
Learner-Sourcing in an Engineering
Class at Scale

Elena L. Glassman
MIT CSAIL
32 Vassar St.
Cambridge, MA 02139 USA
elg@mit.edu

Christopher J. Terman
MIT CSAIL
32 Vassar St.
Cambridge, MA 02139 USA
cjt@mit.edu

Robert C. Miller
MIT CSAIL
32 Vassar St.
Cambridge, MA 02139 USA
rcm@mit.edu

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components
of this work must be honored. For all other uses, contact the Owner/Author.
L@S 2015, March 14–18, 2015, Vancouver, BC, Canada.
ACM 978-1-4503-3411-2/15/03.
http://dx.doi.org/10.1145/2724660.2728694

Abstract
Teaching computer architecture as a hands-on engineering
course to approximately 250 MIT students per semester
requires a large, dedicated teaching staff. This Spring, a
shortened version of the course will be deployed on edX to
a potentially far larger cohort of students, without
additional teaching staff. To better support students, we
have deployed developmental versions of three
learner-sourcing systems to as many as 500 students.
These systems harvest and organize students’ collective
knowledge about debugging and optimizing solutions. We
plan to deploy and study the next iteration of these
systems on edX this Spring.

Introduction
One-on-one tutoring has been established as a costly gold
standard in education [1]. In MOOCs, the
teacher-to-student ratio is drastically lower. Teaching staff
cannot walk around the lab to get a sense of common
success and failures. They also suffer from the “curse of
knowledge”: the difficulty experts have when trying to see
something from a novice’s point of view [2].

We are developing systems that harvest and organize
students’ collective knowledge about debugging and
optimizing solutions. Students themselves are each
becoming experts on their own bugs and solutions. The



key design principle is that students write hints
immediately after completing a task or fixing a bug.
Later, other students can use these hints to help guide
them to a correct solution or better design. While
students do not have the pedagogical content knowledge
to necessarily generate optimal explanations, they also do
not suffer from the curse of knowledge. These systems
relieve some of the pressure on the relatively small
teaching staff, and give students the valuable educational
experiences of reflection and generating explanations [3].

We present ongoing case studies of three systems
deployed in an undergraduate computer architecture
course at MIT. Around 250 students enroll each semester.
The three deployed systems have distinct objectives: (1)
learner-source hints for debugging, (2) learner-source hints
for optimization, and (3) prompt students to reflect on
other students’ solutions. Learner-sourcing refers to
crowd-sourcing within the community of students enrolled
in a course.

These systems have already been deployed at scale to as
many as five hundred students over multiple semesters.
Our case studies prepare us to design, deploy, and study
the next iteration of these systems on edX this Spring.
Throughout the process, we continue to develop design
principles that can guide future learner-sourcing systems
for engineering classes.

Related Work
In order to generate hints for others, students must reflect
on their bug, solution, or optimization, and then explain.
We review relevant literature at the intersection of
learning theory and engineering education.

Reflection
Reflection and confusion are both treated at length in
learning theory literature. Piaget theorized that cognitive
disequilibrium, experienced as confusion, could trigger
learning: the creation or restructuring of knowledge
schema [8]. However, D’Mello et al. point out that, for
this learning to take place, it is important for confusion to
be both appropriately injected and resolved [5]. Dewey
theorized that reflection is a critical method for triggering
that transformation from conflict and doubt into clarity
and coherence [4]. Turning that reflection into a
self-explanation also improves understanding [3]. Turns et
al. [11] argue that the absence of reflection in traditional
engineering education scholarship is a significant gap. In
this work, we aim to design scalable automated
opportunities for students to reflect in an engineering
course.

Peer Instruction and Assessment
While reflection is valuable in its own right, it is also a
building block of larger frameworks, like Peer Instruction
[9] and Peer Assessment [10]. Reflecting on a peer’s
conceptual development or alternative solution may bring
about cognitive conflict that prompts reevaluation of the
student’s own beliefs and understanding [7]. We aim to
trigger productive cognitive conflict that students can
attempt to resolve through written reflection.

Generating Hints for Students
With a mixture of automation and human input, helpful
hints have been delivered to students in multiple problem
domains. HelpMeOut [6] tracks the changes programmers
make when fixing a compilation error or runtime
exception. Users can write helpful messages to accompany
these automatically extracted bug fixes. Our work uses a



similar strategy for learner-sourcing hints for a new
domain. We also learner-source optimization advice.

Debugging
In our course, students design entire simulated processors
composed of logic gates. These processors can be
challenging to debug even with the one-on-one help of
seasoned teaching staff. Students who have recently
resolved a particular bug can be in a better position than
available staff members to help a fellow student with the
same bug. Bugs are revealed by verification failures found
by a staff-designed testbed. There are hundreds of
possible unique verification failures. The course forum’s
generic structure does not lend itself to searching for other
students’ difficulties with particular verification failures.

We built Dear Beta, a system that serves as a central
repository of debugging advice for and by students,
indexed according to verification failures. As soon as a
student resolves a bug, they can post an explanation of
their bug on Dear Beta along with the verification failure
it caused. Students can easily look up advice for their
particular failure. Students upvote hints they found
helpful. Initial evidence suggests it was consistently
helpful. One teaching assistant said, “Whenever I went to
help a student, I first asked them if they’d checked Dear
Beta.” We will create a Meteor or Django-backed version
for edX students this Spring.

Figure 1: Two correct student
solutions (Full Adders),
composed of different numbers
and arrangements of XOR and
NAND gates. The more optimal
solution has only 21 gates and 96
transistors (FETs) while the
expected, less optimal solution
has 24 gates and 114 transistors.

Optimization
Students optimize their own processors for additional
points, which are a function of the processor’s size and
speed. Students also get a long list of optimization hints
written by staff that students consult when choosing
which optimizations to implement. Students can take

hours to act on a single optimization hint, without
knowing which has the greatest payoff.

We deployed a system for learner-sourcing optimization
hints and results, with the aim of giving students more
transparency and assistance. We indexed hints according
to whether they were intended to reduce the processor’s
size, increase its speed, or both. We also gave students
the option of submitting the magnitude of the speed and
size improvement they got from acting on a hint, so that
future students could gauge which optimization hints were
most beneficial on average.

This system was not as successful as Dear Beta. We are,
however, confident that students are ultimately capable of
generating high-quality processor optimization hints,
based on results shown in the next section on reflection
and comparison.

Reflection
Early on in our course, students design a piece of their
processor: a working Full Adder. Students create a variety
of solutions that fit the behavior specification. Some are
unnecessarily large, and some optimize to use as few
transistors as possible. In this scenario, fewer transistors
translate to better performance.

Through exploration of hundreds of previous students’
solutions, we picked a representative set. Each student
was then shown their own solution next to (1) a worse
solution in the representative set and (2) the best solution
in the representative set. Students were asked to give a
hint to future students about how to improve the poorer
solution in each pairing (see Figure 1). When the
student’s own solution is the better solution in the pair,
then the student can hint at what the peer had
conceptually missed. For example, Remember DeMorgan’s



Law: you could replace the ‘OR’ of ‘ANDs’ with a
‘NAND’ of ‘NANDs.’ When the students’ own solution is
the poorer solution in the pair, they are challenged to first
understand how the better solution uses fewer transistors
and then write a hint about the insight for a peer.

Learner-sourced Advice
“Do not try to be too
clever with Cout—design
your schematic as the ex-
pression is written. This way
you will achieve the [stan-
dard] schematic.”
“Mutate the boolean func-
tion for Cout such that all
OR and AND operations are
being NOT’ed. This allows
you to design a circuit us-
ing only naturally inverting
CMOS gates.”
“I would ask: is there a way
for you to use some interme-
diate node in one circuit to
bypass a CMOS gate in the
other, leading to a reduction
of used mosfets?”

Table 1: Examples of
learner-sourced advice for
optimizing fellow students’ Full
Adders.

This reflection and explanation process is pedagogically
valuable on its own. In addition, students’ explanations
give a rich window into their understanding, while serving
as strikingly cogent potential advice to future students
(see Table 1). The online version of this course may
afford us the opportunity to deliver these optimization
hints back to students.

Conclusions and Future Work
This work in progress is the accumulation of several
semesters of system development and deployment in a
large undergraduate engineering course. Students can
write high-quality optimization advice when their solution
is paired with a distinct peer solution. Learner-sourced
debugging hints, indexed by verification failures, are a
valuable student resource. We are preparing to deploy the
next iteration of these systems on edX this Spring, while
considering how best to measure impact on the student
learning experience.

Acknowledgments
We appreciate support from NSF GRF No. 1122374,
Quanta Computer, and the Amar Bose Fellowship.

References
[1] Bloom, B. S. The 2 sigma problem: The search for

methods of group instruction as effective as
one-to-one tutoring. Educational Researcher (1984),
pp. 4–16.

[2] Camerer, C., Loewenstein, G., and Weber, M. The

curse of knowledge in economic settings: An
experimental analysis. Journal of Political Economy
97, 5 (1989), pp. 1232–1254.

[3] Chi, M. T., De Leeuw, N., Chiu, M.-H., and
Lavancher, C. Eliciting self-explanations improves
understanding. Cognitive Science 18, 3 (1994), pp.
439–477.

[4] Dewey, J. How we think: A restatement of the
relation of reflective thinking to the educational
process. D.C. Heath and Company, 1933.

[5] D’Mello, S., Lehman, B., Pekrun, R., and Graesser,
A. Confusion can be beneficial for learning. Learning
and Instruction 29 (2014), pp. 153–170.

[6] Hartmann, B., MacDougall, D., Brandt, J., and
Klemmer, S. R. What would other programmers do:
suggesting solutions to error messages. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2010), pp.
1019–1028.

[7] Kavanagh, L., and O’Moore, L. Reflecting on
reflection - 10 years, engineering, and UQ. In
Proceedings of the Conf. of the Australasian Assoc.
for Engineering Education: To Industry and Beyond,
Institution of Engineers, Australia (2008).

[8] Kibler, J. Cognitive disequilibrium. In Encyclopedia
of Child Behavior and Development, S. Goldstein and
J. Naglieri, Eds. Springer US, 2011, p. 380.

[9] Mazur, E. Peer Instruction: A User’s Manual. Series
in Educational Innovation. Prentice Hall, 1997.

[10] Topping, K. Peer assessment between students in
colleges and universities. Review of Educational
Research 68, 3 (1998), pp. 249–276.

[11] Turns, J., Sattler, B., Yasuhara, K., Borgford-Parnell,
J., and Atman, C. Integrating reflection into
engineering education. In Proceedings of the ASEE
Annual Conference and Exposition, ACM (2014).


	Introduction
	Related Work
	Reflection
	Peer Instruction and Assessment
	Generating Hints for Students

	Debugging
	Optimization
	Reflection
	Conclusions and Future Work
	Acknowledgments
	References

