
Root-Cause Analysis of SAN Performance
Problems: An I/O Path Affine Search Approach

David Breitgand, Ealan Henis, Edya Ladan-Mozes∗1, Onn Shehory, Elena Yerushalmi
IBM Haifa Research Labs
Haifa University Campus
Mount Carmel, Haifa
31905, Israel
{davidbr,ealan,onn}@il.ibm.com

Abstract
We present a novel algorithm, called IPASS, for root cause analysis of performance prob-
lems in Storage Area Networks (SANs). The algorithm uses configuration information
available in a typical SAN to construct I/O paths, that connect between consumers and
providers of the storage resources. When a performance problem is reported for a storage
consumer in the SAN, IPASS uses the configuration information in an on-line manner to
construct an I/O path for this consumer. As the path construction advances, IPASS per-
forms an informed search for the root cause of the problem. The underlying rationale is
that if the performance problem registered at the storage consumer is indeed related to
the SAN itself, the root causes of the problem are more likely to be found on the rele-
vant I/O paths within the SAN. We evaluate the performance of IPASS analytically and
empirically, comparing it to known, informed and uninformed search algorithms. Our
simulations suggest that IPASS scales 7 to 10 times better than the reference algorithms.
Although our primary target domain is SAN, IPASS is a generic algorithm. Therefore, we
believe that IPASS can be efficiently used as a building block for performance manage-
ment solutions in other contexts as well.

Keywords
storage area network, SAN, root cause analysis, search, network management

1. Introduction and Motivation

A Storage Area Network (SAN) is a dedicated high-speed network connecting multiple
storage servers (usually being powerful hosts) to multiple highly capable storage devices.
Figure 1 depicts a typical SAN architecture. A SAN is optimized for carrying only I/O
traffic between the storage servers and the storage devices and, possibly, among the stor-
age devices themselves without the server’s intervention∗2. A SAN does not carry ap-
plication traffic. The latter is handled by a separate messaging network such as LAN.
This approach off-loads the main messaging network, simplifies sharing of storage re-
sources, improves data availability, eliminates the bottlenecks associated with the directly

∗1Edya Ladad-Mozes is currently affiliated with the CS dept. at Tel-Aviv University. This work was done when
she was affiliated with IBM-HRL.
∗2Although sometimes the term SAN refers only to the switching fabric, in the context of this work, we use the
term SAN to include the storage servers, and the back-end storage devices as well.

0-7803-9087-3/05/$20.00 ©2005 IEEE

Storage Area Network (SAN)

Storage
Server

Switch

Shark FAStT

RAID RAID RAID

Switch

Storage
Server

Storage
Server

Messaging Network (LAN/WAN)

WorkstationWorkstationWorkstation Workstation

Figure 1: Typical SAN Architecture

attached storage model, and enables new storage models, such as server clustering [8, 7].
Consequently, SANs become a leading solution for organizing storage resources in large
enterprizes for efficient handling of ever growing multi-terabyte volumes of business data.

The SAN model allows virtualization of the heterogeneous storage resources across
the enterprize by creating a pool of storage that can be shared by multiple consumers.
This pool consists of Logical Units (LU), where each LU is backed by blocks on one or
more physical devices. Potentially, any consumer can be configured to access any LU by
setting up mappings between the logical volumes of the consumer hosts and the appropri-
ate LUs. The mappings may be quite complex and include multiple levels of indirection.
The mappings are, usually, administered through configuration management tools, and
constitute an essential part of the SAN configuration. In this paper, we propose an explicit
usage of configuration information, such as mappings between the hosts logical volumes
and SAN logical units and physical back-end devices, for identifying root causes of SAN
performance problems.

Performance of a computer system is measured with respect to the operational char-
acteristics which are important to the applications. Typically, application and system per-
formance is assessed in terms of throughput and response time. There are two primary
sources of performance problems in SANs that may affect the overall application perfor-
mance: (a) malfunctioning or insufficient capacity of the entities comprising the SAN;
(b) application-induced contention due to the centralized storage access model (i.e., the
storage pool model).

To provide protection and security for different applications using the shared storage
pool, and also to reduce contention, a configuration management mechanism, known as
zoning, is often used. Zones partition the SAN into logical groupings of devices that can
share information. While being an efficient and versatile management tool, zoning cannot
totally eliminate the potential for contention. Namely, contention may still occur within
the zone, albeit with a lower probability. It should be understood, that the possibility of
contention is intrinsic to SANs, as it stems from the shared pool model of storage access.
The latter is also one of the more important advantages of the SAN model.

252 Session Six Utility and SAN Management

As shown in Figure 1, a SAN is a complex system that consists of multiple physical
and logical entities, such as storage servers, switches, disk arrays, logical volumes, logical
units, etc., being interconnected in a complex way. Large SANs may include thousands
of different inter-related logical and physical entities. When an application performance
problem is detected and reported either by an application’s user, or by an automatic mon-
itoring tool, the root cause of this performance problem can be anywhere in the system,
including the SAN, LAN, storage server, database, application server, client machine, etc.
This work focuses on determining root causes of performance problems by identifying
entities (physical and logical) within the SAN that are more likely to cause the perfor-
mance problem at hand. These entities are termed problematic entities. The problematic
performance behavior of an entity is reflected by the unusual values of its operational
variables, also known as performance metrics. Common examples of performance metrics
are mean queue length, mean response time, mean throughput, etc. Typical performance
management techniques concentrate on monitoring the performance metrics of the indi-
vidual elements comprising the SAN, and reporting the deviations from their normative
behavior (e.g., as defined by the local pre-specified performance-related thresholds), to
the manager of the system. The entities that violate their performance thresholds are the
problematic entities. However, firstly, not all problematic entities that may exist simulta-
neously in a complex system such as SAN, have the same importance for the system-level
performance. Secondly, only a few of them may be in the root of the performance problem
detected at the SAN level, on the application side. And, thirdly, since it is very difficult
to specify the performance thresholds with high accuracy in advance, false alarms are
possible.

Presently, the administrator is expected to determine manually the relationships be-
tween the reported threshold violations pertaining to the problematic entities scattered all
over the system, and performance problems detected at the application level. This is done
based on her knowledge of the system. While being feasible for small SANs (consisting
of dozens of elements), this approach does not scale. Firstly, the number of alarms that
the managed system generates may become very large. Secondly, the entity-level alarms
on their own are insufficient for determining the root causes of the system-wide problems
that manifest themselves at the application level. Therefore, a scalable root cause analysis
for SAN requires extending the entity-level management tools with methods that take into
account relationships among the entities. However, the number of relationships between
the managed entities in the SAN grows exponentially with the number of SAN entities.
This makes a brute force approach infeasible, and calls for more efficient algorithms for
searching the inter-related entities.

In this work, we present an I/O Path Affine SAN Search solution (IPASS), a heuristic
that, on average, reduces the exponential complexity of the search to a low polynomial
one. Similarly to [2, 5, 4], IPASS models a SAN as a graph. Using this graph, IPASS
focuses its search for root-cause entities on the I/O paths that emanate from the node rep-
resenting the SAN entry point of an application that reports a performance problem. The
rationale for this heuristic is that the SAN-related performance problems of an application
usually result from bottlenecks in the storage devices. These are most likely to be found
on the I/O paths of this application. It is further hypothesized that the application perfor-

253Root-Cause Analysis of SAN Performance Problems:
An I/O Path Affine Search Approach

mance problem should manifest itself through changes in the operational characteristics
of the entities on the I/O path.

IPASS assumes that thresholds defining the normal range of functioning are defined
for every entity in the SAN. Setting these thresholds in such a way that the number of
false alarms would be minimal, while all the true alarms would still be reported is a tough
research problem. The threshold definition problem is out of the scope of this paper.

2. Related Work

Relatively few publications deal with performance management in Storage Area Net-
works, and, specifically, with the root cause analysis of performance problems in SANs.
Partially, this can be attributed to the fact that this field is relatively new. In [2], Chambliss
et al. suggested an algorithm that looks for the root causes of performance problems by
systematically traversing a weighted graph that models dependencies between the entities
in the SAN. When traversing the graph starting from some entity for which a problem was
detected, the algorithm prefers as the next entity, the one for which some score function
(e.g., the magnitude of a threshold violation) is maximal. Essentially, the search algorithm
proposed in [2] is an informed greedy search. The main problem with this approach is the
need to know the model (i.e., the dependencies among the entities) in advance.

Kochut et al. [4] presented a three-stage performance management algorithm, where
the third stage attempts to find SAN elements that may be the source of a problem. In
similarity to our algorithm their solution utilizes the combination of static data on graph
topology and configuration and dynamic performance measurements on the elements of
the SAN. However, the search performed in stage two of their algorithm is exhaustive - all
SAN elements are checked. This approach may work well for small SANs, but it would
not scale. Additionally, the suggested algorithm does not cover all types of performance
problems. It should typically work well for contention problem, however other problems
will usually remain undetected. Similarly to [2], the algorithm assumes the knowledge of
dependencies among the entities in the SAN in advance. In [5], Kochut et al. proposed
a technique to discover the dependencies among the SAN entities, and in particular, the
data paths, dynamically. However, this approach is computationally expensive and would
typically work well for a rather small SAN.

When attempting to locate a small number of unique states in a large state space,
search algorithms are a natural solution approach [6]. The search for root cause entities in
a SAN is exactly such a problem, as the SAN consists of multiple entities, of which only
a few are the root cause of a specific performance problem. In principle, it is possible to
locate root cause entities by running an exhaustive search, e.g., breadth-first search (BFS).
Although BFS guarantees that a solution will be found if one exists, its complexity, even
for the average case, is of the order of the search space. Depth-first search (DFS) might
perform better for some search spaces, however the complexity is still high.

One may suggest that the SAN search space is sufficiently small for using BFS and
DFS. This claim may be correct if what one seeks is a single off-line search of the SAN.
Large SANs consist of thousands of entities, and a combinatorial number of links among
the entities. On each entity, multiple performance parameters are measured and, for mean-

254 Session Six Utility and SAN Management

ingful performance analysis, these should be measured rather frequently. As a result, an
exhaustive on-line search of the SAN, its links, and their dynamically changing perfor-
mance readings, is infeasible. Therefore, the search space must be pruned.

Search can be significantly improved by the use of domain-specific information. Al-
though the worst-case complexity of informed search algorithms [1] is similar to the
complexity of the exhaustive search, the average case complexity is usually significantly
better. In the case of a SAN configuration information, and, in particular, mapping, ad-
dressing links between entities, and zoning information can direct the search to the more
relevant SAN entities. This exactly what our study suggests: the search is restricted to
I/O paths in the SAN, and I/O paths can be inferred using the configuration data, which
is available as part of system configuration. Complete and optimal informed search algo-
rithms are, for example, A∗ and its derivatives. Those algorithms use heuristics to con-
strain the search space, however in the worst case they may search the entire space. Our
approach takes one step further in restricting the space: we allow search only on I/O paths.
As a result, our algorithm should rarely search the entire space, and usually it will search
only a small subset thereof.

3. Model and Problem Statement

We model a SAN as a graph G = (V,E), where V is the set of nodes and E is the set
of edges. An example of a SAN graph is given in Figure 2. There are two types of nodes:
regular-nodes, and super-nodes. A regular node models either a physical (hardware) or
a logical (software) atomic entity, such as Host Bus Adapter (HBA), Logical Volume,
Logical Unit, etc. A super-node models a collection of nodes and edges as detailed below.

FCP_PORT
1

FCP_PORT
3

FCP_PORT
2

FCP_PORT
4

FCP_PORT
1

FCP_PORT
3

FCP_PORT
2

FCP_PORT
4

Virtual
Device 1

Logical
Volume 1

HBA 1

Logical
Volume 2

Virtual
Device 1

Logical
Volume 1

HBA 1

Logical
Volume 2

BA 1

Logical
Unit 1

Logical
Unit 2

Physical
Device 1

BA 1

Logical
Unit 1

Logical
Unit 2

Physical
Device 1

HOST 1 HOST 2

SWITCH1 SWITCH2

DISK1 DISK2

Mapping

Mapping
Mapping

Figure 2: Typical SAN Graph (not all mappings are shown)

Each edge represents a link connecting a pair of nodes or super-nodes, and refers

255Root-Cause Analysis of SAN Performance Problems:
An I/O Path Affine Search Approach

to a physical (e.g., communication link), or logical (e.g., address mapping) relationship
between the nodes. Consequently, there are two types of links: physical, and logical. In
contrast to the physical links, the logical links may connect the nodes that are not directly
connected in the physical topology of the SAN. Logical links are directed.

Common to all storage virtualization techniques is explicit mapping of the contiguous
segments of the virtual storage space (provided by the virtual devices) onto contiguous
segments of the physical storage space (provided by the back-end physical devices). The
mapping usually comes in form of mapping tables that can be manipulated by provision-
ing tools and by human administrators. In this paper, we assume that the mapping tables
are available to our algorithm as part of the SAN’s logical topology. Address mappings
found in the mapping tables are represented by the logical links between the nodes in
the SAN graph. For example, the logical link between Logical Volume 1 of Host 1, in
Figure 2, and the Logical Unit 1 offered by the Disk Controller 1, represents the address
mapping between the consumer of the storage and its provider.

The super-nodes bundle the regular nodes sharing the same properties (and edges con-
necting these nodes) into a single logical entity. This allows for coarser granularity of
presentation, explicit modelling of relationships among the entities, and helps to speed up
the navigation of the SAN graph. A switch is an example of a super-node. In our model,
it can be represented as a collection of ports.

Each node has a vector R of attributes representing the resources of this node. Re-
source examples are capacity of a disk controller, its bandwidth, etc. With respect to each
resource in R, the entity corresponding to a specific node may act as either a consumer,
or a provider, or a mediator. For example, a file server consumes storage capacity, a disk
array provides it, and a switch port mediates between the two. It is important to notice
that, in our model, the roles of the entities with respect to the resources are fixed.

Each resource has one or more metrics associated with it. At any given point in time,
each metric has an operational value measured directly from the entity to which this metric
belongs. Useful SAN performance management metrics include queue length, throughput,
capacity, utilization, etc. For each metric, there is a set of the pre-computed thresholds that
define the range in which the operational values of this metric should reside under normal
operation conditions. The nodes at which, for one or more metrics, the operational values
violate their thresholds are termed problematic nodes. The thresholds can be recalculated
in the course of operation and reset to new values. However, the problem of threshold
calculation is out of the scope of this work.

The SAN graph topology is discerned from the physical and logical topologies of the
underlying SAN. These topologies are assumed to be known in advance or, alternatively,
detected by standard tools (e.g., IBM Tivoli SAN Manager(ITSANM) [3]). The SAN
logical topology usually enforces restrictions on top of the physical topology, such as
limitations on node access. For example, a RAID array may be physically connected to a
switch that facilitates direct connections to multiple file servers. However, the RAID, usu-
ally, can only be accessed by these servers through the Logical Volume Manager (LVM),
and not directly. In our model, the SAN graph does not include edges that correspond to
physical connections which are prohibited by the logical topology.

Another important type of configuration information is zoning. It defines the logical

256 Session Six Utility and SAN Management

groups of devices that may share information. Figure 2 shows two such zones in the
SAN. The ”gray— ports belong to one zone, and the ”white” ports belong to another one.
The address mappings between the consumers and providers of the storage resources are
allowed only between the entities belonging to the same zone. There are a few types of
zones that are commonly used in SANs. In Section 6 we explain more about the zones.
One type, the port-based zoning, which enumerates the ports that can ”see” each other, is
used in our simulation studies.

Definition 1 (Problem Statement) Given the graph representation of the SAN, the op-
erational values of the resource metrics for the entities comprising it, and the indication
of a performance problem at a specific node (e.g., threshold violation at an application
server), devise an algorithm that would find the root cause entities within the SAN, i.e.,
the entities from which the performance problem likely has originated.

Swit ch

Storage
server

Storage
server

Storage
server

RA ID

D isk D isk D isk

RA ID

D isk D isk D isk

Swit ch

FA St T

RA ID

D isk D isk D isk

RA ID

D isk D isk D isk

RA ID

D isk D isk D isk

Shark

Agent Agent Agent

Agent Agent

AgentAgent

Monitoring

SAN

SAN Management &
IPASS Server

Operational
Performance DB

System administrator

SAN model
generator

IPASS stage 2:
Crossing paths

Root - cause
notification

Problem source
indication

SAN data load

IPASS
activation

Data collection
activation

IPASS stage 1:
Search I/O path

Figure 3: The root cause analysis tool architecture

4. Architecture

Figure 3 depicts the architecture of the IPASS root cause analysis tool. There are four
major components in the architecture.

• Monitoring agents: software components that periodically perform measurements of
the operational values of resource metrics at the SAN entities, and report this informa-
tion to the operational database.

• Operational database: a database that serves as a repository of configuration and per-
formance information produced by the monitoring agents.

• Performance analysis front-end: the realization of the IPASS algorithm described in
the following section. The data for analysis is retrieved from the operational database.
The operation of the IPASS algorithm may be guided by an administrator of the SAN
either through the GUI or programmatically.

257Root-Cause Analysis of SAN Performance Problems:
An I/O Path Affine Search Approach

• GUI: this is an optional part of the architecture. It presents to the system administrator
convenient means of invoking the IPASS algorithm and controlling its execution

5. The IPASS Algorithm

IPASS is an informed search algorithm traversing the SAN graph∗3. It assumes the avail-
ability of mapping tables and, possibly, other configuration information. The main under-
lying idea of the algorithm is that given an initial problematic node, root cause problematic
entities are most likely to be located on the I/O paths emanating from this node. In func-
tional SANs, these paths form a directed acyclic graph DAG that starts from a consumer
C, proceeds through mediators and terminates at the relevant providers’ nodes.

The IPASS algorithm consists of two major stages: a first stage in which I/O paths
emanating from C are searched for problematic nodes PN1; an optional second stage
in which I/O paths crossing through nodes in PN1 are search for additional problematic
nodes PN2. The first stage, although can be implemented in several ways, is essentially a
DFS-like search guided by mapping and zoning information, that starts from C and grad-
ually constructs DAG. The goal of this search is to find a set of problematic nodes that
belong to the I/O path emanating from C. The rationale for this is that these nodes are the
more likely ones to be related to the performance problem recorded at C. In a basic IPASS
setting, the algorithm fully explores the I/O path collecting all the problematic nodes. In
a more conservative setting, IPASS continues its search until either N (being a parameter
of the algorithm) problematic nodes are found, or the I/O path is fully explored∗4∗.

The details of the first stage (in its basic form) are presented in Figure 4. For sim-
plicity, we do not include zoning configuration information treatment into the algorithm
presentation. It is implicitly assumed that the algorithm operates within a single zone. As
is the case with the classic DFS search, initially all nodes in the SAN graph are marked
white. When the node is visited it is marked gray, and when all its neighbors have been
explored, it is marked black. The first stage of IPASS halts when it finds all problematic
nodes on the I/O path. It requires a trivial modification to allow an early stop when N
problematic nodes are found.

By using the SAN graph and the mapping information within, the search is restricted
to I/O paths. As is commonly the case for informed search algorithms, the additional
information prunes the search space. Within the subgraph of the I/O paths emanating
from the starting point, this search is essentially a DFS search. From this we can conclude
that the search is complete: if a solution exists, the algorithm will find it.

The second stage of the IPASS algorithm is not mandatory, and is activated upon user
request. Once a SAN administrator reviews the set of problematic nodes reported, PN ,
she may decide to request further search. The second stage of the search traverses the
graph through I/O paths that cross the nodes reported in PN . On these I/O paths, prob-

∗3We refer here to the SAN graph including the mapping links.
∗4For simplicity, we present IPASS in its simplest form. In particular, we represent the switching fabric as a
single node with all port nodes connected to it. In actual implementations, however, it may be important to
distinguish between different switches inside the fabric, and represent the fabric as a mesh. Searching the mesh
efficiently going from consumers to producers is a non-trivial algorithmic task, since the ports in the mesh lack
additional information defining their relationships with consumers and producers. To this end, we developed an
extension of IPASS, to be presented in a longer version of this paper.

258 Session Six Utility and SAN Management

1. SG : the graph presentation of the SAN (topology + mappings)
2. C : the initial problematic node(consumer)
3. P ← C.getMappings().getTargets() : target nodes (providers for C according to mappings)
4. N :the number of problematic nodes to search for
5. PN ← ∅ : the set of problematic nodes found at stage 1
6. found← 0 : the number of problematic nodes found
7. DAG← ∅ : I/O Path that is being constructed

ipass1(SG, C) {
8. while P �≡ ∅ do
9. buildIOPath(C)
10. return PN }

buildIOPath(cur) {
11. cur.color ← GRAY

12. IOneighbors← computeIONeighbors(cur)
13. if (IOneighbors ≡ ∅) {
14. cur.color ← BLACK

15. return FALSE

16. }
17. foreach nbr in IOneighbors do
18. if(nbr.color == WHITE) {
19. DAG.insert(cur, nbr) //inserts nbr after cur into DAG
20. if (nbr violates threshold)
21. PN.add(nbr)
22. if (nbr ∈ P) {
23. nbr.color ← BLACK

24. P.remove(nbr)
25. return TRUE

26. }
27. if (buildIOPath(nbr) == FALSE) {
28. DAG.removeBranch(cur) //removes nbr and all entities in DAG that follow nbr from

DAG and PN
29. return FALSE

30. }
31. } }
computeIONeighbors(node nd) {
32. resultList← ∅
33. foreach neighbor n of nd in SG do
34. if a physical link (nd, n) exists
35. resultSet.add(n)
36. mappings← nd.getMappings()

37. resultSet← resultSet
⋂

mappings

38. return resultList }

Figure 4: Stage 1: search I/O paths from a storage consumer to its storage providers

lematic nodes are searched for. The rationale of this stage is that the root cause of a storage
performance problem on one I/O path may reside on another, crossing I/O path. For in-
stance, two applications may be using different logical units backed by the same disk
controller. However one of the applications may create excessive loads at the controller,
thus affecting another one.

Within the zone, the second stage traverses at most N ·z crossing I/O paths. The search
within each I/O path is similar to the search in the first stage. The details of the second
stage are in Figure 5. For the sake of simplicity the algorithm presented in Figure 5 does
not deal with the overlappings between the I/O paths that are being constructed. In the

259Root-Cause Analysis of SAN Performance Problems:
An I/O Path Affine Search Approach

actual implementation, path overlapping is taken into account in order to maintain the
optimality of the search, and explore each sub-path only once.

6. Algorithm Evaluation

Let complexity of the search algorithm be the number of entities in the SAN graph that
it has to inspect, until it finds all the problematic entities that may be relevant to the
performance problem at hand.

To analyze the performance of the IPASS algorithm, let us consider again the typical
SAN topology presented in Figure 2. In the first stage of the algorithm, an I/O path em-
anating from the entry point into the SAN is constructed. One such path is shown by the
bold line in the figure. Obviously, in the worst case, IPASS has to construct the full path
before it discovers a problematic entity (in this example, Physical Device 14) that may be
in the root of the performance problem. Since, I/O paths always starts at some consumer
and always terminates at some provider node, the maximal length of an I/O path equals
the diameter of the SAN graph, d. One may observe, that since the same consumer node
may be mapped to multiple provider nodes located in the back-end storage devices being
”behind” the switch fabric. Each mapping may, in the worst case relate the same con-
sumer node to a different back-end device. Thus, an I/O path may be split approximately
half-way, ”on the exit” from the switching fabric with each branch leading to different
device. Therefore the complexity of the IPASS algorithm, in the worst case, is O(d). The
actual value of the multiplicative constant factor depends on the maximal out-degree of
the consumer nodes with respect to the address mapping links, M .

Thus, in the worst case, IPASS considerably outperforms the uninformed exhaustive
search algorithms such as BFS, whose complexity is Θ(V + E), and DFS, whose com-

1. ipass2(SG, PN) {
2. // variables of stage 1 are available for use in stage 2
3. PN1← PN : the set of problematic nodes found at Stage 1
4. PN2← ∅ : the set of problematic nodes found at Stage 2
5. P ← ∅ : set of target nodes (as in Stage 1)
6. consumers : all consumer nodes in the zone
7. while (PN1.size ¿ 0) do {
8. currentNode← PN1.first
9. PN1.remove(currentNode)
10. P.add(currentNode)
11. foreach c ∈ consumers do {
12. buildIOPath(c) //builds I/O path starting at c, and terminating at the target node in P
13. //and terminating at the target node in P (results are in PN)
14. PN2.add(PN)
15. P ← c.getMappings().getTargets()
16. ipass1(SG,currentNode)
17. PN2.add(PN)
18. }
19. }
20. return PN2

21. }

Figure 5: IPASS stage 2: search crossing I/O paths

260 Session Six Utility and SAN Management

plexity is Θ(V + E). However, the worst case is not necessarily the most common one. It
may still be claimed thus, that in practice, the difference between all search algorithms in
terms of their average complexity would be marginal. In order to explore the relative per-
formance of IPASS in the average case, we conducted a comprehensive simulation study
that is described in the next subsection.

6.1 Simulation Study

Actual traces containing the SAN performance problems are difficult to obtain. Note that
even if such traces were publicly available, their value would be limited, as each trace rep-
resents a specific case study of a specific system. Therefore, the results obtained through
the trace-driven simulation of this kind would be difficult to generalize. Consequently, we
perform a comprehensive comparative study through simulation that is not based on any
specific performance trace from a real system, trying instead to cover possible behavior
of a wide range of systems. Our simulations are organized as follows.
• Prior to each run, we randomly generate a SAN topology similar to that of Figure 2.

The SAN graph’s actual form is controlled by five main parameters: number of hosts,
an average number of logical volumes per host, share factor, i.e., number of providers

number of consumers ,
average size of the port-based zones, and maximal mapping out-degree

• Next, an entry point into the SAN, which in our study is always a logical volume is
randomly chosen, and an I/O path for this node is constructed off-line

• On the I/O path constructed in the previous step, we randomly choose a ”root cause”
node, and inject a failure into this node with a pre-specified probability p of problem
propagation upstream from this node. We term it the probability of problem diffusion.
We then perform a number of Bernoulli trials on the upstream nodes, to simulate the
problem diffusion in the network. The nodes with induced problem together with the
root cause node form the root cause set.

• Next, we randomly draw a number of nodes in the SAN that are outside the constructed
I/O path, and inject ”irrelevant” problems (manifested as threshold violations) into
these nodes to satisfy a pre-specified ratio of true problems: Ptrue = real problems

all problems .
• When the above steps are completed, we run four different search algorithms: IPASS

(first stage), BFS, DFS, and Greedy DFS, to find the given number of the nodes from
the root cause set. We assume that there is an oracle that can tell whether the node
found by an algorithm belongs to the root cause set or not.

The Greedy DFS algorithm is essentially a prioritized DFS, that at each stage prefers first
to explore the neighbors that exhibit threshold violations. The intuition behind this heuris-
tic is that the Greedy DFS tries first to explore branches that seem more suspicious than
the other ones. The number of nodes visited by each algorithm is recorded and represents
its ”cost” in the given run. For each set of configuration parameters, each run is repeated
100 times in order to eliminate statistical dependency and obtain the meaningful average
values. Due to the lack of space, we present only the more important results highlighting
the main traits in the algorithm’s behavior.

Figure 6 shows the cost of search algorithms as a function of topology size. Figure 6(a)
shows the cost of the algorithms (i.e., the number of nodes in the topology that it inspects
until the search goal is satisfied), for the search goal of finding only a single relevant

261Root-Cause Analysis of SAN Performance Problems:
An I/O Path Affine Search Approach

0 500 1000 1500
0

50

100

150

200

250

300

350

400

450

500

SAN size (in nodes)

P
ric

e

Price vs. SAN Size

bfs
dfs
ipass
greedy

0 500 1000 1500
0

100

200

300

400

500

600

700

SAN size (in nodes)

P
ric

e

Price vs. SAN Size

bfs
dfs
ipass
greedy

(a) searching for a single problematic node (b) searching for all problematic nodes

Figure 6: Cost of the Search Algorithms as a Function of Topology Size

problematic node. Recall that the problematic node is considered relevant, if it belongs
to the I/O path of the consumer that initially reported that there exists a performance
problem. Figure 6(b) reports the similar results, but in this case the search goal was set to
find all relevant problematic nodes.

In both cases, Ptrue = 0.7, i.e., 70% of all problems that were injected were relevant.
The ratio between providers (backend devices) and consumers was set to 0.7, and the
average zone included 10% of the consumer ports. In this set of experiments, only one
root cause problem was injected, and the probability of problem diffusion in this set of
experiments was set to 1%. One may notice that these settings imply that there will be
very few problematic nodes relatively to the total size of the topology. However, 70% of
these nodes are relevant to the performance problem being investigated. One may also
expect that when the algorithms search for all problematic nodes and not just for a single
one, their cost should increase on the average, as is indeed the case (see Figure 6(b)).
Notice that the graphs exhibit a high variance. This is much more pronounced for the un-
informed search algorithms. Although the variance for the uninformed search algorithms
decreases as the number of replications increases, it would still be substantial unless the
outliers (corresponding to the worst case runs) are censored. The figures present the un-
censored data. The random nature of problem injection and topology generation, however,
inevitabely results in large outliers for the uninformed search algorithms. IPASS is less
susceptible to this problems because in the worst case its performance is only a constant
fraction of the topology. Despite the outliers, the presented graphs are sufficiently infor-
mative to derive conclusions regarding the relative average case performance of IPASS.

Figure 6(a) shows, that while the cost of IPASS stays flat as the SAN size grows, the
cost of the uninformed search (DFS, BFS, Greedy DFS) grows linearly with the size of
the topology. As one may expect, when the algorithms search for all problematic nodes,
their average cost should increase, as is indeed the case with all the simulated search
algorithms (see Figure 6(b)). The cost of both informed and uninformed search algorithms
grows linearly with the size of the SAN. However, the slope for the uninformed search
algorithms is approximately 1, and the slope for IPASS is much smaller. This suggests that

262 Session Six Utility and SAN Management

IPASS scales considerably better than the uninformed search algorithms. As observed, the
gain in effectiveness ranges from the multiplicative factor of 7 to an order of magnitude.

If diffusion probability, the initial number of root cause problems, and the Ptrue ra-
tio remain fixed, then the major important factor that affects the performance of IPASS
relatively to the uninformed search is the average zone size. Indeed, within the fabric,
IPASS cannot get assistance from the mapping information, because there is usually no
fixed mapping between any combination of input and output ports. Therefore, when con-
structing the I/O paths within the zone, IPASS will have to explore multiple irrelevant
branches that will be subsequently pruned from the I/O path. Thus, as the zone size in-
creases, so does the cost of IPASS. Our simulations suggest that the efficiency gain of
IPASS is inversely proportional to the zone size.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

problem diffusion probability

pr
ic

e

Price vs. Diffusion Probability

bfs
dfs
ipass
greedy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

problem diffusion probability

pr
ic

e

Price vs. Diffusion Probability

bfs
dfs
ipass
greedy

(a) searching for single problematic node (b) searching for all problematic nodes

Figure 7: Cost of Search Algorithms as a Function of Problem Diffusion Probability

Given the fixed topology parameters, the major factor that affects the efficiency of
IPASS is the probability of problem diffusion. Figures 7(a,b) show the cost of the algo-
rithms as a function of the problem diffusion probability for a fixed SAN size: 32 hosts,
approximately 1600 nodes in total. As one can see, for the smaller probabilities, i.e., for
the case when there are fewer relevant problematic nodes in the SAN topology, IPASS per-
forms an order of magnitude better than the uninformed search algorithm. Figure 7(a) sug-
gests that as the diffusion probability increases, the cost gain of IPASS becomes marginal.
When probability of diffusion passes over 20% all algorithms perform similarly in terms
of their cost, when it is required to find only a single relevant problematic node because
the chances to encounter a relevant node after only a few steps is become very high.
However, as seen from Figure 7(b), if the algorithms are required to find all the relevant
problematic nodes, then IPASS is clearly superior. As in the previously described set of
experiments, the cost gain of IPASS ranges from the multiplicative factor of 7 to an order
of magnitude. One may also notice from Figure 7(b) that the cost of IPASS remains flat,
as was suggested by the worst case analysis in Section 5.

In the light of the above, we conclude that in the average case, the informed search
algorithm like IPASS is clearly preferable to the naive uninformed search algorithms, as

263Root-Cause Analysis of SAN Performance Problems:
An I/O Path Affine Search Approach

it provides a substantial efficiency gain. The naive search algorithms do not scale well,
while IPASS exhibits a much better potential for scaling.

7. Conclusion and Future Work

We presented a novel informed search algorithm, IPASS, that can serve as an efficient
building block for root cause analysis in Storage Area Networks. As our analysis and sim-
ulation study suggest, IPASS is factor 7 to an order of magnitude more efficient than the
uninformed search algorithms that are often suggested as a naive alternative. We demon-
strated that while the naive algorithms scale poorly, IPASS exhibits an acceptable scalabil-
ity. The primary target domain of IPASS is performance management of SANs. However,
it is a generic algorithm that can be extended to other domains.

Our future directions include deployment of the IPASS prototype in an actual SAN,
and gaining further understanding with it. Another important extension of the presented
work is development of automatic threshold setting for SAN entities with respect to the
application Service Level Objectives. Currently we assume that the sufficiently accurate
thresholds are set manually in the system. Although this is a usual assumption, we believe
that it is not realistic for large systems.

8. Acknowledgments

We thank Norman Bobroff, Kirk Beaty and Gautam Kar for their valuable comments.

References
[1] S. Russell and P. Norvig. Introduction to Artificial Intelligence - a Modern Approach. Prentice

Hall, 1995.
[2] D. Chambliss and P. Pandey. Aurora: Technology for storage performance managemement.

US Patent ARC920020048US1: A System and Method for Managing the Performance of a
Computer System based on Operational Characteristics of the System Components, December
2002.

[3] IBM Tivoli. IBM Tivoli Storage Area Network Manager (ITSANM). http://www.ibm.com/
software/info/testinfo.jsp?uid=IC00009, 2003.

[4] A. Kochut, N. Bobroff, K. Beaty, and G. Kar. Management issues in storage area networks:
Detection and isolation of performance problems. In IFIP/IEEE 9th International Network
Operation and Management Symposium (NOMS’04), pages 593–604, Seol, Korea, mar 2004.

[5] A. Kochut and G. Kar. Managing virtual storage systems: An approach using dependency anal-
ysis. In IFIP/IEEE 8th International Symposium on Integrated Network Management(IM’03),
pages 593–604, Colorado Springs, Colorado, USA, mar 2003.

[6] T. H. Cormen and C. E. Leiserson and R. L. Rivest. Introduction to Algorithms. MIT Press,
1990.

[7] J. Tate. Virtualization in a SAN. www.redbooks.ibm.com/redpapers/pdfs/redp3633.

pdf, 2003.
[8] J. Tate, A. Bernasconi, P. Mescher, and F. Scholten. Introduction to Storage Area Networks.

Number SG24-5470-01 in IBM Red Books. IBM, apr 2003.

264 Session Six Utility and SAN Management

