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Abstract
Open-ended homework problems such as coding
assignments give students a broad range of freedom
for the design of solutions. We aim to use the diversity
in correct solutions to enhance student learning by
automatically suggesting alternate solutions. Our
approach is to perform a two-level hierarchical
clustering of student solutions to first partition them
based on the choice of algorithm and then partition
solutions implementing the same algorithm based on
low-level implementation details. Our initial
investigations in domains of introductory programming
and computer architecture demonstrate that we need
two different classes of features to perform effective
clustering at the two levels, namely abstract features
and concrete features.
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Introduction
There are a variety of ways in which students
implement solutions for open-ended homework
problems such as coding assignments. Their correct
solutions vary in at least two dimensions: (i) choice of
algorithm, and (ii) choice of language constructs and
library functions for the low-level implementation. This
variation among correct solutions gives us an
opportunity to use them to enhance student learning, in
accordance with Marton et al.’s Variation Theory (VT)
[3]. VT holds that in order to learn concepts, one must
see examples that vary along dimensions of contrast,
generalization, separation, and fusion. In this work, we
aim to build a system that can automatically provide
students with examples of alternative correct solutions
across these different dimensions, powered by a large
dataset of previous student solutions.

In order to separate solutions along VT’s
recommended dimensions, we must design metrics
that capture the distinctions VT makes between
solutions. Our first exploratory feature design study is
based on a large dataset of students’ Python
submissions from an introductory programming course
offered on the edX MOOC platform in Fall 2012.

We show a few hand-picked examples in Figure 1 from
the comp-deriv problem, which computes the derivative
of a polynomial. To illustrate VT’s contrast dimension,
we include an example of a comp-deriv solution paired
with a solution to a different problem, eval-poly. Under
the generalization heading, we have shown two
solutions that use the same approach or algorithm, but
different low-level functions and language constructs to
implement it. We illustrate the separation dimension of

variation by pairing two comp-deriv solutions that
implement different algorithms.

Related Work
A common goal of the prior work cited here is to help
teachers monitor the state of their class, or provide
solution-specific feedback to many students. However,
the techniques for analyzing solutions have not
converged on a particular method. Huang et al. [1] use
unit test results and AST edit-distance algorithms to
identify clusters of submissions that could potentially
receive the same custom feedback message.
Taherkhani et al. [4] identify which sorting algorithm a
student implemented using supervised machine
learning methods. Each solution is represented by
statistics about language constructs, measures of
complexity, and detected roles of variables.

Luxton-Reilly et al. [2] label types of variations as
structural, syntactic, or presentation-related. The
structural similarity is captured by the control flow
graph of the student solutions. If the control flow of two
solutions is the same, then the syntactic variation
within the blocks of code are compared by looking at
the sequence of token classes. Presentation-based
variation, such as variable names and spacing, is only
examined when two solutions are structurally and
syntactically the same. Our motivation is similar to that
of Luxton-Reilly et al., but we explore a less strict
notion of solution similarity.

Our Approach
We are pursuing a two-level hierarchical clustering
methodology. The high-level clusters are intended to
partition solutions along the separation dimension,
where each cluster represents a particular algorithm.



CONTRAST GENERALIZATION SEPARATION

def computeDeriv(poly):

ans = []

for i in range(1,len(poly)):

ans.append(i*poly[i])

if ans == []:

ans = [0.0]

return ans

def computeDeriv(poly):

powers = len(poly)

if powers == 1:

return [0.0]

deriv = []

for i in range(powers):

deriv.append(poly[i]*i)

return deriv[1:]

def computeDeriv(poly):

idx = 1

res = list([])

polylen = len(poly)

if polylen == 1: return [0.0]

while idx <= polylen:

coeff = poly.pop(1)

res.append(coeff*idx)

idx = idx + 1

if len(poly) < 2: return res

def evaluatePoly(lis,a):

total = 0

for i in range(len(lis)):

e = lis[i]*(a**i)

total = total + e

return total

def computeDeriv(poly):

if len(poly) > 1:

res = []

else: return [0.0]

for i in range(len(poly)):

res.append(poly[i]*i)

res.pop(0)

return res

def computeDeriv(poly):

result = []

for i in range(1,len(poly)):

result.append(i*poly[i])

if len(result) == 0:

result.append(0.0)

return result

Figure 1: Hand-selected examples of student solutions varying along Variation Theory dimensions. Students were asked to
implement a function to compute a polynomial’s derivative; the polynomial’s coefficients are represented as a list. The contrast
dimension contains examples that are and are not a derivative-computing function. The generalization dimension includes examples
with the same algorithm but different low-level implementations. The separation dimension captures the full variation of
implementations which still compute the derivative of a polynomial.



We have used k-means to create these high-level
clusters of solutions based on abstract features. The
abstract features for Python programs consist of 12
features that include the position of conditional
statements relative to the loop statements (before,
after, or inside), the depth of nested loops, number of
AST nodes, return statements, loops, comparisons,
etc.

The sub-clusters within each high-level cluster are
intended to capture the generalization dimension,
where the only differences between clusters are
low-level language constructs and used library
functions. We plan to use k-means again on solutions
within each high-level cluster, based on low-level,
concrete features. The concrete features for Python
programs consist of 48 low-level features that include
the number of specific types of operators (add,
subtract, etc.), comparisons (<, >, etc.), loops (while
or for), library functions, and statements (assignments,
conditional, or loop), number of program variables,
constant values, etc.

Preliminary Results
We use abstract features for k-means clustering of
student solutions for the separation dimension, which
partitions the solutions into k clusters. We compute
clusterings for different k values, and then compare
these clusterings to those created by two course
teaching assistants (TAs). The TAs were given 50
randomly chosen student solutions as a clustering
task. We did not give them specific directions for
clustering, in order to better understand how the TAs
naturally group solutions. We observed that they
ignored low-level features, e.g., they clustered together

solutions implementing the same algorithm but using
different functions such as pop, list slicing, and delete.

We use the adjusted mutual information (AMI) metric to
compare TAs’ clusterings with each other and with our
k-means clustering. An AMI value of 0 indicates purely
independent clusterings, whereas a value of 1
indicates perfect agreement between the clusterings.
The agreement of the two TAs’ clusterings, referred to
here as the inter-TA AMI, is only 0.3275. When k was
sufficiently high, i.e., at least 15, the k-means-produced
clusterings agreed, as measured by AMI, with each
TA’s clusterings as much or more than the TAs’
clusterings agreed with each other. We found high
agreement between our k-means and TA-produced
clusterings on two additional coding assignments as
well.

Future Work
We are generalizing this approach to two additional
domains. The Mathworks runs an online game, Cody.
Users submitted 218,000 Matlab functions as solutions
to 1000 or so problems. We hope to categorize
software metrics, library functions, and language
constructs within Matlab functions as abstract features,
differentiating algorithms, or concrete features,
distinguishing implementations of the same algorithm.
The second domain is code written by MIT students in
a hardware description language. Students define their
own library of circuits, from which larger circuits are
composed. Within each high-level cluster based on
overall structure, we could cluster based on low-level
library circuit implementation.
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