
An Optimistic Approach to Lock-Free FIFO

Queues

Edya Ladan-Mozes1 and Nir Shavit2

1 Department of Computer Science, Tel-Aviv University, Israel
2 Sun Microsystems Laboratories and Tel-Aviv University

Abstract. First-in-first-out (FIFO) queues are among the most funda-
mental and highly studied concurrent data structures. The most effective
and practical dynamic-memory concurrent queue implementation in the
literature is the lock-free FIFO queue algorithm of Michael and Scott,
included in the standard JavaTM Concurrency Package.
This paper presents a new dynamic-memory lock-free FIFO queue al-
gorithm that performs consistently better than the Michael and Scott
queue. The key idea behind our new algorithm is a novel way of replac-
ing the singly-linked list of Michael and Scott, whose pointers are inserted
using a costly compare-and-swap (CAS) operation, by an “optimistic”
doubly-linked list whose pointers are updated using a simple store, yet
can be “fixed” if a bad ordering of events causes them to be inconsistent.
We believe it is the first example of such an “optimistic” approach being
applied to a real world data structure.

1 Introduction

First-in-first-out (FIFO) queues are among the most fundamental and highly
studied concurrent data structures [1–12], and are an essential building block
of concurrent data structure libraries such as JSR-166, the JavaTM Concur-
rency Package [13]. A concurrent queue is a linearizable structure that supports
enqueue and dequeue operations with the usual FIFO semantics. This paper
focuses on queues with dynamic memory allocation.

The most effective and practical dynamic-memory concurrent FIFO queue
implementation is the lock-free FIFO queue algorithm of Michael and Scott [14]
(Henceforth the MS-queue). On shared-memory multiprocessors, this compare-
and-swap (CAS) based algorithm is superior to all former dynamic-memory
queue implementations including lock-based queues [14], and has been included
as part of the JavaTM Concurrency Package [13]. Its key feature is that it allows
uninterrupted parallel access to the head and tail of the queue.

This paper presents a new dynamic-memory lock-free FIFO queue algorithm
that performs consistently better than the MS-queue. It is a practical example of
an “optimistic” approach to reduction of synchronization overhead in concurrent
data structures. At the core of this approach is the ability to use simple stores
instead of CAS operations in common executions, and fix the data structure in
the uncommon cases when bad executions cause structural inconsistencies.



1.1 The New Queue Algorithm

As with many finely tuned high performance algorithms (see for example CLH
[15, 16] vs. MCS [17] locks), the key to our new algorithm’s improved performance
is in saving a few costly operations along the algorithm’s main execution paths.

Figure 1 describes the MS-queue algorithm which is based on concurrent
manipulation of a singly-linked list. Its main source of inefficiency is that while
its dequeue operation requires a single successful CAS in order to complete, the
enqueue operation requires two such successful CASs. This may not seem im-
portant, until one realizes that it increases the chances of failed CAS operations,
and that on modern multiprocessors [18, 19], even the successful CAS operations
cost an order-of-magnitude longer to complete than a load or a store, since they
require exclusive ownership and flushing of the processor’s write buffers.

The key idea in our new algorithm is to (literally) approach things from a dif-
ferent direction... by logically reversing the direction of enqueues and dequeues
to/from the list. If enqueues were to add elements at the beginning of the list,
they would require only a single CAS, since one could first direct the new node’s
next pointer to the node at the beginning of the list using only a store opera-
tion, and then CAS the tail pointer to the new node to complete the insertion.
However, this re-direction would leave us with a problem at the end of the list:
dequeues would not be able to traverse the list “backwards” to perform a linked-
list removal.

Our solution, depicted in Figure 2, is to maintain a doubly-linked list, but
to construct the “backwards” direction, the path of prev pointers needed by
dequeues, in an optimistic fashion using only stores (and no memory barriers).
This doubly-linked list may seem counter-intuitive given the extensive and com-
plex work of maintaining the doubly-linked lists of lock-free deque algorithms
using double-compare-and-swap operations [20]. However, we are able to store
and follow the optimistic prev pointers in a highly efficient manner.

If a prev pointer is found to be inconsistent, we run a fixList method
along the chain of next pointers which is guaranteed to be consistent. Since
prev pointers become inconsistent as a result of long delays, not as a result of
contention, the frequency of calls to fixList is low. The result is a FIFO queue

headtail

value

next

CAS tail CAS head

CAS next

headtail

value

next

value

next

CAS tail CAS head

CAS next

Fig. 1. The single CAS dequeue and costly two CAS enqueue of the MS-Queue algo-
rithm



CAS tail

new node

value

prev
next

headtail

removed 
value

CAS head

Store next and after CAS 
optimistically store prev

CAS tail

new node

value

prev
next

headtail

removed 
value

CAS head

Store next and after CAS 
optimistically store prev

new node

value

prev
next

value

prev
next

headtail

removed 
value

CAS head

Store next and after CAS 
optimistically store prev

Fig. 2. The Single CAS enqueue and dequeue of the new algorithm

based on a doubly-linked list where pointers in both directions are set using
simple stores, and both enqueues and dequeues require only a single successful
CAS operation to complete.

1.2 Optimistic Synchronization

Optimistically replacing CAS with loads/stores was first suggested by Moir et
al. [21] who show how one can replace the use of CAS with simple loads in
good executions, using CAS only if a bad execution is incurred. However, while
they show a general theoretical transformation, we show a practical example of a
highly concurrent data structure whose actual performance is enhanced by using
the optimistic approach.

Our optimistic approach joins several recent algorithms tailored to the good
executions while dealing with the bad ones in a more costly fashion. Among
these is the obstruction-freedom methodology of Herlihy et al. [22] and the lock-
elision approach by Rajwar and Goodman [23] that use backoff and locking
(respectively) to deal with bad cases resulting from contention. Our approach
is different in that inconsistencies occur because of long delays, not as a result
of contention. We use a special mechanism to fix these inconsistencies, and our
resulting algorithm is lock-free.

1.3 Performance

We compared our new lock-free queue algorithm to the most efficient lock-based
and lock-free dynamic memory queue implementations in the literature, the two-
lock-queue and lock-free MS-queue of Michael and Scott [14]. Our empirical re-
sults, presented in Section 4, show that the new algorithm performs consistently
better than the MS-queue. This improved performance is not surprising, as our
enqueues require fewer costly CAS operations, and as our benchmarks show,
generate significantly less failed CAS operations.

The new algorithm can use the same dynamic memory pool structure as the
MS-queue. It fits with memory recycling methods such as ROP [24] or SMR



[25], and it can be written in the JavaTM programming language without the
need for a memory pool or ABA-tags. We thus believe it can serve as a viable
practical alternative to the MS-queue.

2 The Algorithm in Detail

The efficiency of our new algorithm rests on implementing a queue using a
doubly-linked list, which, as we show, allows enqueues and dequeues to be per-
formed with a single CAS per operation. Our algorithm guarantees that this list
is always connected and ordered by the enqueue order in one direction. The other
direction is optimistic and may be inaccurate at various points of the execution,
but can be reconstructed to an accurate state when needed.

Our shared queue data structure (see Figure 3) consists of a head pointer,
a tail pointer, and nodes. Each node added to the queue contains a value, a
next pointer and a prev pointer. Initially, a node with a predefined dummy value,
hence forth called a dummy node, is created and both head and tail point to it.
During the execution, the tail always points to the last (youngest) node inserted
to the queue, and the head points to the first (oldest) node. When the queue
becomes empty, both head and tail point to a dummy node. Since our algorithm
uses CAS for synchronization, the ABA issue arises [14, 10]. In Section 2.1, we
describe the enqueue and dequeue operations ignoring ABA issues. The tagging
mechanism we added to overcome the ABA problem is explained in Section 3.
The code in this section includes this tagging mechanism. Initially, the tags of
the tail and head are zero. When a new node is created, the tags of the next

and prev pointers are initiated to a predefined null value.

struct pointer_t {

<ptr, tag>: <node_t *, unsigned integer>

};

struct node_t { struct queue_t {

data_type value; pointer_t tail;

pointer_t next; pointer_t head;

pointer_t prev; };

};

Fig. 3. The queue data structures

2.1 The Queue Operations

A FIFO queue supports two operations (or methods): enqueue and dequeue.
The enqueue operation inserts a value to the queue and the dequeue operation
deletes the oldest value in the queue.



The code of the enqueue method appears in Figure 4, and the code of the
dequeue method appears in Figure 5. To insert a value, the enqueue method
creates a new node that contains the value, and then tries to insert this node to
the queue. As seen in Figure 2, the enqueue reads the current tail of the queue,
and sets the new node’s next pointer to point to that same node. Then it tries
to atomically modify the tail to point to its new node using a CAS operation.
If the CAS succeeded, the new node was inserted into the queue. Otherwise the
enqueue retries.

void enqueue(queue_t* q, data_type val)

E01: pointer_t tail

E02: node_t* nd = new_node() # Allocate a new node

E03: nd->value = val # Set enqueued value

E04: while(TRUE){ # Do till success

E05: tail = q->tail # Read the tail

E06: nd->next = <tail.ptr, tail.tag+1> # Set node’s next ptr

E07: if CAS(&(q->tail), tail, <nd, tail.tag+1>){ # Try to CAS the tail

E08: (tail.ptr)->prev = <nd, tail.tag> # Success, write prev

E09: break # Enqueue done!

E10: }

E11: }

Fig. 4. The enqueue operation

To delete a node, a dequeue method reads the current head and tail of the
queue, and the prev pointer of the node pointed by the head. It then tries to
CAS the head to point to the node as that pointed by the prev pointer. If it
succeeded, then the node previously pointed by the head was deleted. If it failed,
it repeats the above steps. If the queue is empty then NULL is returned.

We now explain how we update the prev pointers of the nodes in a consistent
and lock-free manner, assuming there is no ABA problem. The prev pointers are
modified in two stages. The first stage is performed optimistically immediately
after the successful insertion of a new node. An enqueue method that succeeded
in atomically modifying the tail using a CAS, updates the prev pointer of the
node previously pointed by the tail to point to the new node. This is done
using a simple store operation. Once this write is completed, the prev pointer
points to its preceding node in the list. Thus the order of operations to perform
an enqueue is a write of the next in the new node, then a CAS of the tail, and
finally a write of the prev pointer of the node pointed to by the next pointer.
This ordering will prove crucial in guaranteeing the correctness of our algorithm.

Unfortunately, the storing of the prev pointer by an enqueue might be de-
layed for various reasons, and a dequeuing method might not see the necessary
prev pointer. The second stage is intended to fix this situation. In order to fix
the prev pointer, we use the fact that the next pointer of each node is set only by
the enqueue method that inserted that node, and never changes until the node



data_type dequeue(queue_t* q)

D01: pointer_t tail, head, firstNodePrev

D02: node_t* nd_dummy

D03: data_type val

D04: while(TRUE){ # Try till success or empty

D05: head = q->head # Read the head

D06: tail = q->tail # Read the tail

D07: firstNodePrev = (head.ptr)->prev # Read first node prev

D08: val = (head.ptr)->value # Read first node val

D09: if (head == q->head){ # Check consistency

D10: if (val != dummy_val){ # Head val is dummy?

D11: if (tail != head){ # More than 1 node?

D12: if (firstNodePrev.tag != head.tag){ # Tags not equal?

D13: fixList(q, tail, head) # Call fixList

D14: continue # Re-iterate (D04)

D15: }

D16: }

D17: else{ # Last node in queue

D18: nd_dummy = new_node() # Create a new node

D19: nd_dummy->value = dummy_val # Set it’s val to dummy

D20: nd_dummy->next = <tail.ptr, tail.tag+1> # Set its next ptr

D21: if CAS(&(q->tail), tail ,<nd_dummy, tail.tag+1>){# CAS tail

D22: (head.ptr).prev = <nd_dummy, tail.tag> # Write prev

D23: }

D24: else{ # CAS failed

D25: free(nd_dummy) # free nd_dummy

D26: }

D27: continue; # Re-iterate (D04)

D28: }

D29: if CAS(&(q->head), head, <firstNodePrev.ptr,head.tag+1>){# CAS

D30: free (head.ptr) # Free the dequeued node

D31: return val # Dequeue done!

D32: }

D33: }

D34: else { # Head points to dummy

D35: if (tail.ptr == head.ptr){ # Tail points to dummy?

D36: return NULL; # Empty queue, done!

D37: }

D38: else{ # Need to skip dummy

D39: if (firstNodePrev.tag != head.tag){ # Tags not equal?

D40: fixList(q, tail, head); # Call fixList

D41: continue; # Re-iterate (D04)

D42: }

D43: CAS(&(q->head),head,<firstNodePrev.ptr,head.tag+1>)#Skip dummy

D44: }

D45: }

D46: }

D47: }

Fig. 5. The dequeue operation



is dequeued. Thus, if ABA problems resulting from node recycling are ignored,
this order is invariant. The fixing mechanism walks through the entire list from
the tail to the head along the chain of next pointers, and corrects the prev

pointers accordingly. Figure 7 provides the code of the fixList procedure. As
can be seen, the fixing mechanism requires only simple load and store operations.

There are two special cases we need to take care of: when the last node is
being deleted and when the the dummy node needs to be skipped.

– The situation in which there is only one node in the queue is encountered
when the tail and head point to the same node, which is not a dummy node.
Deleting this node requires three steps and two CAS operations, as seen in
Figure 6 Part A. First, a new node with a dummy value is created, and its
next pointer is set to point to the last node. Second, the tail is atomically
modified using a CAS to point to this dummy node, and then, the head is
atomically modified using a CAS to also point to this dummy node. The
intermediate state in which the tail points to a dummy node and the head

points to another node is special, and occurs only in the above situation.
This sequence of operations ensures that the algorithm is not blocked even
if a dequeue method modified the tail to point to a dummy node and then
stopped. We can detect the situation in which the tail points to a dummy

node and the head does not, and continue the execution of the dequeue

method. In addition, enqueuing methods can continue to insert new nodes
to the queue, even in the intermediate state.

– In our algorithm, a dummy node is a special node with a dummy value. It
is created and inserted to the queue when it becomes empty as explained
above. Since a dummy node does not contain a real value, it must be skipped
when nodes are deleted from the queue. The steps for skipping a dummy node
are similar to those of a regular dequeue, except that no value is returned.
When a dequeue method identifies that the head points to a dummy node
and the tail does not, as in Figure 6 Part B, it modifies the head using a
CAS to point to the node pointed by the prev pointer of this dummy node.
Then it can continue to dequeue nodes.

A B

dummy

prev
next

headtail
CAS head

headtail
CAS 
tail and
head

dummy

2 3

1

A B

dummy

prev
next

headtail
CAS head

headtail
CAS 
tail and
head

dummy

A B

dummy

prev
next

headtail
CAS head

headtail
CAS 
tail and
head

dummy

22 33

11

Fig. 6. A - A dequeue of the last node, B - Skipping the dummy node



F01:void fixList(queue_t* q, pointer_t tail, pointer_t head)

F02: pointer_t curNode , curNodeNext, nextNodePrev

F03: curNode = tail # Set curNode to tail

F04: while((head == q->head) && (curNode != head)){ # While not at head

F05: curNodeNext = (curNode.ptr)->next # Read curNode next

F06: if (curNodeNext.tag != curNode.tag){ # Tags don’t equal?

F07: return; # ABA, return!

F08: }

F09: nextNodePrev = (curNodeNext.ptr)->prev # Read next node prev

F10: if (nextNodePrev != <curNode.ptr, curNode.tag-1>){#Ptr don’t equal?

F11: (curNodeNext.ptr)->prev = <curNode.ptr, curNode.tag-1>; # Fix

F12: }

F13: curNode = <curNodeNext.ptr, curNode.tag-1> # Advance curNode

F14: }

Fig. 7. The fixList procedure

3 Solving the ABA Problem

An ABA situation [10, 14] can occur when a process read some part of the shared
memory in a given state and then was suspended for a while. When it wakes
up the part it read could be in an identical state, however many insertions
and deletions could have happened in the interim. The process may incorrectly
succeed in performing a CAS operation, bringing the data structure to an incon-
sistent state. To identify such situation and eliminate ABA, we use the standard
tagging-mechanism approach [26, 14].

In the tagging-mechanism, each pointer (tail, head, next, and prev) is
added a tag. The tags of the tail and head are initiated to zero. When a new
node is created, the next and prev tags are initiated to a predefined null value.
The tag of each pointer is atomically modified with the pointer itself when a
CAS operation is performed on the pointer.

Each time the tail or head is modified, its tag is incremented, also in the
special cases of deleting the last node and skipping the dummy node. If the head

and tail point to the same node, their tags must be equal. Assume that an
enqueue method executed by a process P read that the tail points to node A
and then was suspended. By the time it woke up, A was deleted, B was inserted
and A was inserted again. The tag attached to the tail pointing to A will now
be different (incremented twice) from the tag originally read by P. Hence P’s
enqueue will fail when attempting to CAS the tail.

The ABA problem can also occur while modifying the prev pointers. The
tag of the next pointer is set by the enqueuing process to equal the tag of
the new tail it tries to CAS. The tag of the prev pointer is set to equal the
tag of the next pointer in the same node. Thus consecutive nodes in the queue
have consecutive tags in the next and prev pointers. Assume that an enqueue

method executed by process P inserted a node to the queue, and stopped before



it modified the prev pointer of the consecutive node A (see Section 2.1). Then
A was deleted and inserted again. When P woke up, it wrote its pointer and the
tag to the prev pointer of A. Though the pointer is incorrect, the tag indicates
this since it is smaller than the one expected. A dequeue method verifies that
the tag of the prev pointer of the node it is deleting equals the tag of the head

pointer it read. If the tags are different, it concludes that an ABA problem
occurred, and calls a method to fix the prev pointer.

The fixing of the prev pointer after it was corrupted by an ABA situation is
performed in the fixList procedure (Figure 7), in combination with the second
stage of modifying the prev pointers, as explained in Section 2.1. In addition to
using the fact that the next pointers are set locally by the enqueue method and
never change, we use the fact that consecutive nodes must have consecutive tags
attached to the next and prev pointers. The fixing mechanism walks through
the entire list from the tail to the head along the next pointers of the nodes,
correcting prev pointers if their tags are not consistent.

Finally we note that in garbage-collected languages such as the JavaTM pro-
gramming language, ABA does not occur and the tags are not needed. When
creating a new instance of a node, its prev pointer is set to NULL. Based on this,
the fixing mechanism is invoked if the prev pointer points to NULL (instead of
checking that the tags are equal). In this way we can detect the case in which
an enqueue did not succeed in its optimistic update of the prev pointer of the
consecutive node,and fix the list according to the next pointers.

4 Performance

We evaluated the performance of our FIFO queue algorithm relative to other
known methods by running a collection of synthetic benchmarks on a 16 pro-
cessor Sun EnterpriseTM 6500, an SMP machine formed from 8 boards of two
400MHz UltraSparcr processors, connected by a crossbar UPA switch, and run-
ning a SolarisTM 9 operating system. Our C code was compiled by a Sun cc

compiler 5.3, with flags -xO5 -xarch=v8plusa.

4.1 The Benchmarks

We compare our algorithm to the two-lock queue and to MS-queue of Michael
and Scott [14]. We believe these algorithms to be the most efficient known lock-
based and lock-free dynamic-memory queue algorithms in the literature. We used
Michael and Scott’s code (referenced in [14]).

The original Michael and Scott paper [14] showed only an enqueue-dequeue

pairs benchmark where a process repeatedly alternated between enqueuing and
dequeuing. This tests a rather limited type of behavior. In order to simulate ad-
ditional patterns, we implemented an internal memory management mechanism.
As in Micheal and Scott’s benchmark, we use an array of nodes that are allocated
in advance. Each process has its own pool with an equal share of these nodes.
Each process performs a series of enqueues on its pool of nodes and dequeues



from the queue. A dequeued node is placed in dequeuing process pool for reuse.
If there are no more nodes in its local pool, a process must first dequeue at
least one node, and can then continue to enqueue. Similarly, a process cannot
dequeue nodes if its pool is full. To guarantee fairness, we used the same mech-
anism for all the algorithms. We tested several benchmarks of which two are
presented here:

– enqueue-dequeue pairs: each process alternately performed enqueue or dequeue
operation.

– 50% enqueues: each process chooses uniformly at random whether to perform
an enqueue or a dequeue, creating a random pattern of 50% enqueue and
50% dequeue operations.

4.2 The Experiments

We repeated the above benchmarks delaying each process a random amount of
time between operations to mimic local work usually performed by processes (in
the range of 0 to 1000 increment operations in a loop).

We measured latency (in milliseconds) as a function of the number of pro-
cesses: the amount of time that elapsed until the completion of a total of a million
operations divided equally among processes. To counteract transient startup ef-
fects, we synchronized the start of the processes (i.e., no process can start before
all others finished their initialization phase).

We pre-tested the algorithms on the given benchmarks by running hundreds
of combinations of exponential backoff delays. The results we present were taken
from the best combination of backoff values for each algorithm in each benchmark
(although we found, similarly to Michael and Scott, that the exact choice of
backoff did not cause a significant change in performance). Each of the presented
data points in our graphs is the average of eight runs.

4.3 Empirical Results

As can be seen in Figure 8, the new algorithm consistently outperforms the
MS-queue in both the 50% and the enqueue-dequeue pairs benchmarks when
there are more than two processes. From the enqueue-dequeue pairs benchmark
one can also see that the lock-based algorithm is consistently worst than the
lock-free algorithms, and deteriorates when there is multiprogramming, that is,
when there are 32 processes on 16 processors. Hence, in the rest of this section,
we concentrate on the performance of the MS-queue and our new algorithm.

Figure 8 shows that the results in both enqueue-dequeue pairs and 50% en-
queues benchmarks were very similar, except in the case of one or two processes.
To explain this, let us consider the overhead of an empty queue, the number of
calls to the fixList procedure as it appears in the left side of Figure 9, and the
number failed CAS operations as it appears in the right side of Figure 9.



enqueue-dequeue pairs benchmark

0

1,000

2,000

3,000

4,000

5,000

6,000

1 2 4 8 16 32
processes

la
te

n
cy

 in
 m

S
ec

MS-queue
new
tw o_lock

50% enqueues benchmark

0

500

1,000

1,500

2,000

2,500

1 2 4 8 16 32
processes

la
te

n
cy

 in
 m

S
ec

MS-queue
new

Fig. 8. Results of enqueue-dequeue pairs and 50% benchmarks

50% enqueues - failed CAS operations

0

2,000

4,000

6,000

8,000

1 2 4 8 16 32processes

 1
00

0 
fa

ile
d

 C
A

S
s

MS-queue- enqueue
new - enqueue
MS-queue - dequeue
new -dequeue

50% enqueues & pairs - calls to fixList

0

200

400

600

1 2 4 8 16 32
processes

n
u

m
b

er
s 

o
f 

ca
lls

enqueue-dequeue pairs
50% enqueues

Fig. 9. The number of failed CASs and calls to fixList

– As described in Section 2.1 (see also Figure 6), additional successful CASs
are required by the new algorithm when the queue becomes empty. As the
number of concurrent processes increases, their scheduling causes the queue
to become empty less frequently, thus incurring less of the overhead of an
empty queue. A benchmark which we do not present here shows that this
phenomena can be eliminated if the enqueue-dequeue pairs benchmark is
initiated with a non-empty queue. In the 50% enqueues benchmark, due to
its random characteristics, the overhead of an empty queue is eliminated
even in low concurrency levels.

– Overall, there were a negligible number of calls to fixlist in both bench-
marks, no more than 450 calls for a million operations. This makes a strong
argument in favor of the optimistic approach.
Recall that the fixList procedure is called when a process tries to dequeue

a node before the enqueuing process completed the optimistic update of the
prev pointer of the consecutive node. This happens more frequently in the
enqueue-dequeue pairs benchmark due to its alternating nature. In the 50%
enqueues benchmark, due to its more random patterns, there are almost no
calls to fixList when the concurrency level is low, and about 85 when there
are 32 processes.



– The righthanded side of Figure 9 shows the number of failed CAS operations
in the enqueue and dequeue methods. These numbers expose one of the key
performance benefits of the new algorithm. Though the number of failed
CASs in the dequeue operations in both algorithms is approximately the
same, the number of failed CASes in the enqueue of MS-queue is about 20 to
40 times greater than in our new algorithm. This is a result of the additional
CAS operation required by MS-queue’s enqueue method, and is the main
advantage allowed by our new optimistic doubly-linked list structure.

We conclude that in our tested benchmarks, our new algorithm outperforms
the MS-queue. The MS-queue’s latency is increased by the failed CASs in the
enqueue operation, while the latency of our new algorithm is influenced by the
additional CASs when the queue is empty. We note again that in our presented
benchmarks we did not add initial nodes to soften the effect of encountering an
empty queue.

5 Correctness Proof

This section contains a sketch of the formal proof that our algorithm has the
desired properties of a concurrent FIFO queue. A sequential FIFO queue as
defined in [27] is a data structure that supports two operations: enqueue and
dequeue. The enqueue operation takes a value as an argument, inserts it to the
queue, and does not return a value. The dequeue operation does not take an
argument, deletes and returns the oldest value from the queue.

We prove that our concurrent queue is linearizable to the sequential FIFO
queue, and that it is lock-free. We treat basic read/write (load/store) and CAS
operations as atomic actions, and can thus take the standard approach of viewing
them as if they occurred one after the other in sequence [28].

In the following we explain the FIFO queue semantics and define the lin-
earization points for each enqueue and dequeue operation. We then define the
insertion order of elements to the queue. The correctness proof and the lock
freedom property proof are only briefly described out of space limitations.

5.1 Correct FIFO Queue Semantics

The queue in our implementation is represented by a head and a tail pointers,
and uses a dummy node. Each node in the queue contains a value, a next pointer
and a prev pointer. All pointers, head, tail, next and prev, are attached with
a tag. Initially, all tags are zero and the head and tail point to the dummy node.

The Compare-And-Swap (CAS) operation used in our algorithm takes a reg-
ister, an old value, and a new value. If the register’s current content equals old,
then it is replaced by new, otherwise the register remains unchanged [29]. A
successful CAS operation is an operation that modified the register.

The successfulness of the enqueue and dequeue operations depends on the
successfulness of CAS operations performed in the execution. For any process,



the enqueue operation is always successful. The operation ends when a process
successfully performed the CAS operation in line E07. A successful dequeue

operation is one that successfully performed the CAS in D22. If the queue is
empty, the dequeue operation is considered unsuccessful and it returns null.

Definition 1. The linearization points of enqueue and dequeue operations are:

– Enqueue operations are linearized at the successful CAS in line E07.
– Successful dequeue operations are linearized at the successful CAS in line

D29.
– Unsuccessful dequeue operations are linearized in line D06.

Definition 2. In any state of the queue, the insertion order of nodes to the

queue is the reverse order of the nodes starting from the tail, linked by the next

pointers, to the head.

If the dummy node is linked before the head is reached, then the insertion order

is the same from the tail to the dummy node, the dummy node is excluded, and

the node pointed by the head is attached instead of the dummy node. If the head

points to the dummy node then the dummy node is excluded.

5.2 The Proof Structure

In the full paper we show that the insertion order is consistent with the lin-
earization order on the enqueue operations. We do that by showing that the
next pointer of a linearized enqueue operation always points to the node in-
serted by the previous linearized enqueue operation, and that the next pointers
never change during the execution. We then show that the correctness of the
prev pointers can be verified using the tags, and fixed if needed by the fixList
procedure. We also prove that in any state of the queue there is at most one
node with a dummy value in the queue, and that the queue is empty if both
head and tail point to a dummy node.

To finish the proof we show that the deletion order of nodes from the queue
is consistent with the insertion order. This is done by proving that we can detect
the case in which the optimistic update of the prev pointer did not occur (and
also the case of an ABA situation) and fix it using the tags and the fixList

procedure. We then show that when a dequeue operation takes place, the prev

pointer of the node pointed by the head, always point to the consecutive node
as dictated by the next pointers.

From the above we can conclude that our concurrent implementation imple-
ments a FIFO queue.

5.3 Lock Freedom

In order to prove that our algorithm is lock-free we need to show that if one
process fails in executing an enqueue or dequeue operation, then another pro-
cess have modified the tail or the head, and thus the system as whole made
progress. We also need to show that the fixList procedure eventually ends.
These properties are fairly easy to conclude from the code.



5.4 Complexity

It can be seen from the code that each enqueue and dequeue operation takes a
constant number of steps in the uncontended case. The fixList procedure, in
a specific state of the queue, requires all the running dequeue processes to go
over all the nodes in the queue in order to fix the list. However, once this part
of the queue is fixed, when ABA does not occur, all the nodes in this part can
be dequeued without the need to fix the list again.

6 Conclusion

In this paper we presented a new dynamic-memory lock-free FIFO queue. Our
queue is based on an optimistic assumption of good ordering of operations in the
common case, and on the ability to fix the data structure if needed. It requires
only one CAS operation for each enqueue and dequeue operation and performs
constantly better than the MS-queue. We believe that our new algorithm can
serve as a viable alternative to the MS-queue for implementing linearizable FIFO
queues.

References

1. Gottlieb, A., Lubachevsky, B.D., Rudolph, L.: Basic techniques for the efficient
coordination of very large numbers of cooperating sequential processors. ACM
Trans. Program. Lang. Syst. 5 (1983) 164–189

2. Herlihy, M., Wing, J.: Linearizability: A correctness condition for concurrent ob-
jects. ACM Transactions on Programming Languages and Systems 12 (1990)
463–492

3. Hwang, K., Briggs, F.A.: Computer Architecture and Parallel Processing. McGraw-
Hill, Inc. (1990)

4. Lamport, L.: Specifying concurrent program modules. ACM Transactions on
Programming Languages and Systems 5 (1983) 190–222

5. Mellor-Crummey, J.M.: Concurrent queues: Practical fetch-and-φ algorithms.
Technical Report Technical Report 229, University of Rochester (1987)

6. Prakash, S., Lee, Y.H., Johnson, T.: Non-blocking algorithms for concurrent data
structures. Technical Report 91–002, Department of Information Sciences, Univer-
sity of Florida (1991)

7. Prakash, S., Lee, Y.H., Johnson, T.: A non-blocking algorithm for shared queues
using compare-and-swap. IEEE Transactions on Computers 43 (1994) 548–559

8. Stone, H.S.: High-performance computer architecture. Addison-Wesley Longman
Publishing Co., Inc. (1987)

9. Stone, J.: A simple and correct shared-queue algorithm using compare-and-swap.
In: Proceedings of the 1990 conference on Supercomputing, IEEE Computer Soci-
ety Press (1990) 495–504

10. Treiber, R.K.: Systems programming: Coping with parallelism. Technical Report
RJ 5118, IBM Almaden Research Center (1986)

11. Tsigas, P., Zhang, Y.: A simple, fast and scalable non-blocking concurrent fifo
queue for shared memory multiprocessor systems. In: Proceedings of the thirteenth
annual ACM symposium on Parallel algorithms and architectures, ACM Press
(2001) 134–143



12. Valois, J.: Implementing lock-free queues. In: Proceedings of the Seventh Interna-
tional Conference on Parallel and Distributed Computing Systems. (1994) 64–69

13. Lea, D.: (The java concurrency package (JSR-166))
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html.

14. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proceedings of the 15th Annual ACM Symposium
on Principles of Distributed Computing (PODC ’96), New York, USA, ACM (1996)
267–275

15. Craig, T.: Building FIFO and priority-queueing spin locks from atomic swap.
Technical Report TR 93-02-02, University of Washington, Department of Com-
puter Science (1993)

16. Magnussen, P., Landin, A., Hagersten, E.: Queue locks on cache coherent multipro-
cessors. In: Proceedings of the 8th International Symposium on Parallel Processing
(IPPS), IEEE Computer Society (1994) 165–171

17. Mellor-Crummey, J., Scott, M.: Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Transactions on Computer Systems 9 (1991) 21–65

18. Weaver, D., (Editors), T.G.: The SPARC Architecture Manual (Version 9). PTR
Prentice Hall, Englewood Cliffs, NJ) (1994)

19. Intel: Pentium Processor Family User’s Manual: Vol 3, Architecture and Program-
ming Manual. (1994)

20. Agesen, O., Detlefs, D., Flood, C., Garthwaite, A., Martin, P., Moir, M., Shavit,
N., Steele, G.: DCAS-based concurrent deques. Theory of Computing Systems 35

(2002) 349–386
21. Luchangco, V., Moir, M., Shavit, N.: On the uncontended complexity of consensus.

In: Proceedings of Distributed Computing. (2003)
22. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-

ended queues as an example. In: Proceedings of the 23rd International Conference
on Distributed Computing Systems, IEEE (2003) 522–529

23. Rajwar, R., Goodman, J.: Speculative lock elision: Enabling highly concurrent
multithreaded execution. In: Proceedings of the 34th Annual International Sym-
posium on Microarchitecture. (2001) 294–305

24. Herlihy, M., Luchangco, V., Moir, M.: The repeat offender problem: A mech-
anism for supporting lock-free dynamic-sized data structures. In: Proceedings
of the 16th International Symposium on DIStributed Computing. Volume 2508.,
Springer-Verlag Heidelberg (2002) 339–353 A improved version of this paper is in
preparation for journal submission; please contact authors.

25. Michael, M.: Safe memory reclamation for dynamic lock-free objects using atomic
reads and writes. In: The 21st Annual ACM Symposium on Principles of Distri-
buted Computing, ACM Press (2002) 21–30

26. Moir, M.: Practical implementations of non-blocking synchronization primitives.
In: Proceedings of the 16th Annual ACM Symposium on Principles of Distributed
Computing. (1997) 219–228

27. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. Sec-
ond edition edn. MIT Press, Cambridge, MA (2001)

28. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snap-
shots of shared memory. In Dwork, C., ed.: Proceedings of the 9th Annual ACM
Symposium on Principles of Distribted Computing, Québec City, Québec, Canada,
ACM Press (1990) 1–14

29. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 13 (1991) 124–149


