
personal context-adaptive and reactive automation
using heterogeneous data sources on the Web

atomsmasher

Max Van Kleek	 (emax@csail.mit.edu)
Paul André

 (pa2@ecs.soton.ac.uk)
Michael Bernstein	 (msbernst@mit.edu)
Mikko Perttunen	 (mikko.perttunen@ee.oulu.fi)
David Karger 	 	 (karger@mit.edu)
Rob Miller	 	 (rcm@mit.edu)
mc schraefel 	 	 (mc@ecs.soton.ac.uk)

examples

atomsmasher is a framework which enables data from multiple web sites to drive robust, context-aware
reactive behaviors. In contrast to existing data mashups such as Yahoo Pipes, IBM’s DAMIA, and Intel
MashMaker, which can produce visualizations and aligned feeds from multiple data sources, atoms-
masher enables novice web programmers to program arbitrary web-based actions, that can use new
data from the web about the world for making scripts world-adaptive and reactive.

atomsmasher achieves this by building a single, consolidated representation of data aggregated from ar-
bitrary sources on the web, providing Javascript programming language abstractions for specifying be-
haviors and accessing this representation, and a rule engine for efficiently computing how and when ac-
tions should be taken. These abstractions, designed to make it easy for web designers and novice pro-
grammers to devise complex adaptive behaviors are illustrated and explained below.

how it works

Users can specify behaviors in Javascript (JS) by con-
structing special “if” statements that refer to atomsmasher
query variables and/or state model variables in their condition
clause. These variables operate in different ways.

atomsmasher query variables - represent query sets to the
atomsmasher KB and as in object relation models (ORM)
use Javascript objects as proxies to represent items.
Fields of these proxies correspond to properties of items in
the KB; e.g. friends().name corresponds to the names of
all friends. The query set can be reduced by applying boo-
lean predicates to fields of query variables. For example,
friends().address.city.eq(places(“Cambridge”)) would
represent a query set of friends filtered to only those that
live in Cambridge.

atomsmasher state model - represent persisted aspects of
the user and environmental state, such as the user’s loca-
tion, task/activity/ongoing event or music listening state.
The state model is driven by special behavior rules called
state behaviors specified by the user.

1. Update my facebook status whenever I go somewhere.

 if (my.location)
 setFBStatus(“Max is at ” + my.location.name);

2. Set my away state and RSS reader mode when in meetings

 if (my.activity.type.is(Activities.Meeting)) {
 // public availability state
 setIMAvailability(“Away: At a meeting”);
 // filter dashboard to only relevant items
 setDashFilter(function(x) {
 return x.tags.
 intersect(my.activity.tags).size() > 0; });
 }

3. Remind me when I have a far away appointment in advance

 var max_speed_mps = .8; // walking in meters per second
 var dist = calevent.location.dist(my.location);
 var timeneeded = (dist.meters()/max_speed_mps).seconds();
 var timeuntil = calevent.startTime.minus(Time.now());
 var extratime = (5).minutes();

 if (timeuntil.lt(timeneeded.plus(extratime))) {
 showReminder(“Excuse me sir, your ”+ calevent.type.name +
 + “ “ + calevent.name + “ scheduled for ” +
 + “ “ + calevent.startTime.shortString() +
 + “ is at ” + calevent.location.name +
 “. I’d head over there soon if I were you.”);
 }

4. When I text myself “goodshows”, find concerts featuring artists that I have
listened to recently, and friends who are free tonight that have listened to them
recently too.

 if (New.type==Message.Text && New.contents==“goodshows”) {
 // retrieve all events
 var cs = events({type:'concert', start:Now.day()});
 var playedmusic = audioscrobbler.recentPlaylist();
 var freefriends =
 friends().filter(function(friend) {
 return friend.cal.
 freebetween(Today.hour(18),Tomorrow);
 });
 var goodshows = cs.filter(function(c) {
 return c.location.nearTo(my.location,miles(2)) &&
 playedmusic.artist.eq(c.artist);
 });
 reply(New, freefriends.musicPlaylist.artist
 .eq(goodshows.artist));
 }

behavior specification

try it!

data aggregation
atomsmasher can connect to virtually any web-based data
source, including RSS/ATOM feeds, REST-based or XML-
RPC based web APIs, well as through any custom con-
nector Javascript code. For each such data source, at-
omsmasher applies generic input processing (parsing) func-
tions to initially extract the data, followed by custom code
to transform the particular source’s data format into in-
stances of the atomsmasher ontology. This per-source code,
called atom splitters are written as modules that can be
shared so that others can benefit from each person’s work.

Users of Firefox 3.0 can try a prototype implementation at

http://plum.csail.mit.edu/atomsmasher .

Tell us what you think!

