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Challenges for Robot Manipulation in Human
Environments

Charles C. Kemp, Aaron Edsinger, and Eduardo Torres-Jara

Within factories around the world, robots perform heroic
feats of manipulation on a daily basis. They lift massive
objects, move with blurring speed, and repeat complex perfor-
mances with unerring precision. Yet outside of these carefully
controlled robot realms, even the most sophisticated robot
would be unable to pour you a drink. The everyday manipula-
tion tasks we take for granted would stump the greatest robot
bodies and brains in existence today.

Why are robots so glorious in the factory, yet so incompetent
in the home? At the Robotics Science and Systems Workshop:
Manipulation for Human Environments [1], we met with
researchers from around the world to discuss the state-of-the-
art, and look toward the future. Within this article, we present
our perspective on this exciting area of robotics, as informed
by the workshop and our own research.

I. TO WHAT END?

Commercially available robotic toys and vacuum cleaners
inhabit our living spaces, and robotic vehicles traverse our
roads. These successes appear to foreshadow an explosion of
robotic applications in our daily lives, but without advances
in robot manipulation many promising robotic applications
will not be possible. Whether in a domestic setting or the
workplace, we would like robots to physically alter the world
through contact.

Robots have long been imagined as mechanical workers,
helping us in the work of daily life. This vision has driven
the recent growth of research into robot manipulation in
human environments. Research in this area will someday
lead to robots that can work alongside us in our homes and
workplaces, extending the time an elderly person can live
at home, providing physical assistance to a worker on an
assembly line, or helping us with household chores.

II. TODAY’S ROBOTS

To date, robots have been very successful at manipulation in
simulation and controlled environments such as a factory. Out-
side of controlled environments, robots have only performed
sophisticated manipulation tasks when operated by a human.

A. Simulation

Within simulation, robots have performed sophisticated ma-
nipulation tasks such as grasping convoluted objects, tying
knots, carrying objects around complex obstacles, and ex-
tracting objects from entangled circumstances. The control
algorithms for these demonstrations often employ search algo-
rithms to find satisfactory solutions, such as a path to a goal

Fig. 1. Work with the AIST HRP-2 humanoid has combined high-level
teleoperation with autonomous low-level perception and control. Here it is
shown retrieving a drink from a refrigerator [1]. (Permission not yet acquired)

state, or a set of contact points that maximize a measure of
grasp quality. For example, many virtual robots use algorithms
for motion planning that rapidly search for paths through
a state space that models the kinematics and dynamics of
the world. Almost all of these simulations ignore the robot’s
sensory systems and assume that the state of the world is
known with certainty. For example, they often assume that the
robot knows the 3D structure of the objects it is manipulating.

B. Controlled environments

In a carefully controlled environment, these assumptions
can be met. For example, within a traditional factory setting,
engineers can ensure that a robot knows the relevant state
of the world with near certainty. The robot typically needs
to perform a few tasks using a few known objects, and
people are usually banned from the area while the robot is
working. Mechanical feeders can enforce constraints on the
pose of the objects to be manipulated. And in the event
that a robot needs to sense the world, engineers can make
the environment favorable to sensing by controlling factors
such as the lighting and the placement of objects relative to
the sensor. Moreover, since the objects and tasks are known
in advance, perception can be specialized and model-based.
Whether by automated planning or direct programming, robots
perform exceptionally well in factories around the world on
a daily basis. Within research labs, successful demonstrations
of robots autonomously performing complicated manipulation
tasks have relied on some combination of known objects,
simplified objects, uncluttered environments, fiducial markers,
or narrowly defined, task specific controllers.
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C. Operated by a human

Outside of controlled settings, robots have only performed
sophisticated manipulation tasks when operated by a human.
Through teleoperation, even highly complex humanoid robots
have performed a variety of challenging everyday manipula-
tion tasks, such as grasping everyday objects, using a power
drill, throwing away trash, and retrieving a drink from a
refrigerator (Figure 1). Similarly, disabled people have used
wheelchair mounted robot arms, such as the commercially
available Manus ARM, shown in Figure 2, to perform every-
day tasks that would otherwise be beyond their abilities. At-
tendees of the workshop were in agreement that under human
control today’s robots can successfully perform sophisticated
manipulation tasks in human environments, albeit slowly and
with significant effort on the part of the human operator.

III. HUMAN ENVIRONMENTS

Human environments have a number of challenging charac-
teristics that will usually be beyond the control of the robot’s
creator, such as the characteristics listed below:

• people present
Users who are not roboticists or technicians will be in
the same environment, and possibly close to the robot.

• built-for-human environments
Environments and objects will usually be well-matched to
human bodies and capabilities.

• other autonomous actors present
For example, people, animals, and other robots may be
in the presence of the robot.

• dynamic variation
The world can change without the robot taking action.

• real-time constraints
In order to interact with people and generally match the
dynamics of the world, the robot must meet real-time
constraints.

• variation in object placement and pose
For example, an object may be placed in a cabinet, on a
table, in a sink, in another room, or upside down.

• long distances between relevant locations
Tasks will often require a mobile manipulator.

• need for specialized tools
Many tasks, such as cooking, assembly, and opening
locks, require tools.

• variation in object type and appearance
There can be one-of-a-kind objects and many instances
of a particular type of object such as a screwdriver, and
wear and tear on known objects.

• non-rigid objects and substances
For example, deformable objects, cables, liquids, cloth,
paper, gases, and air flow may need to be manipulated.

• variation in the structure of the environment
For example, architecture, furniture, and building mate-
rials all vary from place to place.

• sensory variation, noise and clutter
For example, lighting variations, occluding objects, back-
ground sounds, and dirty/sticky surfaces are not uncom-
mon.

Fig. 2. The Manus ARM is designed to be attached to a wheelchair and has
a joystick interface. It is controlled under close supervision by an operator.
Researchers at UMass Lowell are expanding the autonomy of the arm in order
to improve the assistance provided to the physically disabled. [1]. (Permission
not yet acquired)

People handle these issues daily. If you were at a friend’s
house for the first time and you were told to get a drink
out of the fridge, you would most likely have no difficulty
performing the task even though at some level everything
would be different from your previous experiences. In fact,
most cooks could walk into a well-stocked kitchen that they’ve
never seen before and cook a meal without assistance.

Robots should not need to have this level of capability to be
useful. However, a human’s great facility with such dramatic
variation has a very real impact on the types of environments
people inhabit. Even especially well-organized people live
within highly variable environments, and engineers will rarely
have the opportunity to tightly control the environment for the
benefit of the robot.

How can roboticists develop robots that robustly perform
useful tasks given these issues?

IV. APPROACHES

Researchers are pursuing a variety of approaches to over-
come the current limitations of autonomous robot manipula-
tion in human environments. In this section we divide these
approaches into five categories (perception, learning, working
with people, platform design, and control), which we discuss
using examples drawn from the research presented at the
workshop.

A. Perception

Robot manipulation in simulation and in controlled envi-
ronments, indicates that robots can perform well if they know
the state of the world with near certainty. Arguably, this goal
is unachievable within human environments, since there will
almost always be hidden information such as occluded sur-
faces, the distribution of mass in objects, and detailed material
properties. Nonetheless, the success of robots in simulation, in
controlled environments, and under teleoperation suggests that
perception is one of the most important challenges facing the
field.

Within specialized perceptual research communities, rela-
tively little emphasis is placed on the distinctive perceptual
problems of robot manipulation. These problems differ in
terms of the desired perceptual output, the data that are
available as input, and the computational constraints. For
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Fig. 3. The MIT CSAIL robot Domo works with a human to place cylindrical
objects on a shelf [3].

Fig. 4. Using visual motion and shape cues, Domo can detect the tips of
tool-like objects it is rigidly grasping. The tip of a tool is a feature relevant
to control of the tool. The white cross shows the kinematic prediction for the
tool tip, based on noisy 2D detections, and the white circle shows the mean
pixel error of the prediction relative to hand labels that were solely used for
evaluation. The black cross marks the hand-labeled tip [4].

example, visually recognizing an object does not necessarily
map to a method for grasping the object, since an object’s
geometry can be more important than its identity. Although
real-time constraints can be daunting, computation continues
to become more affordable. Robot perceptual systems also
have the opportunity to benefit from streaming sensory data,
multiple sensing modalities, contact-based perception, and
physical interaction with the environment.

1) Active Perception and Task Relevant Features: Through
action, robots can simplify perception. For example, a robot
can select postures in order to more easily view visual features
that are relevant to the current task. Similar principles also
apply for other perceptual modalities. For example, when
searching for a shelf, the MIT robot, Domo, can reach out
into the world to physically find the shelf and in the process
record an arm posture that makes contact with the shelf (see
Figure 5). Likewise, the MIT robot Obrero, can reach out to
the area near an object and tactilely find it and grasp it.

In our work at MIT, our robots often induce visual motion to
better perceive the world. For instance, by rotating a rigidly
grasped tool, such as a screwdriver or pen, Domo can use
a single monocular camera to look for fast moving convex
regions in order to robustly detect the tip of a tool and control
it (see Figure 4). This method performs well in the presence
of cluttered backgrounds and unrelated motion. For a wide

Fig. 5. The MIT robots Obrero (left) and Domo (right) use compliance and
force control when reaching out into the world. Obrero (left) reaches in the
direction of an object with its tactile sensors leading the way. Obrero is able
to grasp the cup using tactile sensing [2]. Domo (right) reaches out to a shelf
in order to place an object on it. Domo uses force control and compliance to
let the object settle into place on the shelf [3].

variety of human tools, control of the tool’s tip is sufficient for
its use. For example, the use of a screwdriver requires precise
control of the position and force of the tool blade relative to a
screw head, but depends little on the details of the tool handle
and shaft.

Encoding tasks in terms of task relevant features, such as
the tip of a tool, offers several advantages. Tasks can be more
easily generalized, since only the task relevant features need
to be mapped from one object to another object, and irrelevant
features can be ignored. Detectors can be specialized to the
task relevant features, and control can be specified in terms of
these task relevant features. For our research, we have encoded
several tasks, such as pouring, insertion, and brushing, in terms
of the detection and visual servoing of task relevant features
relative to one another (see Figure 3). As another example,
when Domo transfers an object from one hand to the other,
Domo visually servos the convex outline of its empty open
palm towards the object. In this case, the contact surface of
Domo’s hand is a task relevant feature. During this process
the visual motion of the hand helps Domo detect this surface
and Domo maintains a posture that keeps the surface visible.

2) Vision: Vision is probably the most studied modality
for machine perception. Much of the research presented at the
workshop involved some form of machine vision. Work from
NASA/JSC on Robonaut (see Figure 8) and work from AIST
on HRP-2 (see Figure 1), used model-based visual perception.
Each robot had a small number of 3D models for known
objects that could be matched and registered to objects viewed
by the robot’s stereo camera. As of yet, the ability of these
vision systems to reliably scale to large numbers of everyday
manipulable objects has not been demonstrated.

Ashutosh Saxena from Andrew Ng’s group at Stanford
presented very promising work on visually detecting “grasp
points” on everyday objects using a single monocular camera
(see Figure 6). The system was trained in simulation using
a handful of rendered 3D models of everyday objects for
which the “grasp points” had been hand labeled. Using the
resulting “grasp point” detector a robot arm was able to grasp
and lift a variety of everyday objects outside of the training
set. The scenes on which the algorithm was tested were fairly
uncluttered and usually involved high-contrast objects placed
against a low contrast, white background. The ability of this
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Fig. 6. Work presented by Ashutosh Saxena from Andrew Ng’s group at
Stanford uses supervised learning to discover the visual grasp points (red
points in top row) for objects, allowing the manipulator to grasp many
everyday items (bottom row) [1]. (Permission not yet acquired)

particular solution to scale across large numbers of objects
in realistic cluttered scenes is unclear. However, the approach
demonstrates the powerful potential for learning task relevant
features that directly map to actions, instead of attempting
to reconstruct a detailed model of the world with which to
plan actions. In particular, it shows that at least some forms
of grasping may be defined with respect to localized features
such as “grasp points” instead of complicated configurations of
3D contact points. This work also indicates that learning that
has taken place in simulation can sometimes be transferred to
robots operating in the real-world. If this holds true for other
domains, it offers the possibility of dramatically simplifying
the acquisition of training data, training protocols, and prelim-
inary evaluations of learned algorithms for robot manipulation
in human environments.

3) Tactile Sensing: Since robot manipulation fundamentally
relies on contact between the robot and the world, tactile
sensing is an especially appropriate modality that has too
often been neglected in favor of vision based approaches. As
blind people convincingly demonstrate, tactile sensing alone
can support extremely sophisticated manipulation. Researchers
have had some success with gripper-mounted IR range sensors,
and small force-torque load cells, but IR range sensors do not
exploit contact and even the smallest load cells are insensitive
and too large to cover a gripper.

Unfortunately, many traditional tactile sensing technologies
do not fit the requirements of robot manipulation in human
environments. For an example, consider a computer touch pad
that uses force resistor sensors (FSR). These pads have high
spatial resolution, low minimum detectable force (about 0.1N)
and a good force range (7 bits). These features make the sensor
work very well when a human finger, a plastic pen, or another
object with a pointy shape comes in contact. However, if you
place a larger object on the pad or the same pen at a small
incident angle, the sensor is unlikely to detect contact unless
the applied force is very large. This is a serious issue, since
a robot would be unable to manually explore its surroundings
without the risk of unduly altering the state of the world or
causing damage.

The curvature of everyday objects varies considerably, and

Fig. 7. A compliant hand and tactile sensor used on the Obrero platform
at MIT. The tactile sensor is highly sensitive to normal and shear forces,
providing rich sensory feedback as the robot grasps unmodelled objects [2].

a robot will often not know the angle at which to expect con-
tact. During exploration, a light touch is desirable, but when
handling an object the robot’s fingers must exert high forces.
Research at MIT by Eduardo Torres-Jara, one of the authors,
has demonstrated new tactile sensors that address these issues
(see Figure 7). The sensor’s protruding shape allows them to
easily make contact with the world from many directions in a
similar way to the ridges of a human fingerprint or the hairs
on human skin. By detecting the deformation of the compliant
dome, the sensors can detect the magnitude and the direction
of applied forces with great sensitivity. Conformation of the
rubbery domes also increases friction when in contact with an
object. Using these sensors and a behavior-based algorithm,
the humanoid robot Obrero has been able to tactilely position
its hand around low mass objects, grasp, lift and place them
in a different location. In these tests, the force needed to avoid
slippage and the conditions to release the object on a surface
were also determined using tactile information [2]. No model
or reconstruction of the object was used during grasping.

B. Learning

Today’s top performing computer vision algorithms for
detection and recognition rely on machine learning, so it seems
almost inevitable that learning will play an important role in
robot manipulation. However, the significance and nature of
this role has yet to be fully determined. Explicit model-based
control is still the dominant approach to manipulation, and
when the world’s state is known and consists of rigid body
motion, it’s hard to imagine something better. However, as
we have noted, robots cannot expect to estimate the state of
human environments in such certain terms, and even motion
planners need to have goal states and measures of success to
optimize

Robots are unlikely to be able to directly sense all of
the relevant properties of the world they are manipulating,
or at least not in an efficient manner. By learning from
the natural statistics of human environments, robots may
be able to reliably infer some of these properties or select
appropriate actions that implicitly rely on characteristics of
the unobservable world. For example, if a robot were asked
to fetch a drink for someone, it should be able to know that
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Fig. 8. Researchers at NASA/JSC have been moving from teleoperation to
autonomy with their Robonaut platform. Here it autonomously learns when a
teleoperator succeeds at manipulating a power drill [1]. (Permission not yet
acquired)

the drink is more likely to be located in the kitchen than on
the floor of the bedroom.

Also, learning helps address the problems of knowledge
acquisition. Directly programming robots by writing code
can be tedious, error prone, and inaccessible to non-experts.
Through learning, robots may be able to reduce this burden
and continue to adapt once they’ve left the lab.

1) Structures for Learning: At the workshop, researchers
presented robots that learned about grasping objects from
autonomous exploration of the world, from teleoperation, and
even from simulation. If robots could learn to manipulate
by autonomously exploring the world, they could potentially
be easier to use and more adaptable to new circumstances.
Unfortunately, developmental systems are still in their infancy
and are difficult to design. Learning from teleoperation is
advantageous since all of the relevant sensory input to the
person, and output from the person, can be captured. Recent
work presented by Chad Jenkins of Brown demonstrated
autonomous discovery of task success and failure using data
captured while Robonaut was teleoperated to grasp a tool or
use a drill (see Figure 8). The work presented by Kaijen
Hsiao from Tomas Lozano-Perez group at MIT, showed a
method by which a simulated humanoid robot could learn
whole-body grasps from human teleoperation of a simulated
robot (see Figure 9). As previously discussed, in the research
from Stanford, the a real robot learned to grasp objects from
simulated data.

2) Commonsense for Manipulation: To what extent can
the problems of manipulation in human environments be
solved through knowledge or experience? This is an important
unanswered question that relates to learning. Large databases
containing examples of common objects, material properties,
tasks, and other relevant information may allow much of the
human world to be known to robots in a straightforward way.
In a sense, this type of approach would be a direct extension
of research in which a robot manipulates a few objects for
which it has 3D models and associated task knowledge. If
robots could reliably work with some parts of the world and
avoid the parts of the world unknown to them, they may be
able to perform useful tasks for us. Given the standardization
that has occurred through mass production and the advent of

Fig. 9. In this work presented by Kaijen Hsiao from MIT, after a simulated
robot learns from examples provided by teleoperation, it is able appropriately
pick up objects it has never before encountered using whole-body grasps [1].
(Permission not yet acquired)

RFID tags, this approach seems plausible for some limited
tasks. Moreover, if robots could easily be given additional
knowledge and share it over the web, even some distinctive
parts of the world might become accessible to them.

C. Working with People

For at least the near term, robots in human environments
will be dependent on people. Fortunately, people tend to be
present within human environments. As long as the robot’s
usefulness outweighs the efforts required to help it, full robot
autonomy is unnecessary. Careful design can make robots intu-
itive to use, thereby reducing the required effort. For example,
the initial version of the commercially successful Roomba
relies on a person to occasionally prepare the environment,
rescue it when it is stuck, and direct it to spots for cleaning
and power. The robot and the person effectively vacuum the
floor as a team, although the person’s involvement is reduced
to a few infrequent tasks that are beyond the capabilities of
the robot.

By treating tasks that involve manipulation as a cooperative
process, people and robots can perform tasks that neither one
could perform as an individual.

1) Semi-autonomous Teleoperation: From results in tele-
operation, we can infer that computers with human-level
intelligence could perform many useful and impressive tasks
with today’s robots. Of course, this does not make the problem
any easier. Even under human control, most robots move
slowly, require great effort by the human operator, and may
not be dependable in everyday scenarios.

Besides giving a better idea of what current robots can do,
teleoperation suggests a smooth path for progress. As shown
with rehabilitation robots, teleoperated robots are already use-
ful. By gradually incorporating more autonomy into the robots,
researchers can increase their usability and expand areas to
which they can be practically applied. Along these lines,
Neo Ee Sian from AIST presented a teleoperated system that
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Fig. 10. Left: By integrating autonomous components with teleoperation,
researchers at AIST have developed a system by which people can reliably
control the highly complex HRP-2 humanoid robot to perform everyday
manipulation tasks [1]. Right: Research by Kaijen Hsiao and Tomas Lozano-
Perez at MIT, uses virtual teleoperation to provide examples of whole body
grasps from which a simulated humanoid robot can learn [1]. (Permission not
yet acquired)

allows a human operator to reliably command a very complex
humanoid robot, HRP-2, to perform a variety of everyday tasks
(see Figures 1 and 10). The system integrates various forms
of low-level autonomous motor control and visual perception,
as well as higher-level behaviors. The higher-level behaviors
can be interrupted and corrected if the human operator notices
a problem. Similarly, Holly Yanco’s group at UMass Lowell
are investigating improved interfaces to the Manus ARM that
incorporate autonomous components, such as visual servoing,
to help a disabled user grasp an object more easily (see Figure
2).

Prior to achieving full autonomy, one can imagine scenar-
ios where the brains for semi-autonomous robots could be
outsourced to people working at remote locations.

2) Human Interaction & Cooperation: Researchers have
looked at techniques for cooperative manipulation that phys-
ically couple the robot and the person, such as carrying an
object together, or guiding a person’s actions with a Cobot
manipulator. Robots with human like features (eg. humanoids)
can also leverage a person’s intuitive understanding of physical
and social cues. Through eye contact, a vocal utterance, or
a simple gesture of the hand, a robot may indicate that it
needs help with some part of a task. In our work at MIT
[3], we have shown that a person can intuitively work with
a robot to place everyday cylindrical objects on a shelf. In
this work, the humanoid robot, Domo, was able to cue a
person to hand it an object by reaching towards the person
with an open hand. In doing so, the person would solve the
grasping problem for the robot. We believe that applications
such as this, where people and robots work closely together to
intuitively perform sophisticated manipulation tasks hold great
promise for applications in areas such as manufacturing and
healthcare.

3) Safety: Robots working with people must be safe for
human interaction. Traditional industrial manipulators are dan-
gerous and people are kept behind a fence, away from the
robot. Injury commonly occurs through unexpected physical
contact, where forces are exerted through impact, pinching,
and crushing. Of these, impact forces are typically the most
dangerous. The danger depends on the velocity, the mass and
the compliance of the manipulator. Commercially available
arms such as the Manus ARM, the Katana arm from Neuronics

Fig. 11. Researchers at UMass Amherst have developed a variety of different
platforms for manipulation research with distinct capabilities. These three
platforms were used in work presented at the workshop from Rod Grupen’s
group (left & middle) and Oliver Brock’s group (right) [1]. The left robot,
Dexter, is a non-mobile humanoid robot. The middle robot, uBot-4 is a
compact, dynamically stable, robot with the ability to bimanually grasp some
objects off the floor when teleoperated. The right robot, UMan, is a single
armed mobile manipulator with a dexterous robot arm (WAM arm by Barrett
Technology) with kinematics similar to a human arm, and positioned so as to
be able to access everyday objects. (permission not yet acquired)

and the Kuka light-weight arm (based on the DLR arm)
are beginning to address these issues. Also, research into
manipulators that incorporate elastic elements in the robot’s
drive train has made progress, including work at MIT on Series
Elastic Actuators and at Stanford on the DM2 manipulator.

D. Platform Design

Careful design and use of the robot’s body can reduce the
need for perception and control, compensate for uncertainty,
and enhance sensing. For example, the body of the Roomba
vacuum is a low-profile disc. This allows it to avoid getting
snagged in tight spaces and trapped under beds, greatly
limiting its need to sense the details of someone’s home. In
the following sections we discuss ways that researchers are
addressing the challenges of human environments through the
design and use of the robot’s body.

1) On Human Form: Human environments tend to be well-
matched to the human body and human behavior. Robots can
sometimes simplify manipulation tasks by taking advantage
of these same characteristics. For example, most everyday
objects in human environments sit on top of flat surfaces at
table height. It is easier to perceive these objects if the robot’s
sensors are looking down at the surface, which requires that the
robot’s sensors be high off of the ground. Similarly, everyday
handheld objects, such as tools, are designed to be grasped and
manipulated using a human hand. A gripper that has a similar
range of grasp sizes, will tend to be able to grasp everyday
human objects. A direct approach to taking advantage of
these structural properties of human environments is to create
humanoid robots that emulate the human form, but mobile
manipulation platforms can also emulate critical features such
as a small footprint, sensors placed far above the ground,
an approximately hand sized gripper, and robot arms with
approximately human size and degrees of freedom (see Figure
11). 1

1Attendees agreed that the lack of affordable off-the-shelf robotic platforms
suitable for manipulation in human environments is a serious impediment to
research.
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Fig. 12. A compliant grasper developed by Aaron Dollar and Robert
Howe at Harvard leverages its physical design to grasp unknown objects [1].
(Permission not yet acquired)

2) Designing for Uncertainty: Traditionally, industrial
robots have eschewed passive physical compliance at the joints
in favor of stiff, precise, and fast operation. This is a reasonable
design tradeoff when the state of the world is known with near
certainty. Within human environments compliance and force
control are more advantageous since they help the robot safely
interact with people, explore the environment, and work with
uncertainty.

Aaron Dollar and Robert Howe from Harvard optimized
several parameters in the design of a robot hand so that it
could better grasp objects with uncertain positions (see Figure
12). The hand is made entirely out of compliant, urethane
materials of varying stiffness. It has embedded tactile and
position sensors and is actuated by remote motors through
tendons. The hand’s compliance, combined with its optimized
design, allows it to robustly form power grasps on a variety
of objects. Remarkably, the hand is also robust to sustained
impacts from a hammer.

Our humanoid robots developed at MIT use compliant,
Series Elastic Actuators at all the joints of the arms and hands.
They also have compliant, rubber skins on the fingers. This
passive compliance allows them to safely explore unknown
environments without risk of damaging the manipulator drive
train. On our robot Domo, shown in Figure 3 this compliance
helps it to transfer unknown objects between its hands and
place them on a shelf. When transferring an object between
its hands, the grasped object passively adjusts to the bimanual
grasp. When placing an object on a shelf, the passive com-
pliance allows the the object’s flat base to stably align with
the shelf surface [3]. On our robot Obrero [2], the compliance
in the fingers (see Figure 7) allows the robot to gently come
in contact with light objects without knocking them over and
allows its hand to conform to unknown objects.

E. Control

Within perfectly modeled worlds, motion planning systems
perform extremely well. Once the uncertainties of human
environments are included, alternative methods for control
become important. For example, control schemes must have
real-time capabilities in order to reject disturbances from
unexpected collisions and adapt to uncertain changes in the
environment, such as might be caused by a human collaborator.
As we’ve previously mentioned, in our work at MIT, we

Fig. 13. The elastic roadmap planner, developed by researchers as UMass
Amherst, allows for autonomous execution of mobile manipulation tasks in
unstructured, dynamic environments. [5]. (Permission not yet acquired)

frequently use visual servoing, since we believe that tight,
closed-loop, sensory-motor control is advantageous. Rob Platt
and the Robonaut group at NASA/JSC, and Rod Grupen’s
group at UMass have explored ways to learn and compose
real-time, closed-loop controllers in order to flexibly perform
a variety of autonomous manipulation tasks. Oliver Brock’s
group at UMass Amherst is looking at ways to extend planning
based approaches, so that they may rapidly adapt to changes
in the world.

V. GRAND CHALLENGES

At the end of the workshop, we held a discussion on the
topic of grand challenges for robot manipulation in human
environments. As a group, we arrived at three grand challenges
that encapsulate many of the important themes of this research
domain. The agreed upon challenges were: cleaning and
organizing a house, preparing and delivering an order at a
burger joint, and working with a person to assemble a habitat
(a tent).

Each challenge emphasizes different aspect of the field. A
robot that can enter any home and clean up a messy room
must adapt to the large variability of our domestic settings,
understand the usual placement of everday objects, and be able
to grasp-carry-and-place everyday objects including clothing.
Preparing and delivering an order at a burger joint would
require the robot to dexterously manipulate flexible materials
and tools designed for humans, and perform a variety of
small, but complex, assembly tasks. Assembling a habitat
such as a tent requires that the human and robot cooperate
in a coordinated fashion. It also requires that the assembly
proceed with a partial ordering, and often requires coordination
involving fixturing, insertion, and lifting.

A. Smooth Paths to Progress

Even though some aspects of these challenges appear within
reach, nearly all of the participants agreed that it was prema-
ture for researchers to directly pursue them. In this spirit, we
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conclude with several plausible paths for incremental progress
towards these goals.

1) By Approach: We expect progress to be made for each
of the approaches we have discussed within this paper. Yet,
the problem of robot manipulation for human environments
necessitates integration of these approaches into solutions that
are validated in the real-world on tasks with clear measures
of success. These intelligent systems will combine hardware
with software, and perception with action.

2) By Module & Algorithm: We would expect research to
result in de facto standards for modules and algorithms that
perform various important tasks, such as grasping. We already
see this to some extent with face detectors, low-level vision
algorithms, and machine learning algorithms. As researchers
are able to make use of one another’s components, progress
will accelerate and they will be better able to verify one
another’s work through repetition.

3) From Semi-autonomy to Full Autonomy: As we have
previously mentioned, a useful direction for progress is to
focus on semi-autonomous, human-in-the-loop systems. This
direction gives a clear path for incrementally increasing the
autonomy of systems, while allowing humans to take-over
when the system is having trouble.

4) From Simple to Complex Tasks: Technically, the
Roomba could be considered the first successful autonomous
mobile manipulator for the home. It manipulates dirt on the
floor as it moves around the home. By narrowing the scope
of a task, useful robots may be developed more quickly and
serve as a base for further capabilities. Rather than push
for highly complex tasks, many researchers are focusing on
simpler, foundational capabilities such as grasping everyday
objects, fetching and carrying objects, placing objects, being
handed objects by a person, and handing objects to a person.
These tasks can be further constrained by limiting the types of
objects the system works with (eg. cylindrical) or the domains
of the environment it interacts with (eg. accessible flat surfaces
such as desks and tables).

B. Conclusion
Robot manipulation in human environments is a young

research area, but one that is certain to expand rapidly in the
coming years. Without advances in robot manipulation, many
promising robotic applications will not be possible. We have
presented our perspective on the challenges facing the field
and proposed paths towards the long-term vision of robots
that can work alongside us in our homes and workplaces as
useful, capable collaborators.
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