
These controllers include smooth pursuit visual tracking, inverse kinematic reaching, and

operation space control of the arm [77]. This layer also provides TCP/IP interprocess

communication among the Linux cluster’s 1Gb LAN. We use the Yarp software package

developed by Metta and Fitzpatrick [91]. We implemented a custom python-Yarp interface,

allowing us to dynamically define and transmit data structures between processes at rates

up to 100hz. Additionally, two FireWire framegrabbers provide synchronized image pairs to

the cluster. Finally, all image and sensory data are timestamped using the hardware clock

from the CANbus PCI card. This ensures synchronization of the data up to the transmit

time of the 1Gb LAN.

4.7.4 Behavior Layer

The behavior layer implements the robot’s visual processing, learning, and task behaviors.

These algorithms are run within our behavior-based architecture named Slate.

4.8 Slate: A Behavior Based Architecture

We have developed a behavior based architecture named Slate. What is meant by a robot

architecture? According to Mataric [90],

An architecture provides a principled way of organizing a control system.

However, in addition to providing structure, it imposes constraints on the way

the control problem can be solved.

Following Mataric, Arkin [4] notes the common aspects of behavior-based architectures:

• emphasis on the importance of coupling sensing and action tightly

• avoidance of representational symbolic knowledge

• decomposition into contextually meaningful units

Roboticists have developed many flavors of behavior based architectures. We refer to Arkin

for a review [4]. Loosely stated, Slate is a lightweight architecture for organizing perception

and control. It is implemented as a programming abstraction in Python that allows one to

easily define many small computational threads. These threads can run at parameterized
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Figure 4-15: The control structure of the Slate architecture. Each Slate process runs on

a node within the Linux cluster. The process starts its own non-premptive scheduler and

a communication interface to external processes. At startup, the robot’s proprioceptive

stream is automatically imported into the process global namespace (yellow). Within a

process, a module defines a namespace and a set of lightweight threads (and finite-state-

automaton). These threads are scheduled at rates up to 100hz. Threads can communicate

through the global namespace or through wires. Wires provide arbitration between con-

flicting writes after every scheduler cycle.

rates within Slate’s non-premptive scheduler. Imporantly, Slate makes it easy to specify

time-contingent behavior and to distribute computation across multiple machines. Slate

falls short of being a full behavior-based programming language such as Brooks’s well known

L-MARS[20] language but its design draws from this work. Slate also benefits from the use

of the lightweight interpreted language, Python. Python allows for rapid development cycles

and provides large toolbox of scientific, machine-learning, and vision libraries such as the

open-source package pysense [73]. Computationally expensive algorithms in Slate can be

optimized using Python extensions in C.

4.8.1 Slate Structure

The basic control structure of Slate is shown in Figure 4-15. It is built out of the following

components:
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Process At the highest level, Slate consists of many Python processes distributed across

our Linux cluster. Processes pass messages back and forth at rates up to 100hz

using TCP/IP via Yarp. Messages can be data structures of arbitrary types and can

be defined on the fly. Each Slate process can dynamically subscribe to other Slate

processes, image streams, motor command streams, or proprioceptive streams. By

default all Slate processes subscribe to the robot’s proprioceptive stream. A process

has a global namespace where data is shared.

Scheduler A Slate process executes within the Linux kernel as a standard user process and

it implements a non-preemptive scheduler that runs as a user thread. The scheduler

is at the center of Slate. It’s task is to schedule, and execute, short pieces of code

encapsulated within the method of a Python class. Each short piece of code is asso-

ciated with a Slate object. The scheduler maintains a list of registered Slate objects.

Each Slate object has a defined update period specified in milliseconds but limited to

the resolution of the scheduler’s time quanta of 10 ms. Every quanta, the scheduler

iterates through the list of objects, determines which are scheduled for update, and

executes their update method. Slate objects can be threads, FSAs, and monostables.

A typical process will maintain 20− 200 objects within the scheduler. If all scheduled

objects cannot be updated within the time-window of the quanta, the actual update

rate will lag the desired rate.

Module A module is an instance of a Python class. Its function is to encapsulate a

group of related Slate objects within a shared namespace. As modules are readily

parameterized, it is trivial to define multiple module instances acting on different

robot limbs or perceptual streams, for example.

Thread A thread implements a small amount of computation such as processing an image

frame or updating a sensor model. It is implemented as a class method of a module.

A thread cannot yield and therefore the method must run within a fraction of the

scheduler time quanta. The scheduler will periodically call the class method at a

defined update rate. Multiple threads within a module can communicate through

shared variables in the module namespace.

Port A port allows Yarp based TCP/IP interprocess communication between Slate mod-
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ules. Connections between modules are formed through a static naming scheme. A

thread can read and/or write any type of data to a port, but we assume by convention

that the data read from a port is of an expected format. Ports can also connect into

the robot’s raw sensor, camera, and DSP controller streams.

FSA An FSA implements a time-contingent finite state automaton. Each state of the FSA

is implemented as a class method of a module. The active state is periodically called

by the scheduler at a defined update rate. At the end of each call, the class method

optionally returns the next FSA state. Each state also has an associated timeout.

If the FSA remains in a given state longer than the timeout, the active state will

automatically advance to a defined next state. Optionally, an FSA will automatically

reset to an idle state if it looses control of a robot resource, such as motor control of

a joint.

Monostable A monostable is a simple, timing element with a defined time value, in mil-

liseconds. A thread can trigger a monostable and it is reset to the time value. On

every cycle the scheduler decrements the value by the time quanta until the value is

zero. Monostables are globally accessible to all process modules.

Wire A wire is a Slate object that supports read/write operations. It is declared in the

Slate global namespace and allows communication between threads and FSAs. Data

written to a wire is not available for read until the next scheduler cycle, ensuring that

two threads don’t have inconsistent views of the same data.

Aribtrator An arbitrator resolves write conflicts on a wire. Conflicts are resolved through

a mix of dynamic and fixed priorities. A fixed priority for each module is hardcoded

into its definition. During each scheduler cycle, any thread can increment a module’s

priority by some amount. At the end of the cycle, the arbitrator grants control of

the wire to the module with the highest dynamic priority. All data written to a wire

by its controlling module will available to a reading thread during the next scheduler

cycle. At the start of each cycle, the module’s priority reverts to its fixed value, so

the thread must constantly send prioritiy adjustments if it intends for a module to

maintain control. Also, a hysterisis setting in the arbitrator prevents rapid behavior

switching.
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Tools Good development tools and libraries can make all the difference in the world when

developing robots. Slate makes use of numerous optimized Python-C extensions for

linear algebra, machine learning, and computer vision. In addition, we can easily write

our own extensions using the Swig package. We have also developed useful debugging

tools. A Slate thread can dynamically generate a remote GUI and stream data to and

from it. This is an incredibly useful feature. Additionally, Slate can be imported into

the Python runtime environment, allowing for online coding and testing of behaviors.

4.8.2 Example Program

The following Python pseudo-code demonstrates how Slate modules are written. It imple-

ments controller for Braitenberg vehicles 2a and 2b using the SeekLight and AvoidLight

modules [14]. The modules are prioritized so the robot will drive towards a light source

by default. However, if it senses too much light, then AvoidLight assumes control of the

motor wire and the robot turns away from the light. The wire arbitrator ensures that

AvoidLight is active for at least 1000ms. The behavior threads run every 100ms. However,

the inhibit thread runs every 500ms because it could potentially perform heavier perceptual

computation.

#-----------------------------------------------------

class SeekLight: #Vehicle 2b

def motor_thread( ):

light=slate.robot.sensors

slate.wire_write(’Wire:Motors’,[light[1],light[0]])

#-----------------------------------------------------

class AvoidLight #Vehicle 2a

def motor_thread( ):

light=slate.robot.sensors

slate.wire_write(’Wire:Motors’,[light[0],light[1]])

#-----------------------------------------------------

class MotorWriter

def output_thread( ): #Output to controller

desired=slate.wire_read(’Wire:Motors’)
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slate.robot.motors=desired

def inhibit_thread( ): #Avoid too much light

if (light[0]+light[1])>100:

slate.priority_adjust(’MotorArb’,’AvoidLight’,3.0)

#-----------------------------------------------------

# Slate declarations

priority={SeekLight:2.0, AvoidLight:1.0}

a=slate.arbitrator(’MotorArb’, priority, hysterisis=1000)

slate.wire(’Wire:Motors’,arbitrator=a)

seek=slate.module(SeekLight( ))

avoid=slate.module(AvoidLight( ))

writer=slate.module(MotorWriter( ))

slate.thread(seek.motor_thread, ms=100)

slate.thread(avoid.motor_thread, ms=100)

slate.thread(writer.output_thread, ms=100)

slate.thread(writer.inhibit_thread, ms=500)

#-----------------------------------------------------

4.8.3 Describing Behaviors

Within the robotics literature, the word behavior has many meanings. Often, it describes

a simple transformation from sensor information to motor action [4]. We avoid the difficult

semantics of the word behavior and instead use the word module. The interaction of many

modules with each other and the environment creates the observable behavior of Domo.

A module is a well define component of Slate. It can be a perceptual algorithm, a motor

controller, or both.

A module is always named as two or three descriptive words in italics, such as RelaxArm

or PersonSeek. When appropriate, a suffix is added to signify a particular limb. For

example, the RelaxArmR module relaxes the right arm. We find it instructive to describe

the workings of a module in terms of an FSA. Within a FSA state, a module may compute

an algorithm, execute a controller, or activate other modules. State transitions occur when

perceptual inputs achieve a desired state or when the desired activation of other modules

occurs. Following the work of Connell [33], we also emphasize that modules will often
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PersonTouch

PersonReach

RetractArm

PersonDetect

ContactDetect

PersonSeek

Figure 4-16: An FSA depiction of a Slate module. A module is described by its activation

of other modules over time. While a module may employ many modules, we depict only

the significant, illustrative modules as states of the FSA. Module names are italicized. A

state transition (arrow) occurs contingent (bar) on perceptual feedback or the activation

of another module. Often, modules will communicate through the world (diamond) rather

than over an internal data wire. This occurs when a module takes actions that increase the

likelihood of another module detecting a perceptual feature. Exceptions within a module can

cause reset transitions to a previous state (dashed line). In this example, the PersonTouch

module causes the robot to reach out and greet a person through touch. First, PersonSeek

is activated, causing the robot to look around and increasing the likelihood of PersonDetect.

When PersonDetect signals that a person is present, PersonReach brings the hand near the

person. This action increases the likehood that ContactDetect will sense a person touching

the arm. If ContactDetect is not signalled, the module reverts to search for a new person.

Otherwise, RetractArm brings the arm down to the robot’s side.
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communicate through the world instead of through an internal data wire. This occurs when

a module takes actions that increase the likelihood of another module detecting a perceptual

feature. An example of a FSA representation is shown in Figure 4-16.

4.9 Discussion

Say something about calibration.

Architectures

Main process: 115 threads, 38 wires, 10 wire arbitrators, 32 FSAs, #yarp connections,

processes total

Refer to appendix.Domo’s controller is decomposed into many modular behaviors. The

integration of these behaviors into a behavior-based control system allows Domo to ex-

hibit responsive, coherent creature-like qualities. Domo’s behavior based system currently

includes:
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Chapter 5

Visual Attention System

A visual attention system allows a robot to select for interesting, salient items from a

complex world filled with numerous competeing distractions. It reduces the perceptual

complexity of the environment to a small number of salient regions that can be analyzed in

more detail with computationally more intensive perceptual processes. It can also provide

the robot with a short-term perceptual memory through the spatial registration of visual

features to a body pose-invariant ego-map.

Models of human visual attention, such as Wolfe’s Guided Search 2.0 [147], have gener-

ated design strategies for many humanoid vision systems. For example, a system developed

by Breazeal [17] combines many simple image features into a single saliency map. Each

feature’s saliency is weighted according to the current motivation and drives of the robot.

The region with the highest saliency is used to direct the gaze of the robot. In the spirit of

Itti, Koch, and Niebur [67], we have implemented a visual attention system as a means to

consolidate many disperate perceptual streams into a single spotlight of attention. These

streams provide a continous source of simple, visual features that are relevant for coop-

erative manipulation tasks. Their perceptual algorithms run on different computers at

different rates. Accordingly, we use a Sensory Egosphere (SES) as a consolidation point for

perceptual synchronization and spatial localization.

The principal components of the visual attention system are described in Figure 5-1.

In this chapter we present the visual motion model, the InterestRegions module, and the

Sensory Egosphere.
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Figure 5-1: Overview of the visual attention system. The visual motion model (dashed box)

selects for fast moving edges in the foreground. It can be informed by the kinematic model

to discount ego-motion and to select for the robot’s hand. The InterestRegions module

detects convex shaped edges, both moving and stationary, at multiple scales. This is the

principal feature that we use for detection of task relevant features for manipulation. A

block-matching tracker is used to track these features during a task. The PersonDetect

module combines a face detector, skin color model, and interest points to detect and track

human features. This will be described in Chapter 7. Finally, the sensory ego-sphere

consolidates the visual features into a single attention point, xses, to direct the robot’s eye

gaze.
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5.1 Visual Motion

Visual motion can be a robust and powerful attention cue for robot perception. For ex-

ample, Fitzpatrick used motion generated by robot contact to segment an object from the

background [44]. In human environments, visual motion often corresponds to objects under

a person’s or robot’s control. However, there can be multiple sources of visual motion,

such as the ego-motion of the head, a person within the environment, or motion of the

manipulator. Segregation of multiple motion sources can be difficult. On Domo, we use an

affine motion model to detect image points that are moving significantly with respect to the

background. This model, developed by Kemp [72], is briefly reviewed in the next section.

We then show how kinematic predictions of head motion and manipulator motion can be

used to segregate multiple motion cues.

5.1.1 Visual Motion Model

The global image motion is estimated using a 2D affine model [125]. Image edges are then

weighted based on their difference from the model’s prediction. Consequently, an edge’s

weight reflects both the estimated speed of an edge point and its difference from the global

background motion.

The global image motion, A, is represented as a 2x3 affine matrix that transforms a

pixel location [u1, v1]
T in image I1 into pixel location [u2, v2]

T in image I2,


 u2

v2


 =


 a1 a2 a3

a4 a5 a6







u1

v2

1


 . (5.1)

This model can account for global changes in translation, scale, rotation, and shearing. The

algorithm for estimating A is described in detail by Kemp[72]. It can be summarized as

follows:

1. Find the edges in consequtive images I1 and I2 using a Canny edge detector [28].

2. Using the standard technique of block matching, estimate the translation ti of each

edge pixel between images.

3. For each translation ti, also compute the covariance matrix Ci of the block matching

error .
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4. Use weighted linear least squares to fit the model A to the translations ti when

weighted by Ci.

5. Iterate the fitting process in order to remove edge points that unlikely to be part of

the motion background.

6. Using the Mahalanobis distance, go back and weight each edge by how well it fits the

motion model.

The algorithm generates a weighted edge map. The weight of each edge is proportional

to its velocity and its difference from the global motion. Consequently, the visual motion

model selects for fast moving edges in the foreground. By computing on only the edges, the

model can be estimated in real-time and also reduces the use of uninformative points. The

algorithm executes at approximately 20hz using a 1Ghz Pentium and 160x120 images.

The weighted linear least squares solution can be considered the maximum likelihood

estimation of the model A where the error is Gaussian distributed according to the covari-

ances Ci. Also, the Mahalanobis distance is in units of image pixels, so working with these

distances is intuitive. Domo’s visual attention system selects the top n edge points with the

largest weights as the most salient locations in the image. If this weight is below a conser-

vative threshold, the detection is ignored. Sample output from the algorithm is shown in

Figure 5-4. Because the algorithm selects for edges moving with respect to the background,

small amounts of camera motion can be ignored. This is important when working with an

active vision head such as Domo’s.

5.1.2 Visual Motion Prediction

Predictions can tell perceptual processes at least two things: where to look for an event

and how that particular event will appear. They enable limited computational resources

to perform effectively in real time by focusing the robot’s attention on an expected event

[40]. A robot will often know the translational and rotational velocity of its cameras and

manipulators through a kinematic model. This can be used to extend our visual motion

model in order to predict the perceived visual motion as the robot moves its hand or head.
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Figure 5-2: Output from the visual motion model with head motion prediction (bottom)

and without (top) while the camera tracks a moving person. The edge map (left) shows

that the moving person is weighted more strongly when the prediction is included. The

green circle shows the interest region selected by InterestRegions (to be described). The

increased weights afforded by the prediction allow for the person’s head to be selected. The

optic flow estimated by the affine model is shown by the green lines (magnified 2x).
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Head Motion Prediction

We would like to find an affine matrix Aego that describes the global optic-flow due to ego-

motion of the robot’s head. Aego predicts the ego-motion of a pixel between image I1and

image I2 as


 u2

v2


 = Aego




u1

v1

1


 .

The prediction can be used to inform the block-matching process in the visual motion model.

The block matching estimated translation of each edge pixel by searching over an 11x11

pixel window centered at [u1, v1]
T in I2. Pixel translations greater than 5 pixels cannot

be matched because they fall outside of the search window. This limits the effectiveness

of the model during fast camera motion. However, using Aego, we can center the search

window at the predicted location [u2, v2]
T in I2. As shown in Figure 5-2, this allows the

visual motion model to be robust during the rapid head motions that are common for an

expressive, social robot head.

To estimate Aego, we first need to compute c2Tc1, the transform describing the motion

of the camera between image frames I1 and I2. This is simply

c2Tc1 = c2Tw wTc1,

where c1Tw is the world-camera transform when I1 was captures. If head motion is not

present, then c2Tc1 = I.

A stationary point in the world, x, viewed from { C} over time has coordinates




xc1

yc1

zc1


 = c1Tw x,

and 


xc2

yc2

zc2


 = c2Tw x.

With a pinhole camera this corresponds to pixels k1 =
[

fxc1

zc1
, fyc1

zc1

]
and k2 =

[
fxc2

zc2
, fyc2

zc2

]
.

We arrive at our model for the image motion of a stationary 3D point, x, viewed through
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a perspective camera undergoing rotation and translation:




zc2

f
k2

zc2

1


 = c2Tc1




zc1

f
k1

zc1

1


 . (5.2)

We can make the approximation zc2 ≈ zc1 (weak perspective camera constraint) if the

difference in depth is small compared to the average depth. For head ego-motion, this a

fair assumption if we assume that the background is mostly stationary and far from the

camera[72]. A characteristic of humanoid ego-motion is that the predominant source of

optic flow is from camera rotation and not translation. Domo is currently stationary, so

translational body motion will not create visual motion. For mobile platforms, the ego-

motion estimate can be limited to periods when the body is stationary but the head is

moving. Consequently,we ignore image motion resulting from camera translation. This

allows for algebraic simplification of Equation 5.2 into our desired form, giving


 u2

v2


 ≈


 r1 r2 r3f

r4 r5 r6f







u1

v1

1


 , (5.3)

where we use the upper-left 2x3 submatrix, R, of c2Tc1.

Hand Motion Prediction

We now consider how to select for visual edges that correspond to the robot’s moving hand.

The visual motion model generates a weighted edge map, where fast moving edges in the

foreground are weighted highly. However, given an affine model, Ahand, of the expected hand

motion in the image, we can adapt the visual motion model to select for the moving hand but

ignore other objects moving in the foreground. As in the previous section, we use Ahand to

inform the block-matching process. In this case however, only pixels that move according to

the Ahand model will likely fall within the 11x11 search window. Consequently, the motion

of other objects in the environment, such as a person, will be naturally discounted.

There is one subtle point with this. The motion model uses the Mahalanobis distance to

weight each edge by how well it fits the affine model. A large Mahalanobis distance indicates

foreground motion. If Ahand is used, then a large Mahalanobis distance indicates that the

edge motion does not match the expected hand motion. This is the opposite relationship
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from what we desired. Consequenly we invert this relationship. If M is the matrix of

Mahalanobis distances for each edge, then we use Mhand = max(0, k − M) instead, for a

constant k.

It is straightforward to estimate Ahand which has the same form as in Equation 5.1.

We select a point of interest, x, in the hand frame { H} such as a fingertip or the tip of a

grasped object. When viewed from camera frame { C} over time, it has coordinates




xc1

yc1

zc1


 = c1Th x,

and 


xc2

yc2

zc2


 = c2Th x.

With a pinhole camera this corresponds to pixels k1 =
[

fxc1

zc1
, fyc1

zc1

]
and k2 =

[
fxc2

zc2
, fyc2

zc2

]
.

We are only interested in selecting edges exhibit the same translation in the image as the

point. XXXHmm, center of rotation, etcXXX. This gives

Ahand =
1

f


 f 0 xc2

zc2
− xc1

zc1

0 f yc2

zc2
− yc1

zc1


 .

5.2 InterestRegions

We saw previously that the visual motion model selects for strong moving edges in the

image. These regions around these edges will often correspond to important visual features.

In order to incorporate visual information distributed near strong motion edges, we use a

multi-scale interest point operator developed by Kemp [72]. This algorithm is embedded in

the InterestRegions module. We review Kemp’s algorithm here.

The interest point operator detects the position and scale of significant shape features

within the image. Several different shape features can be detected, including circles, parallel

lines, and corners. In our work we only utilize the circular shape feature. In this case, an

interest region is defined as a circular image patch at a given radius and location in the

image.
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Figure 5-3: Voting by the interest point operator. This figure depicts the approximate

locations in the image of the two votes at scale s cast by an edge with orientation θ and

position (x, y) (Reproduced, with permission, from Kemp [72]).

Traditional interest point methods, often characterized as blob-detectors, rely on con-

stant contrast within an interest region. However, Kemp’s method is an edge-based ap-

proach, making it compatible with the weighted edge map generated by our visual motion

model. Kemp’s algorithm has similarities to classic image processing techniques such as the

distance transform, medial axis transform, and hough transform for circles [47].

The input to the interest point detector consists of a set of weighted edges, ei, where each

edge i consists of a weight, wi, an image location, xi, and an angle, θi. These are provided

by our visual motion model. Each scale space s corresponds to a circle of a given radius

rs in pixels. For a given scale space s, each edge votes on two locations that correspond

with the centers of the coarse circular regions that the edge borders. As depicted in Figure

5-3, the two votes are approximately at distance rs from the edge’s location and are located

in positions orthogonal to the edge’s length. It is assumed that the angle θi denotes the

direction of the edge’s length and is in the range [−π
2 , π

2 ], so that no distinction is made

between the two sides of the edge.

For each scale s there is a 2D histogram that accumulates votes for interest points.

The discretization of these histograms is determined by the integer bin length, ls. The bin
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Figure 5-4: Output from the visual motion model and interest point operators. The motion

weighted edge map (top, left) and unweighted edge map (bottom, left) are fed to the multi-

scale interest point operator. The green circles indicate the location and size of circular

interest regions. Weighting the edges by the foreground motion localizes the interest regions

on salient features such as a person’s head and the tip of the robot’s finger (top, right).

indices, (bx, by), for the histogram at scale s are computed as

bs(x, θ) = round(
1

ls
(x + rs


cos(θ + π

2 )

sin(θ + π
2 )


)), (5.4)

which adds a vector of length rs to the edge position x and then scales and quantizes the

result to find the appropriate bin in the histogram. Now, the edges are iterated over and

their weighted contributions added to the appropriate bins. This results in the interest

point detection maps, ms. In order to soften the effects of the block discretization, each 2D

histogram, ms, is low-pass filtered with a separable, truncated, FIR Gaussian. Finally, for

each scale-space s, the point within ms with the highest response is selects as the interest

region for that particular scale. This interest region is made available to the visual attention

system.
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Figure 5-5: The sensory ego-sphere.

The algorithm is computationally efficient and suitable for real-time processing. When

combined with the motion model, it can robustly select for significant moving shape features

within the image. It can also be used without the motion model (wi = 1) to detect circular

edges in a static image. Sample output from the algorithm is shown in Figure 5-4.

5.3 The Sensory Ego-Sphere

The sensory ego-sphere (SES) is short-term memory mechanism for a robot. The notion

originated with Albus [3] and was further developed by Peters [62]. The idea is quite

simple and is illustrated in Figure 5-5. Perceptual features which may be sensed in different

modalities, coordinate frames, and at different times can be brought into a single, spherical

coordinate frame centered on the robot. In doing this, the data can be fused according to its

spatio-temporal coincidence. The SES retains the spatial location of the data when the robot

redirects its attention to other locations. For visual features, this involves transforming from

pixel coordinates to ego-spherical coordinates. If a visual feature is stationary in the world

while the head is moving, then the feature will be stationary in the ego-sphere frame though

not in the image frame. Thus, the SES provides a stable frame of reference for perception.
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Figure 5-6: View of the sensory ego-sphere (SES). Left: View of the SES showing the

detection of a face (red) and a fiducial (green). The camera’s field-of-view projected into

the SES is shown in blue. Middle: The detected features in the image. Right: The spatial

distribution of face detection features over time within the SES.

This allows for stable visual servo control of the head when a tracked feature is detected

intermittently or at a low rate.

Domo uses a simplified version of Peters’s SES formulation. The robot torso is assumed

to be stationary with respect to the world. As shown in Figure 4-1, we define the frame

{SES} as a translation of the world frame {W} such that its origin is at the midpoint

between the robot’s eyes when it is looking straight ahead. It shares the same orientation

as frame {W}. A point in the SES has spherical coordinates xses = [θ, φ, r], where r is the

radius, θ is yaw in the transverse plane, and φ is pitch in the sagittal plane. The SES is

defined in the [−π
2 : π

2 ] hemisphere with [0, 0] pointing straight ahead. If the translation

from {W} to {SES} is tses
worg, then we project a point in the world xw into the SES by

xses = fsph(xw − tses
worg), where fsph maps from cartesian to spherical coordinates,

xses = fsph([x, y, z]T ) = [θ, φ, r]T

r =
(
x2 + y2 + z2

) 1

2

θ = arctan
(x

z

)

φ = arcsin
(y

r

)
.

In order to project an image pixel into the SES without pixel depth information, we assume

a fixed pixel depth of 100cm and use a pinhole camera model to find its world coordinates.

This assumes that the visual effects of head translation are small compared to rotation

which is true for points far from the camera. We visualize the SES in Figure 5-6.
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5.3.1 Features in the SES

The SES serves as a consolidation point for several types of features, including:

• A person’s face

• A person’s waving hand

• One of its hands

• The tip of a grasped object

• A randomly selected target

• The most likely location to see a face

• A colored fiducial

The perceptual algorithms for the non-trivial of these features will be described in coming

chapters. Feature detections are added to the SES at rates from 10 − 30hz. We low-pass

filter a feature’s location, allowing the head to smoothly track a feature even if it disappears

momentarily or a false detection occurs. Each feature has a monostable timeout of 1s, after

which it is removed from the SES if a new detection has not been recieved. At any time,

the output from the SES is a target in spherical coordinates, xses, which is used to direct

the robot’s gaze. This target is selected using a Slate aribtrator and modules compete to

direct the robot’s gaze to a particular feature. For example, a WatchHand module can

direct the gaze to the robot’s hand if it has the highest dynamic priority of all writers to

the arbitrator.

5.3.2 Spatial Distributions in the SES

We can accumulated evidence over time of a visual feature’s location in the SES. Some

features will appear in predictable regions. For example, Figure 5-6 visualizes the spatial

distribution of face detections over many hours. As we will see in Chapter 7, such prior

information can allow the visual attention system to ignore unlikely feature detections.

Torralba [133] describes a framework that uses similar information to improve visual search

and modulate the saliency of image regions.

86



We can model the spatial distribution of an image feature as the probability distribution

p(xses|f). This represents the chance of seeing feature f at location xses = [θ, φ, r] in the

SES. The distribution is estimated using a 2D histogram over [θ, φ]. Each dimension of

the histogram maps to a [−π
2 , π

2 ] range of the corresponding dimension of of the SES. The

distribution is updated whenever the feature appears and it is saved to disk when the robot

is not running, allowing the robot to estimate the distribution over a long period of time.

We estimate p(xses|f) for each visual feature, f , using 100x100 bin 2D histograms with

p(xses|f) ≈
1∑

d∈Df
w(d)

∑

d∈Df

w(d)δ(round(
100

π
(d − xses))), (5.5)

where δ(d) =





1 if d = 0

0 otherwise

and Df is the accumulated detections of f in the SES.

We use a weighting function w(d) that reduces the influence of older detections. When

a new detection di is added to the distribution its weight is initialized at w(di) = 1.0. This

value is decremented at a rate of ∆wf per second. Detection di is removed from Df if

w(di) < 0.01. This allows the distribution to adapt to recent changes such as an object

changing location.

87



Chapter 6

Let the Body do the Thinking

In this chapter we describe a group of Slate modules that leverage the robot’s physical

embodiment. StiffnessAdapt allows a module to control the manipulator impedance during

a task. ContactDetect is triggered when contact is made with the world. The GraspAperture

module estimates the diameter of a grasp given the proprioceptive state of the hand. These

simpler modules are then combined into the SurfaceTest and SurfacePlace modules. These

modules are examples of compensatory behaviors where the robot takes actions to reduce its

uncertainty about the world. SurfaceTest allows Domo to reach out and verify the uncertain

location of a hypothesized flat surface. SurfacePlace exploits the robot’s compliance to place

unknown objects upright on a surface.

6.1 StiffnessAdapt

Despite its simplicity, the StiffnessAdapt module is an effective tool for dealing with percep-

tual uncertainty. By lowering the stiffness of the arm, StiffnessAdapt trades off precision for

compliance. Lowered arm stiffness is advantageous when contact with an unknown surface

is anticipated. It allows the hand to maintain contact and adapt its posture to the unknown

surface. Typically, actuator saturation prevents a manipulator from responding with low

impedance to unexpected contact [83]. However, the springs in Domo’s actuators allow

the manipulator to exhibit a low effective impedance above the control bandwidth of the

actuator.

A stiffness for each joint of the arms and hands is specified by the controller parameter

0 ≤ Kps ≤ 1 from Equation 4.4. This DSP controller essentially simulates a virtual torsion
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The effect of manipulator stiffness on controller response. The hand was servoed between

two targets 0.5 meters apart every 3 seconds. (Bottom) The arm stiffness was ramped from

Kps = 1.0 to Kps = 0.0 . (Middle) Blue indicates the distance of the desired hand location

from the first target. Red indicates the hand’s distance from the desired target. (Top) Blue

indicates the magnitude of the hand’s velocity. The red line illustrates the learned decision

boundary for the ContactDetect module (to be described).
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Figure 6-1: Detecting manipulator contact using low impedance and using a dynamic model.

(Top) A bottle is held by the right hand and the right arm has low impedance. When contact

forces generated by the left hand cause the right hand to to move, ContactDetect triggers

a grasp reflex. (Bottom) When the arm has high impedance, torques generated by human

contact violate the prediction of a dynamic model. This triggers the WatchHand module

to direct the eye gaze to the robot’s hand.

spring at the joint with stiffness Kps. Figure 6.1 shows the effect of varying Kps on the

controller response. As stiffness is lowered, the manipulator position control performance

degrades. However, an integral term in the controller, as well as secondary control loops

such as visual servoing, can allow for precise but low-impedance control of the arm. The

StiffnessAdapt simply provides arbitration among competing modules that specify the stiff-

ness of the arm. The request with the highest priority, as described in Section 4.8, is then

transmitted to the DSP controller. Ideally, a module would learn a desired arm stiffness

for a task, or use sensory feedback to adapt the stiffness. In our work, the joint stiffness

requested by a module is determined experimentally.
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6.2 ContactDetect

The ContactDetect module detects when the manipulator makes contact with the world.

As shown in Figure 6-1, two different methods are employed. In the first, low manipulator

impedance is used to transform contact forces in to detectable motion at the hand. In the

second, high manipulator impedance allows contact forces to generate detectable errors in a

dynamic model. ContactDetect determines which detector to use based on the manipulator

impedance commanded by StiffnessAdapt.

6.2.1 Contact Motion

This method of contact detection simply monitors the stiffness of the manipulator and the

velocity of its hand. When the arm has low impedance, we expect that disturbance forces

will cause unexpected hand motion. As shown in Figure 6.1, the expected maximum velocity

of the hand, vmax, is a function of the manipulator stiffness. The stiffness is defined by the

controller gain Kps while the magnitude of the instantaneous hand velocity is
∥∥∥JΘ̇

∥∥∥, where

the Jacobian J converts joint rates to a Cartesian velocity at the hand.

We used support vector regression (SVR) to learn the function Gv(·) such that vmax ≈

Gv(Kps) [30]. First, the hand was servoed between two targets 0.5 meters apart every 3

seconds for two minutes. Simultaneously, the arm stiffness was ramped from Kps = 1.0 to

Kps = 0.0. For each value of Kps, we collected vmax = max(
∥∥∥JΘ̇

∥∥∥). The SVR was trained

on each pairing of Kps and vmax. The top row of Figure 6.1 plots Gv(Kps) .

ContactDetect signals that external contact has been made when
∥∥∥JΘ̇

∥∥∥ − Gv(Kps) is

above a threshold. This method is best suited for low manipulator impedances where the

disturbance velocity of the hand is large given contact. It is susceptible to false-positives

when the impedance is high. Consequently, contact is ignored when Kps > 0.5.

6.2.2 Contact Forces

The joint-space form of manipulator dynamics is

τdyn = M(Θ)Θ̈ + V (Θ, Θ̇) + G(Θ),

where M(Θ)Θ̈ is the torque due to mass accelerations, V (Θ, Θ̇) is the centrifugal and

Coriolis torque, and G(Θ) is the torque due to gravity [35]. Given this model, the error
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Figure 6-2: (Left) The torque prediction error for the shoulder pitch joint during non-

contact reaching. (Right) The same measurement while a person makes contact with the

arm during reaching.

between the predicted joint torques, τdyn, and the sensed torques, τsense, can be used to

detect manipulator contact with the world.

A complete model requires estimating the mass distribution of the arms. In practice,

dynamic models can be difficult to obtain and calibrate. In addition, the joint acceleration

is difficult to measure precisely due to sensor resolution and anti-aliasing errors. However,

the presence of external contact forces can be detected using some common model simplifi-

cations. We assume that V (Θ, Θ̇) = 0 and approximate the inertia tensor of M(Θ) using a

point mass for the robot forearm and bicep. Using the recursive Newton-Euler formulation,

we predict the joint torques as τdyn = M(Θ)Θ̈ + G(Θ) [52].

The model error, defined as τdyn − τsense, is used to signal contact. As shown in

Figure 6-2, the error is large when manipulator contact is made. However, during dynamic

reaching, errors result from our model simplifications. Therefore, we distinguish between

errors induced by contact and those induced by unmodelled dynamics.

This is done by building an error histogram for each joint and each type of error. The

arm executed reaching movements sampled across its workspace. At 10hz the error (Nm)

between the error τdyn − τsense was measured. Error histograms were accumulated for both

non-contact reaching and when contact disturbances were applied by a person. Figure 6-

3 shows these histograms. We see that contact errors are largest for the first two joints

(pitch,yaw) of the shoulder. For the other joints, the two error types are difficult to distin-
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Figure 6-3: Error histograms for the torque prediction of the first four joints. The arm exe-

cuted reaching movements sampled across its workspace. At 10hz the error (Nm) between

the predicted and sensed joint torque was measured. Error distributions were measured for

both non-contact reaching (Left) and when contact disturbances were applied by a person

during reaching (Right). During normal operation, contact is signaled for a joint when the

measured error is unlikely given the non-contact distribution. Contact errors are largest for

the first two joints (pitch,yaw) of the shoulder.
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guish. Consequently, only the shoulder joints are used signal contact. Contact is signaled

when the magnitude of the prediction error is above a threshold and it is unlikely the error

is due to dynamic reaching (as measured by the error histograms).

6.3 GraspAperture and GraspDetect

The grasp aperture, typically defined as the distance between the thumb and forefinger, is

a common measure used when studying human manipulation. Prior to grasping an object,

a person’s grasp aperture varies according to the object being grasped and the perceptual

uncertainty about the object [87]. On a robot, the grasp aperture can be used to estimate

the size of an unknown, grasped object. For example, the grasp aperture created by a power

grasp on a cylinder is proportional to the cylinder diameter. Ideally, the grasp aperture is

measured directly using a kinematic model of the robot’s hand. However this can be difficult

due to non-ideal joint sensing, unmodelled kinematics, and compliant effects in the robot’s

finger and skin. Also, the distance between the thumb and forefinger is not always a good

measure of object size as this distance can vary depending on the grasp. For some grasps,

these digits may not even make contact with the object.

On Domo, there is substantial compliance in the finger. As shown in Figure 4-10, the

compliant fingertip and skin allow the finger surface to deform during grasping. However,

this deformation cannot be measured directly as it occurs between the joint angle sensor and

the object. Consequently, it would be difficult to measure the grasp aperture kinematically

without modeling the complex effects the compliance.

Instead of building a complex hand model, a map was learned between the four joint

angles of the hand and the grasp aperture. Training data was gathered for 50 trial power

grasps formed on five cylindrical objects of known diameters between 25 and 75mm. Because

the power grasp is force controlled, we are able to manually apply forces to the object,

causing it to be displaced from its equillibrium pose. For limited displacements, the fingers

will maintain contact with the object. In this way, we determined the possible joint postures

that result in a stable grasp for each object. As each object was displaced, the joint angles

of the fingers were recorded. We used support vector regression (SVR) with a Gaussian

RBF kernel to learn the function relating the cylinder diameters and the joint angles. This

function, Ga(Θ), predicts the diameter of a grasped cylinder given the joint configuration
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Figure 6-4: The predicted grasp aperture Ga(Θ) (Y axis) versus the diameter of a known,

grasped cylinder (X axis). For each of six test cylinders, the object was grasped using

force control. The object was then manually moved about the full grasp workspace that

permitted all three fingers to remain in contact. The error bars show the maximum extent

of the predicted aperture around its mean.

Θ.

In Figure 6-4 we show the predicted grasp aperture for a known objects not in the

training set. For each of six cylinders, the object was grasped and manually moved about

the set of postures that permitted all three fingers to remain in contact. We see that Ga(Θ)

can predict the cylinder size within 10mm across the set of stable grasps. In fact, the

natural resting pose of the hand does even better. As the object is moved far from this

pose, the peformance degrades. Also, we would expect this approach to readily extend

to hands with greater kinematic complexity. The GraspAperture module simply computes

Ga(Θ) in real-time during task execution. As we will see, modules such as SurfacePlace use

the estimated grasp aperture to adapt their behavior.

Related to GraspAperature is GraspDetect, which signals that a stable grasp has been

made on an object. As in the work of Connell [33], GraspDetect is informed by the sensory

state of the hand in the world rather than the internal state of the grasp controller. It

relies on three conditions to detect a grasp. First, it monitors the net torque applied by

the fingers. If it is positive (closing) and above a threshold, then it is assumed that the
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SurfaceTest

CameraReach

CompliantLower

ShelfDetect

ContactDetect

VisualSearch

RetractArm

ContactDetect

VisualFixate

Figure 6-5: Much like a person reaching in the dark, the SurfaceTest module uses the robot’s

body to verify the presence of a surface. ShelfDetect finds a shelf edge that is then centered

in the image by VisualFixate. The edge depth is unknown, so CameraReach extends the

arm along the optical axis of the camera, expecting to bring the forearm in contact with

the edge. If ContactDetect signals premature contact, the reaching posture is first adjusted.

Otherwise, CompliantLower applies brings the hand to rest on the surface. If ContactDetect

signals success, the successful arm posture is recorded and the arm retracted.

controller is forming a grasp. Second, if the net angular velocity of the fingers is close to

zero, it is assumed that the fingers are in a stable state. Third, if Ga(Θ) > 20mm, then it

is assumed that fingers are wrapped around an object and not resting on the palm of the

hand. If all three conditions are true, then GraspDetect signals a stable grasp.

6.4 SurfaceTest

In unstructured environments, it can be difficult to use vision alone to determine with

certainty the existence of an important feature. However, a robot can use its body to

actively test a hypothetical feature location to learn more. In this vein, SurfaceTest uses

the robot’s arm to verify the existence and location of a reachable surface. People exhibit

a similar behavior when placing an object on a surface in the dark. They will often first

reach out and touch the surface. Doing this confirms their hypothesis of where it is and

reduces their perceptual uncertainty.
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Our implementation of SurfaceTest is specialized for a shelf surface that has a visible

leading edge, though we are not necessarily restricted to these surfaces. The shelf edge is a

common, task relevant feature in domestic settings. By only detecting the edge of a shelf,

we mitigate the need for a 3D shelf model. SurfaceTest is illustrated in Figure 6-5. The

algorithm is summarized as follows:

1. Visually identify a candidate shelf edge.

2. Reach out along a ray from the camera to a fixed depth above the shelf edge.

3. Adjust the reach if premature contact is made with the shelf.

4. Use compliant force control to move the hand down and make contact with the surface.

5. Detect contact (or lack of) with the shelf.

6. Store the posture, prior to descent, that led to success. Bring the arm back down to

the side.

To begin, SurfaceTest identifies a shelf edge through modules VisualSearch and ShelfDetect.

VisualSearch causes the robot’s gaze to scan a room until ShelfDetect is signaled. ShelfDetect

uses a HSV color filter and blob detector to detect two green stickers marking the edge

of a shelf. This simple detector is not especially robust as there are often other green

objects in Domo’s office environment. Also, the appearant color of objects changes as the

lighting changes throughout the day. Fortunately, SurfaceTest acts to reduce this perceptual

uncertainty. ShelfDetect could be readily replaced by a more sophisticated technique using

stereo information or surface texture, allowing SurfaceTest to work on a variety of surfaces

without markers.

Once a shelf edge has been identified, CameraReach extends the arm along the optical

axis of the camera. The module first defines an image target at a fixed height above the

edge midpoint, corresponding to a point xses in the ego-sphere. Using VisualFixate, the

head servos xses into the center of the image. Once its target is centered, the camera is held

fixed so that visual occlusions of the shelf do not effect the arm controller. The depth of

the shelf edge is unknown, so CameraReach controls the arm in depth along the camera’s

optical axis until contact is made. First, the arm closest to xses is selected and its hand

is brought to a defined location xc
start = [0, 0, zstart]

T in the camera frame {C}. Using
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the inverse kinematic model, the hand is extended along the camera’s optical axis towards

xc
end = [0, 0, zend]

T .

We choose zstart and zend so the arm starts close in to the body and ends at an arms

length from the head. Typically, the reach stops short of xc
end due to contact between the

shelf edge and the forearm. The arm impedance is kept low during the arm extension,

allowing it to safely stop short its target. If ContactDetect is signaled during extension,

the arm posture is adjusted by retracting a fixed distance from the contact posture. This

positions the hand just above the front edge of the shelf when CameraReach finishes.

Next, the CompliantLower module brings the hand to rest on the surface. It uses the

gravity compensated force controller to generate a downward force fz at the hand such

that τdesired = JT[0, 0,−fz, 0, 0, 0]T . If a large hand displacement is detected, SurfaceTest

assumes that either the shelf is out of reach or the feature detection was erroneous. Oth-

erwise, ContactDetect detects the surface contact and the joint posture of the arm prior to

CompliantLower is recorded. In this way, SurfaceTest’s internal model of a surface is simply

the joint angles that bring the hand above the surface. Other modules can now use this

direct representation to easily control the arm relative to the surface. Finally, RetractArm

brings the arm back to the robot’s side.

6.4.1 Results

We tested SurfaceTest for 15 consecutive trials. For each trial the shelf was moved to an

arbitrary location near the robot. The shelf height was varied between 0.05m and −0.25m

relative to the shoulder. Some locations were deliberately out of reach of the robot, and

some were too close in. A trial was successful if the robot correctly verfied that the shelf

edge could be reached, and if so, the hand came to rest on the front edge of the shelf. The

module was successful for all 15 trials, and the results of five of the trials are shown in Figure

6-7. The robot is shown executing the module in Figure 6-6. Although the algorithm is

shown to be robust to the shelf location and height, it the arm can get trapped under the

shelf if it is too close to the body. In this case, coarse knowledge of the surface depth would

be useful in guiding CameraReach.

98



Figure 6-6: Domo’s SurfaceTest behavior verifies the presence and location of a shelf. In

this demonstration, the shelf location is first moved and then SurfaceTest reestimates the

location.

A
B

CD

E

Figure 6-7: The reaching trajectory, in meters, of the hand during five consecutive trials of

SurfaceTest. The final pose of the hand is annotated. The shelf surface is moved to five

arbitrary locations in the robot’s workspace and the shelf height varied. In trials A,B,and

C, the shelf height is at .05m relative to the shoulder. In trials D,E the height is at −.15m.

For trials A, B, and D, Domo successfully rests its hand on the front edge of the shelf. In

trials C and E, Domo correctly detects that the shelf is out of reach. For Trial B, the shelf is

much closer in and the arm contacts the shelf prematurely. This is detected and the posture

adjusted to successfuly find the shelf edge.
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GraspDetect
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CompliantLower

GraspRelease

ContactDetect

RetractArm

GraspAperature

Figure 6-8: The SurfacePlace module transfers an object from the robot’s hand to a sur-

face. First, SurfaceTest identifies a location to place objects. TipEstimate finds an objects

alignment axis such that TipPose can align the object to the surface. Depending on Gras-

pAperture’s estimate of the object size, the object is aligned horizontally or vertically to

the surface. SurfaceReach brings the object over the surface and CompliantLower allows

it to reorient to the surface as it is brought into contact. Finally, when ContactDetect is

signaled, GraspRelease opens the hand and the arm is retracted.
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6.5 SurfacePlace

Human environments are dominated by flat surfaces, and many useful tasks involve placing

objects on surfaces. Stocking goods, setting the table, arranging a product display, placing a

part onto a conveyor belt, and putting dishes are just a few of the everyday tasks that require

surface placement. Fortunately, many man-made objects are designed so their intrinsic

mechanics assist placement in a canonical orientation. For example, a wine glass has a wide

base allowing it to remain upright on a shelf. We would expect a pencil to rest on its side.

There are exceptions of course. Books tend to lay on their sides, but convention dictates

that it rests upright on a bookshelf.

In this vein, the SurfacePlace module takes a grasped object and places it on a nearby

flat surface in one of two canonical orientations: upright or lying down. If the object’s

canonical orientation is upright, we assume that the object has a sufficiently large flat base

to rest on. The module is illustrated in Figure 6-8, and its algorithm can be summarized

as follows:

1. Detect a useable surface.

2. Find the alignment axis of a grasped object.

3. Determine if the object is to be placed upright or lying down.

4. Reach to above the surface.

5. Align the object to the surface.

6. Decrease the manipulator impedance and use force control to lower the object onto

the surface. Allow the object to self-align using compliance in the hand and wrist.

7. Release and retract.

This algorithm requires a few assumptions about the object in order to align its base to the

surface. First, the aligment axis, by our definition, brings the object’s flat base parallel to

the surface when it points in the direction of gravity. For unknown objects, we can treat the

alignment axis as a task relevant feature that requires perceptual estimation. We simplify

this problem by assuming that when an object is grasped, its alignment axis extends from

the center of robot’s palm to the distal tip of the object. This assumption is true for a
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variety of everyday objects such as bottles, books, and many hand tools. For objects that

this assumption holds, we can visually detect and control the alignment axis using the

TipEstimate, TipPriors, and TipPose modules. These modules are described in Chapter 8.

Once the aligment axis is detected and SurfaceTest has located a useable surface, Sur-

faceReach positions the arm just above the shelf surface. Depending on the grasp aperture,

the aligment axis is posed either normal or parallel to the surface. This assumes that the

size of the object’s base can be estimated GraspAperture. Objects with grasp apertures

below 30mm are placed lying down on the surface because they would likely fall over if

placed upright. Once the object has been aligned, CompliantLower lowers the arm stiffness

and brings the object down onto the shelf surface using force control. When ContactDetect

is signaled, the grasp on the object is released and the arm retracted.

An important aspect of SurfacePlace is that it exploits compliance in the wrist and hand,

as well as contact with the surface, to align the object’s base to the surface. In this way,

Domo can achieve a goal orientation despite uncertainty in the pose of the grasped object.

This strategy has a long history in manipulation, where the intrinsic mechanics of an object

in contact with the environment are used to reduce uncertainty. Notable examples include

Mason’s analysis of manipulation funnels [89], Inoue’s use of force sensing for peg-in-hole

tasks [66], and the development of the remote-center-compliance (RCC) wrist for passive

alignment of objects [141].

6.5.1 Results

SurfacePlace relies upon the manipulator compliance to assist in realignment of an object

while placing it. As shown in Figure 6-9, we measured the success of SurfacePlace in placing

a bottle upright on a shelf as the wrist stiffness, Kps, and misalignment angle, θs, are varied.

We define θs as the angle between the surface plane and the object’s base. As the figure

illustrates, in the ideal case the expected misalignment tolerance is θs < π
2 −tan−1 h

r
for base

radius r and grasp height h. In this experiment, we expect SurfacePlace to be successful

when when |θs| < 21.2◦ where r = 35mm and h ≈ 90mm.

In the experiment, the shelf location was fixed and the bottle was repeatedly handed

to the robot in a near identical pose. When grasped, the bottle’s base is approximately

parallel to the bottom of the hand, allowing for θs to be measured kinematically. We

tested −40◦ ≤ θs ≤ 40◦ in 5 degree increments and wrist stiffness Kps ∈ [0.0, 0.5, 1.0]. We
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Figure 6-9: SurfacePlace uses contact with a surface to passively align the base of an object

to the surface. Left: A downward force applied to the object creates a realignment moment

about the contact point. Ignoring the object’s mass and friction, a lower grasp or a wider

base will increase the robustness of this strategy. We can expect success when θs + θg < π
2

for θg = tan−1 h
r
. Middle: A 2D histogram showing the probability of success in placing

a bottle upright on a shelf as the wrist stiffness, Kps, and the misalignment angle, θs, are

varied. As the stiffness is lowered, the toleance to misalignment improves. Right: The

bottle used in this experiment.

Figure 6-10: A variety of everyday objects were successfully tested with the SurfacePlace

behavior, including (left-right): stuffed animal, shoe box, large water bottle, headphone

caddy, spoon, paint roller, hand broom, food tin, small water bottle, duster, and a spray

bottle.
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conducted two trials of each of the 51 parameter combinations. The force at the hand was

approximately [0, 0,−4]T Newtons. A trial was successful if the bottle was left standing

upright on the shelf. The experiment results are shown in Figure 6-9 as a 2D histogram.

They demonstrate that the misalignment tolerance improves as the wrist stiffness is lowered.

For Kps = 0, the tolerance is roughly ±20 degrees as predicted. In practice, many other

factors complicate the success of SurfacePlace. Unstable objects can be disturbed as the

hand is withdrawn. The wrist does not achieve true zero impedance, and compliance in the

hand introduces additional adaptation of the object’s alignment.

Next, we tested SurfacePlace on a wide range of everyday objects. Some of these objects

are shown in Figure 6-10, including a stuffed animal, shoe box, large water bottle, headphone

caddy, spoon, paint roller, hand broom, food tin, small water bottle, duster, and a spray

bottle. The broom, duster, and spoon were correctly placed on their sides due to their

small diameter handles. The shoe box and headphone caddy are large and non-cylindrical,

violating the assumptions of SurfacePlace. However, they were still smoothly lowered onto

a stable base. The paint roller was the most difficult to consistently place upright due to

its small, 40mm diameter base.

6.6 Discussion

In this chapter we have demonstrated that a robot can leverage its physical embodiment

to assist in perception and to reduce uncertainty. It illustrates the design theme of let the

body do the thinking. In particular, we have emphasized algorithms that do not require

precise geometric and kinematic knowledge about the state of the robot and the world.

For example, the robot can leverage low manipulator impedance and passive compliance to

detect unexpected contact with the world or to allow a grasped object to reorient during

placement. The SurfaceTest module demonstrates a compensatory behavior, where the

robot takes action to test a perceptual hypothesis. We should also note that, as much

as possible, modules such as GraspDetect use the sensory state of the robot in the world

rather than an internal representation of its state. In our experience, this has increased the

robustness and responsiveness of the robot, especially during unexpected task failures that

are often left out of internal models.

The modules presented in this chapter could certainly be expanded in several ways.
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Sensing of the contact moments during SurfacePlace would allow Domo to actively adjust

the object’s orientation. SurfaceTest could be expanded beyond shelf edges to include

any type of flat surface. Limited force sensing resolution and the simple model used in

ContactDetect prevents Domo from knowing the wrench of contact forces acting on the

manipulator. This information could be useful in developing more adaptive algorithms.

Finally, StiffnessAdapt simply sets the manipulator impedance to a hand designed value at

a modules request. It would be profitable for this impedance to be autonmously adapted

in response to sensory feedback during the task.
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Chapter 7

Cooperative Manipulation

In this chapter we investigate key aspects of the cooperative manipulation design strategy.

We present the PersonDetect and VocalRequest perceptual modules that enable Domo’s

real-time interaction with people. We then describe the AssistedGrasp module which cues a

person for assistance in grasping an object. Finally, we test experimentally the hypothesis

that people will intuitively assist Domo in a manipulation task without prior instruction.

7.1 Perception of People

We would expect a robot collaborator to be responsive to our presence in a room, to un-

derstand the intent of our gestures, and to adapt to our feedback. Ultimately, cooperative

manipulation requires the robot to understand referential (looking and pointing) and goal-

directed (reaching) cues. Clearly, this is an open area of research involving many difficult

perception problems such as gesture recognition and learning from demonstration. However,

many cooperative manipulation tasks can be designed around much simpler communicative

cues so long as the cues are robustly detected and a person can generate them without

much effort. For example, in the previous chapter we saw that ContactDetect can be used

to detect a person grabbing the arm as it moves. A person will intuitively generate this cue

to provide negative feedback to a collaborator. In this section we present modules that allow

Domo to detect and track a collaborator, react to a hand waving cue, and respond to vocal

requests. In developing these real-time visual algorthms, we have emphasized robustness to

cluttered, everyday environments with variable lighting.
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Figure 7-1: During human-robot interaction, hands, fingers, and faces are important per-

ceptual features for visual attention. As shown in green, the InterestRegions module will

often selects these features because they are well modeled as rapidly moving convex edges.

7.1.1 Detecting Hands, Fingers, and Faces

During a cooperative manipulation task, much of a person’s attention is directed towards

the hands, fingers, and face of their partner as well their own hands and fingers. Detecting

these features can be a difficult task for a robot working in a dynamic and unstructured envi-

ronment. However, in collaboration with Kemp [76], we have found that the InterestRegions

module will often select for these features during human-robot interaction.

The interest point operator used by InterestRegions detects convex edges that are moving

rapidly with respect to the background. A hand will often produce the fastest moving edge

in the image because it is the furthest point from the arm’s center of rotation. It also has

a roughly convex projection in the image. The same holds for fingertips and heads. During

social interactions, people naturally gesture with these features and bring them close to

the camera. The motion from a gesture can serve as a natural cue to direct the robot’s

attention. This is illustrated in Figures 7-1 and 5-4.

We evaluated the ability of InterestRegions to select for these features during human-

robot interaction. Prior to the experiments we manually moved the arm around its reachable

workspace and collected 4000 samples of arm postures that could be safely commanded to

the motor controllers. During an experiment, the robot grasped an object and periodically

(0.25Hz) executed a reaching movement to a random arm posture generated from the

collected data. As the arm explored its workspace, a person’s interaction with the robot

involved full-body motion, hand waving, presentation of objects, as well as physical contact

with the robot’s arm as it moved. We conducted two interaction experiments, each lasting
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Figure 7-2: A random sample of image patches collected by the InterestRegions module.

These predominantly contain hands, fingers, and faces.

about 2 minutes and generating approximately 2000 samples.

For each sample we used the InterestRegions module to select the most salient region

in the image. An image patch was selected based on the scale and location of the interest

region. Figure 7-2 shows a random sample of image patches. The majority of the patches

correspond to features relevant to human-robot interaction, including the person’s head,

eyes, hands, and fingers, the objects being presented, and the robot’s hand and fingers.

We hand categorized 200 randomly selected image patches from the data set. Figure 7-3

shows that over 50% of these patches were of human features, and over 30% were of the

robot’s hand. Although these experiments were conducted while keeping the robot’s gaze

stationary, similar results have been obtained when the head is allowed to move.

7.1.2 PersonDetect

PersonDetect is a module in the visual attention system dedicated to perception of the

robot’s cooperative partner. As illustrated in Figure 7-4, it detects and tracks a person’s

face, models the skin color of the face, and uses the skin color and InterestRegions module

to detect a person’s waving gesture.

Tracking Faces

We use the Viola-Jones face detector provided in OpenCV [34, 138] to detect one or more

faces in 160x120 monochrome images at 30hz. Whenever a face is detected, a 4x4 pixel
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Figure 7-3: Statistics of feature categories detected during human-robt interaction. We

hand-labelled categories for 200 image patches randomly sampled from the image patches

collected by the visual attention system. A patch was labelled as a person (black bars) if

it selected either a hand, finger, head, eye, or object in the hand. A patch was labelled as

a robot (red bars) if it selected either the robot’s hand, finger, or wrist. Patches that were

neither person nor robot were labelled as other. The left plot shows the probability of each

category and the right plot shows the probability of each sub-category.

Sensory Ego-Sphere

Tracker

HandWaving

InterestRegions

Face Detector

HSVSkinModel

Image

Figure 7-4: The PersonDetect module. A face detector initializes a tracker and the tracked

face is used to build an online model of the person’s skin color. This model is combined with

InterestRegions to select for salient moving features on a person. These often correspond

to the person’s hand. Accumulated evidence of hand motion is detected as a hand waving

cue. The face and hand waving features are made available to the SES in order to direct

the robot’s atttention.
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Figure 7-5: Output from the face tracker and skin color filter. The HSV skin color model

adapts to the large shift in appearant skin hue between daylight (top) and night(bottom).

Figure 7-6: The 2D histogram representing the accumulated probability distribution,

p(xses|face), for face detections within the SES. The center of the histogram, xses = [0, 0, r]

corresponds to the robot looking straight ahead.
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block centered on the face is used to initialize a tracker. The tracker uses block matching

over a 6x6 pixel window to track the block between consecutive images. The location of a

tracked face is continually refreshed within the SES. The tracker also produces a confidence

measure, defined as the pixel sum difference between the current block and the intialization

block. The tracker times out and assumes it has lost the face when the confidence is below

a threshold for longer than 60 frames. Fortunately, people usually move slowly within a

scene, and the timeout allows the face detector time to reacquire a frontal view of the face.

The output from the face tracker is shown in Figure 7-5.

The Spatial Distribution of Faces

As Domo interacts with people and tracks their faces, PersonDetect models the spatial

distribution of the face detections within the SES. This model is learned over an extended

period of many human-robot interactions. The detections are used to estimate the prob-

ability distribution p(xses|face) of Equation 5.5, which represents the chance of seeing a

face at location xses within the SES. Figure 7-6 shows the distribution after many hours

of interaction with the robot. Once learned, p(xses|face) can provide a confidence mea-

sure on a new face detection. For example, PersonDetect will ignore a face detection if

p(xses|face) < 0.35. This prevents the robot from falsely detecting faces on the floor or

ceiling.

Modelling Skin Color

When a face is detected, the image patch within the face bounding box is used to auto-

matically model the person’s skin color. The patch is first converted from RGB to HSV

color space. The hue and saturation of each pixel is added to a 2D 16x16 bin histogram.

This defines the probability distribution p(x|skin), which represents the chance that pixel

x is skin colored. Now given a region X = [x1...xn] within the image, we compute the

probability that the region is skin colored as the average of each pixel:

p(X|skin) =
1

n

∑

x∈X

p(x|skin).

Also, each contribution to the histogram is given an initial weight of 1.0. This weight is

decremented by a small (.001) amount each time step, biasing the histogram toward more

recent face detections. As shown in Figure 7-5, this allows the skin color model to adapt to
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Figure 7-7: The probability of hand waving, p(x̂ses|hand), over a 30 second trial. The

detector threshold ǫh = 0.1 is shown in red. The skin color model is built during the first

10 seconds of the trial. Head motion appears during time 10s− 15s with a low probability.

Two brief hand waving episodes are detected in the last 15 seconds of the trial.

new people and changing lighting conditions. This approach is similar to that used on the

ARMAR robot [124].

Waving Detection

PersonDetect also detects hand waving. As we demonstrated previously, features selected

by InterestRegions often correspond to hands and faces. An interest region X in the image

corresponding to location xses in the SES is labelled as a hand feature whenever the region

is skin colored, it is not a face, and a face is present in the SES. In other words,

p(X|skin) > ǫs,

and

p(xses|face) < ǫf

, for thresholds ǫs and ǫf . This simple hand detector is prone to false positives such as

moving flesh colored objects and other moving body parts. However, false detections are

generally distributed across the SES. Repeated hand motion in one location can accumulate

evidence over time that a person is waving to the robot. Evidence is accumulated by mod-

elling the spatial distribution of hand detections in the SES as p(xses|hand) using Equation
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5.5 with ∆whand = 0.1. Finally, PersonDetect selects the maximum likelihood location,

x̂ses, of the distribution. PersonDetect signals hand waving whenever p(x̂ses|hand) > ǫh

for some threshold ǫh. In Figure 7-7 we plot p(x̂ses|hand) as Domo interacts with a person.

We see that the hand waving is readily detected.

7.1.3 PersonSeek

The PersonSeek module allows the robot’s gaze to be responsive to a person in the room.

Its algorithm is straightforward:

1. If a face is present in the SES, servo the head to track the face as they move around

the room using VisualFixate.

2. If a face is not present in the SES, periodically (0.25Hz) redirect the robot’s gaze

to locations that have a high probability of finding a person. A gaze location xses is

drawn from the distribution p(xses|face).

3. Whenever hand waving is detected, or p(x̂ses|hand) > ǫh, redirect the gaze to location

x̂ses.

The module gives priority to hand waving over face detection. This allows a person to

guide the robot’s attention away from the face to an object of interest. Once the robot is

attending to the object, other modules can assume control of the head if desired. Otherwise,

the robot’s gaze is returned to the face after a 5 second timeout. In the absence of any

competing modules seeking control of the robot’s head, PersonSeek will be active. For

example, after a manual task is complete, the PersonSeek automatically redirects the gaze

to the person. This provides an intuitive cue to the person that the robot has finished its

task.

7.1.4 VocalRequest

Domo has a simple speech interface, allowing it to respond to and generate vocal requests.

Motor noise typically degrades voice recognition performance when using microphones at-

tached to the robot’s body. Consequently, we require that a person talking to Domo wear a

wireless Sennheiser lavalier microphone. The VocalRequest module uses the CMU Sphinx2

voice recognition package freely available on Linux. Sphinx is configured to recognize a
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Figure 7-8: The AssistedGrasp module cues a person for assistance in grasping an object.

When PersonDetect signals the presence of a person, PersonReach extends the nearest arm

to the person with an open hand. If the cue is interpreted correctly, the person places an

appropriate object in the robot’s hand. Low manipulator impedance allows ContactDetect

to sense contact as the object is handed. This triggers PowerGrasp to secure a grasp on the

object. If the contact is not detected, or a stable grasp isn’t formed, then the robot re-cues

the person to try again. Otherwise, the arm is retracted holding the grasped object.

small vocabulary of commands such as “Take”, “Give”, and “Shelf”. The prefix “Domo” is

required, allowing VocalRequest to ignore speech that is not directed at it. In response to

a command, Domo repeats the phrase using the Digital DecTalk voice synthesizer, allow-

ing the person to confirm that they were heard correctly. VocalRequest then increases the

dynamic priority of the command’s module. For example, saying “Domo, put this on the

shelf” will increase the priority of the SurfacePlace module.

7.2 AssistedGrasp and AssistedGive

With the AssistedGrasp module, Domo is able to gain a person’s help in grasping an object.

This is a simple yet important example of cooperative manipulation. The robot, aware

of its collaborator’s presence, extends an open hand towards the person. If this gesture

is generated in the appropriate context, it should be understood by the collaborator as a

request to be handed a particular object. If Domo is successful in enlisting the collaborator’s

assistance, Domo will detect the object being placed in its hand and form a stable grasp on
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Figure 7-9: Domo executing the AssistedGrasp module to grasp a water bottle and spray

bottle. Domo visually detects the collaborator and reaches towards him with an open hand.

Domo detects the objects being placed in its hands and forms a power grasp on them.
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it. The AssistedGrasp module is illustrated in Figure 7-8 and its algorithm is as follows:

1. Look for and detect a person.

2. Reach to the person with an open hand while directing the eye gaze to their face.

3. Lower the arm stiffness.

4. Detect the contact forces as the object is placed in the hand.

5. Form a power grasp and detect its success.

6. If a successful grasp isn’t made, re-cue the person. Otherwise, retract the arm.

AssistedGrasp can be activated so long as one hand is empty. First, it employs PersonSeek

to find a person in the room. If PersonDetect finds a face at location xses = [θ, φ, r], then

PersonReach uses the inverse kinematic model to reach to the target [θ, φ + π
4 , r]. This

location should be near the person’s midriff. The orientation of the extended hand and the

pose of its fingers can also be used to cue the person how to hand the object. For example,

a glass of water is usually grasped in a dfferent orientation than a stirring spoon. This

desired orientation can be specified by an external module.

Once PersonlReach has achieved its target and the arm is nearly stationary, Stiffnes-

sAdapt lowers the stiffness of the arm. This increases the likelihood of ContactDetect given

small contact forces. As the person gives Domo the object, small displacements of the

hand are sensed by ContactDetect. PowerGrasp then closes the fingers around the object.

If GraspDetect signals success, RetractArm brings the grasped object to the robot’s side.

However, if ContactDetect or GraspDetect fail, then PersonReach is reactivated and the

robot cues the person again. Figure 7-9 shows the execution of AssistedGrasp.

AssistedGrasp is typically activated by other modules that require assistance in grasp-

ing an object. However, AssistedGrasp can also assist the collaborator by simply holding

something for them. For example, a person can say “Domo, hold this” and VocalRequest

will activate AssistedGrasp, causing Domo to reach out and take the object. In another

scenario, a person can non-verbally request assistance by simply waving the object in front

of Domo. The hand motion is detected by PersonDetect which will also activate Assisted-

Grasp. In these ways, AssistedGrasp allows for natural interaction between the robot and

collaborator.
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While AssistedGrasp takes an object from a person, the AssistedGive module hands

a grasped object back. Its implementation is nearly identical to AssistedGrasp, only now

GraspRelease is used instead of PowerGrasp. If a collaborator had asked for assistance by

requesting “Domo, hold this”, they can now request “Domo, give it” and AssistedGive will

cause Domo to reach to the person and hand the object back.

7.3 Testing Cooperative Manipulation

If we take cooperative manipulation as a design strategy, to what extent can we include the

actions of a collaborator into the task design? This is an important question if we wish

to develop manipulation strategies that depend on people for task success. By placing the

collaborator “in the loop”, a robot can do more with less. However, this should also be

a beneficial experience for the person, otherwise they won’t be inclined to work with the

robot. Not only should the robot do something useful, but the collaboration should occur

in a natural, intuitive manner without requiring excessive training for the collaborator or

mental effort in assisting the robot.

One way to induce such a collaboration is to have the robot to use socially understood

gestures and cues. We maintain that such cues will be interpreted correctly if they are gen-

erated in the appropriate context. For example, AssistedGrasp expects that a collaborator

will understand the reaching cue as a request for a particular object. This assumes that

the collaborator will assess the task context to select the correct object. People exhibit this

behavior when they pass their coffee cup but not their dinner plate to a waitress holding a

pot of coffee.

We also maintain that a collaborator will develop an understanding of the robot’s per-

ceptual and motor limitations. A well intentioned collaborator will subsequently adapt their

actions to increase task success. As we will see, during AssistedGrasp, a collaborator will

intuitively hand the object to the robot in a pose that anticipates both the robot’s use of

the object and the limitations of its grasping.

This type of cooperative interaction as been investigated recently with the Dexter hu-

manoid [55]. Dexter learns that when a desired object is out of reach, the act of reaching

towards the object will induce a person to move the object closer. However, the person’s

cooperation occurrs as part of the experiment’s design and not because they are compelled
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to. Can a robot compell a person to take on the role of collaborator without instruction?

In this section we present an experiment that investigates this question.

7.3.1 Give and Take Experiment

Experiment Setup

As shown in Figure xxx, the subject sits to the side of the robot. The robot is at a table

and an oblong box (60x85x200mm ) sits on the table. The box is instrumented with a

gyroscope to measure its orientation. The subject is told only that the robot is performing

an unspecified visual hand-eye calibration task, and that whenever the robot reaches to her,

she is to place the box in the robot’s hand. This explanation is to deter her from explicitly

considering the way in which she hands an object to the robot. In a single trial, the robot

reaches to the subject using AssistedGrasp with the hand open in a power-grasp preshape.

The subject places the box in the robot’s hand and the robot grasps the box, brings the

box up to its cameras, and appears to inspect it. Depending on the subject, it then lowers

its arm in one of two ways.

In the first case, the robot reaches towards the person, bringing the box just in front of

and above the table edge nearest the subject. It says the word “Done” and pauses for one

second. It then releases its grasp, dropping the box onto the table, and retracts its arm.

In the second case, the robot does an identical action as in the first case, but this time it

reaches just past the table edge. Unless the person takes the box from the person, it falls to

the floor. This marks the end of a trial. The robot pauses for 5 seconds and then initiates

the next trial. Six trials are performed with each subject.

At the start of each experiment, the box is aligned to the robot’s body and the gyroscope

is calibrated with respect to frame {W}. We define the vector bw as the longest edge of the

box. We define the power-grasp axis as zh which is the z-axis of frame {H} in Figure 4-1.

This axis corresponds to the long axis of a soda can held in a power grasp. In frame {W}

this axis is zw. The angle between zwand bw is defined as the grasp aligment error. During

each trial, we measure the average grasp alignment error during the 500ms just prior to the

grasp being formed. We also vary the wrist rotation for each of the six trials such that the

angle formed between zw and gravity varies by [0,−45, 90, 0,−45, 90] degrees.
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Experiment Hypothesis

This experiment considers the following three questions:

1. When a subject hands the robot the box, does she adjust its orientation to match the

pose of the robot’s hand?

2. Will the subject correctly interpret the robot’s reaching gesture, vocalization, and

pause as a social cue to take the object?

3. Can a small incentive such as not having to pick up the object increase the subject’s

willingness to respond to the social cue?

We can use the measured grasp aligment error to directly answer the first question. We

would expect to see bw to track zw as it varies between the three wrist orientations. The

second queston is more difficult to confirm. For each experiment, we measure the take-back

rate as the percentage of trials a subject reached to take the box back from the robot. We

expect that robot’s reaching gesture, vocalization, and pause will cause the subjects to take

back the box. However, they are never instructed to take it back, so if they do, then it is

likely that they correctly interpreted the cue, much as they would with a person. For 50%

of the subjects, the robot drops the cylinder on the floor. If this serves as an incentive, we

should see an increase in the take-back rate.

Experiment Results

Prior to the experiments, we first measured the average grasp aligment error when the box

was deliberately oriented to match the robot’s grasp. From repeated trials the mean error

was 7.6 degrees. Next, we measured the range of grasp aligment errors when the box was

freely rotated within the preshaped hand. In this case the distribution of grasp errors is

uniform between 0 to 60 degrees.

We tested the experiment using 15 subjects as well as ourselves for comparison. After an

experiment each subject was asked to rate, on a scale of 1-4, their level of experience working

with robots, the amount of thought put into how the box was handed to the robot, and the

level of expectation experienced to take the box from the robot. As shown in Figure 7-10, a

typical subject matched the box orientation to the grasp orientation as predicted. The full
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Figure 7-10: The grasp alignment errors for a typical subject during the Give and Take

experiment. Blue shows the grasp alignment error (degrees) of the box with respect to

the grasp preshape. Red shows the mean error achieved when we deliberately aligned the

box with the grasp. The X axis shows the trial time, in seconds, starting when the reach

commenced and ending when the grasp was initiated. We see that for nearly all trials, the

subject aligns the box within a few degrees of the best expected performance. Interestingly,

in the last trial the subject reported that they were deliberately testing the robot’s ability

to grasp a poorly aligned box.

120



Subject/Trial Experience Intent 1 2 3 4 5 6 Avg. Error

Author 4 4 4.4 8.6 5.7 3.1 2.3 0.5 4.1

1 4 2 1.7 14.7 2.7 19.3 5.0 4.8 8.0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 7-11: Results showing that the 15 subjects intuitively aligned the cylinder’s axis with

the grasp axis of the robot’s hand when handing it. After the experiment, each subject rated

on a scale of 1−4 their level of robotics experience and the level of intent given to the object’s

placement. For each of 6 trials, we show the average alignment error, in degrees, during the

500 ms prior to grasping. The last column shows the average error for each subject. We

also show the author’s
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Subject/Trial Expertise Intent Dropped 1 2 3 4 5 6 Rate

1 4 2 No 1 1 1 1 1 1 100%

2

3
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5

6

7

8
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11
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14

Figure 7-12: xxx

122



results are shown in Figure 7-11. We also found that most subjects correctly understood

the robot’s cue and took the box back. These results are shown in Figure 7-12.

This experiment only scratches the surface of the potentially rich interactions that may

occur during cooperative manipulation. However, it shows quantitatively that people will

intuitively adapt to and assist the robot without instruction. We would expect that more

substantitive assistance could be given if the person possesed greater contextual knowledge

about the task and the robot could generate more nuanced cues.

7.4 Discussion

Cooperative manipulation can be informed by work in human-robot interaction, social

robotics, as well as cognitive psychology. For example, to asseses an infant’s understanding

of a person as intentional agent, researchers studies have consiered eye-gaze in the pres-

ence of a pointing and reaching adult as an indicator of their understanding of people as

intentional agents. [121]

1. people bring their years of experience to the table for the robot’s benefit

2. what experiment tells us about people working with robot: that can design the person

into the loop

3. also human infant studies for reaching and eye gaze, hri citation
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Chapter 8

Task Relevant Features

Everyday tasks such as placing a cup in a cabinet or pouring a glass of water can be described

in terms of the perception and control of task relevant features. We have seen previously

how the edge of a shelf can represent the presence of a stable, flat surface. In this chapter we

show that the distal tips of many everyday objects can be treated as task relevant features.

We first present a robust method to estimate the 3D location of an object’s tip in the hand’s

coordinate frame. This work was developed in collaboration with Charles Kemp [74]. Next,

we describe the TipPose and TipServo modules which provide manipulator control of this

feature. We then generalize the visual detection of the tip to include a broader class of

objects. This work was also done in collaboration with Kemp [75]. We then show that a

prediction of the feature location can be learned. Finally, we integrate these components

into the TipUse module which enables Domo to take an object from a person, quickly find

its distal tip, and control the tip for a task.

8.1 The Task Relevant Tool Tip

For a wide variety of tools and tasks, control of the tool’s endpoint is sufficient for its

use. For example, use of a screwdriver requires precise control of the tool blade relative

to a screw head but depends little on the details of the tool handle and shaft. Radwin

[110] describes 19 categories of common power and hand tools. Approximately 13 of these

tool types feature a distal point on the tool which can be considered the primary interface

between the tool and the world.

The prevalence of this type of feature may relate to the advantages it gives for perception
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Figure 8-1: [A] A typical view from the robot’s camera of the hand holding a pair of pliers.

A naturally lit, cluttered background ensures a non-trivial unstructured environment for

perception. [B] The tool-tip is detected as the maximum of the motion estimator’s weighted

edge map. [C] The raw motion-based detection (black), the hand-labeled tool tip (white),

and a prediction based on the estimated tool position (green) are annotated.

and control. For perception, it improves visual observation of the tool’s use by reducing

occlusion, and it assists force sensing by constraining the interaction forces to a small

region. For control, its distal location increases maneuverability by reducing the possibility

of collisions. A single tip also defines the tool’s interface to the world as a simple, salient

region. This allows the user to perceptually attend to and control a single artifact, which

reduces cognitive load. Looking beyond human tools, one can also find this structure in the

hand relative to the arm, and the finger tip relative to the finger.

In this section, we present a straight-forward monocular method for rapidly detecting

the endpoint of an unmodeled tool and estimating its position with respect to the robot’s

hand. The process is shown in Figure 8-1. This can allow the robot to control the position of

the tool endpoint and predict its visual location. These basic skills can enable rudimentary

use of the tool and assist further learning by helping the robot to actively test and observe

the endpoint. We show successful results for this estimation method using a variety of

traditional tools shown in Figure 8-3, including a pen, a hammer, and pliers, as well as

more general tools such as a bottle and the robot’s own finger.

To find the tip of a tool held in the hand, the robot rotates the tool while detecting the

most rapidly moving point between pairs of consecutive images. It then estimates the 3D

point in the hand’s coordinate system that best explains these noisy detections. Given this
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protocol, motion serves as a powerful cue for detecting the endpoint of a wide assortment

of human tools. The method makes few assumptions about the size and shape of the tool,

its position in the robot’s hand, or the environment in which the tool is being manipulated.

Importantly, we use the robot’s kinematic model to transform the perceptual detections

into the hand’s coordinate frame, allowing for the registration of many detections from

multiple views. This makes the algorithm robust to noise from sources such as ego-motion

and human interaction.

8.1.1 Related Work in Robot Tool Use

Research involving robot tool use often assumes a prior model of the tool or construction of

a model using complex perceptual processing. A recent review of robot tool use finds few

examples of robots using everyday, human tools [123]. NASA has explored the use of human

tools with the Robonaut platform. Robonaut used detailed tool templates to successfully

guide a standard power drill to fasten a series of lugnuts [61]. Approaches that rely on

the registration of detailed models are not likely to efficiently scale to the wide variety of

human tools. Williamson [143] demonstrated robot tool use in rhythmic activities such as

drumming, sawing, and hammering by exploiting the natural dynamics of the tool and arm.

This work required careful setup and tools that were rigidly fixed to the hand.

A long history of work in AI and computer vision has focused on learning tool function

[146]. For example, Duric [38] looked at associating a tool’s function with its prototypical

motion. Robots that can actively learn about tool use have been the subject of more recent

work. Bogoni [13] investigated relating the physical properties of the tool to the perceptual

outcomes of its use when tested by a robot. Stoytchev [126] has explored learning a tool’s

function through its interactions with objects. This body of work typically assumes that

a clean segmentation of the tool can be extracted from the image or that the tool features

are known in advance.

In our method, we use our knowledge of how the robot’s hand rotates while holding the

tool to make 3D estimations about the location of the tool tip. This relates to methods for

3D scanning in which objects are placed on a rotating platform in front of a single camera

[41]. These methods, however, typically rely on a well modeled background to cleanly

segment the object, simple platform motion, and occlusion free views of the object. More

generally, our estimation technique relates to the well-studied area of 3D estimation from
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multiple views [56].

-XXXrelated to Danica Kragic and Christensen. Multiple cue integration for visual

control.

8.1.2 Tool Tip Detection

We wish to detect the end point of a grasped tool in a general way. The detection process

looks for points that are moving rapidly while the hand is moving. This ignores points that

are not controlled by the hand and highlights points under the hand’s control that are far

from the hand’s center of rotation. Typically tool tips are the most distal component of the

tool relative to the hand’s center of rotation, and consequently have higher velocity. The

hand is also held close to the camera, so projection tends to increase the speed of the tool

tip in the image relative to background motion. The wrist is rotated and we detect the tip

as the fastest moving point in the image using the method of Kemp described in Section

5.1.

8.1.3 Probabilistic Estimation of the 3D Tool Tip Position
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Figure 8-2: The geometry of the tool tip 3D estimation problem. With respect to the

hand’s coordinate system, {H}, the camera moves around the hand. In an ideal situation,

only two distinct 2D detections would be necessary to obtain the 3D estimate. Given two

observations with kinematic configurations c1 and c2, the tool tip, xt, appears in the image

at Tc1(xt) and Tc2(xt).

As described, visual motion is used to detect motion feature points that are likely to
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correspond with the tip of the tool in the robot’s hand. After detecting these points in a

series of images with distinct views, we use the robot’s kinematic model to combine these 2D

points into a single 3D estimate of the tool tip’s position in the hand’s coordinate system.

With respect to the hand’s coordinate system, {H}, the camera moves around the hand

while the hand and tool tip remain stationary. This is equivalent to a multiple view 3D

estimation problem where we wish to estimate the constant 3D position of the tool tip,

xh
t = xt, with respect to {H}. In an ideal situation, only two distinct 2D detections would

be necessary to obtain the 3D estimate, as illustrated in Figure 8-2. However, we have

several sources of error, including noise in the detection process and an imperfect kinematic

model.

A variety of approaches would be appropriate for this estimation, since only three pa-

rameters need to be estimated and we have plenty of data from a moderately noisy source.

In this paper, we estimate xt by performing maximum likelihood estimation with respect

to a generative probabilistic model.

We first model the conditional probability distribution, p(di|xt, ci), which gives the

probability of a detection at a location in the image, di, given the true position of the tool

tip, xt, and the robot’s configuration during the detection, ci. We model the detection error

that is dependent on xt with a 2D circular Gaussian, Nt, centered on the true projected

location of the tool tip in the image, Tci
(xt), with variance σt. Tc is the transformation that

projects xt onto the image plane given the configuration of the robot, ci. Tci
is defined by the

robot’s kinematic model and the pin hole camera model for the robot’s calibrated camera.

This 2D Gaussian error model on the image plane can coarsely represent a number of error

sources, including the selection of motion edges around the ideal location, and inaccuracies

in the kinematic model. We mix this Gaussian with another 2D Gaussian, Nf , centered on

the image with mean 0 and a large variance σf . This Gaussian accounts for false detections

across the image that are independent of the location of the tool tip. In summary,

p(di|xt, ci) = (1 − m)Nt(Tci
(xt), σ

2
t I)(di) + mNf (0, σ2

fI)(di), (8.1)

where m is the mixing parameter for these two Gaussians.

We model a series of detections d1 . . .dn with corresponding configurations of the robot,
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c1 . . . cn, as being independently drawn from this distribution, so that

p(d1 . . .dn|xt, c1 . . . cn) =
∏

i

p(di|xt, ci). (8.2)

Using Bayes rule we have

p(xt|d1 . . .dn, c1 . . . cn) =
p(d1 . . .dn|xt, c1 . . . cn)p(xt, c1 . . . cn)

p(d1 . . .dn, c1 . . . cn)
. (8.3)

Since we are only looking for relative maxima, we can maximize

p(d1 . . . dn|xt, c1 . . . cn)p(xt, c1 . . . cn). (8.4)

We also assume that the tool tip position in the hand’s coordinate system is independent of

the configurations of the system at which the images were captured, so that p(xt, c1 . . . cn) =

p(Xh)p(c1 . . . cn). Since c1 . . . cn are known and constant for the data set, we can drop their

distribution from the maximization to end up with

x̂t = Argmaxxt
(p(d1 . . .dn|xt, c1 . . . cn)p(xt))

= Argmaxxt
(log (p(xt)) +

∑
i log (p(di|xt, ci))) .

(8.5)

We define the prior, p(xt), to be uniform everywhere except at positions inside the robot’s

body or farther than 1 meter from the center of the hand. We assign these unlikely positions

approximately zero probability. A variety of methods could be used to find our estimate

x̂t given expression 8.5, including gradient ascent and brute force sampling. We use the

Nelder-Mead Simplex algorithm implemented in the open source SciPy scientific library

to optimize this cost function [70]. More efficient optimization algorithms are applicable,

but this algorithm is easy to use since it only requires function evaluations. Even though

each evaluation of the cost function requires O(n) computation, where n is the number

of detections, we found it to converge quickly given our small set of moderately noisy

observations. There are many sources of error that we ignore in our model, including

uncertainty about the hand’s rotation (which will have a larger impact on long objects), the

projection dependent aspects of the kinematic uncertainty, and uncertainty in the temporal

alignment of the kinematic configuration measurements and the motion-based detections.
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Figure 8-3: The approach was evaluated on a hot-glue gun, screwdriver, bottle, electrical

plug, paint brush, robot finger, pen, pliers, hammer, and scissors.

8.1.4 Tool Tip Estimation Results

Experiments were conducted on a variety of tools with differing lengths and endpoints

(Figure 8-3). For each experiment, the 11 DOF kinematic chain from the camera to the

robot wrist was servoed to maintain a fixed pose that ensured tool visibility in the wide-

angle camera. The tool was placed in the robot’s hand and the 2 DOF (pitch,roll) of the

wrist were ramped smoothly to random positions in the range of ±60 degrees for a short

duration. The robot’s joint angles and camera images were sampled at 30hz. Approximately

500 samples (15 seconds of motion) were captured for each tool and randomly distributed

into a training set of 400 samples and a test set of 100 samples. We then hand labeled the

tool tip location for each frame of the test set.

Tool Tip Detection

Visual detection of the tool tip was computed using the motion model from Section 5.1. In

these experiments, the localization was computed offline for each pair of sequential images,

though real-time rates are achievable. A naturally lit, cluttered background was used (Fig-

ure 8-1A) to ensure a non-trivial environment for perception and background motion was

allowed. The detection method is noisy, but as shown in Figure 8-7, the detections tended

to match the hand-labeled tool tip locations. In the experiments we present, the camera

and environment were nearly stationary and the affine model of background motion was es-

timated as close to identity. Without modification the algorithm can be used in situations
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Figure 8-4: As the robot rotates a grasped object in front of its camera, its attention system

generates monocular detections of the distal end of the object. Each detection is transformed

into a ray within the hand’s coordinate system (white). Many such rays intersect at the

estimated tip location (blue). The left image visualizes these rays without background

motion. The right image is noisier due to background motion, but the tip location is still

robustly estimated.

with a slowly moving camera and other causes of global affine motion.

Tool Position Estimation

The position estimation accuracy was evaluated by first estimating the 3D tool position in

the hand on the training data set as described in Section 8.1.3. We used the parameter

values σt = 5.0, σf = 150.0, and m = 0.5. The 3D position was projected onto the image

plane for each sample in the test set. The predicted tool tip location was measured against

the hand labelled location to compute the mean pixel error. A baseline comparison can be

made by performing the estimation process on the hand labeled data set. The resulting

error is indicative of inaccuracies in the kinematic model and the camera model. The

algorithm performs favorably with respect to this baseline error. Figure 8-5 illustrates the

mean prediction error, in pixels, across the set of tools. Figure 8-6 illustrates the typical

tip prediction for each tool.
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Figure 8-5: The mean prediction error, in pixels, for each tool. The 3D tool tip position in

the hand is estimated using two data sets: 2D motion-based tool tip detection and hand-

labelled tool tips. The 3D positions for both estimates are then projected onto the image

plane for each sample in the test set and compared to the hand labelled location. The left

(dark) bar indicates the detector error and the right (light) bar indicates the hand labelled,

baseline error. The baseline errors are an indication of inaccuracies in the kinematic model

and the camera model.
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Brush

Figure 8-6: An example of the tip prediction for each tool. The white cross is centered at

the prediction point and measures 40 pixels across for scale. The radius of the white circle

indicates the tool’s mean pixel error. The black cross indicates the hand labeled tool tip.
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Figure 8-7: Error histogram, in pixels, for raw motion-based detection of the tool tip with

respect to the hand-labeled tool tip for all tools. [Right] Detailed view of the left graph.

Discussion of the Results

As Figure 8-6 illustrates, the estimation process performs well as measured by the image

prediction error. The wide angle camera from which the images were captured allows a

larger variety of tool sizes to be explored, but the resolution of the tip was often low, on the

order of 10 pixels. Errors can originate from poor calibration in the kinematic and camera

model, as the baseline errors in Figure 8-5 demonstrate. We trained each estimator on a

data set of 400 samples which is conservatively high given the effectiveness of the motion-

based detector and the ideal requirement of only two distinct views. It is important that

the wrist sample a large space of poses. In the extreme case of hand rotation occurring only

in the image plane, the depth of the tool position would be indeterminate.

8.1.5 Discussion

In this section we presented a straight-forward approach to detecting the end point of a

tool in a robot hand and estimating its 3D position. The strength of our approach is that it

assumes little prior knowledge about the tool or its position in the hand and avoids complex

perceptual processing. Rather than segmenting the tool, estimating the 3D shape of the

tool, or otherwise representing the details of the tool prior to detecting the tip, this method

jumps directly to detecting the tip of the tool. The success of the method relies on two

main observations. First, the natural utility of many human tools depends on the tool’s
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endpoint. Second, for many of these tools the endpoint can be detected by its rapid motion

in the image when the robot moves its hand while holding the tool. For the results we

present, the robot’s hand is roughly human in size and shape and thus well-matched to

human tools. This detection method might not perform as well with robot end-effectors

that differ significantly from a human hand (for example they might be large with respect

to the tool).

We estimate the 3D tool tip position in batch-mode by optimizing the cost function

of Equation 8.5. A recursive filter, such as an extended Kalman filter, could provide an

adaptive, online alternative to the estimation technique. This could be used to adjust for

possible slip in the robot’s grasp of the tool during use. As we will see in the Section 8.3,

other perceptual cues can be beneficially integrated into this method. Motion does, however,

have some especially beneficial properties for this type of detection. First, motion helps us

to find elements of the world that are controlled by the robot’s hand. Stereo analysis of a

static scene could be used to select elements of the scene that are close to the hand, but

without motion, stereo could not detect which points are under the hand’s control. Second,

by moving the hand and tool we are able to observe them from several distinct views, which

reduces sensitivity to the particular position of the hand and increases overall robustness.

8.2 Control of the Tip

8.2.1 TipPose

The TipPose module places the tip of a grasped tool at a desired position and location in

the world frame. The 3D estimate of the tip’s location within the hand’s coordinate frame,

x̂t , can be used to effectively extend the robot’s kinematic model by a link. This provides

many options for control. In this section we describe a virtual spring method for control

of the position and orientation of this task-relevant feature. Virtual spring control of the

tooltip uses the well known Jacobian transpose method [35] for relating manipulator forces

to torques. It is a straightforward technique strongly related to virtual model control [68]

and operation space control [77]. Virtual forces at the end-effector are simulated that bring

the tool tip to a desired pose. This linear method typically assumes that the joint angles

start close to their final state.

The Jacobian, J, is known from the kinematic model. It relates a 6x1 force-moment
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Figure 8-8: Left: Virtual springs control the position of the palm pt and the tooltip x̂t in

the hand’s coordinate frame {H}. Forces fht ∝ (xd − x̂t) and fhp ∝ (pd − pt) generate a

virtual wrench at the end-effector which achieves the desired tip location xd and the desired

palm location pd. Right: Visual tracking of the tooltip defines a ray, ri, in {H}. The

closest point to x̂t on the ray is yt . This location is used to visually servo the tip to a

target.

wrench at the hand to joint torques as τ = JTfw. Instead of controlling the arm’s joint

torque directly, we control the joint angle, and our controller takes the form of ∆θ = σJT fw

for controller gain σ.

Using this controller, the position and orientation of the tip of a grasped object can

be controlled by specifying the virtual wrench fw at the end-effector. As shown in Figure

8-8, this wrench is created through two virtual springs in the hand’s coordinate frame {H}.

One spring controls the position of the tip by moving x̂t to the target location, xd. The

other spring controls the orientation of the tip by moving the robot’s palm, pt, to the target

location pd.

To compute the net wrench fw, we first introduce the force-moment transform [35],

M(R, t) =


 R 0

P (t)R R


 , (8.6)
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where P (t) is the cross product operator

P (t) =




0 −t3 t2

t3 0 −t1

−t2 t1 0


 . (8.7)

Given the coordinate transform aTb = [ aRb|ta
borg], the force-moment transform relates a

wrench in {B} to a wrench in {A} as M( aRb, ta
borg). We can now relate a virtual wrench

at x̂t to {H} using M(I, x̂t). Likewise, a virtual wrench at the palm relates to {H} through

M(I,pt). Therefore, each virtual spring generates a virtual wrench at the wrist as

fh
t = KtM(I, x̂t)

[
(xd − x̂t) 0 0 0

]T

(8.8)

fh
p = KpM(I,pt)

[
(pd − pt) 0 0 0

]T

, (8.9)

The spring stiffness Kt and Kp is adjusted in a diagonal gain matrix. We can align these

forces with M( wRh, 0), giving the desired virtual wrench acting on the end-effector:

fw = M( wRh, 0)
(
fh
t + fh

p

)
. (8.10)

This controller assumes a manipulator with a spherical 3 DOF wrist, allowing arbitrary

rotation and translation of the hand frame. It also assumes that the manipulator is not

near a singularity. Domo’s wrist has only 2 DOF and consequently we must assume that

the correct orientation is locally achievable with the restricted kinematics. If we initialize

this controller with a task-dependent manipulator pose, then in most cases it is possible

to avoid singularities and issues with the restricted kinematics. Related techniques such as

Damped Least Squares could be used instead of the Jacobian transpose in order to limit

these restrictions [26].

8.2.2 TipServo

Visual servoing can allow a manipulator to be controlled using a coarsely calibrated hand-

eye transform. There are numerous techniques for accomplishing this. An excellent survey

of visual servoing for manipulation is provided by Kragic [81]. In the absence of visual

servoing, a robot will typically map a visual scene to a 3D object model in the camera

frame, transform this model to the world frame, and then use a cartesian space controller to
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adjust its manipulator relative to the object. This approach requires a precisely calibrated

models which is not always easy, or possible to produce. In addition, a 3D model of the

object isn’t always available, particularly in human environments.

TipServo incorporates visual feedback into the TipPose module in order to compensate

for Domo’s coarsely calibrated hand-eye transform. This coarse calibration can cause errors

in the estimation of the tool tip x̂t. Estimate x̂t minimizes the pixel error between feature

detections and the projection of x̂t into the image. Consequently, even if x̂t fits the detection

data well, it can be inaccurate with respect to a coarsely calibrate 3D kinematic frame. As

the arm moves away from the pose where x̂t is learned, these errors become evident. An

open-loop controller like ToolPose is succeptible to these errors, especially in fine-resolution

tasks such as the insertion of two similar sized objects.

TipServo visually detects the tip and adjusts x̂t online. The algorithm is summarized

as follows:

1. Visually detect the tip whenever the wrist rotates as detection di.

2. Compute the probability that the detection corresponds to the tip as p(di|x̂t, ci) using

Equation 8.1.

3. Whenever p(di|x̂t, ci) > ǫ, for some threshold ǫ, (re)initialize a visual feature tracker

using di.

4. Use the 2D tracked feature to create an online approximation of the 3D tip location

yt.

5. Substitute yt for x̂t in the feedforward TipPose controller.

It should be pointed out that the manipulator is servoed in 3D using 2D information. This

type of controller is classifed by Kragic as a position-based-visual-servo-system [81]. As

shown in Figure 8-8, we define yt as the point on the ray ri that is closest to x̂t, where ri

is the ray in the hand frame that passes through the tracked feature. This is equivalent to

choosing the maximum likelihood location when the estimation error is distributed around x̂t

according to a 3D Gaussian model. Of course, the actual distribution is a complex function

of the kinematic state, but this simplification suffices for our purposes. We don’t control

the tracked image feature ri directly for two reasons. First, we would like reuse the TipPose
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controller. Second, a low update rate by the tracker can cause controller instability. yt is a

stable point in {H} so long as the error changes slowly across the manipulator workspace.

8.2.3 Results

As shown in Figure 8-9, we tested the virtual spring controller with and without visual

feedback. The robot rigidly grasped a long spoon with a color fiducial marking the tip.

The tip location was then estimated as x̂t. In the first experiment, the feedforward virtual

spring controller traced the tip along an 100 pixel square in the image at a fixed depth

from the camera of 350mm . The desired orientation of the spoon was aligned with gravity.

The controller error was measured between the location of the fiducial in the image and the

desired tip location on the square. In the second experiment, visual feedback was introduced

into the controller. The tip x̂t was first servoed to the start point on the square. Spoon

motion was generated at the wrist for a period of 5 seconds in order to create an initial

estimate of the tip estimation error eh. The tip yt = x̂t + eh was then traced around the

square using the virtual spring controller. During this time, the spoon’s motion was used

to update eh. As the results show, the visual feedback significantly reduced the feedforward

controller error. Inspection of the feedforward controller trajectory shows a horizontal offset

in the estimation of x̂t. The visual feedback compensates for this offset.

8.3 Moving from Tooltips to Everyday Objects

Previously we described a method for the autonomous detection of the tip of a grasped tool

and the estimation of the tip’s position in the robot’s hand. The approach was demonstrated

on a range of tools, including a screwdriver, pen, and a hammer. For these objects, we

assumed that a tool is characteristically defined by a single, distal point. However, this

characterization does not fit objects such as cups, bowls, jars, brushes, pots, and bottles.

These are not tools in a traditional sense, yet they still have a tip or endpoint that is of

primary importance during control.

In this section, we extend our definition of a tooltip. We define the tip of a tool as

occupying a circular area of some radius. In particular, we use the InterestRegions module

to detect rapidly moving edges that are approximately tangent to a circle of some radius.

This detector performs well on objects that do not have a sharp point, allowing us to expand
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Figure 8-9: Results from execution of the TipPose (top) and TipServo (bottom) modules.

After estimating the tip x̂t, each module traced the tip, projected into the image (red, left),

around an 100 pixel square (blue, left). The actual tip location was sensed in the image

with a color fiducial on the tip(black, left). The histograms (right) show the pixel error

between the desired square and the fiducial tip. Top: Using ToolPose, hand-eye calibration

errors cause the fiducial tip location to differ from x̂t in the image. Bottom: TipServo uses

visual feedback to reduce the fiducial error.
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our notion of the tip of an object to include such items as a bottle with a wide mouth, a

cup, and a brush. This feature detector outperforms our previous method on these three

objects. It also estimates the scale of the tip which can be used to build a visual model.

We use the same protocol as our tooltip detection method. An object is grasped and

rotated at the wrist. Given a pair of sequential images, InterestRegions computes the

interest point detection map, ms, from Equation ??. For each scale-space s, we detect

the points within ms that have a strong response above a threshold. After n detections

d1 . . .dn, the detections are passed to the tooltip estimation algorithm and x̂t is computed

as before.

The size of the object’s tip can be estimated using the scale of each detection provided

by InterestRegions. First, for detection di we use the kinematic configuration ci to compute

the depth of x̂t in the camera frame {C} as zi. The tip size for di is then 2rsizi

f
for the scale

radius rsi and camera focal length f . Next, we select all probable detections such that,

given di and threshold ǫ, p(di|x̂t, ci) > ǫ . Finally, the estimated size of the object’s tip is

taken as the average tip size for all probable detections.

8.3.1 Results

We validated our method on a bottle, a cup, and a brush, as pictured in Figure 8-5. The

items were chosen for their varying tip size and length. When the tool is placed in the robot’s

hand, it automatically generates a short sequence of tool motion of about 200 samples over

5 seconds.

For each tool we compare the multi-scale detector to the original edge-motion detector.

Figure 8-5 shows the mean prediction error, as measured by the tool tip projection into the

image, for the two detectors. The multi-scale detector significantly improves the predicted

location for these three objects that have large, broad tips. The detector also enables

online modeling of the tip. Figure 8-10 shows the ability of the detector to appropriately

extract the size of the tool tip. Figure 8-11 illustrates the construction of a pose normalized

visual model of the tip. This model facilitates the use of visual features that describe the

appearance of the tip over its estimated spatial extent. For example, an HSV histogram of

the tip apperance could be learned online to augment the detectors performance.
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Figure 8-10: Detection and estimation of the generalized tooltip for three test objects.

Left: The upper left image gives an example of the images used during estimation. The

movement of the person in the background serves as a source of noise. The red cross marks

the hand annotated tip location and has a width equivalent to twice the mean pixel error for

prediction over the test set. The green circle is at the tip prediction with a size equal to the

estimated tip size. Right: The mean prediction error, in pixels, for each of the three tools.

The 3D tool pose is estimated in three ways: the hand labelled tips (left bar), detections

from InterestRegions (middle bar), and the maximum motion point (right bar).

Figure 8-11: These average tip images give an example of acquiring a model of the tip’s

appearance. For the three test objects, square image patches of the tips were collected

using the tip detector, tip predictor, and smoothing of the estimated state. They were then

normalized in scale and orientation and averaged together.
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8.4 Learning the Task Specific Prior

For many tasks and objects, a task relevant feature will appear in a canonical region rel-

ative to the hand. When we write with a pen or use a hammer, we have a strong prior

expectation of where the functional end of these objects will appear. A robot could learn

these priors from experience, allowing it to more quickly localize the feature and discount

features far from the prior. Even though the exact location of the task relevant feature will

vary depending on the object and grasp, we assume that the feature location can be usefully

estimated with a probability distribution. Such priors are task specific. A water bottle that

is being poured may have a different prior than a water bottle that is being placed on a

shelf.

Learning the task specfic prior also allows the robot to predict where the feature might

appear in the image. This relates to the work of Torralba [133], who describes a framework

that uses contextural priors to improve visual search and modulate the saliency of image

regions. Prior knowledge of where the feature may be can aid the robot’s controllers. In

order to localize a tool tip using a uniform prior, Domo must hold the object far from the

camera and randomly sample from the full range of wrist postures. Given a non-uniform

prior, Domo can now bring the object closer to the camera and only sample from wrist

postures that provide unobstructed views of the maximum likelihood tip location.

In Section 8.1.3 we defined the prior on the expected tool tip location, p(xt), to be

uniform everywhere except at positions inside the robot’s body or farther than 1 meter from

the center of the hand. In this section we consider how Domo can learn a non-uniform prior

p(xt|q) conditioned on the specific task category q . This estimation process is illustrated

in Figure 8-12 .

8.4.1 Density Estimation

We estimate the task specific prior, p(xt|q), using a probability distribution centered around

the robot’s hand. An 3D histogram, or occupancy grid, is used to estimate the distrubtion.

For a specific category of task relevant feature q , the robot manipulates a small set of typical

objects used in that task. To detect the feature as in Section 8.1.2, each object is grasped

and the robot rotates it while detecting the most rapidly moving point between pairs of

consecutive image. Each visual detection corresponds to a ray in the hand’s coordinate
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Figure 8-12: The task relevant prior, p(xt|q), is a non-uniform probability distribution

centered on the hand frame {H} for task q. It is a 3D spatial distribution (green) describing

the likely location of a task relevant feature, xt, such as the tool tip. Two feature detections,

represented by rays r1 and r2, define a candidate tip location through the nearest point of

intersection, xm. A 3D histogram of these locations describes the non-parametric density

distribution.
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frame that is presumably near the distal tip of the object. In the ideal case, any two rays

would intersect at the object tip. In the non-ideal case, we can take the closest point between

any two rays as a candidate location of the tip. The spatial distribution of these candidate

locations, accumulated over the set of task related objects, is then used to approximate

p(xt|q).

Collecting 3D Detections

We first find the point xm that minimizes the distance between two rays. A ray is defined

with a start point s and a point on the ray p. The set of points on a ray are defined by

xα = (p − s)α + s such that xα · (p − s) > 0. We can find the points on the rays that are

closest to one another using the following equation in the standard linear least squares form

Ax = b.

[
p1 − s1 p2 − s2

]

 α1

α2


 = s2 − s1,

If the points associated with α1and α2 are valid points on the rays, then xm = 1
2(xα1

+xα2
)

defines a point that minimizes the squared distance between the two rays. This gives the

maximum likelihood estimate for the intersection of the two rays given our probabilistic

model1. The distance between the rays is also defined as ‖xα1
− xα2

‖.

Now, given a visual tip detection in the image, we can define a ray in the hand frame

{H} which passes through the detection pixel and the camera focal point. If the robot

manipulates an object and generates n visual detections, we can construct n(n−1)
2 pairs

of rays. We collect all pairs of rays that come within some distance, kray, of one another.

Pairs beyond this threshold are unlikely to have visual detections corresponding to the same

feature. This computation is O(n2).

Each pair of rays corresponds to a candidate tip location in {H}. For a feature category

q, candidate locations are collected across all objects in the category training set. This

results in the training data set Lq which describes a spatial distribution around the true

tooltip. There are many sources of error that we ignore, including error sensitivity as a

function of distance from the camera due to projection, uncertainty about the hand’s rota-

1This will be the maximum likelihood location given two detections for a large class of probabilisitic

models that depend on the distance between the point and the rays.
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tion that will have a larger impact on long objects, and the higher likelihood of intersections

at points that are close to the camera. However, this method is computationally efficient,

easy to visualize, and produces good results.

3D Histogram

For each data set Lq, we model the spatial distribution of the task relevant feature using

the probability distribution p(xt|q). This represents the chance, given task q, of seeing the

feature at a location, xt in the hand’s coordinate system {H} . Using this coordinate system

allows for visual tip detections to be registered across multiple views of the same object,

and across multiple objects that could be applied to the same task. p(xt|q) is estimated

using a kb ·kb ·kb bin 3D histogram. The histogram spatially corresponds to a cube centered

on the hand with size kd per side. Therefore, kd

2 is the maximum possible extent of any

grasped object. We define the histogram binning function as

g(a,b) = δ(round

(
kb

kd

(ax − bx)

)
)δ(round

(
kb

kd

(ay − by)

)
)δ(round

(
kb

kd

(az − bz)

)
),

(8.11)

where δ(d) =





1 if d = 0

0 otherwise

. The probability distribution is then

p(xt|q) ≈
1∑

i∈Lq
w(i)

∑

i∈Lq

w(i)g(i,xt). (8.12)

The weighting function w(i) assigns a zero probability to candidate locations that are too

close (km) or to far (kd) away from the hand, such that w(i) =





1 if km < ‖i‖ < kd

0 otherwise

. The

maximum likelihood location of the task feature is then taken as the maximal histogram

bin, or xq = Argmax (p(xt|q)).

8.4.2 Results

We estimated p(xt|q) for four task categories using three objects for each category:

1. Placing a mug, paper cup or watter bottle on a shelf.

2. Covering a surface with a duster, large paint brush, or small hand broom.
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Figure 8-13: Probability distributions for the task specific priors.
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A B

C D

Figure 8-14: Results of learning the task specific priors for four different tasks. Each view

shows a scatter plot of the 3D data Lq relative to the hand. Each data point is a candidate

location of the tip of the grasped object. For each task, three different but functionally

related objects were used. The data is partioned into two clusters. The distal cluster (red)

is used to construct the prior density distribution for the task feature. The centroid of the

cluster, depicted with a 50mm sphere, is the learned canonical location of the feature for

the task. The cube is 300mm per side for scale. (A) Grasping a cup or bottle for placement

on a shelf. (B) Grasping a duster or paint brush. (C) Grasping a hot glue-gun or small

hand saw. (D) Grasping a stirring spoon.

148



3. Pointing a hot-glue gun, a heat gun, or a wooden toy gun.

4. Inserting a large stirring spoon, small stirring spoon, or condiment bottle into a con-

tainer

These tasks were chosen for the unique, canonical location of the distal tip of the grasped

object during task execution. For each object, the 11 DOF kinematic chain from the camera

to the robot wrist was servoed to maintain a fixed pose that ensured tool visibility in the

wide-angle camera. The tool was placed in the robot’s hand and the 2 DOF of the wrist

were ramped smoothly to random positions in the range of ±60 degrees for a short duration.

Visual detection of the fastest moving point was used to generate 50 detections of the object

tip. For each of the approximately 1200 pairs of detections, xm was computed and added to

the dataset Lq subject to kray = 10mm. The histogram was constructed using kd = 600mm

and km = 50mm.

We implemented an additional constraint on each valid pair of detections for practical

reasons. If the two features were detected from similar wrist postures, then the two rays

may be near parallel. This magnifies sources of kinematic and visual error. To reduce

this effect, we found it useful to discard detection pairs when the wrist rotated less than

15 degrees between samples. It was also found useful to first cluster Lq into two clusters

using K-means. The visual detection algorithm often detects features on the hand when

the object tip is obstructed by the hand. Consequently, a significant component of Lq is 3D

locations on the robot’s hand. By first discarding the cluster that is closest to the hand, we

reduce this effect.

Figure 8-14 shows the spatial distribution of these clusters around the hand for each

task category. As shown, the maximum likelihood location, xq, corresponds to the expected

object tip location for each task. The presence of noise is due to false detections typically

resulting from ego-motion of the head, occlusion by the hand, or a person moving in the

background. False detections tend to be randomly distributed when viewed from the moving

coordinate frame {H}. In contrast, tip detections are stationary in {H} and therefore

localized around the true tip xt.
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8.5 Working with Tips

In the previous sections we presented the components required for a robot to localize and

control the tip of a unknown grasped object. This ability is integrated into the TipUse

module so that whenever the robot is handed a new object, it can quickly find the object

tip and begin controlling it for a task. In this section we describe TipUse and the modules

required for its execution.

8.5.1 TipPriors

Using the task specific prior, p(xt|q), from Equation 8.12, the TipPriors module simply

computes the expected tip location xq = Argmax (p(xt|q)) given the current task category

q. The active high-level module with control of the manipulator will define the category q.

For example, when SurfacePlace is activated, TipPriors will compute

xq = Argmax (p(xt|SurfaceP lace)) .

The prediction xq is then used by any module that SurfacePlace might activate such as

TipEstimate and TipPose. Although TipPriors limits the generality of ToolUse and is not

required, it allows for greater efficiency when estimating x̂t. This is convienient for real-time

tasks involving a collaborator.

8.5.2 WristWiggle

The WristWiggle module generates rotations at the wrist in order to allow TipEstimate to

localize the tip. In the absence of tip prediction xq, WristWiggle randomly explores the

wrist workspace. The 2 DOF of the wrist are ramped smoothly to random positions in the

range of ±60 degrees. This is often inefficient because the tip may go out of the field-of-view

or be obstructed by the hand. Also, if the tip moves too quickly between two images, it may

move outside the search window used in the visual block-matching algorithm. Significant

motion blur may occur at the tip as well.

However, if xq is known, then as we will see, the TipPose module can be used to keep

the tip within the field-of-view. Knowing xq also allows WristWiggle to restrict the tip

velocity. If the arm and wrist move between configurations c1 and c2 in time t, then the tip
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TipUse

AssistedGrasp

TipPose

TipEstimate

TipServo

WatchHand

WristWiggle

GraspDetect

TipPriors

Figure 8-15: The TipUse module allows the robot to take an object from a person, quickly

find its tip, and control the tip for a task.

velocity in the image is simply

v =
‖Tc2(xq) − Tc1(xq)‖

t
,

where Tci is the hand-to-eye transform. It is then straightforward for WristWiggle to inter-

polate between c1 and c2 such that v < ǫw for some limit ǫw.

8.5.3 TipEstimate

The TipEstimate module simply computes x̂t using Equation 8.5. Typically, this is ac-

complished using approximately 200 − 300 detections collected over approximately 10 − 15

seconds. However, if the task category is defined in TipPriors, then TipEstimate replaces

the uniform prior p(xt) with p(xt|q) in the estimation process. This allows increases the

efficiency and robustness of the process and only 50 detections are used.

8.5.4 TipUse

The TipUse module enables Domo to take an object from a person, quickly find its distal

tip, and control the tip for a task. The module that activates TipUse defines the task,

including the task category and the control trajectory. The algorithm is as follows:

1. Secure a power grasp on an object relevant to the task.
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2. Predict the location of the object’s tip using learned priors.

3. Pose the manipulator so the predicted tip is visible by the camera.

4. Direct the eye gaze at the hand and generate rotational motion at the wrist.

5. Detect the tip through visual motion and estimate its true location.

6. Visually servo this tip through the desired tip trajectory.

As shown in Figure 8-15, TipUse integrates many of the modules we have discussed. To

begin, Domo acquires an object through AssistedGrasp and predicts the tip location, xq,

with TipPriors. Given xq, the TipPose module positions the manipulator so the tip is

visible by the camera. Regardless of the wrist orientation, xq should remain within the

field-of-view if the hand is kept at an appropriate depth from the camera. We compute this

depth as

zc = ‖xq‖
f

u
,

for focal length f and field-of-view 2u pixels. The depth zc uniquely defines a palm location

pd and tip location xd that allows TipPose to point the object at the camera.

With the object pointing at the camera, WatchHand servos the gaze to the hand frame

{H}. The arm and head maintain this posture but the wrist is allowed to move. WristWiggle

generates small ±30◦ explorations about this pose, ensuring that the tip remains facing the

camera. TipEstimate computes the tip location x̂t using the tip prior. Finally, TipServo

controls x̂t through a trajectory specifed by the higher-level task.

8.6 The Task Relevant Hand

The robot’s hand is certainly one of the most significant objects in the robot’s environment.

Perception and control of the hand can also be cast in the framework of task relevant

features. The importance of a hand’s feature is dependent on the task. In screwing a cap

onto a bottle, we can consider the fingertip as the relevant feature. In flipping through

papers, the tactile slip between the fingers is of primary importance. In picking up a soda

bottle, the contact surface of the palm is critical. In this section we consider this last

example. We present the PalmServo module which visually servos the contact surface of
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Figure 8-16: Left: The robot’s view during execution of PalmServo. This occurs in an

everyday environment which includes a shelf, a person, as well as natural lighting and a

cluttered background. The green circles mark the convex shape of the open hand which is

being servoed. Right: The motion edges used in the detection of the palm.

the open hand as it is brought to an object for grasping. This module is an extension of

the TipServo module presented earlier.

8.6.1 PalmServo

When precise hand-eye calibration and a 3D model of the hand is not available, it can be

necessary to visually detect the hand in the imge. The PalmServo module uses motion cues

to detect the hand. This does not rely on a detailed model of the hand and is therefore

extensible to a wide range of robot hands. Many researchers have created related methods

for visual hand detection through motion. Fitzpatrick and Metta [42, 93] used image dif-

ferencing to detect ballistic motion and optic-flow to detect periodic motion of the robot

hand. For the case of image differencing they also detected the tip of the hand by selecting

the motion pixel closest to the top of the image. Natale [97] applied image differencing

for detection of periodic hand motion with a known frequency, while Arsenio [6] used the

periodic motion of tracked points. Michel et. al. used image differencing to find motion

that is coincident with the robot’s body motion [94]. These methods localize the hand or

arm, but do not select a particular feature on the manipulator in a robust way.

PalmServo is an extension of the TipServo controller. As shown in Figure 8-16, it

visually servos the contact surface of the palm when the hand is open. The palm is defined

by the convex shape of the open hand projected into the image. The open hand is always
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directed towards the camera during this servoing, increasing the likelihood that the palm

feature is visible. Visual detections of the feature are passed to the TipServo controller

as a tip detection. TipServo then controls the point xp in the image, where xp is the

kinematically estimated location of the palm feature in the hand frame.

PalmServo uses motion cues to detect the palm feature. The feature is detected using

the InterestRegions module of Section xxx. However, we incorporate the hand motion

prediction from Section yyy to increase the salience of moving hand edges. When used

with the interest point operator, we can select for convex edges on the moving hand. The

robot’s kinematic model also provides a rough prediction as to the scale and location of the

palm feature in the image. This is used to ignore detections that differ drastically in scale

location from the prediction. Now, as the open hand moves in the image, PalmServo passes

detections of the palm to the TipServo controller. We present results for PalmServo as part

Section 9.1 which describes the SwitchHands module.

8.7 Discussion

In practice, not as modular as presented!!! TipServo requires careful consideration of motion

so get tip, etc...

Discuss other featuers: shelf, surface, container opening, gravity, handles, ...

–do trials with estimation and with and coded. x objects. success and doing transfer.

mean error while tracking vs hand annotated.

Placing on shelf: basic stabilty geometry/force analysis

–3D stereo integration, also pose,not just position is important
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Chapter 9

Putting It All Together

In this chapter we demonstrate how the modules presented thus far can be integrated into

useful, cooperative manipulation tasks.

9.1 SwitchHands

Transferring an object from one hand to another is a fundamental component of a person’s

manipulation repertoire. For example, a person taking notes while on the phone will transfer

the phone to their non-writing hand. A person putting away dishes will remove an plate

from the dishwasher with one hand, pass it to the other, and then place it in a cabinet.

These seemingly simple acts increase a person’s versatility while expanding the workspace

of reachable locations. The SwitchHands module, shown in Figure 9-1, allows Domo to pass

a grasped, cylindrical object from one hand to another. The algorithm is as follows:

1. Acquire an object and estimate its tip.

2. Brings both hands into the visual field-of-view.

3. Visually servo the palm of the empty hand to be just below the object’s tip.

4. Lower the empty hand through force control until the other hand detects contact.

5. Form a power grasp and detect its success.

6. If no success, back out and retry the servo.

7. If both hands are grasping, release the older grasp.
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SwitchHands

TipUseL

TipPoseL

TipPoseR

PalmServoR

CompliantLowerR

PowerGraspR

RetractArmR/L

WatchHandR

ContactDetectL

TipPriorsR

GraspDetectR

StiffnessAdaptL

Figure 9-1: The SwitchHands module to transfer an object from the left hand to the right.

Lets consider the case where an object is passed from the left hand to the right. SwitchHands

begins by activating TipUseL in order to acquire an object and find its distal tip. Instead

of servoing the object, TipPoseL places the object at a canonical location and points the

object’s primary axis at the camera. Next, TipPoseR brings the right hand into a canonical

location a set distance from the left hand. The top of the hand also points towards the

camera. This configuration of the manipulators is shown in Figure 9-7-E. WatchHandR

keeps the hand within the field-of-view as PalmServoR visually servos the palm of the hand

to the grasped object. If the object tip is at [xc, yc, zc]
T in the camera frame, the target

location for the right palm is just below the tip at [xc, yc, zc +∆z]T for offset ∆z. When the

palm has been servoed into place, the StiffnessAdaptL makes the left arm compliant while

CompliantLowerR lowers the right hand onto the object. The displacement of the left hand

is detected by ContactDetectL and the right hand forms a power grasp on the object. If

GraspDetectR is signaled, the left hand release the object and both arms are retracted. If a

grasp is not made or contact is not detected, SwitchHands reattempts the process. Figure

9-7 shows the execution of SwitchHands.
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9.1.1 Results

It would seem that SwitchHands could be easily implemented using open-loop control given

enough assumptions about the object and its pose in the hand. However, even for cylin-

drical objects, this controller would not be robust to variation of the cylinder’s pose in the

hand. Also, if the grasp aperture of the open hand is close to the size of the cylinder,

precise calibration of the arms is required. SwitchHands improves the open-loop controller

through visual control of the palm and estimation of the object’s pose in the grasp. We

experimentally tested this robustness by xxx.

9.2 BimanualFixture

In a bimanual fixturing task, a robot holds an object between its two hands in order to

assist a person. For example, a robot could hold a laundry basket while the person loads

in the clothing, or a robot could hold a serving tray at a dinner table. In this section we

describe how Domo can control the position and orientation of a bimanually held box in

order to assist a person loading objects in to it.

The general problem of controlling the internal forces applied to a bimanually grasped

object is well understood theoretically [142]. These controllers typically assume that a full, 6

DOF force wrench can be applied instantaneously to the rigidly held object. This would be

difficult in practice given Domo’s actuators and kinematic limitations. In addition, it is not

possible to assume a rigid, point contact grasp given Domo’s compliant skin on the hand.

Instead, we consider a simplified form of the problem and leverage the robot’s inherent

compliance to maintain stable control of the box. A non-prehensile grip is used such that

the object is squeezed between the palms of the hands and the palms are aligned to the box

surface. The size of the box is unknown but assumed to be of a reasonable size and shape

for the manipulators to achieve the task.

The BimanualFixture algorithm, illustrated in Figure 9-3, is as follows:

1. Upon request, raise both arms to cue the person to hand the box.

2. Detect placement of the box between hands through contact forces.

3. Use virtual spring controllers and low arm stiffness to stably grasp the box between

palms.

157



A B C

D E F

G H I

Figure 9-2: Video stills of the SwitchHands module. (A) A bottle is grasped using Assist-

edGrasp. (B-C) The tip of the bottle is estimated. (D) The arms are placed in canonical

poses. (E) The top of the hand and the bottle tip are pointed to the camera. (F-G)

PalmServo brings the palm surface to the bottle. (H)The palm pushes down on the bottle

ContactDetect signals the hand to close. (I) The other hand releases its grasp.
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BimanualFixture

BimanualCue

PowerGraspL,R

PersonDetect

GraspDetectL,R

PersonSeek

PersonSeek

PersonDetect

BimanualServo

StiffnessAdapt

ContactDetectR

VocalRequest

VocalRequest

BimanualLower

Figure 9-3: The BimanualFixture module. When both hands are empty (EmptyA,B), the

robot seeks visual detection of a person. Upon seeing a person and a vocal request, the

robot reaches with both arms to cue (BimanualCue) the person to hand it a box to hold.

BimanualGrasp forms a stable grasp on the box after manipulator contact is made. As the

person loads objects into the box, FixtureServo maintains a constant squeezing force on

the box while positioning it near the person. Finally, BimanualPlace lowers the box on to

a nearby table upon request. (Right, FixtureServo) The PersonSeek module controls the

head to increase the likelihood of PersonDetect through visual search and tracking. When

a stable grasp is made on the object (GraspDetectA,B) and a person is present, the servo

loop updates the arm pose (PoseA,B) to maintain the grasp and bring the box near the

person. StiffnessAdapt lowers the wrist and arm stiffness so that the arms behave as soft

virtual springs squeezing the object.
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Figure 9-4: Collaborative bimanual fixturing as described in the text.

4. Visually the track person as they load items into the box and reposition it near them.

5. Upon request, place the box on a nearby table or shelf if it is present.

In the next section we describe the virtual spring controllers for performing the bimanual

grasp.

9.2.1 Control

We consider the case as shown in Figure 9-4 where the box is already stably grasped.

From the robot’s kinematic model, we know that the palms are at Xl and Xr. We define

Xc = Xr+Xl

2 as the object’s estimated center of mass (COM). The controllers for the two

arms are to keep Xc at a fixed radius r from the body, at a height zc, and in the gaze

direction, θp, towards a person in the environment. They also keep the orientation of the

box, defined by the ray Xr −Xl, at a desired angle, θc, to the body. It is assumed that the

top of the box is kept normal to gravity for the task duration.

In our simplified model the manipulators impart only forces but no moments at the

palms due to the non-prehensile grasp. It can be shown [142] that the resultant forces Fb,

moments Mb, and interaction forces Tb due to the applied forces Fl and Fr are




Fb

Mb

Tb


 = G


 Fl

Fr


 ,
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where G is the bimanual grasp description matrix

G =




1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 0 0 0

0 0 d
2 0 0 −d

2

0 −d
2 0 0 d

2 0

−1 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




,

and d = ‖Xr − Xl‖. The equillibrating forces, Fb and Mb, maintain equillibrium under an

external load such as gravity. The interaction forces, Tb, are internal to the grasped object.

In our case, Tb is the squeezing force on the box. Its magnitude, ‖Tb‖, should be sufficently

large such that the the contact friction with the palm is sufficient to support the weight of

the box.

Virtual spring controllers create Tb by applying opposing forces along ray (Xr − Xl).

These are defined by Fr = −kf (Xr − Xc) and Fl = −kf (Xl − Xc). The spring stiffness,

kf , is then proportional to ‖Tb‖. Rather than controlling the force at the palm directly, we

approximate this force through a constant error in the desired joint angle of the arm. For

the right arm, this is ∆θr = σJT Fr given scalar σ. This approximation takes advantage of

the joint angle controller of Equation XXX, where the controller error is linearly related to

joint torque. By keeping the stiffness of the arms relatively low and using this method, the

arms remain can remain in stable contact with the box under large disturbances.

In practice, we do not know the true pose of the box between the robot’s hands. The

forces applied to it are a complex function of the geometry of the box, the palm, and the

joint torques of the arm. Rather than attempt to fit the world to our simple model, we

allow the compliance in the arms and hands, combined with the large contact surface of the

palm, to compensate for non-zero moments on the box. A 2 DOF wrist controller is used to

keep the surface normal of the palm aligned with the ray (Xr −Xl). However, the stiffness
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Figure 9-5: The virtual spring controller is able to maintain a stable grasp on boxes of

varying sizes. For each of the three boxes tested, a person applied external disturbances to

the COM of up to 0.2m . The controller was able to maintain the grasp and restore the box

position.

of this controller is kept low. This, combined with the compliant skin of on the palm, allows

the box and wrists to passively realign themselves such that contact is maintained with the

box and the resultant wrench is minimized.

As the person moves around the room, the gaze direction towards the person changes

from θp to θ́p. Given r, this defines a new target COM of X´
c = [rsin(θ́p), rcos(θ́p), zc]. We

define the desired box orientation, θc = θ́p, such that the box remains tangent to the arc

of radius r. We also infer the box width as d = ‖Xr − Xl‖, yielding a new target location

for the right palm X´
r = X´

c + [d2cos(θ́p),
d
2sin(θ́p), 0]. The desired joint angle of the right

arm is computed as θr = IK(X´
r) + ∆θr, where IK(·) is the inverse kinematic function.

A similar update is computed for the left arm. For a smoothly changing θp , this has the

desired affect of incrementally adjusting the box COM and orientation while maintaing a

constant squeezing force on it. Finally, the height of the box can be controlled within the

joint limitations of the manipulators by varying zc.

9.2.2 Results

We first tested the ability of the virtual spring to maintain a stable grasp on boxes of varying

sizes. As shown in Figure 9-5, three boxes of different sizes were successfully tested. For

each, the box was grasped and servoed to a fixed position for 8-10 seconds. A person applied

external disturbances of the COM of up to 0.2m while the controller maintained its grasp

and restored the box position. Figure 9-6 shows the controller response for one of the boxes.

We then demonstrated the complete BimanualFixture module. As shown in Figure 9-7,
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Figure 9-6: The magnitude of the equillibriating and interaction forces to a disturbance

during bimanual fixturing. A box was grasped and servoed to a fixed position for 8 seconds.

(Top) During this time a person displaced the box COM from its rest position by up to 0.2m

. (Middle) The controller responded with equillibriating moments (‖Mb‖) and forces (‖Fb‖)

to restore its position. (Bottom). Interaction forces (‖Tb‖) were maintained throughout the

experiment despite the disturbances. Although they momentarily approach zero in several

places, a stable grasp is maintained. This is likely due to adaptation of the fingers and wrist

to the displaced surface.
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Figure 9-7: Domo assists a person in putting things away.
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ContainerStir

ContainerPlaceL

TipEstimateL

GraspDetectR

WatchHandR

TipPriors

AssistedGraspR

TipPoseR

TipEstimateR

CompliantLowerR

RetractR

TipServoR

WristWiggleR

Figure 9-8: The ContainerStir module as described in the text.

Domo is able to assist a person in putting away objects. The module is also able to fail

gracefully in case the box is removed from its grasp or the person is no longer in view.

9.3 ContainerStir

In the ContainerStir module, Domo grasps a stirring spoon and a container such as cup

or coffee mug. It inserts the spoon into the mug and stirs the contents. This involves

visually guided bimanual insertion of two objects. This type of peg-in-hole insertion is

a well studied area, especially in industrial robotics. XXXCite: Inoue, etc, peg align,

...XXX. The performance of these systems is quite good, even under moderate uncertainty

in the object pose. In one of the first examples of using compensatory actions, Inoue

demonstrated that holding the peg at angle increases task success under pose uncertainty.

However, assumptions about the shape and location of the two objects are quite strong.

Also, most work on insertion is not bimanual. The bimanual task can be both easier and

harder. The ability to control the pose of the second object allows for greater versatility

and sensing during task execution. However, it also increases the uncertainty of the relative

pose between the two objects. A compliant grasp by the second manipulator is also helpful,
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allowing the pose of the object to adapt to the first.

The ContainerStir algorithm, illustrated in Figure 9-8, is as follows:

1. Grasp a spoon and container with AssistedGrasp.

2. Lower the container onto a table and detect its insertion opening with ContainerPlace

(see next section).

3. Bring the tip of the spoon approximately above the opening opening using the Tip-

Priors for insertion.

4. Fixate the gaze on the hand while generating spoon motion at the wrist.

5. Estimate the location of the spoon tip using TipPriors and TipEstimate.

6. Visually align the tip to the center of the opening with TipServo.

7. Compliantly lower the spoon into the container, perform a simple stirring motion, and

retract.

ContainerStir is primarily a composition of other modules. The critical step is the localiza-

tion and servoing of the spoon tip. We adopt an approach similar to Inoue where the Pose

module aligns the spoon at a 45 degree angle to the table. This prevents visual obstruction

of the tip by the hand and expands the range of acceptible misalignment when performing

the insertion. During TipServo, the tip is kept on the visual ray to the center of the con-

tainer opening. The depth of the tip is then increased along the ray until the tip is just

above the insertion location. Like the RCCCXXX, the manipulator’s wrist stiffness is kept

low while performing the insertion, allowing for greater misalignment. Although insertion

success is not directly detected through the interaction forces, large hand displacements

during CompliantLower can signal the module to restart the process. The algorithm for

ContainerStir could be applied with little modification to other insertion-type tasks such

as pouring a bottle of water. However, kinematic limitations in the manipulator wrist make

this difficult.

9.3.1 ContainerPlace

ContainerPlace assists ContainerStir by reducing the location uncertainty of a container’s

insertion opening. The algorithm, illustrated in Figure 9-9, is as follows:
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ContainerPlace

CompliantLower

InterestRegions

GraspDetect

WatchHand

TipPriors

AssistedGrasp

TipEstimate

Figure 9-9: The ContainerPlace module as described in the text.

Figure 9-10: Execution of the ContainerPlace module. Top: The InterestRegions module

find the roughly circular opening of a box, jar, and a bowl. The detector is farily robust to

cluttered backgrounds. Bottom: Image sequences of CompliantLower using the table to

align a grasped cup.

167



1. The container is grasped by AssistedGrasp.

2. CompliantLower brings the object down onto a table with low arm stiffness, allowing

it to align with the surface.

3. The hand is fixated by WatchHand while InterestRegions visually detects the container

opening near the location predicted by TipPriors.

4. TipEstimate computes the likely opening location in the hand frame.

Flat surfaces are common in human environments, and like the SurfacePlace module, Con-

tainerPlace takes advantage of a flat surface to align the object. This is shown in Figure

9-10. Also, the table is used as a stable support during insertion, much like a person resting

their cup on a table before pouring a cup of coffee. We assume that a table exists, that the

container can be grasped with one hand, and that it posesses a roughly circular opening for

insertion. The insertion opening is a task-relvant feature, inclusive of a variety of objects

such as drinking glasses, bowls, small boxes, and coffee mugs. This feature is detected using

the InterestRegions module. However, the module is configured to ignore motion cues and

to find interest regions in single images. It is localized near the expected opening location

provide by TipPriors. TipEstimate computes the likely tip location using this xxx single

feature detection. Figure 9-10 shows opening detections on a variety of objects. It is worth

noting that the tip prior allows the detection to generally works well even on cluttered

tables. (XXX static???)

9.3.2 Results

The ContainerStir can generalize across insertion object and containers. We tested, seven

trials each, inserting a mixing spoon, water bottle, paint roller, and paint brush into a

paper cup. We also tested, seven trials each, inserting the mixing spoon into a papercup,

bowl, coffee mug, and jar. Each trial took less than 20 seconds to complete and was done

over a visually cluttered table. The grasp on the insertion tool was varied in each trial.

The grasp orientation varied by approximately ±20◦ along the axis of the hand’s power

grip. The grasp height on tool handle was varied by approximately ±50mm. However,

extreme variations were not attempted because of their unlikelihood given the tip prior.

In a successful trial, Domo fully inserted the tool into the container. The diameter of the
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Figure 9-11: Execution of the ContainerStir module with a cluttered background. (A-B)

ContainerPlace aligns the cup to the table and detects its opening. (C) Using TipPriors, the

spoon is brought over the cup. (D) The wrist wiggles the spoon and TipEstimate estimates

the true spoon tip (despite background motion from a person’s hand). (E-G) Using the

estimated tip, the spoon is brought over the cup by TipServo and compliantly lowered in.

(H-I) Stirring motion is executed and the spoon is removed.
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Papercup Bowl Box Coffee mug Jar

Spoon 7/7 7/7 7/7 6/7 7/7

Water bottle 6/7

Paint brush 6/7

Paint roller 5/7

Spoon-prior 1/7

Figure 9-12: Task success for ContainerInsert. In a successful trial, Domo inserted the

tool (rows) into the container (columns). For comparison, the Spoon-prior trials were done

without visual restimation of the tool tip and instead used the expected location.

Figure 9-13: The likely tip locations, as computed by TipEstimate, for each trial of the

ContainerInsert experiment.
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insertion opening varied between 75 − 100mm across the containers while the tip diameter

varied between 40 − 60mm. The results of these trials are shown in Figure 9-12.

As the results show, ContainerInsert was successful in roughly 90% of the trials. When

the visual restimation of the tip was disabled, the success rate fell to about 15%. However,

the tip locations, x̂t, do not span the full range of locations one might expect for people.

The distribution of x̂t over these trials are shown in Figure 9-13. We would expect the

algorithm to generalize to a wide range of locations. However, for TipEstimate to perform

as expected, the tip must remain in the field-of-view, the hand must not obstruct the view,

and the velocity of the tip must not exceed the limits of the visual motion model. These

constraints require tuning of the WristWiggle module, which makes small random motions

of the wrist around a setpoint. If WristWiggle adapted its setpoint and the amplitude

of its motion based on feedback from TipEstimate and TipPriors, then the generality of

ContainerInsert could be expanded further. Also, ContainerInsert could be extended to

incorporate force-feedback during the insertion. The 3D orientation of the tip could also

be sense using stereo camera. We presently assume that the tip is aligned with the object

body, but this is not always the case.

9.4 PuttingStuffAway

A significant portion of domestic and workplace tasks involve putting stuff away. Examples

include unloading a dishwasher, putting groceries in the refigerator, clearing a desk, stocking

items in a supermarket, and cleaning a bedroom. A robot that can autonomously put stuff

away in all of these varied settings would certainly be useful. However, an intermediate

step is for a robot to assist a person in these tasks. For an individual with serious physical

limitations, this help might allow the person to maintain autonomy in everyday activities

that would otherwise require help from another person. For example, an elderly person in

a wheelchair might use a robot to put a book back on a shelf.

To this end,the PuttingStuffAway enables Domo to take items from a person and put

them on a shelf. The algorithm is as follows:

1. Locate a useable shelf surface.

2. Upon request, take an item from a person.

171



PuttingStuffAway

VisualSearch

PersonSeek

SurfaceTest

PersonDetect

AssistedGrasp

SwitchHands

GraspDetect

SurfacePlace

GraspAperature

ShelfDetect

VocalRequest

GraspDetect

RetractArm

Figure 9-14: The PuttingStuffAway module described in the text.

3. Transfer the object to the hand closest to the shelf if necessary.

4. Place the item on the shelf.

As shown in Figure 9-14, PuttingStuffAway integrates the AssistedGrasp, SurfaceTest,

SwitchHands, and SurfacePlace modules into a single, high-level task. The task can be

decomposed into a shared set of perceptual and motor modules shown in Figures 6-5,7-

8,9-1,and 6-8. To begin, PuttingStuffAway attempts to locate a useable shelf surface with

SurfaceTest. If it has physically located a shelf but the shelf moves within the SES, then

SurfaceTest will reestimate its location. Next, the robot awaits its collaborator to request

assistance. When PersonDetect and VocalRequest are signaled, AssistedGrasp takes an

object that the collaborator hands it. AssistedGrasp uses whichever arm is closest to the

person. PuttingStuffAway determines which hand is closest to the shelf. If necessary, it uses

SwitchHands to transfer the object to the hand nearest the shelf. If GraspDetect signals

that SwitchHands is successful, then SurfacePlace puts the item on the shelf. The item
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is placed upright or horizontally depending on the size of the items base, as estimated by

GraspAperture.

9.4.1 Results

We tested PuttingStuffAway in 18 trials with two subjects, where each trial lasted ap-

proximately one minute. A trial consisted of the subject handing Domo a bottle, Domo

transferring the bottle to its other hand and then placing it on the shelf. One trial is de-

picted in Figure 9-15. Each subject performed 3 trials on each of the 3 bottles shown in

Figure 9-16. The bottles vary in diameter from 40− 75mm and length from 100− 200mm.

For each subject, the shelf remained stationary and the SurfaceTest module executed only

once at the start of the experiment. We measured success using the following criteria:

1. Grasp: Stable grasp after transfer of the bottle from the person to the robot.

2. Switch: Stable grasp after transfer of the bottle between hands.

3. Place: Bottle X was left on the shelf.

4. Stand: Bottle X was left on the shelf standing upright.

As seen in Figure 9-17, Domo was largely successful at the task for the given objects. One

subject was experienced in working with the robot at this task and consequently achieved a

higher success rate. Failures were typically a result of insecure grasps being formed during

the object transfer phase. Variability in the subject’s placement of the object in the robot’s

hand tended to be amplified by the transfer operation.

9.4.2 Discussion

PuttingStuffAway effectively extends the collaborator’s reach, allowing her to place objects

in locations that might be difficult or uncomfortable to access without assistance. If this

skill were combined with a mobile base, the person’s effective reach could be dramatically

extended. While the module demonstrates end-to-end execution of a useful, cooperative

task, there are many ways in which it can be extended. The assumptions of SurfacePlace

and SwitchHands restrict the types of items that can be placed. Richer sensing of the

object’s features could allow for robust placement of non-cylindrical items. As an example,
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Figure 9-15: Execution of the PuttingStuffAway module. (A-D) Hypothesis testing:

A shelf is rolled up to Domo. It is visually detected and SurfaceTest physically verifies

its location. (E-H) Cooperative interaction: A person requests assistance from Domo.

They are visually detected and AssistedGrasp cues the person to hand it the bottle. (I-L)

Expanding the workspace: The shelf is out of the person’s reachable workspace but

within the workspace of the robot’s left arm. SwitchHands transfers the bottle from the

right to left hand. (M-P)Placement: Domo places the bottle on the shelf at the learned

location. The manipulator compliance and downward force allow the bottle to become

aligned with the shelf.

174



A B C

Figure 9-16: The three bottles used in our experiments.

Grasp Transfer PlaceA StandA PlaceB StandB PlaceC StandC

Subject 1 9/9 9/9 3/3 3/3 3/3 3/3 3/3 2/3

Subject 2 9/9 8/9 2/3 2/3 3/3 2/3 2/3 1/3

Figure 9-17: Experiment results for PuttingStuffAway, with 18 trials and two subjects.

Ashutosh/Ng grasp points cite XXX. Also, all items are placed at the same location on the

shelf. Clearly, perception and planning of placement locations will be necessary component

of real-world tasks.

9.5 HelpWithChores

HelpWithChores is a final demonstration of our approach that integrates all of the modules

described thus far. HelpWithChores enables Domo to assist a person in tasks that might

be expected of a robot working in a domestic setting.

As shown in Figure 9-18, HelpWithChores integrates the BimanualFixture, Container-

Insert, and PuttingStuffAway among others. These modules run concurrently, allowing a

collaborator to vocally request them at any time. A rich integration of these modules allows

for a believable cooperative experience for the collaborator. If she sees that Domo is failing

at a task, she can provide vocal (VocalRequest) or contact (ContactDetect) feedback to alert

the robot. If Domo accidentally drops an object (GraspDetect), she can pick it up and ask

the robot to grasp it again (AssistedGrasp). Alternatively, at anytime she can ask Domo to

hand her a grasped object (AssistedGive).

This behavioral richness is central to the creature robot approach. It requires that a
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HelpWithChores

PersonSeek

PersonDetect

VocalRequest

AssistedGrasp

AssistedGive

ContainerStir

PutStuffAway

BimanualFixture

GraspDetect

VocalRequest

ContactDetect

Figure 9-18: The HelpWithChores module described in the text.

module like PuttingStuffAway is not an algorithmic playback of a manipulation task. The

collaborator should not serve as a proxy to a keyboard, making simple API calls into the

code. The robot should at all times be responsive to detected failures during the task and

redirection by the collaborator.

With this in mind, one possible HelpWithChores scenario is as follows:

1. Domo is positioned at a table cluttered with objects and near a shelf.

2. A person asks for help preparing meal by mixing food in a bowl. She hand’s Domo a

bowl and a spoon, it inserts the spoon into the bowl and stirs the contents.

3. She asks Domo for the bowl. Domo extends the grasped bowl to the her.

4. The person takes the “prepared” meal from Domo and asks it to put the spoon away

on the shelf. Domo complies.

5. The person finishes her meal and asks Domo to take the bowl. Domo takes the bowl

and at her request, passes the bowl to the other hand and puts it on the shelf as well.

176



A B C D

E F G H

I J K L

M N O P

Figure 9-19: Execution of the HelpWithChores module during one consecutive run.

6. Next, the person asks for help cleaning up. At her request, Domo holds a box for her

while she clears the table into the box.

This scenario is realized by Domo and the author as one consecutive cooprative manipulation

task. This is shown Figure 9-19. As we can see, even with the limited perceptual and

motor abilities of Domo, a rich behavioral integration allows it to extend beyond simple,

experimental demonstrations. We begin to see the potential for Domo to be a truly useful,

partner robot.

9.6 Discussion

xxx
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Chapter 10

Conclusions

10.1 Sumary of significant contributions

10.2 Biography
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Appendix A

Module Summary

1. AssistedGrasp

2. AssistedGive

3. BimanualCue

4. BimanualFixture

5. BimanualLower (CompliantLower???)

6. BimanualServo

7. CameraReach

8. CompliantLower

9. ContactDetect

10. ContainerPlace

11. ContainerStir

12. FixtureServo

13. GraspAperture

14. GraspDetect

15. GraspRelease
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16. HelpWithChores

17. InterestRegions

18. PalmServo

19. PersonDetect

20. PersonReach

21. PersonSeek

22. PowerGrasp *

23. PutStuffAway

24. RetractArm *

25. StiffnessAdapt

26. ShelfDetect

27. SurfaceTest

28. SurfacePlace

29. SurfaceReach

30. SwitchHands

31. TipEstimate

32. TipPose

33. TipPriors

34. TipServo

35. TipUse

36. VisualFixate

37. VisualSearch

38. VocalRequest
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39. WatchHand

40. WristWiggle
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