru,v(zstart)

and g = ru,v(z>start), where zstart is the depth of the start of the ray, which
corresponds with the outer surface of the lens of the camera.

Given two rays, r1 and r2, we can �nd the points on the rays that are closest
to one another using the following equation in the standard linear least squares
form Ax = b,

[
g1 − s1 g2 − s2

] [ α1

α2

]
= s2 − s1

where the set of points on the ray are de�ned by xα = (g−s)α+s such that xα ·
(g−s) > 0. If the points associated with α1 and α2 are valid points on the rays,
then xm = xα2+xα1

2 will minimize the squared distance between the two rays.
We then use xm as their most likely point of intersection. We collect all of the
hypothesized intersections, xm, from pairs of rays that come within 2.54 cm of
one another. This computation is O(n2), where n is the number of detections.
We further �lter this set of hypothesized intersections by throwing out points
that are greater than 3 meters from the center of the hand, and points that are
inside the robot's hand or wrist, which we model with two small spheres. After
collecting and �ltering this set of probable intersections, we perform K-means
in order to �nd 3D positions that are close to high density areas of probable
intersections, and hence have a relatively high likelihood of being the tool tip.
We then select the mean that has the most members as the most likely tool tip
location.

There are many sources of error that we ignore in our model including error
sensitivity as a function of distance from the camera due to projection, uncer-
tainty about the hand's rotation which will have a larger impact on long objects,
and the higher likelihood of intersections at points that are close to the camera.
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In appendix B we describe an alternative approach for this estimation using a
generative probabilistic model. Many elements of the estimation we use can be
interpreted probabilistically within this model. For example, xm is the maxi-
mum likelihood location for the intersection of two rays, and we �lter points for
which p(xt) has zero probability.
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Finger Pliers Pen

Hammer Paint brush Scissors

Bottle Electrical plug Screwdriver

Hot-glue gun

Figure 5: An example of the tip prediction for each tool. The cross is centered
at the prediction point and measures 40 pixels across for scale. The radius of
the white circle indicates the tool's mean pixel error. The white dot indicates
the hand labeled tool tip. The error tends to scale with the size of the tool tip
as expected.
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4 Experimental Results

Validation of the described approach was conducted on a 29 DOF humanoid
robot at the MIT CSAIL Humanoid Robotics Group [9]. The robot, named
Domo, has 4 DOF in each arm, 2 DOF in each wrist, 4 DOF in each hand, and
9 DOF in the active vision head. Domo is equipped with compliant and force
sensing actuators throughout most of the body. It has two Point Grey Firewire
cameras with di�ering focal lengths (2.8mm and 3.6mm ) to allow both a wide
�eld-of-view and higher resolution for inspection.

4.1 Setup

Figure 6: The mean prediction error, in pixels, for each tool. The 3D tool pose
in the hand is estimated using two data sets: detector tool tips and the hand
labelled tool tips. The 3D pose for both estimates is then projected onto the
image plane at each sample in the test set and compared to the hand labelled
location. The left (blue) bar indicates the detector error and the right (red) bar
indicates a baseline error. The baseline errors are an indication of inaccuracies
in the kinematic and camera calibrations.

Experiments were conducted on a variety of tools with di�ering lengths and
endpoints. The set of tools are listed in Figure 6.

For each experiment, the 11 DOF kinematic chain from the camera up to
the robot wrist was servoed to maintain a �xed pose that ensured tool visibility.
The wide FOV lens, which can image a larger range of tool sizes, was used.
The tool was placed in the robot hand at an arbitrary orientation and the tool
pose measured manually for reference. The 2 DOF (pitch,roll) of the wrist were
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ramped smoothly to random positions in the range of ±60 degrees for a short
duration.

Samples of the robot joint angles and the camera image were collected at
30hz. Approximately 500 samples (15 seconds of motion) were captured for each
tool. The most signi�cant motion point was then computed for each image. The
data was randomly distributed into a training set of 400 samples and a test set
of 100 samples. Finally, the tool endpoint was hand labeled for each frame of
the test set.

4.2 Visual Endpoint Detection

Figure 7: [Left] Error histogram, in pixels, for visual detection of the tool-tip
across all tools. [Right] Detailed view of left graph. For each tool, the robot
randomly rotated its wrist for 15 seconds. The detector point was located in
each image. A random set of 100 samples was selected and the actual pixel
location was hand labeled for comparison.

Visual detection of the tool endpoint was computed with the motion model
from Section 3.1 . The model incorporates both the magnitude of pixel motion
and its uncertainty. This helped to reduce erroneous detection points. In our
experiments, the localization was computed o�ine for each pair of sequential
images, though real-time rates are achievable. As shown in Figure 1, a naturally
lit, cluttered background was used to ensure a non-trivial unstructured environ-
ment for perception. The motion based detection method is noisy, but as shown
in Figure 7, the detections tended to match the hand labeled tool tip locations.
In the experiments we present, the camera and environment were nearly sta-
tionary and the a�ne model of background motion usually was estimated as
identity. However, the model can be used in situations with a non-stationary
camera and other causes of global a�ne motion.
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4.3 Tool Pose Estimation

The pose estimation accuracy was evaluated by �rst estimating the 3D tool pose
in the hand on the training data set as described in Section 3.2, with k = 8. Fig-
ure 4 visualizes the estimation cluster for the pliers. The 3D pose was projected
onto the image plane for each sample in the test set. The predicted appearance
of the tool tip was then compared to the hand labelled location to compute
the mean pixel error. A baseline comparison can be made by performing the
estimation process on the hand labeled data set. The resulting error indicates
inaccuracies in the kinematic calibration and camera model. The algorithm
performs favorably with respect to this baseline error. Figure 6 illustrates the
mean prediction error, in pixels, across the set of tools. Figure 5 illustrates the
typical tip predictions for each tool.

4.4 Discussion of Results

As Figure 5 illustrates, the prediction performed well considering the percep-
tually di�cult environment that the experiments use. The wide FOV camera
from which the images were captured allows a larger variety of tool sizes to be
explored, but the resolution of the tip was often low, on the order of 10 pix-
els. Errors can originate from the kinematic and camera model, as the baseline
errors in Figure 6 demonstrate. On the Domo robot, the transform Tc was com-
puted from a hand tuned model. The electro-mechanical details of the Domo
robot make precise calibration di�cult. An autonomous method for the hand-
eye calibration problem[12, 3] could potentially reduce this error component.
We analyzed the estimated 3D pose of each tool by its prediction in the image.
The accuracy of these predictions indicate that the 3D estimate could be incor-
porated into a Cartesian space controller such that the tool becomes a natural
extension of the robot's body. We trained each estimator on a data set of 400
samples which may be conservatively high given the e�ectiveness of the motion
based detector and the ideal requirement of only two distinct views. An online,
iterative extension of the estimation process could be implemented with little
modi�cation in order to provide real-time pose estimation. It is important that
the wrist sample a large space of poses. In the extreme case of hand rotation
occurring only in the image plane, the depth of the tool pose would be indeter-
minate. It is also important that the rotational velocity be limited to reduce
the possibility of signi�cant motion blur at the tool tip.

5 Discussion

We have presented a straight forward approach to detecting the end point of
a tool in a robot hand and estimating it's 3D position. The strength of the
approach is that it assumes little prior knowledge about the tool or its pose in
the hand and avoids complex perceptual processing. Rather than segmenting
the tool, estimating the 3D shape of the tool, or otherwise representing the
details of the tool prior to detecting the tip, this method jumps directly to
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detecting the tip of the tool. The success of the method relies on two main
observations. First, the natural utility of a large variety of tools is focused at
the tool's endpoint, so detecting this endpoint may be su�cient for control or
at least a good �rst step when learning about a tool. Second, for many of these
tools the endpoint can be detected by its rapid motion in the image when the
robot moves its hand while holding the tool.

This method requires that the robot already have the tool �rmly in its grasp.
One might question whether or not this would be useful in practice, as grasping
may have already required perception of the object. However, this does not
obviate the usefulness of the method. First, for many applications the tool may
be placed within the hand of the robot by other means, such as by an instructor
who is teaching the robot about the tool. Second, even if the robot has in some
way perceived the tool in order to grasp it, the details of the tool's pose in the
hand after grasping may be uncertain. Third, many plausible grasping methods
may be successful without identifying the endpoint of tool, such as grasping by
a highly compliant hand.

Similarly, one might be concerned about the extent to which the speci�c
grasp on the tool is important for our end-point detection method. We do not
have data to directly address this concern, but we believe that our method
will work with most natural and secure grasps on human tools. For example,
approximately stick shaped tools will support many natural and secure grasps,
but many of these grasps will result in the tool tip being the farthest point from
the hand's center of rotation. In the event that the end point is itself grasped,
then the tip of the handle may be detected. If this happens, the system might
recognize that the detected tip does not meet some desired properties, and then
try another grasp.

Other modalities could be bene�cially integrated with this method, such
as stereo vision, additional visual features, and tracking points over multiple
frames. Motion does, however, have some especially bene�cial properties for this
type of detection that make its use well-justi�ed. First, motion allows us to �nd
elements of the world that are likely to be controlled by moving the robot's hand.
Stereo analysis of a static scene could be used to select elements of the scene that
are close to the hand, but without motion it would not be able to detect which
points are under the hand's control. Others have used this technique to detect
the robot's body and objects with which it makes contact[20, 19]. Second, by
moving the hand and tool we are able to observe them from several distinct
views. We might instead attempt to directly �nd the point that is farthest
from the hand's center of rotation using a monocular camera or stereo rig, but
they would be sensitive to the particular pose of the hand, which might occlude
the tool tip or make estimation noisy. Performing the estimation over multiple
views by moving the hand increases overall robustness. Finally, although not
used in this paper, the motion of the hand could be used to visually estimate
the center of the hand's rotation and better select points controlled by the hand.
Motion could allow us to limit our reliance on the kinematic model by visually
estimating the hand's center of rotation, if not the 3D rotation of the hand.
Likewise, with motion we could use our understanding of the hand's rotation to
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�lter out elements of the scene that are moving in ways that do not correspond
with the hand's rotation.

The tool tip detection is robust to static elements of the environment that
are cluttered and unstructured, as long as there is some contrast between the
tool and the background in the image. Additionally, motion in the environment
that is far from the camera will be discounted by the projection of the tool's
motion, since the tool is held close to the camera. Although our tests used a
stationary camera, the motion processing algorithm does compensate for global
a�ne motion in the image, which reduces the e�ect of camera motion.

For the results we present, the robot's hand is roughly human in size and
shape, which is well-matched to human tools. This detection method might not
perform as well with robot end-e�ectors that di�er signi�cantly from a human
hand, since, for example, their shape might be large with respect to the tool.

The technique a�ords many avenues for further exploration. A reliable pre-
diction of the tool tip in the visual scene could allow us to construct a model
of the tool's visual features. This, in turn, could be used to more precisely
detect and control the tool. A large literature exists for visually servoing of a
robot hand to an object [16], and these approaches can be naturally extended
to include control of the tool. In addition, the estimate of the tool's 3D pose in
the hand can also be applied to a traditional Cartesian space control scheme.

Localization of the tool endpoint during manipulation can also be applied
to learning about the functional relationship betwen the endpoint and objects.
The approach described in this paper can allow the robot to actively test and
observe the endpoint during interactions with the world. It is a �rst step towards
robots that can autonomously learn about and use novel, unmodeled tools in
natural environments.
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A Weighted Linear Least Squares Simpli�cation

For convenience, in this appendix we provide the results of the simplifying the
weighted linear least squares formulation we use for motion processing. As ex-
plained within the main article, we wish to solve a = (XT

1 Σ−1X1)−1XT
1 Σ−1x2,

which minimizes (X1a − x2)T Σ−1(X1a − x2). The computation of XT
1 Σ−1X1

only requires that we sum n 6x6 symmetric matrices, where n is the number of
edge points i used in the estimation. The 21 distinct terms have the simple and
redundant form shown below, where each . represents the corresponding lower

diagonal value and C−1
i =

[
c1i c2i

c3i c4i

]
with c2i = c3i due to symmetry.

XT
1 Σ−1X1 =

∑
i


u2

i c1i . . . . .
viuic1i v2

i c1i . . . .
uic1i vic1i c1i . . .
u2

i c3i uivic3i uic3i u2
i c4i . .

viuic3i v2
i c3i vic3i viuic4i v2

i c4i .
uic3i vic3i c3i uic4i vic4i c4i


The structure of the matrix is more clear when written in block form with

pT
i =

[
ui vi 1

]
XT

1 UX1 =
∑

i

[
c1ipip

T
i c3ipip

T
i

c3ipip
T
i c4ipip

T
i

]
The resulting symmetric 6x6 matrix, XT

1 Σ−1X1, will be positive de�nite
except for extreme circumstances that can be detected by the matrix inversion
code, such as when not enough edges are provided due to darkness. We compute
(XT

1 Σ−1X1)−1 using fast 6x6 matrix inversion code specialized for symmetric
and positive de�nite matrices.

XT
1 Σ−1x2, is also computationally simple with

XT
1 Σ−1x2 =

∑
i


(ui + txi)uic1i + (vi + tyi)uic3i

(ui + txi)vic1i + (vi + tyi)vic3i

(ui + txi)c1i + (vi + tyi)c3i

(ui + txi)uic3i + (vi + tyi)uic4i

(ui + txi)vic3i + (vi + tyi)vic4i

(ui + txi)c3i + (vi + tyi)c4i


which can also be more clearly written in block form with vi

XT
1 Σ−1x2 =

∑
i

[
pic1i pic3i

pic3i pic4i

] [
ui + txi

vi + tyi

]
Now, we only need to multiply these two parts to �nd our solution for a and

the corresponding motion model matrix A.
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B A Generative Probabilistic Model for Estima-

tion of the 3D Tool Tip Location

We can interpret the problem of estimating the 3D tool tip position in terms
of a probability distribution over possible 3D tool tip locations in the hand's
coordinate system, p(xt). Given a single detection, we would assume that the
maximum likelihood solution would be a ray of locations. Likewise, given two
detections with non-parallel, yet intersecting rays, we would expect the maxi-
mum likelihood solution to be at their intersection point.

We can de�ne a simple generative model by using an orthographic camera
and assuming that many of the kinematic errors in the system can be modeled
as a spherical 3D Gaussian centered around the tool tip's location in the hand's
coordinate system. Due to the orthographic camera, the projection of this Gaus-
sian distribution gives a Gaussian distribution on the image plane. The motion
detection error can then be modeled as a 2D circular Gaussian convolved with
this projected Gaussian distribution, which results in a 2D circular Gaussian
on the image. So, if we ignore the e�ects of projection, a 2D circular Gaussian
distribution on the image centered around the location of the tool tip in the
image is a reasonable model for many sources of error.

With this justi�cation we model the conditional probability of a detection at
a location, d, in the image using a 2D circular Gaussian centered on the projected
location of the tool tip. We also mix this Gaussian with a distribution, b, that
models false detections across the image that are independent of the location of
the tool tip. In summary,

p(d|xt, c) = (1− u)N(Pcxt, σ
2I)(d) + ub(d)

where N is a 2D normal distribution, with a diagonal covariance matrix σ2I,
and a mean of Pcxt. Pcxt is the 3D tool tip location in the hand's coordinate
system, xt, projected onto the image given the robot's con�guration c. We
model a series of detections d1 . . . dn with corresponding con�gurations of the
robot, c1 . . . cn, as being independently drawn from this distribution, so that

p(d1 . . . dn|xt, c1 . . . cn) =
∏

i

p(di|xt, ci)

Using bayes rule we have

p(xt|d1 . . . dn, c1 . . . cn) =
p(d1 . . . dn|xt, c1 . . . cn)p(xt, c1 . . . cn)

p(d1 . . . dn, c1 . . . cn)

We are only looking for relative maxima, so we can maximize

p(d1 . . . dn|xt, c1 . . . cn)p(xt, c1 . . . cn)

We assume that p(xt, c1 . . . cn) = p(xt)p(c1 . . . cn) so that the tool tip po-
sition in the hand's coordinate system is independent of the con�gurations of
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the system at which the images were captured. Since c1 . . . cnare known and
constant for the data set, we can drop their distribution from the maximization
to end up with

x̂t = Argmaxxt
(p(d1 . . . dn|xt, c1 . . . cn)p(xt))

= Argmaxxt
(log (p(xt)) +

∑
i log (p(di|xt, ci)))

A variety of methods could be used to �nd x̂t given this expression, including
gradient ascent and brute force sampling. Brute force sampling, and many forms
of gradient ascent, would require a comparison of each candidate position with
the set of detections. The search only needs to proceed over three dimensions,
so brute force evaluation is tractable, but it still leads to a O(v3n) computation
where v is the number of discretizations per dimension and n is the number of
detections.
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