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OverCode: Visualizing Variation in Student Solutions to Programming
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In MOOCs, a single programming exercise may produce thousands of solutions from learners. Understanding
solution variation is important for providing appropriate feedback to students at scale. The wide variation
among these solutions can be a source of pedagogically valuable examples and can be used to refine the
autograder for the exercise by exposing corner cases. We present OverCode, a system for visualizing and
exploring thousands of programming solutions. OverCode uses both static and dynamic analysis to cluster
similar solutions, and lets teachers further filter and cluster solutions based on different criteria. We evalu-
ated OverCode against a nonclustering baseline in a within-subjects study with 24 teaching assistants and
found that the OverCode interface allows teachers to more quickly develop a high-level view of students’
understanding and misconceptions, and to provide feedback that is relevant to more students’ solutions.
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1. INTRODUCTION

Intelligent tutoring systems (ITSes), massive open online courses (MOOCs), and Web
sites like Khan Academy and Codecademy are now used to teach programming courses
at a massive scale. In these courses, a single programming exercise may produce thou-
sands of solutions from learners, which presents both an opportunity and a challenge.
For teachers, the wide variation among these solutions can be a source of pedagogically
valuable examples [Marton et al. 2013], and understanding this variation is important
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for providing appropriate, tailored feedback to students [Basu et al. 2013; Huang et al.
2013]. The variation can also be useful for refining evaluation rubrics and exposing
corner cases in automatic grading tests.

Sifting through thousands of solutions to understand their variation and find ped-
agogically valuable examples is a daunting task, even if the programming exercises
are simple and the solutions are only tens of lines of code long. Without tool support, a
teacher may not read more than 50 to 100 of them before growing frustrated with the
tedium of the task. Given this small sample size, teachers cannot be expected to de-
velop a thorough understanding of the variety of strategies used to solve the problem,
produce instructive feedback that is relevant to a large proportion of learners, or find
unexpected interesting solutions.

An information visualization approach would enable teachers to explore the varia-
tion in solutions at scale. Existing techniques [Gaudencio et al. 2014; Huang et al. 2013;
Nguyen et al. 2014] use a combination of clustering to group solutions that are seman-
tically similar and graph visualization to show the variation between these clusters.
These clustering algorithms perform pairwise comparisons that are quadratic in both
the number of solutions and the size of each solution, which scales poorly to thousands
of solutions. Graph visualization also struggles with how to label the graph node for a
cluster, because it has been formed by a complex combination of code features. With-
out meaningful labels for clusters in the graph, the rich information of the learners’
solutions is lost and the teacher’s ability to understand variation is weakened.

In this article, we present OverCode, a system for visualizing and exploring the vari-
ation in thousands of programming solutions. OverCode is designed to visualize correct
solutions in the sense that they already passed the automatic grading tests typically
used in a programming class at scale. The autograder cannot offer any further feedback
on these correct solutions, and yet there may still be good and bad variations on cor-
rect solutions that are pedagogically valuable to highlight and discuss. OverCode aims
to help teachers understand solution variation so that they can provide appropriate
feedback to students at scale.

OverCode uses a novel clustering technique that creates clusters of identical cleaned
code, in time linear in both the number of solutions and the size of each solution. The
cleaned code is readable, executable, and describes every solution in that cluster. The
cleaned code is shown in a visualization that puts code front and center (Figure 1).
In OverCode, the teacher reads through code solutions that each represent an entire
cluster of solutions that look and act the same. The differences between clusters are
highlighted to help teachers discover and understand the variations among submitted
solutions. Clusters can be filtered by the lines of code within them. Clusters can also
be merged together with rewrite rules that collapse variations that the teacher decides
are unimportant.

A cluster in OverCode is a set of solutions that perform the same computations but
may use different variable names or statement order. OverCode uses a lightweight dy-
namic analysis to generate clusters, which scales linearly with the number of solutions.
It clusters solutions whose variables take the same sequence of values when executed
on test inputs and whose set of constituent lines of code are syntactically the same.
An important component of this analysis is to rename variables that behave the same
across different solutions. The renaming of variables serves three main purposes. First,
it lets teachers create a mental mapping between variable names and their behavior
that is consistent across the entire set of solutions. This may reduce the cognitive
load for a teacher to understand different solutions. Second, it helps clustering by re-
ducing variation between similar solutions. Finally, it also helps make the remaining
differences between different solutions more salient.

In two user studies with a total of 24 participants who each looked at thousands
of solutions from an introductory programming MOOC, we compared the OverCode
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Fig. 1. The OverCode user interface. The top-left panel shows the number of clusters, called stacks, and
the total number of solutions visualized. The next panel down in the first column shows the largest stack,
whereas the second column shows the remaining stacks. The third column shows the lines of code occurring
in the cleaned solutions of the stacks together with their frequencies.

interface with a baseline interface that showed original unclustered solutions. When
using OverCode, participants felt that they were able to develop a better high-level view
of the students’ understandings and misconceptions. Although participants did not
necessarily read more lines of code in the OverCode interface than in the baseline, the
code they did read came from clusters containing a greater percentage of all submitted
solutions. Participants also drafted mock class forum posts about common good and
bad solutions that were relevant to more solutions (and the students who wrote them)
when using OverCode as compared to the baseline.

The main contributions of this article are as follows:

—A novel visualization that shows similarity and variation among thousands of solu-
tions, with cleaned code shown for each variant.

—An algorithm that uses the behavior of variables to help cluster solutions and gener-
ate the cleaned code for each cluster of solutions.

—Two user studies that show this visualization is useful for giving teachers a birds-eye
view of thousands of students’ solutions.

2. RELATED WORK

There is a growing body of work on both the frontend and backend required to manage
and present the large volumes of solutions gathered from MOOCs, intelligent tutors,
online learning platforms, and large residential classes. The backend necessary to
analyze solutions expressed as code has followed from prior work in fields such as
program analysis, compilers, and machine learning. A common goal of this prior work
is to help teachers monitor the state of their class, or provide solution-specific feedback
to many students. However, there has not been much work on developing interactive
user interfaces that enable a teacher to navigate the large space of student solutions.

We first present a brief review of the state of the art in the backend, specifically
about analyzing code generated by students who are independently attempting to
implement the same function. This will place our own backend in context. We then
review the information visualization principles and systems that inspired our frontend
contributions.
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2.1. Related Work in Program Analysis

2.1.1. Canonicalization and Semantics-Preserving Transformations. When two pieces of code
have different syntax, and therefore different abstract syntax trees (ASTs), they may
still be semantically equivalent. A teacher viewing the code may want to see those
syntactic differences or may want to ignore them to focus on semantic differences.
Semantics-preserving transformations can reduce or eliminate the syntactic differ-
ences between code. Applying semantics-preserving transformations, sometimes re-
ferred to as canonicalization or standardization, has been used for a variety of applica-
tions, including detecting clones [Baxter et al. 1998] and automatic “transform-based
diagnosis” of bugs in students’ programs written in programming tutors [Xu and Chee
2003].

OverCode also canonicalizes solutions, using variable renaming. OverCode’s canon-
icalization is novel in that its design decisions were made to maximize human read-
ability of the resulting code. As a side effect, syntactic differences between answers are
also reduced.

2.1.2. Abstract Syntax Tree-Based Approaches. Huang et al. [2013] worked with short
Matlab/Octave functions submitted online by students enrolled in a machine learning
MOOC. The authors generate an AST for each solution to a problem, and calculate
the tree edit distance between all pairs of ASTs, using the dynamic programming
edit distance algorithm presented by Shasha et al. [1994]. Based on these computed
edit distances, clusters of syntactically similar solutions are formed. The algorithm is
quadratic in both the number of solutions and the size of the ASTs. Using a computing
cluster, the Shasha algorithm was applied to just over a million solutions.

Calculating tree edit distances between all pairs of ASTs allows Huang et al. to ana-
lyze differences within each line. It is also computationally expensive, with quadratic
complexity both in the number of solutions and the size of the ASTs [Huang et al. 2013].
The OverCode analysis pipeline does not reason about differences any finer than a line
of code, but it has linear complexity in the number of solutions and in the size of the
ASTs.

Codewebs [Nguyen et al. 2014] created an index of “code phrases” for more than a mil-
lion submissions from the same MOOC and semiautomatically identified equivalence
classes across these phrases using a data-driven, probabilistic approach. The Codewebs
search engine accepts queries in the form of subtrees, subforests, and contexts that are
subgraphs of an AST. A teacher labels a set of AST subtrees considered semantically
meaningful and then queries the search engine to extract all equivalent subtrees from
the dataset. OverCode does analyze the AST of student solutions, but only to reformat
code and rename variables that behave similarly on a test case. All further code com-
parison is done through string matching lines of code that have consistent formatting
and variable names.

Both Codewebs [Nguyen et al. 2014] and Huang et al. [2013] use unit test results
and AST edit distance to identify clusters of submissions that could potentially receive
the same feedback from a teacher. These are noninteractive systems that require hand
labeling in the case of Codewebs or a computing cluster in the case of Huang et al. In
contrast, OverCode’s pipeline does not require hand labeling and runs in minutes on a
laptop, then presents the results in an interactive user interface.

2.1.3. Supervised Machine Learning and Hierarchical Pairwise Comparison. Semantic equiva-
lence is another way of saying that two solutions have the same schema. A schema, in
the context of programming, is a high-level cognitive construct by which humans under-
stand or generate code to solve problems [Soloway and Ehrlich 1984]. For example, two
programs that implement bubble sort have the same schema, bubble sort, even though
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they may have different low-level implementations. Taherkhani et al. [2012, 2013] used
supervised machine learning methods to successfully identify which of several sorting
algorithms a solution used. Each solution is represented by statistics about language
constructs, measures of complexity, and detected roles of variables. Variable roles are
determined based on variable behavior. OverCode identifies common variables based
on variable behavior as well. Both methods consider the sequence of values to which
variables are assigned, but OverCode does not attempt to categorize variable behavior
as one of a set of predefined roles. Similarly, the method of Taherkhani et al. can iden-
tify sorting algorithms that have already been analyzed and included in its training
dataset. OverCode, in contrast, handles problems for which the algorithmic schema is
not already known.

Luxton-Reilly et al. [2013] label types of variations as structural, syntactic, or pre-
sentation related. The structural similarity between solutions in a dataset is captured
by comparing their control flow graphs. If the control flow of two solutions is the same,
then the syntactic variation within the blocks of code is compared by looking at the
sequence of token classes. Presentation-based variation, such as variable names and
spacing, is only examined when two solutions are structurally and syntactically the
same. In contrast, our approach is not hierarchical and uses dynamic information in
addition to syntactic information.

2.1.4. Program Synthesis. There has also been work on analyzing each student solution
individually to provide more precise feedback. Singh et al. [2013] use a constraint-
based synthesis algorithm to find the minimal changes needed to make an incorrect
solution functionally equivalent to a reference implementation. The changes are speci-
fied in terms of a problem-specific error model that captures the common mistakes that
students make on a particular problem.

Rivers and Koedinger [2013] propose a data-driven approach to create a solution
space consisting of all possible paths from the problem statement to a correct solution.
To project code onto this solution space, the authors apply a set of normalizing program
transformations to simplify, anonymize, and order the program’s syntax. The solution
space can then be used to locate the potential learning progression for a student sub-
mission and provide hints on how to correct their attempt. Unlike OverCode’s variable
renaming method, which reflects the most common names chosen by students, Rivers
and Koedinger replace student variable names with arbitrary symbols (i.e., daysIn-
Month might be mapped to v0).

Singh et al. and Rivers and Koedinger focus on providing hints to students along
their path to a correct solution. Instead of providing hints, the aim of our work is to
help instructors navigate the space of correct solutions, and therefore techniques based
on checking only the functional correctness are not helpful in computing similarities
and differences between such solutions.

2.1.5. Code Comparison Tools. File comparison tools, such as Apple FileMerge, Microsoft
WinDiff, and Unix diff, are a class of tools that analyze and present differences between
files. Highlighting indicates inserted, deleted, and changed text. Unchanged text is
collapsed. Some of these tools are customized for analyzing code, such as Code Compare.
They are also integrated into existing integrated development environments (IDEs),
including IntelliJ IDEA and Eclipse. These code-specific comparison tools may match
methods rather than just comparing lines. Three panes side by side are used to show
code during three-way merges of file differences. There are tools, such as KDiff3, which
will show the differences between four files when performing a distributed version
control merge operation, but that appears to be an upper limit. These tools do not
scale beyond comparing a handful of programs simultaneously. OverCode can show
hundreds or thousands of solutions simultaneously, and its visualization technique
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dims the lines that are shared with the most common solution rather than using colors
to indicate inserted or deleted lines.

MOSS [Schleimer et al. 2003] is a widely used system for finding similarities across
student solutions for detecting plagiarism. MOSS uses a windowing technique to select
fingerprints from hashes of k-grams from a solution. It first creates an index mapping
fingerprints to corresponding locations for all solutions. It then fingerprints each so-
lution again to compute the list of matching fingerprints for the solution. Finally, it
rank orders the fingerprint matches by their size for each pair of solution match. This
algorithm enables MOSS to find partial matches between two solutions that are in dif-
ferent positions with good accuracy. OverCode, on the other hand, uses a simple linear
algorithm to create stacks of solutions with the same canonical form. It uses an equiv-
alence based on the set of statements in a solution to capture position-independent
statement matches.

2.2. Related Work in User Interfaces for Solution Visualization

Several user interfaces have been designed for providing grades or feedback to students
at scale, and for browsing large collections in general, not just student solutions.

Basu et al. [2013] provide a novel user interface for powergrading short-answer
questions. Powergrading means assigning grades or writing feedback to many similar
answers at once. The backend uses machine learning that is trained to cluster answers,
and the frontend allows teachers to read, grade, or provide feedback to those groups of
similar answers simultaneously. Teachers can also discover common misunderstand-
ings. The value of the interface was verified in a study of 25 teachers looking at their
visual interface with clustered answers. When compared against a baseline interface,
the teachers assigned grades to students substantially faster, gave more feedback to
students, and developed a “high-level view of students’ understanding and misconcep-
tions” [Brooks et al. 2014].

At the intersection of information visualization and program analysis is Cody,1 an
informal learning environment for the Matlab programming language. Cody does not
have a teaching staff but does have a solution map visualization to help students
discover alternative ways to solve a problem. A solution map plots each solution as a
point against two axes: time of submission on the horizontal axis and code size on the
vertical axis, where code size is the number of nodes in the parse tree of the solution.
Despite the simplicity of this metric, solution maps can provide quick and valuable
insight when assessing large numbers of solutions [Glassman et al. 2013].

OverCode has also been inspired by information visualization projects like Word-
Seer [Muralidharan and Hearst 2013; Muralidharan et al. 2013] and CrowdScape
[Rzeszotarski and Kittur 2012]. WordSeer helps literary analysts navigate and explore
texts, using query words and phrases [Muralidharan and Hearst 2011]. CrowdScape
gives users an overview of crowd workers’ performance on tasks. An overview of crowd
workers each performing on a task and an overview of submitted code, each executing
a test case, are not so different from an information presentation point of view.

3. OVERCODE

We now describe the OverCode user interface. OverCode is an information visualization
application for teachers to explore student program solutions. The OverCode interface
allows the user to scroll, filter, and stack solutions. OverCode uses the metaphor of
stacks to denote collections of similar solutions, where each stack shows a cleaned
solution from the corresponding collection of identical cleaned solutions it represents.
These cleaned solutions have strategically renamed variables and can be filtered by the

1mathworks.com/matlabcentral/cody.
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cleaned lines of code they contain. Cleaned solutions can also be rewritten when users
compose and apply a rewrite rule, which can eliminate differences between cleaned
solutions and therefore combine stacks of cleaned solutions that have become identical.

We iteratively designed and developed the OverCode interface based on continu-
ous evaluation by the authors, feedback from teachers and peers, and by consulting
principles from the information visualization literature. A screenshot of OverCode vi-
sualizing iterPower, one of the problems from our dataset, is shown in Figure 1. In
this section, we describe the intended use cases and the user interface. In Section 4,
the backend program analysis pipeline is described in detail.

3.1. Target Users and Applications

The target users of OverCode are teaching staff of introductory programming courses.
Teaching staff may be undergraduate lab assistants who help students debug their
code; graduate students who grade assignments, help students debug, and manage
recitations and course forums; and lecturing professors who also compose the major
course assessments. Teachers using OverCode may be looking for common misconcep-
tions, creating a grading rubric, or choosing pedagogically valuable examples to review
with students in a future lesson.

3.1.1. Misconceptions and Holes in Students’ Knowledge. Students just starting to learn
programming can have a difficult time understanding the language constructs and
different API methods. They may use them suboptimally, or in nonstandard ways.
OverCode may help instructors identify these common misconceptions and holes in
knowledge by highlighting the differences between stacks of solutions. Since the visu-
alized solutions have already been tested and found correct by an autograder, these
highlighted differences between cleaned solutions may be convoluted variations in
construct usage and API method choices that have not been flagged by the Python
interpreter or caused the failure of a unit test. Convoluted code may suggest a miscon-
ception.

3.1.2. Grading Rubrics. It is a difficult task to create grading rubrics for checking prop-
erties such as design and style of solutions. Therefore, most autograders resort to
checking only functional correctness of solutions by testing them against a test suite
of input–output pairs. OverCode enables teachers to identify the style, structure, and
relative frequency of the variation within correct solutions. Unlike traditional ways
of creating a grading rubric, where an instructor may go through a set of solutions,
revising the rubric along the way, instructors can use OverCode to first get a high-level
overview of the variations before designing a corresponding rubric. Teachers may also
see incorrect solutions not caught by the autograder.

3.1.3. Pedagogically Valuable Examples. There can be a variety of ways to solve a given
problem and express it in code. If an assignment allows students to generate different
solutions (e.g., recursive or iterative) to fulfill the same input–output behavior, Over-
Code will show separate stacks for each of these different solutions, as well as stacks
for every variant of those solutions. OverCode helps teachers filter through solutions
to find different examples of solutions to the same problem, which may be pedagogi-
cally valuable. According to variation theory [Marton et al. 2013], students can learn
through concrete examples of these multiple solutions, which vary along various con-
ceptual dimensions.

3.2. User Interface

The OverCode user interface is the product of an iterative design process with multiple
stages, including paper prototypes and low-fidelity Web browser–based prototypes.
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Fig. 2. (a) A stack consisting of 1534 similar iterPower solutions. (b) After clicking a stack, the border color
of the stack changes and the done progress bar denotes the corresponding fraction of solutions that have
been checked.

Prototype iterations were used and critiqued by members of our research group and by
several teaching staff of an introductory Python programming course. While exploring
the low-fidelity prototypes, these teachers talked aloud about their hopes for what the
tool could do, frustrations with its current form, and their frustrations with existing
solution-viewing tools and processes. This feedback was incorporated into the final
design.

The OverCode user interface is divided into three columns. The top-left panel in the
first column shows the problem name, the done progress bar, the number of stacks, the
number of visualized stacks given the current filters and rewrite rules, and the total
number of solutions that those visualized stacks contain. The panel below shows the
largest stack that represents the most common solution. Side by side with the largest
stack, the remaining solution stacks appear in the second panel. Through scrolling,
any stack can be horizontally aligned with the largest stack for easier comparison. The
third panel has three different tabs that provide static and dynamic information about
the solutions, and the ability to filter and combine stacks.

As shown in Figure 1, the default tab shows a list of lines of code that occur in
different cleaned solutions together with their corresponding frequencies. The stacks
can be filtered based on the occurrence of one or more lines (Filter tab). The column
also has tabs for Rewrite and Legend. The Rewrite tab allows a teacher to provide
rewrite rules to collapse different stacks with small differences into a larger single
stack. The Legend tab shows the dynamic values that different program variables
take during the execution of programs over a test case. We now describe different
features of OverCode in more detail.

3.2.1. Stacks. A stack in OverCode denotes a set of similar solutions that are grouped
together based on a similarity criterion defined in Section 4. For example, a stack for
the iterPower problem is shown in Figure 2(a). The size of each stack is shown in
a pillbox at the top-left corner of the stack. The count denotes how many solutions
are in the stack and can also be referred to as the stack size. Stacks are listed in the
scrollable second panel from largest to smallest. The solution on the top of the stack is
a cleaned solution that describes all solutions in the stack. See Section 4 for details on
the cleaning process.

Each stack can also be clicked. After clicking a stack, the border color of the stack
changes and the done progress bar is updated to reflect the percentage of total solutions
clicked, as shown in Figure 2(b). This feature is intended to help users remember which
stacks they have already read or analyzed and keep track of their progress. Clicking on
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Fig. 3. Similar lines of code between two stacks are dimmed out such that only differences between the two
stacks are apparent.

Fig. 4. (a) The slider allows filtering of the list of lines of code by the number of solutions in which they
appear. (b) Clicking on a line of code adds it to the list of lines by which the stacks are filtered.

a large stack, which represents a significant fraction of the total solutions, is reflected
by a large change in the done progress bar.

3.2.2. Showing Differences between Stacks. OverCode allows teachers to compare smaller
stacks, shown in the second column, with the largest stack, shown in the first column.
The lines of code in the second column that also appear in the set of lines in the largest
stack are dimmed so that only the differences between the smaller stacks and the
largest stack are apparent. For example, Figure 3 shows the differences between the
cleaned solutions of the two largest stacks. In earlier iterations of the user interface,
lines in stacks that were not shared with the largest stack were highlighted in yellow,
but this produced a lot of visual noise. By dimming the lines in stacks that are shared
with the largest stack, we reduced the visible noise while still keeping differences
between stacks salient.

3.2.3. Filtering Stacks by Lines of Code. The third column of OverCode shows the list
of lines of code occurring in the solutions together with their frequencies (numbered
pillboxes). The interface has a slider that can be used to change the threshold value,
which denotes the number of solutions in which a line should appear for it to be included
in the list. For example, by dragging the slider to 200 in Figure 4(a), OverCode only
shows lines of code that are present in at least 200 solutions. This feature was added
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Fig. 5. (a) An example rewrite rule to replace all occurrences of statement result = base * result with
result *= base. (b) The preview of the changes in the cleaned solutions because of the application of the
rewrite rule.

as a response to the length of the unfiltered list of code lines, which was long enough
to make skimming for common code lines difficult.

Users can filter the stacks by selecting one or more lines of code from the list. After
each selection, only stacks whose cleaned solutions have those selected lines of code
are shown. Figure 4(b) shows a filtering of stacks that have a for loop, specifically the
line of code for i in range(expB), and that assign 1 to the variable result.

3.2.4. Rewrite Rules. There are often small differences between the cleaned solutions
that can lead to a large number of stacks for a teacher to review. OverCode provides
rewrite rules by which users can collapse these differences and ignore variation that
they do not need to see. This feature comes from experience with early prototypes. After
observing a difference between stacks, like the use of xrange instead of range, users
wanted to ignore that difference to more easily find other differences.

A rewrite rule is described with a left-hand side and a right-hand side as shown in
Figure 5(a). The semantics of a rewrite rule is to replace all occurrences of the left-hand
side expression in the cleaned solutions with the corresponding right-hand side. As the
rewrite rules are entered, OverCode presents a preview of the changes in the cleaned
solutions as shown in Figure 5(b). After the application of the rewrite rules, OverCode
collapses stacks that now have the same cleaned solutions because of the rewrites. For
example, after the application of the rewrite rule in Figure 5(a), OverCode collapses
the two biggest iterPower stacks from Figure 1 of sizes 1534 and 374, respectively,
into a single stack of size 1908. Other pairs of stacks whose differences have now
been removed by the rewrite rule are also collapsed into single stacks. As shown in
Figure 6(a), the number of stacks now drops from 862 to 814.

3.2.5. Variable Legends. OverCode also shows the sequence of values that variables
in the cleaned solutions take on over the course of their execution on a test case. As
described in Section 4, a variable is identified by the sequence of values that it takes on
during the execution of the test case. Figure 6(b) shows a snapshot of the variable values
for the iterPower problem. The goal of presenting this dynamic information associated
with common variable names is to help users understand the behavior of each cleaned
solution and to further explore the variations among solutions that do not have the
same common variables. When this legend was originally added to the user interface,
clicking on a common variable name would filter for all solutions that contained an
instance of that variable. Some pilot users found this feature confusing rather than
empowering. As a result, it was removed from OverCode before running both user
studies. At least one study participant, upon realizing the value of the legend, wished
that the original click-to-filter-by-variable functionality existed; it may be reinstated
in future versions.

ACM Transactions on Computer-Human Interaction, Vol. 22, No. 2, Article 7, Publication date: March 2015.



OverCode: Visualizing Variation in Student Solutions to Programming Problems at Scale 7:11

Fig. 6. (a) The merging of stacks after application of the rewrite rule shown in Figure 5. (b) The variable
legend shows the sequence of dynamic values that all program variables in cleaned solutions take over the
course of execution on a given test case.

4. IMPLEMENTATION

The OverCode user interface depends on an analysis pipeline that canonicalizes solu-
tions in a manner designed for human readability, referred to here as cleaning. The
pipeline then creates stacks of solutions that have become identical through the clean-
ing process. The pipeline accepts, as input, a set of solutions, expressed as function
definitions for f (a, . . .), and one test case f (a1, . . .). We refer to the solutions that enter
the pipeline as being raw, and the solutions that exit the pipeline as being clean. To il-
lustrate this pipeline, we will have a few running examples, beginning with iterPower.

4.1. Analysis Pipeline

OverCode is currently implemented for Python, but the pipeline steps described next
could be readily generalized to other languages commonly used to teach programming.

1. Reformat solutions. For a consistent appearance, the solutions are reformatted2

to have consistent line indentation and token spacing. Comments and empty lines are
also removed. These steps not only make solutions more readable but also allow exact
string matches between solutions, after additional cleaning steps later in the pipeline.
Although comments can contain valuable information, the variation in comments is so
great that clustering and summarizing them will require significant additional design,
which remains future work.

The following example illustrates the effect of this reformatting:

2We used the PythonTidy package by Charles Curtis Rhode (https://pypi.python.org/pypi/PythonTidy/). Since
our datasets are in Python, we use a Python-specific reformatting script. However, our approach is not
language specific.
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2. Execute solutions. Each solution is executed once, using the same test case. During
each step of the execution, the names and values of local and global variables, as well
as return values from functions, are recorded as a program trace. There is one program
trace per solution. For the purposes of illustrating this pipeline, we will use the example
of executing definitions of iterPower on a base of 5.0 and an exp of 3.

3. Extract variable sequences. During the previous step, the Python execution logger
[Guo 2013] records the values of all in-scope variables after every statement execution
in the Python program. The resulting log is referred to as the program trace. For each
variable in a program trace, we extract the sequence of values that it takes on, without
considering how many statements were executed before the variable’s value changed.

Variable sequence extraction also works for purely functional programs, in which
variables are never reassigned, because each recursive invocation is treated as if new
values are given to its parameter variables. For example, despite the fact that the
iterPower problem asked students to compute the exponential baseexp iteratively, 60
of the 3842 iterPower solutions in the dataset were in fact recursive. One of these
recursive examples is shown next, along with the variable sequences observed for the
recursive function’s parameters.
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4. Identify common variables. We analyze all program traces, identifying which vari-
ables’ sequences are identical. We define a common variable to denote those variables
that have identical sequences across two or more program traces. Variables that occur
in only one program trace are called unique variables.
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For example, in Student A’s code and Student B’s code, i and k take on the same
sequence of values: 0,1,2. They are therefore considered the same common variable.

5. Rename common and unique variables. A common variable may have a different
name in each program trace. The name given to each common variable is the variable
name that is given most often to that common variable across all program traces.

There are exceptions made to avoid three types of name collisions described next in
Section 4.2. In the running example, the unique variable’s original name, exp, has a
double underscore appended to it as a modifier to resolve a name collision with the
common variable of the same name, referred to here as a unique/common collision.

After common and unique variables in the solutions are renamed, the solutions are
now called clean.

6. Make stacks. We iterate through the clean solutions, making stacks of solutions
that share an identical set of lines of code. We compare sets of lines of code because then
solutions with arbitrarily ordered lines that do not depend on each other can still fall
into the same stack. (Recall that the variables in these lines of code have already been
renamed based on their dynamic behavior, and all the solutions have already been
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marked input–output correct by an autograder, prior to this pipeline.) The solution
that represents the stack is randomly chosen from within the stack, because all clean
solutions within the stack are identical, with the possible exception of the order of their
statements.

In the following examples, the clean C and D solutions have the exact same set of
lines, and both provide correct output, with respect to the autograder. Therefore, we
assume that the difference in order of the statements between the two solutions does
not need to be communicated to the user. The two solutions are put in the same stack,
with one solution arbitrarily chosen as the visible cleaned code. However, since Student
A and Student B use different functions (i.e., xrange vs. range) and different operators
(i.e., *= vs. =,*), the pipeline puts them in separate stacks.

Even though all of the solutions that we process in this pipeline have already been
marked correct by an autograder, the program tracing [Guo 2013] and renaming scripts
occasionally generate errors while processing a solution. For example, the script may
not have code to handle a particular but rare Python construct. Errors thrown by the
scripts drive their development and are helpful for debugging. When errors occur while
processing a particular solution, we exclude the solution from our analysis. Less than
5% of the solutions in each of our three problem datasets are excluded.

4.2. Variable Renaming Details and Limitations

There are three distinct types of name collisions possible when renaming variables to be
consistent across multiple solutions. The first, which we refer to as a common/common
collision, occurs when two common variables (with different variable sequences) have
the same common name. The second, referred to here as a multiple instances collision,
occurs when there are multiple different instances of the same common variable in a
solution. The third and final collision, referred to as a unique/common collision, occurs
when a unique variable’s name collides with a common variable’s name.

Common/common collision. If common variables cv1 and cv2 are both most fre-
quently named i across all program traces, we append a modifier to the name of the less
frequently used common variable. For example, if 500 program traces have an instance
of cv1 and only 250 program traces have an instance of cv2, cv1 will be named i and cv2
will be named iB.

This is illustrated next. Across the thousand iterPower definitions in our dataset,
a subset of them created a variable that iterated through the values generated by
range(exp). Student A’s code is an example. A smaller subset created a variable that
iterated through the values generated by range(1,exp+1), as seen in Student E’s code.
These are two separate common variables in our pipeline, due to their differing value

ACM Transactions on Computer-Human Interaction, Vol. 22, No. 2, Article 7, Publication date: March 2015.



7:16 E. L. Glassman et al.

sequences. The common/common name collision arises because both common variables
are most frequently named i across all solutions to iterPower. To preserve the one-to-
one mapping of variable name to value sequence across the entire iterPower problem
dataset, the pipeline appends a modifier, B, to the common variable i found in fewer
iterPower solutions. A common variable, also most commonly named i, which is found
in even fewer iterPower definitions, will have a C appended, and so forth.

Multiple instances collision. We identify variables by their sequence of values
(excluding consecutive duplicates), not by their given name in any particular solution.
However, without considering the timing of variables’ transitions between values, rela-
tive to other variables in scope at each step of a function execution, it is not possible to
differentiate between multiple instances of a common variable within a single solution.

Rather than injecting a name collision into an otherwise correct solution, we chose to
preserve the author’s variable name choice for all instances of that common variable in
that solution. If an author’s preserved variable name collides with any common variable
name in any program trace and does not share that common variable’s sequence of
values, the pipeline appends a double underscore to the author’s preserved variable
name so that the interface and the human reader do not conflate them.

In the following example, the solution’s author made a copy of the exp variable, called
it exp1, and modified neither. Both map to the same common variable, expB. Therefore,
both have had their author-given names preserved, with an underscore appended to
the local exp so that it does not look like common variable exp.
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Fig. 7. Number of solutions for the three problems in our 6.00x dataset.

Unique/common collision. Unique variables, as defined previously, take on a se-
quence of values that is unique across all program traces. If a unique variable’s name
collides with any common variable name in any program trace, the pipeline appends
a double underscore to the unique variable name so that the interface and the human
reader do not conflate them.

In addition to the example of this collision in the description of common and vari-
able naming in the previous section, we provide the example next. In this solution,
the student added 1 to the exponent variable before entering a while loop. No other
students did this. To indicate that the exp variable is unique and does not share the
same behavior as the common variable also named exp, our pipeline appends double
underscores to exp in this one solution.

4.3. Complexity of the Analysis Pipeline

Unlike previous pairwise AST edit distance–based clustering approaches that have
quadratic complexity both in the number of solutions and the size of the ASTs [Huang
et al. 2013], our analysis pipeline has linear complexity in the number of solutions and
in the size of the ASTs. The Reformat step performs a single pass over each solution
for removing extra spaces, comments, and empty lines. Since we only consider correct
solutions, we assume that each solution can be executed within a constant time that is
independent of the number of solutions. The executions performed by the autograder
for checking correctness could also be instrumented to obtain the program traces,
so code is not unnecessarily re-executed. The identification of all common variables
and unique variables across the program traces takes linear time, as we can hash the
corresponding variable sequences and then check for occurrences of identical sequences.
The Renaming step, which includes handling name collisions, also performs a single
pass over each solution. Finally, the Stacking step creates stacks of similar solutions
by performing set-based equality of lines of code that can also be performed in linear
time by hashing the set of lines of code.

5. DATASET

For evaluating both the analysis pipeline and the user interface of OverCode, we use
a dataset of solutions from 6.00x, an introductory programming course in Python that
was offered on edX in fall 2012. We chose Python solutions from three exercise problems,
and this dataset consists of student solutions submitted within 2 weeks of the posting
of the those three problems. We obtained thousands of submissions to these problems,
from which we selected all correct solutions (tested over a set of test cases) for our
analysis. The number of solutions analyzed for each problem is shown in Figure 7.
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Fig. 8. Example solutions for the iterPower problem in our 6.00x dataset.

Fig. 9. Example solutions for the hangman problem in our 6.00x dataset.

—iterPower The iterPower problem asks students to write a function to compute
the exponential baseexp iteratively using successive multiplications. This was an
in-lecture exercise for the lecture on teaching iteration. See Figure 8 for examples.

—hangman The hangman problem takes a string secretWord and a list of characters
lettersGuessed as input, and asks students to write a function that returns a string
where all letters in secretWord that are not present in the list lettersGuessed
are replaced with an underscore. This was a part of the third week of problem set
exercises. See Figure 9 for examples.
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Fig. 10. Example solutions for the compDeriv problem in our 6.00x dataset.

Fig. 11. Running time and the number of stacks and common variables generated by the OverCode backend
implementation on our dataset problems.

—compDeriv The compDeriv problem requires students to write a Python function to
compute the derivative of a polynomial, where the coefficients of the polynomial are
represented as a Python list. This was also a part of the third week of problem set
exercises. See Figure 10 for examples.

We chose these three exercises for our dataset because they are representative of the
typical exercises that students solve in the early weeks of an introductory program-
ming course. The three exercises have varying levels of complexity and ask students to
perform loop computation over three fundamental Python data types, integers (iter-
Power), strings (hangman), and lists (compDeriv). The exercises span the second and
third weeks of the course in which they were assigned.

6. OVERCODE ANALYSIS PIPELINE EVALUATION

We now present the evaluation of OverCode’s analysis pipeline implementation on our
Python dataset. We first present the running time of our algorithm and show that it
can generate stacks within few minutes for each problem on a laptop. We then present
the distribution of initial stack sizes generated by the pipeline. Finally, we present
some examples of the common variables identified by the pipeline and report on the
number of cases where name collisions are handled during the cleaning process. The
evaluation was performed on a Macbook Pro 2.6GHz Intel Core i7 with 16GB of RAM.

Running time. The complexity of the pipeline that generates stacks of solutions grows
linearly in the number of solutions as described in Section 4.3. Figure 11 reports the
running time of the pipeline on the problems in the dataset as well as the number of
stacks and the number of common variables found across each of the problems. As can
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Fig. 12. The distribution of sizes of the initial stacks generated by our algorithm for each problem. We can
observe a long tail distribution with a few large stacks and a lot of small stacks. Note that the two axes
corresponding to the size of stacks and the number of stacks are in logarithmic scale.

be seen from the figure, the pipeline is able to clean thousands of student solutions and
generate stacks within a few minutes for each problem.

Distribution of stacks. The distribution of initial stack sizes generated by the analysis
pipeline for different problems is shown in Figure 12. Note that the two axes of the
graph corresponding to the size and the number of stacks are shown on a logarithmic
scale. For each problem, we observe that there are a few large stacks and a lot of
smaller stacks (particularly of size 1). The largest stack for iterPower problem consists
of 1534 solutions, whereas the largest stacks for hangman and compDeriv consists of 97
and 22 solutions, respectively. The two largest stacks with the corresponding cleaned
solutions for each problem are shown in Figure 13.

The number of stacks consisting of a single solution for iterPower, hangman, and
compDeriv are 684, 452, and 959, respectively. Some singleton stacks are the same as
one of the largest stacks, except for a unique choice, such as initializing a variable
using several additional significant digits than necessary: result=1.000 instead of
result=1 or result=1.0. Other singleton stacks have convoluted control flow that no
other student used.

These variations are compounded by inclusion of unnecessary statements that do
not affect input–output behavior. An existing stack may have all of the same lines of
code except for the unnecessary line(s), which cause the solution to instead be a single-
ton. These unnecessary lines may reveal misconceptions and therefore are potentially
interesting to teachers. In future versions, rewrite rules may be expanded to allow
include line removal rules so that teachers can remove inconsequential extra lines and
cause singleton(s) to merge with other stacks.

The tail of singleton solutions is long and cannot be read in its entirety by teachers.
Even so, the user studies indicate that teachers still extracted significant value from
OverCode presentation of solutions. It may be that the largest stacks are the primary
sources of information, and singletons can be ignored without a significant effect on the
value teachers get from OverCode. Future work will explore ways to suggest rewrite
and removal rules that maximally collapse stacks.
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Fig. 13. The two largest stacks generated by the OverCode backend algorithm for the iterPower (a), hangman
(b), and compDeriv (c) problems.

Common variables. There exists a large variation among the variable names used by
students to denote variables that compute the same set of values. The Variable Renam-
ing step of the analysis renames these equivalent variables with the most frequently
chosen variable name so that a teacher can easily recognize the role of variables in a
given solution. The number of common variables found by the pipeline on the dataset
problems is shown in Figure 11. Some examples of these common variable names are
shown in Figure 14; this figure also presents the number of times such a variable occurs
across the solutions of a given problem, the corresponding variable sequence of values
on a given test input, and a subset of the original variable names used in the student
solutions.

Collisions in variable renaming. The number of common/common, multiple instances,
and unique/common collisions discovered and resolved while performing variable re-
naming is shown in Figure 15. A large majority of the collisions were common/common
collisions. For example, Figure 14 shows the common variable name exp for two dif-
ferent sequences of values [3, 2, 1, 0] and [3] for the iterPower problem. Similarly,
the common variable name i corresponds to sequences [−13.9, 0.0, 17.5, 3.0, 1.0] and
[0, 1, 2, 3, 4, 5] for the compDeriv problem. There were also a few multiple instances
collisions and unique/common collisions found: 1.5% for iterPower, 3% for compDeriv,
and 10% for hangman.
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Fig. 14. Some examples of common variables found by our analysis across the problems in the dataset.
The figure also shows the frequency of occurrence of these variables, the common sequence values of these
variables on a given test case, and a subset of the original variable names used by students.

Fig. 15. The number of common/common, multiple instances, and unique/common collisions discovered by
our algorithm while renaming the variables to common names.

7. USER STUDY 1: WRITING A CLASS FORUM POST

Our goal was to design a system that allows teachers to develop a better understanding
of the variation in student solutions and to give feedback that is relevant to more
students’ solutions. We designed two user studies to evaluate our progress in two ways:
(1) user interface satisfaction and (2) how many solutions teachers could read and
produce feedback on in a fixed amount of time. Reading and providing feedback to
thousands of submissions is an unrealistically difficult task for our control condition,
so instead of measuring time to finish the entire set of solutions, we sought to measure
what our subjects could accomplish in a fixed amount of time (15 minutes).

The first study was a 12-person within-subjects evaluation of interface satisfaction
when using OverCode for a realistic, relatively unstructured task. Using either Over-
Code or a baseline interface, subjects were asked to browse student solutions to the
programming problems in our dataset and then write a class forum post on the good
and bad ways in which students solved the problem. Through this study, we sought to
test our first hypothesis:

—H1 Interface Satisfaction: Subjects will find OverCode easier to use, more helpful,
and less overwhelming for browsing thousands of solutions compared to the baseline.

7.1. OverCode and Baseline Interfaces

We designed two interfaces, referred to here as OverCode and the baseline. The Over-
Code interface and backend are described in detail in Section 3. The baseline interface
was a single Web page with all student solutions concatenated in a random order into
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Fig. 16. The baseline interface used in the forum post study (left) and the coverage study (right).

a flat list (Figure 16, left). We chose this design to emulate existing methods of review-
ing solutions and to draw out differences between browsing stacked and unstacked
solutions. This is analogous to the “flat” interface chosen as a baseline for Basu et al.’s
interface for grading clusters of short answers [Brooks et al. 2014]. Basu et al.’s as-
sumption, that existing options for reviewing solutions are limited to going through
solutions one-by-one, is backed by our pilot studies and interviews with teaching staff,
as well as our own grading experiences. In fact, in edX programming MOOCs, teachers
are not even provided with an interface for viewing all solutions at once; they can only
look at one student’s solution at a time. If the solutions can be downloaded locally, some
teachers may use within-file search functions like the command line utility grep. Our
baseline allows that as well through the in-browser find command.

In the baseline, solutions appeared visually similar to those in the OverCode interface
(boxed, syntax-highlighted code), but the solutions were raw, in the sense that they
were not normalized for whitespace or variable naming differences. As in the OverCode
condition, subjects were able to use standard Web browser features, such as the within-
page find action.

7.2. Participants

We recruited participants by reaching out to past and present programming course
staff, and advertising on an academic computer science research lab’s email list. These
individuals were qualified to participate in our study because they met at least one
of the following requirements: (1) were current teaching staff of a computer science
course, (2) had graded Python code before, or (3) had significant Python programming
experience, making them potential future teaching staff.

Information about the subjects’ backgrounds was collected during recruitment and
again at the beginning of their 1-hour in-lab user study session. Twelve people (7 male)
participated, with a mean age of 23.5 years (σ = 3.8). Subjects had a mean 4 years of
Python programming experience (σ = 1.8), and 75% of participants had graded student
solutions written in Python before. Half of the participants were graduate students,
and the other half were undergraduates.
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7.3. Apparatus

Each subject was given $20 to participate in a 60-minute session with an experimenter
in an on-campus academic lab conference room. They used laptops running MacOS and
Linux with screen sizes ranging from 12.5 to 15.6 inches and viewed the OverCode and
baseline interfaces in either Safari or Chrome. Data was recorded with Google Docs
and Google Forms filled out by participants.

7.4. Conditions

Subjects performed the main task of browsing solutions and writing a class forum post
twice, once in each interface condition, focusing on one of the three problems in our
dataset (Section 5) each time. For each participant, the third remaining problem was
used during training to reduce learning effects when performing the two main tasks.
The pairing and ordering of interface and problem conditions were fully counterbal-
anced, resulting in 12 total conditions. The 12 participants were randomly assigned to
one of the 12 conditions, such that all conditions were tested.

7.5. Procedure

7.5.1. Prompt. The experimenter began by reading the following prompt to give the
participant context for the tasks that he or she would be performing:

We want to help TAs [teaching assistants] give feedback to students in program-
ming classes at scale. For each of three problems, we have a large set of students’
submissions (>1000).
All the submissions are correct, in terms of input and output behavior. We’re going
to ask you to browse the submissions and produce feedback for students in the class.
You’ll do this primarily in the form of a class forum post.

To make the task more concrete, participants were given an example3 of a class forum
post that used examples taken from student solutions to explain different strategies
for solving a Python problem. They were also given printouts of the prompts for each
of the three problems in our dataset to reference when looking at solutions.

7.5.2. Training. Given the subjects’ extensive experience with Web browsers, training
for the baseline interface was minimal. Prior to using the OverCode interface, subjects
watched a 3 to 4 minute long training video demonstrating the features of OverCode
and were given an opportunity to become familiar with the interface and ask questions.
The training session focused on the problem that would not be used in the main tasks
to avoid learning effects.

7.5.3. Tasks. Subjects then performed the main tasks twice, once in each interface, fo-
cusing on a different programming problem each time. They were given a fixed amount
of time to both read solutions and provide feedback, so we did not measure task comple-
tion times but instead measured the quality of their experience in providing feedback
to students at scale.

—Feedback for students (15 minutes): Subjects were asked to write a class forum post
on the good and bad ways in which students solved the problem. The 15-minute
period included both browsing and writing time, as subjects were free to paste in
code examples and write comments as they browsed the solutions.

3Our example was drawn from the blog “Practice Python: 30-minute weekly Python exercises for beginners,”
posted on Thursday, April 24, 2014, and titled “SOLUTION Exercise 11: Check Primality and Functions”
(http://practicepython.blogspot.com).
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Fig. 17. H1: Interface satisfaction. Mean Likert scale ratings (with standard error) for OverCode and
baseline interfaces after subjects used both to perform the forum post writing task.

—Autograder Bugs (2 minutes): Although the datasets of student solutions were
marked as correct by an autograder, there may be holes in the autograder’s test
cases. Some solutions may deviate from the problem prompt and therefore be con-
sidered incorrect by teachers (e.g., recursive solutions to iterPower when its prompt
explicitly calls for an iterative solution). As a secondary task, we asked subjects to
write down any bugs in the autograder that they came across while browsing solu-
tions. This was often performed concurrently with the primary task by the subject.

7.5.4. Surveys. Subjects filled out a post-interface condition survey about their experi-
ence using the interface. This was a short-answer survey, where they wrote about what
they liked, what they did not like, and what they would like to see in a future version
of the interface. At the end of the study, subjects rated agreement (on a 7-point Likert
scale) with statements about their satisfaction with each interface.

7.6. Results

H1 is supported by ratings from the post-study survey (Figure 17). Statistical signifi-
cance was computed using the Wilcoxon signed-rank test, pairing users’ ratings of each
interface. After using both interfaces to view thousands of solutions, subjects found
OverCode easier to use (W = 52, Z = 2.41, p < 0.05, r = 0.70) and less overwhelming
(W = 0, Z = –2.86, p < 0.005, r = 0.83) than the baseline interface. Finally, participants
felt that OverCode “helped me get a better sense of my students’ understanding” than
the baseline did (W = 66, Z = 3.04, p < 0.001, r = 0.88).

From the surveys conducted after subjects completed each interface condition, we
discovered that subjects found stacking and the ability to rewrite code to be useful and
enjoyable features of OverCode:

—Stacking is an awesome feature. Rewrite tool is fantastic. Done feature is very
rewarding—feels much less overwhelming. “Lines that appear in x submissions”
also awesome.
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—Really liked the clever approach for variable normalization. Also liked the fact that
stacks showed numbers, so I’d know I’m focusing on the highest-impact submissions.
Impressed by the rewrite ability... it cut down on work so much!

—I liked having solutions collapsed (not having to deal with variable names, etc),
and having rules to allow me to collapse even further. This made it easy to see the
“plurality” of solutions right away; I spent most of the time looking at the solutions
that only had a few instances.

When asked for suggestions, participants gave many suggestions on stacks, filtering,
and rewrite rules, such as

—Enable the user to change the main stack that is being compared against the others.
—Suggest possible rewrite rules, based on what the user has already written, and will

not affect the answers on the test case.
—Create a filter that shows all stacks that do not have a particular statement.

For both the OverCode and baseline interfaces, the feedback generated about iter-
Power, hangman, and compDeriv solutions fell into several common themes. One kind
of feedback suggested new language features, such as using *= or the keyword in.
Another theme identified inefficient, redundant, and convoluted control flow, such as
repeated statements and unnecessary statements and variables. It was not always
clear what the misconception was, though, as one participant wrote, “The double itera-
tor solution surely shows some lack of grasp of power of for loop, or range, or something.”
Participants’ feedback included comments on the relative goodness of different correct
solutions in the dataset. This was a more holistic look at students’ solutions as they
varied along the dimensions of conciseness, clarity, and efficiency described previously.

Study participants found both noteworthy correct solutions and solutions that they
considered incorrect, despite passing the autograder. One participant learned a new
Python function, enumerate, while looking at a solution that used it. The participant
wrote, “Cool, but uncalled for. I had to look it up :]. Use, but with comment.” Participants
also found recursive iterPower and hangman solutions, which they found noteworthy.
For what should have been an iterative iterPower function, the fact that this recursive
solution was considered correct by the unit-test–based autograder was considered an
autograder bug by some participants. Using the built-in Python exponentiation oper-
ator ** was also considered correct by the autograder, even though it subverted the
point of the assignment. It was also noted as an autograder bug by some participants
who found it.

8. USER STUDY 2: COVERAGE

We designed a second 12-person study, similar in structure to the forum post study,
but focused on measuring the coverage achieved by subjects in a fixed amount of time
(15 minutes) when browsing and producing feedback on a large number of student
solutions. The second study’s task was more constrained than the first: instead of
writing a freeform post, subjects were asked to identify the five most frequent strategies
used by students and rate their confidence that these strategies occurred frequently
in the student solutions. These changes to the task, as well as modifications to the
OverCode and baseline interfaces, enabled us to measure coverage in terms of solutions
read, the relevance of written feedback, and the subject’s perceived coverage. We sought
to test the following hypotheses:

—H2 Read coverage and speed. Subjects are able to read code that represents more
student solutions at a higher rate using OverCode than with the baseline.

—H3 Feedback coverage. Feedback produced when using OverCode is relevant to
more students’ solutions than when feedback is produced using the baseline.
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—H4 Perceived coverage. Subjects feel that they develop a better high-level view of
students’ understanding and misconceptions, and provide more relevant feedback,
using OverCode rather than the baseline.

8.1. Participants, Apparatus, Conditions

The coverage study shared the same methods for recruiting participants, apparatus,
and conditions as the forum post study. Twelve new participants (11 male) participated
in the second study (mean age = 25.4 years, σ = 6.9). Across those 12 participants, the
mean years of Python programming experience was 4.9 (σ = 3.0), and 9 of them had
previously graded code (5 had graded Python code). There were 5 graduate students, 6
undergraduates, and 1 independent computer software professional.

8.2. Interface Modifications

Prior to the second study, both the OverCode and baseline interfaces were slightly mod-
ified (see differences in Figure 16) to enable measurements of read coverage, feedback
coverage, and perceived coverage:

—Clicking on stacks or solutions caused the box of code to be outlined in blue. This
enabled the subject to mark them as read4 and enabled us to measure read coverage.

—Stacks and solutions were all marked with an identifier, which subjects were asked
to include with each piece of feedback that they produced. This enabled us to more
easily compute feedback coverage, which will be explained further in Section 8.4.

—All interface interactions were logged in the browser console, allowing us to track
both the subject’s read coverage over time and their usage of other features, such as
the creation of rewrite rules to merge stacks.

—Where it differed slightly before, we changed the styling of code in the baseline
condition to exactly match the code in the OverCode condition.

8.3. Procedure

8.3.1. Prompt. In the coverage study, the prompt was similar to the one used in the
forum post study, explaining that the subjects would be tackling the problem of produc-
ing feedback for students at scale. The language was modified to shift the focus toward
finding frequent strategies used by students rather than any example of good or bad
code used by a student.

8.3.2. Training. As before, subjects were shown a training video and given time to
practice using OverCode’s features prior to their trial in the OverCode condition.

8.3.3. Task. The coverage study’s task consisted of a more constrained feedback task.
Given 15 minutes with either the OverCode or baseline interface, subjects were asked
to fill out a table, identifying the five most frequent strategies used by students to solve
the problem. For each strategy identified, they were asked to fill in the following fields
of the table:

—A code example taken from the solution or stack.
—The identifier of the solution or stack.
—A short (1 sentence) annotation of what was good or bad about the strategy.
—Their confidence, on a scale of 1 to 7, that the strategy frequently occurred in the

student solutions.

4In the OverCode condition, this replaced the done checkboxes, in that clicking stacks caused the progress
bar to update.

ACM Transactions on Computer-Human Interaction, Vol. 22, No. 2, Article 7, Publication date: March 2015.



7:28 E. L. Glassman et al.

Fig. 18. In (a), we plot the mean number of cleaned solutions representing stacks read in OverCode over
time versus the number of raw solutions read in the baseline interface over time while performing the 15
minute long coverage study task. In (b), we replace the mean number of cleaned solutions with the mean
number of solutions (the size of the stacks) that they represent. These are shown for each of the three
problems in our dataset.

Importantly, subjects were also asked to mark solutions or stacks as read by clicking
on them after they had “processed” them, even if they were not choosing them as
representative strategies. Combined with interaction logging done by the system, this
enabled us to measure read coverage.

8.3.4. Surveys. Although we measured interface satisfaction for a realistic task in the
forum post study, we also measured interface satisfaction through surveys for this more
constrained, coverage-focused task. Subjects filled out a post-interface condition survey
in which they rated agreement (on a 7-point Likert scale) with positive and negative
adjectives about their experience using the interface, and reflected on task difficulty.
At the end of the study, subjects were asked to rate their agreement with statements
about the usefulness of specific features of both the OverCode and baseline interfaces,
and responded to the same interface satisfaction 7-point Likert scale statements used
in the first study.

8.4. Results

8.4.1. H2: Read Coverage and Speed. This hypothesis is supported by our measurements
of read coverage from this study. For each problem, subjects were able to view more
cleaned and stacked solutions by the end of the 15 minute long main task using Over-
Code than raw solutions when using the baseline interface (Mann–Whitney U = 16,
n1 = n2 = 4, p < 0.05). Figure 18 shows the mean number of solutions read over time
for each interface and each problem in our dataset. The curves show that subjects
were able to read code that represented more raw solutions at a higher rate due to the
stacking of similar solutions.

8.4.2. H3: Feedback Coverage. Each subject reported on the five most frequent strate-
gies in a set of solutions by copying both a code example and the identifier of the
solution (baseline) or stack (OverCode) from which it came. We define feedback cov-
erage as the number of students for which the quoted code is relevant, in the sense
that they wrote the same lines of code, ignoring differences in whitespace or variable
names. We computed the coverage for each example using the following process:

—Reduce the quoted code down to only the lines referred to in the annotation. Often,
the subject’s annotation would focus on a specific feature of the quoted code, which
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Fig. 19. Mean feedback coverage (percentage of raw solutions) per trial during the coverage study for each
problem in the OverCode and baseline interfaces.

sometimes had additional lines that were unrelated to the subject’s feedback (e.g.,
comments about iterating over a range function while also quoting the contents of
the for loop). This step meant that we would be calculating the coverage of a more
general (smaller) set of lines.

—Find the source stack from which the quoted code comes. This is trivial in the Over-
Code condition, where the stack ID is included in the subject’s post. In the baseline,
we used the solution ID included in the subject’s post to find the stack that it was
merged into by the backend pipeline.

—Find the cleaned version of each quoted line. The quoted lines of code may be raw
code if they come from the baseline condition. By comparing the quoted code with
the cleaned code of its source stack, we found the cleaned version of each line, with
variable names and whitespace normalized.

—Find the raw solutions that include the set of cleaned lines, using a map from stacks
to raw solutions provided by the backend pipeline.

Figure 19 shows the mean coverage of a set of feedback produced by a single subject
across problems and interface conditions. The feedback coverage is shown as the mean
percentage of raw solutions for which the feedback was relevant. When giving feedback
on the iterPower and hangman problems, there was not a statistically significant dif-
ference in the feedback coverage between interface conditions. However, on compDeriv,
the problem with the most complex solutions, subjects using OverCode were able to
achieve significantly more coverage of student solutions than when using the baseline
interface (Mann–Whitney U = 0, n1 = n2 = 4, p < 0.05).

8.4.3. H4: Perceived Coverage. Immediately after using each interface, we asked partic-
ipants how strongly they agreed with the statement “This interface helped me develop
a high-level view of students’ understanding and misconceptions,” which quotes the
first part of our third hypothesis. Participants agreed with this statement after using
OverCode significantly more than when using the baseline interface (W = 63, Z =
2.70, p < 0.01, r = 0.81). Statistical significance was computed using the Wilcoxon
signed-rank test, pairing users’ ratings of each interface. The analysis was done on 11
participants’ data, as one participant’s data was lost. The mean rating (with standard
error) for the responses is shown in Figure 20(a).
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Fig. 20. Post-condition perception of coverage (excluding one participant) (a) and confidence ratings identi-
fying strategies that frequently occurred (c) on a 1 to 7 scale.

For each strategy identified by subjects, we asked them to rate their confidence, on a
scale of 1 to 7, that the strategy was frequently used by students in the dataset. Mean
confidence ratings on a per-problem basis are shown in Figure 20(b). We found that
for compDeriv, subjects using OverCode were significantly more confident that their
annotations were relevant to many students compared to the baseline (Mann–Whitney
U = 260.5, n1 = 18 n2 = 16, p < 0.0001).

8.4.4. H1: Interface Satisfaction. Interface satisfaction was measured through multiple
surveys: (1) immediately after using each interface and (2) after using both interfaces.
Statistical significance was computed using the Wilcoxon signed-rank test, pairing
users’ ratings of each interface.

Immediately after finishing the assigned tasks with an interface, participants rated
their agreement with statements about the appropriateness of various adjectives to
describe the interface they just used on a 7-point Likert scale. Although participants
found the baseline to be significantly more simple (W = 2.5, Z = –2.60, p < 0.01, r =
0.78), they found OverCode to be significantly more flexible (W = 45, Z = 2.84, p <
0.005, r = 0.86), less tedious (W = 3.5, Z = –2.41, p < 0.05, r = 0.73), more interesting
(W = 66, Z = 2.96, p < 0.001, r = 0.89), and more enjoyable (W = 45, Z = 2.83, p <
0.005, r = 0.85). The analysis was done on 11 participants’ data, as one participant’s
data was lost. The mean ratings (with standard error) for the responses is shown in
Figure 21.

After the completion of the coverage study, participants were asked again to rate their
agreement with statements about each interface on a 7-point Likert scale. After using
both interfaces to view thousands of solutions, there were no significant differences
between how overwhelming or easy to use each interface was. However, participants
did feel that OverCode “helped me get a sense of my students’ understanding” more
than the baseline (W = 62.5, Z = –2.69, p < 0.01, r = 0.78). The mean ratings (with
standard error) for the responses is shown in Figure 21.
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Fig. 21. H1: Interface satisfaction. Mean Likert scale ratings (with standard error) for OverCode and
baseline immediately after using the interface for the coverage study task (a) and after using both interfaces
(b).

8.4.5. Usage and Usefulness of Interface Features. In the second part of the post-study
survey, participants rated their agreement with statements about the helpfulness of
various interface features on a 7-point Likert scale. There were only two features
to ask about in the baseline interface (in-browser find and viewing raw solutions),
which were mixed in with statements about features in the OverCode interface. The
OverCode feature of stacking equivalent solutions was found to be more helpful than
the baseline’s features of in-browser find (W = 41, Z = 2.07, p < 0.05, r = 0.60) and
viewing raw students’ solutions, comments included (W = 45, Z = 2.87, p < 0.005,
r = 0.83). The OverCode feature of variable renaming and previewing rewrite rules
were also both found to be significantly more helpful than seeing students’ raw code
(W = 65.5, Z = 2.09, p < 0.05, r = 0.61 and W = 56.5, Z = 2.14, p < 0.05, r = 0.62,
respectively). The mean ratings for the features are shown in Figure 22.

In addition to logging read events, we also recorded usage of interface features, such
as creating rewrite rules and filtering stacks. A common usage strategy was to read
through the stacks linearly and mark them as read, starting with the largest reference
stack, then rewrite trivial variations in expressions to merge smaller behaviorally
equivalent stacks into the largest stack. Stack filtering (Figure 4) was sometimes used
to review solutions that contained a particularly conspicuous line (e.g., a recursive
call to solve iterPower or an extremely long expression). The filter’s frequency slider
(Figure 4(a)) and the variable legend (Figure 6(b)) were scarcely used.

All subjects wrote at least two rewrite rules, often causing stacks to merge that only
differed in some trivial way, like reordering operands in multiplication statements
(e.g., result = result*base vs. result = base*result). Some rewrite rules merged
Python expressions that behaved similarly but differed in their verbosity (e.g., for
i in range(0, exp) vs. for i in range(exp))—variations that might be considered
noteworthy or trivial by different teachers.

9. DISCUSSION

Our three-part evaluation of OverCode’s backend and user interface demonstrates its
usability and usefulness in a realistic teaching scenario. Given that we focused on the
first 3 weeks of an introductory Python programming course, our evaluation is limited
to single functions, whose most common solutions were fewer than 10 lines long. Some of
these functions were recursive, whereas most were iterative. Variables were generally
limited to Booleans, integers, strings, and lists of these basic data types. All solutions
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Fig. 22. Mean Likert scale ratings (with standard error) for the usefulness of features of OverCode and
baseline. “Find” is the Web browser’s built-in find, which appears twice because users rated its usefulness
for each condition.

had already passed the autograder tests, and study participants still found solutions
that suggested students’ misconceptions or knowledge gaps. Future work will address
more complex algorithms and data types.

9.1. Read Coverage

First we observed that subjects were able to effectively read less to cover more ground
(H1, read coverage). This is expected, because in OverCode each read stack represented
tens or hundreds of raw solutions, whereas there was only a 1-to-1 mapping between
read solutions and raw solutions in the baseline condition. OverCode’s backend makes
it possible to produce a single cleaned piece of code that represents many raw solutions,
reducing the normally high cognitive load of processing all raw solutions, with their
variation in formatting and variable naming.

Figure 18(a) shows that in some cases subjects were able to read nearly as many
(hangman) or more (iterPower) function definitions in the baseline as in OverCode. In
the case of iterPower, the raw solutions are repetitive because of the simplicity of
the problem and the relatively small amounts of variation demonstrated by student
solutions. This can explain the subjects’ ability to move quickly through the set of
solutions, reading as many as 90 solutions in 15 minutes.

Figure 18(b) shows the effective number of raw solutions read when accounting for
the number of solutions represented by each stack in the OverCode condition. In the
case of iterPower, subjects can say they have effectively read more than 30% of student
solutions after reading the first stack. A similar statement can be made for hangman,
where the largest stack represents roughly 10% of solutions. In the case of compDeriv,
the small size of its largest stack (22 out of 1433 raw solutions) means that the curve
is less steep, but the use of rewrite rules (average of 4.5 rules written per compDeriv
subject) enabled subjects to cover more than 10x the solutions covered by subjects in
the baseline condition.
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9.2. Feedback Coverage

We also found that subjects’ feedback on solutions for the compDeriv problem had
significantly higher coverage when produced using OverCode than with the baseline,
but this was not the case for the iterPower and hangman problems. compDeriv was a
significantly more complicated problem than both iterPower and hangman, meaning
that there was a greater amount of variation between student solutions. This high
variation meant that any one piece of feedback might not be relevant to many raw
solutions, unless it was produced after viewing the solution space as stacks and creating
rewrite rules to simplify the space into larger, more representative stacks. Conversely,
the simple nature of iterPower and hangman meant that there was less variation in
student solutions. Therefore, regardless of whether the subject was using the OverCode
or baseline condition, there was a higher likelihood that he or she would stumble across
a solution that had frequently occurring lines of code, and the feedback coverage for
these problems became comparable between the two problems.

9.3. Perceived Coverage

In addition to the actual read and feedback coverage that subjects achieved, an im-
portant finding was that (1) subjects felt they had developed a better high-level un-
derstanding of student solutions and (2) subjects stated they were more confident that
identified strategies were frequent issues in the dataset. Although a low self-reported
confidence score did not necessarily correlate with low feedback coverage, these results
suggest that OverCode enables the teacher to gauge the impact that their feedback
will have.

10. FUTURE WORK

Currently, we have used OverCode to look at solutions from an introductory program-
ming course. We have yet to explore how well it scales to increasingly complex code
solutions. OverCode enabled higher feedback coverage on one of the two more com-
plicated problems in the coverage study; applying the OverCode system to even more
complicated code will demonstrate how well it scales up and may also expose the need
for new pipeline and interface features that should be addressed. One foreseeable com-
plication is the need to handle complex variable values. OverCode could also readily
handle more programming languages. For a language to be displayable in OverCode,
one would need (1) a logger of variable values inside tested functions, (2) a variable
renamer, and (3) a formatting standardization script.

OverCode could be integrated with the autograder that tests functions for input–
output correctness. The execution could be performed once in such a way that it serves
both systems, since both OverCode and many autograders require actually executing
the code on specified test cases. If integrated into the autograder, users of OverCode
could also give “power feedback” by writing line- or stack-specific feedback to be sent
back to students along with the input–output test results. This would require pipeline
and user interface modifications to account for the fact that not all solutions would be
returning the same values for each test case.

OverCode may also provide benefit to students, not just the teaching staff, after stu-
dents have solved the problem on their own, like Cody. However, the current interface
may need to be adjusted for use by nonexpert students instead of teaching staff.

Our user study participants produced a variety of suggestions for additional features.
In addition to those but unmentioned by users, variable renaming obscures pedagogi-
cally relevant information. The user-tested UI does not include access to raw solutions
represented by a stack’s cleaned code or to the original variable names represented by
a common variable name. This can be accomplished by adding tooltips and dropdown
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menus. This may also be part of better communicating to users that they are looking
at cleaned, not raw, code.

When the program tracing, renaming, or reformatting scripts generate an error
while processing a solution, we exclude the solution from our analysis. Less than
5% of solutions were excluded from each problem, but that can be reduced further
by adding support for handling more special cases and language constructs to these
library functions.

In addition, our current backend analysis computes the set of common variables
by comparing the sequence of values that the variables take over a single test case,
but this can be easily generalized and extended to work over multiple test cases. The
definition of common variables would then be slightly modified to be those variables
that take the same set of sequence of values.

11. CONCLUSION

We have designed the OverCode system for visualizing thousands of Python program-
ming solutions to help teachers explore the variations among them. Unlike previous
approaches, OverCode uses a lightweight static and dynamic analysis to generate
stacks of similar solutions and uses variable renaming to present cleaned solutions for
each stack in an interactive user interface. It allows teachers to filter stacks by line
occurrence and to further merge different stacks by composing rewrite rules. Based
on two user studies with 24 current and potential teaching assistants, we found that
OverCode allowed teachers to more quickly develop a high-level view of students’
understanding and misconceptions and to provide feedback that is relevant to more
students’ solutions. We believe that an information visualization approach is necessary
for teachers to explore the variations among solutions at the scale of MOOCs and that
OverCode is an important step toward that goal.

12. AUTHOR STATEMENT ABOUT PRIOR PUBLICATIONS

Two work-in-progress abstracts by the same authors have appeared previously, both
titled “Feature Engineering for Clustering Student Solutions.” One abstract appeared
in the Learning at Scale 2014 poster track, and the other in the CHI 2014 Learn-
ing Innovations at Scale workshop. Those abstracts used the same dataset of Python
solutions used in this submission.

A third abstract appeared in the User Interface Software and Technology (UIST)
poster track, which gave a very high level overview of the OverCode user interface.
Otherwise, virtually all of the current submission is new work that was not discussed
in those abstracts: in-depth descriptions of the OverCode visualization, its implemen-
tation, and the empirical evaluations.
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