

Mixing the reactive with the personal:
Opportunities for end user programming in
Personal information management
Max Van Kleek1, Paul André2, David R. Karger1, and m.c. schraefel2

Abstract. While human personal assistants routinely take actions
on behalf of their supervisors, proactive assistance in personal
information management (PIM) software today remains limited to
basic reminding and e-mail filtering functions. In this chapter, we
introduce a prototype information assistance engine that lets end-
users delegate to it various simple, routine but context- and activity-
reactive tasks. To track user context and activity, our system,
Atomate, treats web feeds (e.g., RSS/ATOM) from "life-tracking"
web sites as sensor streams. Information from these feeds is
integrated with information from other online resources such as
social networking sites, online calendaring tools, and messaging
services to form a simple but robust internal RDF world model.
This world model facilitates integration with heterogeneous
services, making possible the construction of behaviors with the
ability to carry out tasks ranging from context-aware retrieval,
filtering, and message routing to social coordination. To make
behaviors easy and natural for end-users to specify, Atomate
features a constrained natural language interface (CNLI) that guides
and accelerates input using predictive auto-complete and correction.

1. Introduction
While desktop and mobile computing through great strides have
yielded the many information tools we rely upon on a daily basis,
these tools exhibit a simple limitation -- they are designed to let
users access, manipulate and aggregate information manually. In
contrast, human personal assistants, such as secretaries and
administrative assistants, routinely do things autonomously on
behalf of their supervisors, such as taking calls, handling visitors,
managing contacts, coordinating meetings and so on. In order for
personal information management tools to become as helpful as
human personal assistants, these tools will require greater
autonomy, specifically the ability to work on the behalf of a user
without explicit human attention.
Building information tools that serve as effectively as human
assistants in their diversity of competences is at least in the short
term, beyond our capabilities. However, if one considers the
many tedious, attention-intensive tasks that involve purely the
management and routing of information, executing such tasks are
well-suited to current capabilities of Personal Information
Management (PIM) software. Automating these tasks thus
reduces to two challenges; first, establishing a means for users to
articulate to what should be done and the circumstances under
which to take action, and second, monitoring the information
environment and detect when appropriate situations arise for
taking action.
These two challenges have been prohibitive for several reasons.
First, the information needs of individuals change dynamically

from one activity (or situation) to the next, and providing
appropriate assistance may depend on tracking a multitude of
relevant activities. Second, specifying the exact conditions under
which these actions should be taken (and how they should be
taken) can be challenging particularly for non-programmers if
these conditions need to be articulated precisely in terms of
concrete, observable events and procedures. Finally, accessing all
relevant information necessary may be difficult due to
fragmentation; most people draw upon information stored in a
variety of forms in many different locations, from Post-It notes, to
e-mails, web sites, calendar tools to past conversations with
friends in the process of planning and conducting everyday
activities.
Fortunately, however these challenges are starting to be mitigated
by the Web. First, "life-tracking" services such as Google
Latitude1 for location, Last.fm2 for music listening, Wakoopa3 for
application use, etc., have started to make unobtrusive user
activity tracking possible via users' ensembles of personal digital
devices, and to make this data available in real-time via standard
delivery formats and mechanisms (e.g, RSS/ATOM feeds and
REST APIs). With respect to the problem of fragmentation, many
new PIM applications are moving off of desktops and onto the
Web. Tools that have taken an immense web presence already
include e-mail, note-taking tools, calendars, to-do list keepers, and
document creation suites. These tools are making available via
standard web protocols and APIs information previously
sequestered in difficult to reach or proprietary/inaccessible
formats.
Optimistic towards determining whether these developments
could be applied to help users with their personal information
workloads, we created Atomate, an information assistance engine
for end-users that combines information from Web sources to
enable it to take care of simple information tasks. In this paper, we
demonstrate that, indeed simple context-reactive automation is
feasible using web sources today, and that such automation is
sufficient for several classes of simple information tasks people
currently do manually. Our second contribution surrounds an
approach to integrating heterogeneous information on the web
using a semi-automatic strategy involving “semantic repair and
personalization” by the end-user. This personalization process
allows users to attribute significance to information arriving from
various streams during the integration process, making later
access to this information natural and easy. The final contribution
of this paper is a controlled natural language interface (CNLI) for

1 Google Latitude http:///www.google.com/latitude
2 Last.fm http://last.fm, http:///www.audioscrobbler.com
3 Wakoopa: http://wakoopa.com

1CSAIL, MIT
32 Vassar St.
Cambridge, MA, 02139, USA
{emax, karger}@csail.mit.edu

2Electronics and Computer Science
University of Southampton
SO17 1BJ, United Kingdom
{pa2, mc}@ecs.soton.ac.uk

allowing users of the system to specify what they want the system
to do for them, using an English-like syntax.
In the following sections we consider related work, followed by a
brief walkthrough of Atomate's UI and some examples of its use.
We then provide a detailed overview of the Atomate framework,
discuss how the framework can be extended to new data sources
and capabilities, and present ongoing work towards making
Atomate behaviors sharable and rule conditions easier to express.

2. Related Work
As an end user, web-based reactive behavioral programming
environment for personal information tasks that uses a natural
language interface (NLI), Atomate sits at the intersection of
several fields. We briefly summarize connections to related work
across these fields here.
With respect to end-user context-sensitive reactivity, the
ubiquitous computing research community has explored the space
of end-user authored reactive behaviors for some time. For
example, a macro recording system in the Intelligent Room let
users program room configuration tasks physically by example
[8]. Meanwhile, iCAP [22] let end-users sketch their desired rules
for home automation tasks, such as controlling the home
thermostat and automatically turning on and off devices when
people were occupying a space. Perhaps most similar to Atomate
was CAMP [20], a "magnetic-poetry" interface that used pseudo-
natural language for the construction of behaviors pertaining to
automatic capture and access tasks.

Towards end-user programming on the web, Atomate was
preceded by Greasemonkey, Chickenfoot [3] and CoScripter [16]
that introduced end-user customization of web pages and, for the
latter two, the scripting of web navigation-related tasks. Atomate
extends automation provided by Chickenfoot and CoScripter to
context-reactive behaviors that work "off the page", e.g., with
feeds and web services that accept queries and perform actions
based on the user's activities. Unlike Chickenfoot or CoScripter,
Atomate does not yet support the specification of behaviors by
demonstration; behaviors have to be explicitly specified by the
user. This is an area of future investigation.
Atomate's natural language interface for specifying behaviors is
inspired by work on Constrained Natural Language Interfaces
(CLNIs) from the Semantic Web community, particularly the
ATTEMPTO Controlled English (ACE) project for the
specification of ontologies in rules in natural language [15] and
the GINSENG and GINO interfaces for guided input of queries
and ontology construction [1]. Atomate’s grammar is different in
that it is tuned to the creation of several types of behavior rules
(either time based or world-model based), which may include
wildcard expressions that can bind to any value meeting specified
criteria. Although Atomate currently uses a predictive CFG
grammar with limited reordering, extending Atomate's UI to a
"sloppy" parser as described in Chapter [??] should be feasible
and is under consideration.
Architecturally, Atomate most resembles early AI work in multi-
agent systems, particularly blackboard architectures, devised as

Figure 1 - Atomate personal mission control UI consisting of the rule creation interface
on the upper left, filtered notifications on the sensor scoreboard showing latest
information retrieved from web sources at the bottom.

problem-solving frameworks for heterogeneous information
sources [21]. In a blackboard architecture, each knowledge
source contributes evidence and expertise to help solve a
particular set of problems or goals at hand. Programs attempting
to solve problems or goals watched the blackboard for patterns as
experts filled it, triggering (e.g., executing) when such patterns
were found. These “programs” correspond to Atomate's end-user
authored behaviors, while the central "blackboard" corresponds
roughly to Atomate's internal RDF world model.
With respect to combining information from multiple web
domains in end-user web environments, research surrounding web
mash-ups have resulted in a number of end-user mashup authoring
tools including Marmite [26], MashMaker [6], and Pipes [29].
The focus of these tools has been in facilitating the creation of
combined feeds, views and simple visualizations that juxtapose or
contextualize data from multiple sources. In particular, one paper
[27] surveyed 22 mash-ups and their functions, and concluded that
most mash-ups surrounded the construction of custom views of
data, or bringing data to the desktop. There was an absence of
any mash-ups which produced reactive behaviors (e.g., action)
based on data from multiple sources.

3. Overview
Atomate helps users by letting them delegate simple actions to
perform when certain conditions are met. These reactive
conditional actions are called behaviors, and are expressed in the
system as sets of rules (section Error! Reference source not
found.). In the following section, we present a walk-through of
how a user interacts with Atomate to set up a simple reactive
behavior. Following this, we provide a number of behaviors to
illustrate different types of tasks that Atomate can assume.

3.1 Walkthrough and Examples
Figure 1 illustrates Atomate's main user interface and the process
of rule creation. In the figure, the user, Xaria, is setting up a
simple rule for Atomate to remind her to call her father when she
gets home. Xaria pulls up Atomate's UI using a bookmark on her
Firefox toolbar. From this UI she can add new behaviors, edit,
enable, or disable existing ones and monitor behavior execution.
To add a new behavior, Xaria focuses on the input box at the top
of her list of behaviors and starts typing -- first, she types "when",
indicating to Atomate that she is starting to author a behavior to
be run only once when a certain condition is met. If she had
instead started her behavior with the other behavior modifiers
illustrated in Table 1, her rule would have been interpreted
differently.
Following "when", Atomate’s UI offers a list of all the entities
representing people, places and things in its world model. It is
asking her to start specifying the antecedent for her behavior,
which describes the situations under which it should run.
Antecedents are expressed as a a conjunctive sequence of subject-
predicate-object expressions, where a subject can be a path query
along properties of an entity in a posessive form, (e.g., “Joe
Smith’s current event’s location”). Atomate uses rdfs:labels
attached to entities as their “friendly names”. Predicates,
meanwhile are drawn from a pool of functions (overloaded by
subject type), such as “is”, “is near”, or “occurs”. Object values
can either be path queries like subjects or primitive values, such as
dates or arbitrary strings.
Since Xaria wants Atomate to remind her when she gets home,
she simply types “my” (which Atomate recognizes as the
possessive form of me), and it offers a list of all properties the
system knows about with rdfs:domain Person: "age", "e-mail

address", "location”, “currently viewing website” (an activity she
is engaged in), and so on. She starts typing "loc" and Atomate
auto-fills the rest of "location", asking her next for a predicate
("is", "is near") restricted to only those that accept a place as its
first argument. She selects "is", and Atomate offers a list of all
the location entities it knows about. She selects "home", and then
offers to let her either specify another clause ("and/or") to further
refine the antecedent, as well as actions she might want to
perform. She selects "notify me", which accepts an arbitrary
string argument. She types "to call dad", and hits Enter to
complete her rule. Atomate then creates a behavior (rule) to
trigger the next time her entity is observed at being at location
“home”. She could have added multiple actions by typing "and"
and naming another action and appropriate arguments. (Atomate's
reminder/notification service can be configured via a rule, or
manually through the UI at the bottom of Figure 1. Reminders can
be sent through Growl, IM, email, synthesized text-to-speech, or
mobile text messaging.)
If Xaria had instead wished to be notified whenever anyone's
location changed, she could have used one of two special wildcard
entity types: "new <type>" and “some <type>”/"any <type>".
These entity expressions match incoming (new) entities or any
entities of the particular specified type (e.g., person/friend, place,
e-mail, document, tweet, et cetera). If she wished to refer back to
the last bound wildcard entity in subsequent antecedent or action
clauses, she can use the expression “that <type>” (e.g., “when any
person’s location is my home and that person is not me notify
me...”).
Next, we present several examples intended to illustrate roles that
Atomate can serve by integrating information and functionality
from separate applications and services. These examples rely on
retrieving and tagging notes from a note-taking tool such as List.it
[24]. Other data sources involved include a calendaring service
(e.g., Google Calendar), active indoor location information (e.g,
OIL), and integration with messaging services, specifically e-mail
and Twitter.

Reminding
Show notes tagged as a "todo" that contain a date occurring
tomorrow or the day after:

while any note contains "@todo" and
 that note contains any date and
 that date occurs today
show that note with priority high

at/on/no expression - one shot alarm (time trigger)
 e.g.: "3pm tuesday", "on march 31"

every - recurring alarm (time trigger)
 e.g.: "every tuesday", "every day at 3pm"

when - one shot world-entity change trigger
 e.g.: "when my location is home",

whenever - recurring entity-change trigger
 e.g.: "whenever any person's location
 is my office"

while - recurring entity-change trigger w/ action reversal
 e.g.: "while my location is home"

Figure 2. Behavior trigger modifiers which modify how
rules are executed

Activity-sensitive reminding:
Retrieve notes tagged to contain website passwords when the
relevant page is visited:

while any note contains "@password" and
 my current viewing site is
 that note's creation site
show that note
Retrieves notes created at past sessions of a recurring event:

while my current event is any note's
 creation event
show that note

Tagging/organization
Automatically tag notes when created during a meeting:

while my current event is
 Haystack meeting and my location is
 CSAIL G531
 tag new notes "@haystack"

Message subscription management
Show messages from others "live tweeting" the event I am
attending:

while my current event is not nothing and
 a new tweet's creator is any person and
 that person's current event is
 my current event
show that tweet

Social coordination
Inform the user when a specific individual arrives at a particular
location:

when mc schraefel's location is
 mc schraefel's office
notify me

Set the user's away state to reflect attendance at an event on the
user's calendar while they are actually attending it:
while my current event is any event and
 my current location is
 that event's location
set my away message to that event's title
Notify the user when an acquaintance looks at a research-related
website that she has visited recently:

whenever any person’s current
 viewing site is any site and
 my daily site viewing history
 contains that site and
 that site's topics contains
 "Semantic Web"
notify me

4. Atomate:
The Information Assistance Engine
In this section, we describe salient features of Atomate's design,
focusing on its core RDF world model, and the process by which
new information is incorporated into it. A discussion of how new
data sources can be added to Atomate follows, and how end-users

can merge intentionally identical entities, assign personal aliases
and relationships between entities using rules The rule engine and
natural language parser are described last.

4.1 Internal world model
Atomate's world model is an RDF triple store [19] that contains
two types of instances: entities and events. Entities represent the
various types of "things" that can be referred to in behaviors, such
as people, places, notes, web pages, e-mails, documents, and
tweets. Events, meanwhile, are time-stamped observations of
particular time-varying properties or activities of entities in the
model.
To clarify the relationship between entities and events, we
proceed with a simple example. When a user's location is
identified using a localizer, a new event is created to represent this
observation - which includes the time that the observation was
made, the entity spotted (i.e., the user), the significance of this
observation (that it represents the user's "location" property), the
identity of the location, how the measurement/observation was
made (e.g., via GPS or WiFi) and so on. The creation of this
event then triggers a world model update rule (described in
section 4.3) which updates the "current location" property of the
corresponding person entity.
Maintaining a chronology of events that documents the evolution
of entity state is useful for several parts of the system. As
described in section 4.4, every rule firing also creates an event in
the chronology. For "while" behaviors, these records are used to
deduce the appropriate undo action (e.g., "rolling back" an entity
property assignment) when a behavior's trigger ceases to match.
Second, having time-stamped observations allows entity update
rules to ensure that the most up-to-date observations are
propagated to the entity store; observations themselves could
arrive at the system at any time and out of order from when they
were made. Finally, Atomate's UI uses the audit trail to let users
inspect and understand why behaviors executed; this is important
for letting users understand where things go wrong and to figure
out the appropriate rule(s) or sources to change. This chronology
will also eventually be used to derive the peRSSona, described in
Section 5.3.

4.2 Integrating heterogeneous information
A fundamental design challenge surrounding Atomate's
architecture was to allow users to add new data sources
seamlessly to the system. This is a complex problem due to the
number of levels at which information sources on the web are
different -- the protocol level (e.g., the query interface or retrieval
method), the syntactic level, consisting of the structure and
container in which the information is delivered (feeds, web APIs),
and finally the semantic level, consisting of what the data
represents (e.g., is it a feed of news articles syndications?
Observations of a user's activity?)
The problem of integration is further complicated by the fact that
standardized containers for information (such as RSS
0.95/2.0/ATOM) often get appropriated and used to deliver
information of fundamentally different structure. When this is
done, fields are typically randomly appropriated and data is
arbitrarily "shoehorned" into particular fields; for example, in
Last.fm's audioscrobbler feed of a particular user's music listening
activity, the song and artist names are concatenated into a single
field, "Title". This kind of schema abuse is extremely common in
"Web 2.0" sites today, and due to inconsistencies with which this
is done, extracting data from these feeds automatically becomes a
challenging extraction problem in its own right.

Figure 4. The first two rules demonstrate entity
merging, where two entities corresponding to the same
person but with slightly different labels were added by
separate knowledge sources. The second pair of rules
corresponds to inverse functional property creation,
which fire whenever two emails or ids match. The final
pair of examples creates aliases for common names of
entities.

johnsmith is Jonathan E. Smith
mc schraefel is monica (m.c.) schraefel

whenever some person's email is
 some other person's email
 the 1st person is the 2nd person

whenever some person's twitter id is
 some other person's twitter id
 the 1st person is the 2nd person

Atomate's philosophy to solving these integration problems is do
as much as possible automatically, and make it easy for users to
fix the rest. Specifically, where possible, Atomate attempts to take
care of the first two of the three challenges above, and lets users
handle semantic reconciliation and attribution. The reason for
letting users handle semantics is, first, that is rarely possible to
automatically discern the significance of arbitrary data streams,
and second, it allows users, who possess external knowledge
about how entities relate to them in to encode some of this
knowledge into the world model. We describe specific examples
of this in the Section 4.3.
In the case of that a data source represents and delivers its
information in RDF, Atomate trivially solves the retrieval and
syntactic handling problem by supporting the standard methods of
publishing and parsing serializations of RDF (e.g., RSS 1.0, N3,
RDF/XML, etc). Since RDF can be used to express arbitrary
relations, this "shoehorning" problem does not arise. Furthermore,
if the data source additionally either pre-aligns their graph to the
Atomate schema or supplies an ontology definition (in
RDFS/OWL) that is able to establish a mapping between
the instances encoded in the document and Atomate classes
(specifically observations and various entity types), these
mappings are completed and entities are automatically aligned and
added to the world model. An example of a feed from an RSS
1.0/RDF localizer service that expresses observations using the
Atomate ontology is visible in Figure 3. If an RDF data source
does not provide such a mapping and yet is able to identify
instances (by examining their rdf:types), it will import such
instances verbatim as entities.
For data sources that do not use RDF, Atomate uses service
wrappers to retrieve, parse, extract and transform the data into
RDF instances. Due to the shoehorning problem above, this
generally requires writing a new wrapper for every information
different web site or information source. Wrappers are simple
functions written in Javascript with the jQuery library, which
facilitates AJAX calls and the parsing and selection of fields from

XML feeds. When called, wrappers are responsible for retrieving
new data, and updating the world model by either creating new
events, entities, or updating existing ones. A javascript wrapper
to the triple store facilitates the update process.
Another significant challenge with mixing heterogeneous non-
RDF data sources is identifying co-referring entities, since such
data sources do not use unambiguous URIs/IRIs. Such data
sources do, however, typically provide an unambiguous key or
identifier specific to that service for each particular entity or item.
Atomate wrappers thus use this key to re-identify entities they
have previously created in the triple store. However in many
cases these entities may actually intentionally correspond to other
entities already in the triple store, created from other information

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:atomate="http://plum.csail.mit.edu/atomate#"
 xmlns:sy="http://purl.org/rss/1.0/modules/syndication/"
 xmlns:mlt="http://mylifetracker.org/ont/svcdescription#"
 xmlns:gaz="http://mylifetracker.org/ont/gazetteer#"
 xmlns:geo=" http://www.w3.org/2003/01/geo/wgs84_pos# "
 xmlns="http://purl.org/rss/1.0/">

 <channel rdf:about="http://mylifetracker.org/">
 <title>My Life Tracking Service</title>
 <link>http://mylifetracker.org/lfeeds/emax</link>
 <description> Example Location Tracking Feed</description>
 <dc:date>2009-06-20T12:00+00:00</dc:date>
 <sy:updatePeriod>hourly</sy:updatePeriod>
 <sy:updateFrequency>10</sy:updateFrequency>
 <sy:updateBase>2009-01-01T12:00+00:00</sy:updateBase>
 <items> <!-- .. items omitted here for brevity --> </items>
 </channel>

 <item rdf:about="http://mylifetracker.org/lfeeds/emax/j200906loc1">
 <rdf:type rdf:resource="atomate:Observation"/>
 <title>Location observation</title>
 <atomate:dtstart >2009-06-21T11:37+00:00</atomate:dtstart>
 <atomate:dtlast >2009-06-21T11:48+00:00</atomate:dtlast>
 <atomate:subject rdf:resource="http://people.csail.mit.edu/~emax"/>
 <atomate:property rdf:resource="xsd:location"/>
 <atomate:value rdf:resource="gaz:MIT_CSAIL_32G531"/>
 <atomate:method rdf:resource="mlt:OrganicIndoorWiFi"/>
 <mlt:precision units="mlt:meters">3</mlt:precision>
</item>

Figure 3 - Partial listing of an RDF/RSS1.0 feed using Atomate's native schema
for expressing observations. The duration of the observation has been highlighted
in blue; the subject being observed (e.g., the user) in red, and location in orange.

sources. We describe manual and semi-manual approaches to
merging such co-referring entities next.

4.3 Semantic repair and personalization
As just described, importing data from various heterogeneous
RDF and non-RDF data sources may result in inconsistencies in
the world model, such as the duplicate entities referring to the
same logical thing. Since automatically fixing semantic issues
reliably and in general is difficult, we resort to making it easy for
end-users to notice and fix these problems, using the same
mechanism used to specify behaviors -- the creation of simple
"world repair" rules. Duplicate entities are merged typically using
one of two approaches: by specifying that two specific entities
that are equivalent. The first corresponds to adding an
owl:sameAs relation between them, which is expressed with a
simple "is" statement visible in Figure 4. The second strategy is to
match entities using property values. This is done by rules like
the latter examples of Figure 4. The effect of such rules to the
resulting view of the model has the same effect as would
declaring these properties owl:inverseFunctional, but is
easier for users to understand.
Such rules are useful for personalizing the world model beyond
entity repair. First, a user may wish to relate a sequence of events
to a time changing property of an entity, to support expressions
such as "Joe Smith's location" instead of having to say "a new
location observation about Joe Smith and that location
observation's value is ..". The first simple rule in Figure 5
illustrates how such a property can be set from for any individual
using location events. The second rule hooks up a user's web page
viewing activity to a property of their entity. If the properties did
not exist in the ontology, Atomate automatically instantiates a
new rdf:Property with an rdfs:label corresponding to
the provided property name.
Finally, to facilitate referring to commonly used entities, Atomate
allows the user to add extra rdfs:labels as personal aliases to
entities. The simple statement "call <entity> alias" can used to,
for example, give the name "home" to the entity representing the
user’s home generated by the localizer.

4.4 Evaluating and executing behaviors
The duty of the Atomate rule engine is to run behaviors at the
time the conditions specified on each rule are met. To do this, it
applies a mixed strategy; for time-based rules, it computes the

next relevant absolute time that the alarm should fire, and sets an
OS/browser level callback to signal rule triggering. For
when/whenever/while triggers, meanwhile, triggers are evaluated
when changes are made to the world model. Since triggers for
behaviors are represented as SPARQL queries and optional
predicate applications, this amounts to running at least one query
for every rule on every world update. To make this less
expensive, the scheduler maintains a data structure that hashes
rules by the entities they condition on; using this structure, rule
triggers are only evaluated if the entities named in the trigger are
involved in the change to the world model. Rules that have
wildcard expressions (some/new <type>) are evaluated only if the
changed entity is that type. We are currently investigating
streaming SPARQL query engines that will allow rule triggers to
be evaluated efficiently whenever triples in the store are added or
modified.
Since rule conflicts could cause the system to enter infinite
chaining loops, an important second responsibility of the rule
engine is to detect rule conflicts and signal these to the user. To do
this, the rule chainer keeps track of which rules were fired as the
result of a single initial change to the world model. Any single
rule that is fired twice as the result of a single initiating change is
flagged as looping, is terminated, and the problem is signaled in
the UI. This does not, however, catch external loops, which can
result from state external to the system being set and reflected
back into the system as a new observation. We are currently
considering approaches to detect such behavior using patterns of
rule re-firings.

4.5 Predicates and Actions
While the most basic predicate used in rule antecedents is “is”
which merely compares an entity’s property for equality to a
particular value, other predicates may be added to Atomate to
extend its ability to create sophisticated rules. Specifically,
predicates may be functions that compute some derived value of
the graph (for example, "number of friends"), or rely on external
sources of information. An example of such a predicate is the “is
within X miles of” predicate, which can rely on open GIS APIs to
compute physical distances between landmarks. To prevent such
external operators from having to be called incessantly, predicate
applications are by default cached for a given set of arguments.
Currently, predicates can only be added to the system by users
comfortable with Javascript programming. Predicates are simply
Javascript objects that wrap boolean functions that take
parameters of specific types, which are either entity or primitive
(XSD) types. Currently, Atomate only supports binary predicates,
but planned improvements to the parser should allow predicates
with multiple modifier clauses. When multiple applicable
predicates with the same name but different parameter types are
declared, Atomate chooses the most specific predicate by
determining at runtime the predicate with types that
(cumulatively) have the smallest graph distance to the types of the
arguments.
Action are implemented similarly to predicates in that they
Javascript functions with strictly typed parameters; new ones may
be added easily directly via a web interface by programmers.
However, action functions are not assumed functional or
idempotent, and therefore no execution caching is performed.
Figure 5 lists a few of AM’s actions. The simplest action, “set”,
assigns a property for a particular entity to a particular value,
specified in its operands. Most of the other actions involve
manipulating something external to the system; this is usually
performed through a web API call (when available). However,

Figure 5. Example rules that customize person and note
entities to create properties "current location", and
"current viewing site" out of appropriate events.

whenever a new location observation's
 subject is some person and
 that location observation's
 value is some place
set that person's current location to
 that place

whenever a new web page view event's page is
 some web page and
 that web page view event's subject is
 some person
set that person's currently viewing site
 to that web page

several actions have non-web destinations. For example, actions
affecting the user’s local machine, such as the “play media”
“show document” action, are made through PLUM [25]. Still
other actions, such as “filter notes” pertain to actions affecting
Firefox extensions, such as List.It. and thus are dispatched to
components directly within Firefox.

4.6 Interacting with the user
We anticipated that there would be two major dangers concerning
how users might react to Atomate. The first was that users might
perceive creating behaviors as "too much effort", both before and
after learning how. Generations of devices from thermostats to
VCRs have met this fate, resulting in their automation features to
be ultimately left unused. The second peril was the feeling of
unpredictability/untrustworthiness. If the system acted
unexpectedly this could severely detract from perceived
usefulness.
To address the former, we sought to make the system easy to learn
by making the expression of behaviors resemble natural
delegation. This inspired us to consider command-based natural
language interfaces. We ultimately chose a simple controlled
natural language interface (CNLIs) which allowed behaviors to be
easily understood by any native speaker of the language, and yet
could be parsed with little or no ambiguity. To create this
interface, we hand-crafted a grammar (visible in Figure 6.) and
added a fast-input framework to guide the user and auto-complete
legal values as the user types. This not only accelerates input but
also allows illegal input to be caught and corrected immediately.
At the core of the CNLI rule specification grammar is the simple
antecedent clause ("antclause"), which, as can be seen follows a
simple subject-predicate-object format. Subject expressions
support indirection over properties using possessives (e.g., "Joe's
location's latitude"). The terminals in bold represent the name of
an entity or property in the RDF store. To support references to
entities bound to the "any"/"some"/"new" wildcard entity
expressions, the grammar supports demonstratives (e.g., "that") as
well as indexical expressions ("first", "second") when multiple
wildcard values are bound. The “other” adjective can be used to
force wildcard specifiers to be bound to distinct entities; for

example “if some person’s location is home and some other
person’s location is home”.
In addition to plain terminal and entity matching, Atomate's parser
contains handwritten special-purpose code for parsing special data
types such as date/time expressions. This parser in particular
handles relative date/time expressions (e.g., "tomorrow", "next
tuesday") as well as vague time expressions (e.g., "3pm"). It
evaluates such expressions relative to the day the rule is created,
and assumes that incomplete date expressions imply the soonest
day, week or month that that expression applies.
With regard to making the system predictable, Atomate provides a
real-time visualization of behaviors as they execute, along with a
history of all the behaviors that have fired. Each history element
explains what caused the behavior to fire, including the origin of
the information that caused it to trigger. An ongoing effort
surrounds implementing a behavior simulator so that the user can
preview the effects of their behaviors as soon as they have
composed them.

5. Ongoing and future work
The current status of Atomate demonstrates an approach that can
support user-defined reactive behaviors based on extant Web 2.0
data feeds. In this section, we describe our current work towards
extending Atomate to be easier to use, more predictable, and more
useful, and finally, post public deployment, an evaluation of it
uses in the real world.

5.1 Rule specification and debugging
As described earlier, the biggest challenge towards adoption
surrounds making rules easy and quick enough to specify to be
perceived as worthwhile. We have the following plans to improve
Atomate’s input interface in various ways.

5.1.1 Graphical input accelerator
We are currently working to extend the predictive input interface
to facilitate input in two ways: first, by adding graphical feedback
(e.g, icons and widgets) that let users more easily select specific
entities and quantities (such as days with a date-picker widget) in
rule expressions. For this, we will extend our prior work with
Inky, the graphical command line for the Web . The second to
add pure-pointer/graphical input support for constructing rules by
touching to select relevant entities and desired actions.

5.1.2 Rule simulator
Since specifying correct (accurate and complete) antecedents for
rules is often tricky for end-users but necessary for rules to work
as intended, we are adding a rule simulator which will help the
user immediately verify the behavior of their rules at time of
specification. Our approach is to simulate rule execution using
events from the user's recent past. Atomate will search backwards
in its history from the moment the command was invoked, to find
the most recent situation in which the particular rule would have
triggered, and what the resulting action would have been. The
output of this simulation will be displayed in a simple textual
summary beneath the rule creation interface. The effects of
actions will be described by combining the descriptions of the
action operators invoked and the bindings that would have been in
effect for the operands of these operators in each situation.

5.1.3 Picking behaviors by demonstration
Another enhancement to Atomate underway allowing behaviors to
be specified using a Programming-By-Demonstration (PBD)
approach [5]. To do this, we are creating the Situation Picker,
which will allow rule antecedents to be chosen by example; this is
done by presenting users’ recent activity and context history in a

set <named-entity>’s <property> (to)
 <entity or value>
set <named-entity> is <named-entity>
notify <named-entity>
show me <entity-property-chain>
enable/disable rule <rule>
forward/send <entity-property-chain>
 to <entity-property-chain>
post tweet <text>
 | <entity-property-chain>
set priority of <entity-property-chain>
 to (low | medium | high)
say <entity/text>
play (song/media)
open <entity-property-chain>
set system power state/volume
search flickr/google images/wikipedia
map <entity-property-chain>
run function.... < code >

Figure 5. Basic Atomate actions

timeline, and letting users simply select an moment in their past
they wished for Atomate to act. Atomate will then examine the
state of the world model and user’s entity at that given moment in
time and automatically propose a rule antecedent. Using this
feature in conjunction with the aforementioned rule simulator will
then allow rules to be induced and debugged immediately as they
are specified.

5.2 Sharing behaviors with a community
Many of the rules that update and repair semantics based on
information retrieved from external data sources described in
Section 4.3 map particular characteristics of the data sources to
common changes of the world model. Thus it is likely that many
of these rules will be useful to others using the same sources. To
make it easier for users to get started with using Atomate, we plan
to build sharing of behaviors such as these into the system.
Around this sharing, we also will build a web site that supports
discussion and showcasing of user rules. This way, we hope that
users will trade ideas and tips on how to apply Atomate to
automate aspects of their routines.

5.3 Publishing your life stream (peRSSona)
To make it easy for users to share updates about their activities,
location and state with their friends, Atomate can be configured to
publish state changes to particular entities in its world model as
RSS 1.0 feeds. This feature, which we call your peRSSona will be
configurable to provide differing degrees of disclosure for their
activities. For example, a user might publish a public feed
containing information about their contactibility but not their
precise activity, while posting different perRSSonas containing
more detailed activity information for their trusted friends --
information such as their whereabouts, music listening and web
page browsing history. Users desiring more control over what
gets posted to feeds can manually create feed entities, and set up

rules that post to these feeds under arbitrary conditions. In the
future, we plan to extend peRSSona support to provide differing
levels of detail for a single property, for example, via
summarization.

5.4 Planned study and deployment
While we have some insights already from research in end user
programming on how to facilitate user-based programming, we
need a significantly refined understanding of how users will
engage with Atomate due to its breadth. Our approach will be
two fold: a longitudinal field study with a dozen participants to be
followed by a general web-based beta release. With these releases
our key questions will be to investigate the kinds of behaviors
users sought to have Atomate support and the degree to which
Atomate satisfied those goals. We anticipate this study will help
us understand how better to tune attributes such as interface,
language expressivity , system predictability and reliability.

6. Discussion
In this chapter, we have described Atomate, a framework that
enables the use of the web as a platform for context-sensitive
personal reactive automation. In so doing, we demonstrated that
with appropriate manipulation, many of the web data sources and
APIs available today are suitable as information sources for
driving a variety of simple but useful reactive personal
information processes. These reactive processes can serve many
roles in personal information workflow, including context-aware
reminding, information filtering and social coordination.
Atomate benefited from several key architectural decisions. The
first was the use of a single persistent internal representation
containing simple key representations of people, places, events
and resources. This intermediate representation ultimately served
three important roles in the system. The first was in simplifying

statement → rule-expr | call-expr | is-expr
rule-expr → time-trigger-modifier time-expr actions |
 wm-trigger-modifier antecedents actions |
 actions "unless" antecedents
time-trigger-modifier → "at" | "on" | "every" | ∅
wm-trigger-modifier → "when" | "whenever" | "while"
antecedents → antclause | antclause "and" antecedents
actions → action-expr | action-expr "and" actions
antclause → subject-expr predicate-expr object-value-expr
subject-expr → entity-property-chain | wildcard-type | coref-expr
predicate-expr → named-predicate | new-predicate-name
object-value-expr → named-or-wildcard-entity | primitive-value
entity-property-chain → named-entity | named-entity "'s" properties
wildcard-type → "some" named-type | “some other” named-type |
 | "any" named-type | "any other" named-type |
 | "new" named-type
coref-expr → "that" named-type | "the" coref-place named-type
properties → named-property | named-property "'s" properties
coref-place → "first" | "second" | "third" | "1st" | "2nd" | "3rd" ...
action-expr → is-expr | set-expr | named-action action-arguments
action-arguments → argument-expr | argument-expr action-arguments
argument-expr → argument-modifier object-value-expr
set-expr → subject-expr "to" object-value-expr
call-expr → "call" named-entity alias
is-expr → named-entity "is" named-entity

Figure 6. CFG for Atomate's CNLI. Boldfaced terminals represent retrieved values
from the triple store. Italicized terminals represent values which are handled by a
custom parser for the particular value type.

representation reconciliation; having a single representation as a
basis of aligning external sources of information avoids the
pairwise-alignment problem that serves as a scalability limitation
to many mash-ups today. The second surrounded its role as a
single, unambiguous world model for the Atomate rule chainer.
Third, this representation serves as an important abstraction
barrier that decouples behavior rules from information sources;
allowing information sources to be exchanged freely (or added for
redundancy) without having to modify users behaviors.
Our second architectural insight was that web services and data
feeds are increasingly useful sources for domain-specific
knowledge about the world, and are thus suitable for use as
predicates in evaluating relational information about specific data
types such as locations, people and events.
An additional contribution is a simplified interface for supporting
end-user programming across heterogeneous data types using a
constrained simplified natural language interface. This approach
reduces errors by eliminating the need for named entity reference
resolution, making syntactic errors impossible, and providing just-
in-time assistance that enumerates all possible values at each stage
of rule specification. As a next step, we plan to add a rule
simulator to further reduce the possibility for error by
immediately demonstrating the behavior of a rule on the user's
past historical data.
In summary, we have shown that web based personal information
sources can be applied to enable a wide variety of simple but
useful reactive processes. These personal reactive processes
provide a glimpse of the potential for web data to do more for us,
with less effort, than we may have previously imagined possible.

7. Availability
The entirety of Atomate, including source code is available for
download under the MIT License at
http://code.google.com/p/atomate.

8. Acknowledgements
This project was funded by MIT CSAIL and Nokia Research
through the MIT Nokia alliance. It was also supported by WSRI
and a Royal Academy of Engineering Senior Research Fellowship
We thank our collaborators Mikko Pertunnen, Michael Bernstein,
Katrina Panovich, Wolfe Styke, Greg Vargas, and Jamey Hicks
for their contirbutions to the project, and Ora Lassila Mark Adler
Brennan Moore, Wendy Mackay, and Michel Beaudoin-Lafon for
their many ideas and suggestions.

9. REFERENCES
[1] Bernstein, A. and Kaufmann, E. GINO - A Guided Input

Natural Language Ontology Editor. ISWC '06.
[2] Bernstein, M., Van Kleek, M., Karger, D. and schraefel, m.c.

Information Scraps: How and Why Information Eludes our
Personal Information Management Tools. ACM Trans. Inf.
Syst. 26, 4 (Sep. 2008), 1-46.

[3] Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller, R. C.
Automation and customization of rendered web pages. UIST
'05.

[4] Cron. http://en.wikipedia.org/wiki/Cron
[5] Cypher, A. Watch What I Do. MIT Press, 1993.
[6] Ennals, R. J. and Garofalakis, M. N. MashMaker: mashups

for the masses. SIGMOD '07.

[7] Flot. Javascript plotting library.
http://code.google.com/p/flot/

[8] Gajos, K., Fox, H., and Shrobe H. " Alfred: End User
Empowerment in Human Centered Pervasive Computing",
Pervasive 2002

[9] Google Maps API. http://code.google.com/apis/maps/
[10] Hogan, A., Harth, A., Decker, S. Performing object

consolidation on the semantic web data graph. In
Proceedings of 1st I3: Identity, Identifiers, Identification
Workshop, 2007.

[11] Jena. Semantic Web Framework for Java.
http://jena.sourceforge.net/

[12] jQuery JavaScript Library. http://jquery.com/
[13] JSON. JavaScript Object Notation. http://www.json.org/
[14] Kaiser, C. Ginseng–A Natural Language User Interface for

Semantic Web Search. Thesis, Universität Zürich, 2004.
[15] Tobias Kuhn. How Controlled English can Improve

Semantic Wikis. Proceedings of the Fourth Workshop on
Semantic Wikis, European Semantic Web Conference 2009,
CEUR Workshop Proceedings, 2009

[16] Leshed, G., Haber, E. M., Matthews, T., and Lau, T.
CoScripter: automating & sharing how-to knowledge in the
enterprise. CHI '08.

[17] Malone, T. W., Grant, K. R., and Turbak, F. A. The
information lens: an intelligent system for information
sharing in organizations. CHI '86.

[18] Miller, R., Victoria Chou, Michael Bernstein, Greg Little,
Max Van Kleek, David Karger, mc schraefel. Inky: A Sloppy
Command Line for the Web with Rich Visual Feedback,
UIST'08, Monterrey, CA, October 2008.

[19] RDF. Resource Description Framework.
http://www.w3.org/TR/rdf-concepts/

[20] SIMILE projects. http://simile.mit.edu/
[21] Winograd, T. 2001. Architectures for context. Hum.-Comput.

Interact. 16, 2 (Dec. 2001), 401-419. DOI=
http://dx.doi.org/10.1207/S15327051HCI16234_18

[22] Sohn, T. and Dey, A. iCAP: an informal tool for interactive
prototyping of context-aware applications. CHI '03.

[23] Truong, K.N., Huang, E.M., Abowd, G.D. CAMP: A
Magnetic Poetry Interface for End-User Programming of
Capture Applications for the Home. UbiComp '04.

[24] Van Kleek, M., Bernstein, M., Panovich, K., Vargas, G.,
Karger, D., schraefel, mc. “Note-to-self: Examining personal
information keeping in a lightweight note-taking tool.”, CHI
2009.

[25] Van Kleek, M. and Shrobe, H.E. A Practical Activity
Capture Framework for Personal, Lifetime User Modeling.
UM '07.

[26] Wong, J. and Hong, J. I. Making mashups with marmite:
towards end-user programming for the web. CHI '07.

[27] Wong, J. and Hong, J. What do we "mashup" when we make
mashups? WEUSE '08.

[28] XMLRPC. http://www.xmlrpc.com
[29] Yahoo! Pipes. http://pipes.yahoo.com/pipes/

