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1 Introduction

Technology has placed new demands on time management and task organiza-
tion techniques. Recent advances in computer and networking technology have
made possible instant communication and access to vast wealths of information.
While this new immediacy of access and communication, along with powerful
new productivity software, has, in theory, facilitated increased productivity, it
has, in fact, resulted in an accompanying flood of new projects, roles, respon-
sibilities and social obligations, pertaining to both work and to life outside of
work. At the same time, the number of administrative support staff members
formerly dedicated to helping individuals manage their daily schedules and re-
sponsibilities at work has dramatically decreased, having been reassigned to
managing large groups of people rather than individuals. This has left the in-
dividuals to determine for themselves how to manage all of their new responsi-
bilities.

To keep track of these numerous tasks and responsibilities, most knowl-
edge workers have traditionally used task management schemes that rely upon
a combination of physical and digital tools, such as paper organizers, post-
it notes, a proliferation of to-do lists, as well as online calendars, e-mail in-
boxes [2], and the like [3]. Obviously, the effectiveness of an individual’s task-
management strategy was highly variable, largely dependent on how much
effort was put into manually maintaining and updating each system. Com-
pounding the problem, most people have shown a preference for expending an
absolute minimum amount of time and effort in managing their task-lists[1].
As a consequence, they have been forced to internalize their task management
schemes, relying less on external tools. In turn, internalizing task-lists has led to
increased stress in the workplace, as individuals forgot or neglected important
tasks.

Another limitation of existing task management strategies is that they have
not incorporated a means of coping with the frequent daily interruptions of the
modern work environment. People’s work patterns today can be highly frag-
mented, and this has been demonstrated to be both inefficient and the source of
significant stress in the workplace. Frequent interruptions caused people to lose
track of what they were working on, to repeat work that they may have already
done, and even to forget tasks entirely. Failures in personal task management
schemes such as these have resulted in workers feeling overwhelmed by their
work, with their inability to fulfill all of their responsibilities.

This thesis investigates the question of how to build automatic and semi-
automatic systems that can take a proactive part in supporting the daily time
and task management activities for people, an efficient, automatic version of
the personal administrative assistant of the past. These systems will prove more
effective than current generation of digital time-management tools, since they
will not require a constant, disciplined commitment to be manually updated. To
accomplish this goal, the main technical challenge will to building algorithms
that can automatically observe the user’s actions as they use their computers,
learn associations between their tasks and the actions taken, and finally, infer a



variety of additional information about the actions being taken, the tasks being
worked on, and the user’s overall work patterns.

Automatically inferring the user’s tasks through observation of their actions
is difficult for a number of reasons. First, the user’s actions taken in applications
software tend to be ambiguous, since modern applications software are largely
direct-manipulation oriented [27] and exhibit little clear task structure. Thus,
by observing only the user’s activities, it is not always clear what the user is
trying to accomplish. Second, due to the limits of instrumentation it may not be
possible to fully observe what the user is doing, but instead only to gain an ab-
stract, first-order, “noisy” approximation of the actions being carried out. Third,
rather than being able to have rich, formal descriptions of the tasks needing to
be performed, the system will likely have to work with extremely impoverished,
unstructured descriptions, in order to reasonably expect people to be willing to
generate these descriptions for their tasks. Finally, there is probably a large de-
gree of variability across how individuals execute their particular types of tasks.

To address these issues there are several potential promising hypotheses and
approaches. The first hypothesis addresses task regularity, the recognition that
there is similarity among the tasks performed by the user over time, which
may then allow systems to recognize new tasks and predict how they will be
accomplished. The second hypothesis focus on action regularity, the tendencies
of a user to solve problems and accomplish tasks in a similar fashion each time
they occur. If an algorithm could discern both of these types of patterns, it
would be able to predict which tasks were likely to occur, and moreover, how
the user was likely to respond. Therefore, we will devise methods that take the
approach of individual, personalized modeling of users’ tasks and actions, in
order, conversely, to identify actions corresponding to tasks.

To evaluate the suitability and value of the information inferred by these
methods, the second half of this thesis will work towards building a prototype
application, an automatic task list and interrupt manager, or ATLIM. This applica-
tion will function like a familiar desktop to-do list and calendaring application,
but will also incorporate a number of unique features. These include being
able to identify what task the user is working on at any particular moment,
keeping track of the user’s tasks as they change focus, and managing incoming
interruptions such as instant messenger requests and e-mails. By incorporating
these new methods in an actual application, we will be able to obtain feedback
directly from users regarding what they consider the system’s strengths and
weaknesses. By incorporating these users’ responses, we will aim to achieve a
system that helps people better manage their tasks and time.

2 Background

Recent ethnographic studies have examined the task management practices of
knowledge workers in their daily routines at work. Observations derived from
these studies revealed that effective task management is crucial for most knowl-
edge workers, in order for them to manage the sheer number and complexity



of the tasks required of them. These observations, as outlined in this section,
identify a number of problems that form the basis of the design of an ATLIM, as
proposed in this paper.

2.1 Task management practices in the workplace

Bellotti, et al., conducted a study [1] to identify what aspects of task manage-
ment needed improvement. Her team made a list of observations during the
study, summarized briefly as follows:

1. People expend minimal time and effort adding items to their to-do lists; lists
are often incomplete (mean: 10%), and descriptions terse.

2. People used a large assortment (mean: 11) of physical and digital artifacts
to remind them of their to-dos. These often include “implicit reminders”
requiring little or no effort to set up.

People like pipelining tasks when convenient, but are poor at it.
People like having ready access to the list of their commitments.

People are good at quickly assessing task priority.

A

Many tasks do not get done.

Based on her team’s observations, Bellotti prescribed a set of requirements for
the design of a task-management tool. This set of design criteria, which we have
adopted as the basis for our design of the ATLIM, includes recommendations for
making task list input as easy and fast as possible, the use of task histories to
allow the user to easily recall the state of tasks, and rendering task lists in a way
that the entire list can constantly remain along the periphery of the user’s view
of their workspace.

2.2 The effect of interruptions

In a separate study [21], Mark, et al., has carefully analyzed how workers spend
their time in a typical workday. Mark’s team has discovered that due to a num-
ber of reasons, most people’s typical work patterns are highly fragmented, re-
sulting from a nearly constant stream of interruptions. A selection of her find-
ings are summarized as follows:

1. A majority of a person’s tasks (mean: 54%) are interrupted each day.

2. Workers rarely spend more than a few minutes on any one task ("working
sphere”) before switching to another.

3. Users dislike disruptions that cause them to switch working spheres.

4. The majority of interrupts during the day were for personal, “metawork”, or
other purpose, and did not pertain to workers’ central or peripheral tasks.



5. People have trouble resuming interrupted tasks.

6. Interrupted tasks are often not resumed until much later in the day, and
sometimes even later.

7. Even without explicit interruption, people switch tasks regularly.

Instead of counting tasks as individual actions, she created the notion of
working sphere to refer to the set of actions that contributed to the same high-
level objective. Mark then classified interrupts experienced by their subjects
as belonging to either the from same working sphere as the user’s active task,
or from a separate working sphere. Mark’s team also distinguished external
interrupts, where some event occurred that caused a user to switch working
spheres, from internal interrupts, which occurred whenever a person decided to
switch tasks and no such event occurred.

Using this classification scheme, Mark made several important observations.
The first was that interrupts pertaining to a different working sphere than the
user’s active task caused the greatest disruption in work flow, while interrupts
that coincided with the user’s central working sphere were not only welcomed,
but often helped the user accomplish their task. Therefore, filtering these latter
types of interruptions would be detrimental. However, a vast majority of inter-
ruptions that occurred throughout their subjects’ workdays were not relevant
to their central working sphere, and most were due to personal, “metawork”
or other, non-primary task related working spheres. Therefore, a majority of
interruptions were of the type that were highly disruptive to the central task.

Second, while the percent of internal interrupts taken by users varied, most
people frequently switched tasks even in the absence of external interrupts. The
team concluded that this was because people were constantly monitoring and
re-prioritizing their tasks based upon the dynamics of their workplace, switch-
ing whenever another task grew higher in importance. This observation was
supported in Bellotti’s study, which observed that people liked to constantly be
aware of their task lists so they could choose their activities from each moment
to the next. This constant switching of tasks tended to incur for the user, a
penalty in time and effort, due to the need for them to re-orient themselves to
their interrupted work state whenever they resumed a task.

The final important observation came from comparing tasks which were not
interrupted with those that were more fragmented. Tasks that were less inter-
rupted were generally returned to more rapidly, and completed more immedi-
ately, while those that were more fragmented were returned to much later.

These observations indicate that work fragmentation is indeed a problem,
whether interrupts were advantageous or detrimental was dependent on a num-
ber of factors, mostly connected with how relevant the interrupt is to the user’s
active task. This forms the motivation for our task-based interrupt filtering strat-
egy, which will be described in section 4.2.1.



2.3 Previous approaches

The deficiencies in people’s own task-list management schemes and interrupt
management policies revealed by Bellotti and Mark’s studies indicate the need
for better tools to help support these activities. Several research efforts besides
the discussed work by Bellotti introduced designs for addressing task and inter-
rupt management challenges in various HCI-oriented ways.

A majority of these approaches sought to help users by reducing the burden
of switching tasks. Research has primarily followed two main approaches to
solving this problem: facilitating window/desktop layout for running applica-
tions, and second, a re-consideration of file/data-space around notion of tasks
or activities instead of folders and databases.

Investigations of the former approach include work by MacIntyre et al. de-
signed Kimura, a system that allowed users to visually organize their desktop
on a per-task basis, utilizing peripheral displays to maintain awareness of these
desktops when extra screens were available [20]. Kimura aimed to help re-
mind users of other pending tasks, and to expedite task switching by helping
them instantly restore previous desktop states. Czerwinski’s group at Microsoft
[71 proposed extensions known as GroupBar [28] and Scalable Fabric [26], for
organizing open windows around relevant tasks.

For the latter approach, Kaptelinin introduced UMEA, a system that tracked
documents opened in Microsoft Office during the execution of a particular task
[17]. These documents were later displayed alongside the task for easier re-
trieval. More recently, Geyer et al.’s designs for a shared-object workspace for
Lotus Notes, introduced a re-organization of Notes databases around activities
which were more easily shared [11].

These approaches introduced the notion of organizing resources around rep-
resentations of users’ tasks, instead of applications or filesystem resources. How-
ever, with the exception of the UMEA work (which used simple rules to infer
associations), they were entirely manual, requiring the user to take explicit ini-
tiative and action to maintain. On one hand, this gave the user complete control
over how to arrange and organize their resources; on the other hand, it required
time, effort and dedication, essentially comprising yet another task which the
user must regularly update. We imagine a system that preserves this notion
of activity, but which could proactively support users’ organization schemes by
automatically taking actions in various ways. Instead of imposing some pre-
programmed organizational scheme on the user, however, we propose that the
system should learn the user’s organization scheme through observation.

A number of other researchers have very recently started to examine meth-
ods that could help make this possible; in particular, TaskTracer by Stumpf et
al [9], and SWISH by Oliver et al. [24], have worked on automatically infer-
ring the task or activity that best explain a user’s actions. Similarly, Drezde
et al. [22] demonstrated how similar techniques can be used to categorize e-
mails by activities. These experiments, consisting of applying statistical learning
techniques to infer the user’s activity from both content and interaction-based
features, yielded very promising results. However, these results are still very



preliminary, and leave open two major questions: first, whether the perfor-
mance of their methods is adequate to be usable for a larger class of users in a
real-world application; and second, whether the methods they employed can be
generalized to both new interactions and new task/activity descriptions. These
two questions are qualitatively more difficult than the problems posed in these
experiments, and are two of the open questions we would like to address in this
thesis.

3 Proposed approach

This project seeks to design a new type of task-management system that can
observe the user, and take action to proactively support their task and inter-
rupt management schemes. Unlike previous approaches that require the user to
entirely manually take the initiative to update their to-do lists, our approach fo-
cuses on ways that systems can start to automatically take care of task-management
activities while the user stays focused on the tasks at hand.

In designing a new application which uses methods from artificial intelli-
gence to take proactive action on behalf of the user, it is first necessary to iden-
tify exactly what new capabilities are most needed from these methods. In order
to determine this, we first identified the most promising scenarios of how proac-
tive assistance would be most useful within an ATLIM, based on the conclusions
drawn from Bellotti and Mark’s studies. Then, using this list, it was possible to
identify the core inferential capabilities that were necessary to enable each to
happen, and then to identify the the set of capabilities that were most needed.

Based on this type of analysis, the following two inferential capabilities were
identified as being linked to the largest set of potential ways that a system could
proactively support the user’s time and interrupt-management related activities:

1. Identifying the user’s active task based on their actions.

2. Identifying how interruptions pertain to a user’s tasks.

The following subsections, describe the primary set of activities that these two
capabilities would support in an ATLIM.

3.1 Supporting the user’s active task

The first way that an ATLIM should provide proactive assistance is in supporting
the user’s active task. This generally first involves identifying the task corre-
sponding to the user’s actions, and subsequently acting on this information in
various ways. Several examples include:

1. Providing applications with task context - If the ATLIM could inform the
user’s active applications about the task the user is trying to accomplish,
the applications could optimize the layout of their Ul elements, and stream-
line their workflow for the particular task.



2.

3.

3.2

Organizing access to task-related materials - Most tasks are associated with
a certain set of documents or resources which the person needs for accom-
plishing the task. Since users switch tasks frequently, they consequently
expend inordinate amounts of time re-locating the sets of resources they
need for each task. An ATLIM could help the user by automatically learn-
ing which documents a user needs for a particular task. This could be ac-
complished by examining the user’s document access patterns when they
are performing a particular task. Then, when the task is later resumed,
or a new task of a similar nature is identified, the system could instantly
retrieve and place within “close reach” the resources the user is likely to
need.

Keeping track of the task stack - Since Mark’s study revealed that people
often lost track of what tasks they were involved with when an interrup-
tion occurred, the ATLIM could remind users about the tasks they were
performing when they were interrupted, thereby reducing the disruptive
effect of the interruption.

Supporting task-list management

As Bellotti described, the main reason that many task management schemes are
abandoned is that people do not wish to expend the effort required to maintain
the scheme. Thus, proactive assistance could be provided here to make the act
of maintaining one’s tasks much easier.

1.

3.3

1.

Simplifying the addition and removal of items as they are completed - An
automated task list/interruption manager could ease the process of man-
aging the contents of this list, and also make their task lists as complete as
possible. Specifically, an ATLIM would work to greatly simplify the manual
addition of tasks. An ATLIM would also help by automatically detecting
and adding new tasks to their to-do list, classifying them appropriately
into their proper categories. Similarly, an ATLIM tracking tasks being ex-
ecuted could automatically retire tasks that are likely to have been com-
pleted.

Interruption management

Buffering irrelevant interruptions - Mark’s study revealed both perceived
negative effects and a number of measurable consequences of interrup-
tions that caused users to switch working spheres. These suggest that an
ATLIM could provide a significant benefit if it were able to help mediate
such interruptions. The obvious approach is to make these interruptions,
in one way or another, arrive at a time that is not likely to force the user
to switch working spheres. One way to achieve this would be to moni-
tor the user’s current working task, and then automatically postpone such
incoming interruptions.



Informing remote collaborators of task context - Another approach is to pro-
vide appropriate social cues to local and distant collaborators regarding
the user’s task context, so that others might be able to more easily assess
whether a particular time was appropriate for an interruption.

Learning task contexts and long-term work patterns

. Learning task settings - Monitoring the user’s work patterns would also

allow the ATLIM to build long-term patterns of what kinds of tasks were
performed at particular times and places, and how the user performed
them throughout each day. This would make it possible for the ATLIM
to identify contexts for when/where tasks need to be performed, such
as “Home”, “Office”, or “on the Week-end”, which it might use later to
organize and help prioritize tasks.

Monitoring task performance - Other ways that an ATLIM could apply a
model of the user’s task flow over time would include determining how
the user’s performance varied under different conditions, including envi-
ronmental conditions, or based upon how fragmented their work perfor-
mances were. This might help make the user more aware of how they
might wish to improve their workflow, such as by turning off sources of
interruptions (i.e., making themselves unavailable) for the completion of
certain important tasks, or by regulating other aspects of their environ-
ment.

Supporting task prioritization and selection

1. Organizing tasks dynamically by relevance - From the observations in Bel-

lotti’s study, we may infer that people tend to be adept at quickly deciding
which task to select under a given circumstance. Therefore, an ATLIM
should work to support users in making their own determination of what
tasks need to be performed, rather than trying to automatically decide
for the user what should be done at a particular moment. One way that
an ATLIM would help users make such a judgement is to visually organize
tasks as well as pending/postponed interruptions into relevant collections,
or by other metrics such as urgency. Moreover, as the Bellotti study ascer-
tained, people to be constantly aware of their task list regardless of where
they were. Thus, an ATLIM could provide a readily-accessed, consistent
view across applications through all the digital mobile and other devices
with which they interact.

Predicting task duration - Another way that an ATLIM would help people
assess the relative priority of tasks is by projecting how long the task might
take and displaying this to the user. This will be particularly helpful, since
the amount of time to task completion will likely be a factor in choosing
what tasks to perform. Further, since we infer from Bellotti’s findings that



people are generally poor at estimating how long it may take them to do
something, or recalling how long a task actually took, this information
would be provided by the ATLIM.

4 Research challenges

Realizing the goals just described for an ATLIM presents numerous wide-reaching
technical challenges, encompassing domain knowledge about a wide array of
tasks, data mining interaction streams and sources of user information, and
long-term modeling of users’ workflow patterns. This section will attempt to
further define the capabilities needed, and identify the associated technical chal-
lenges.

4.1 Identifying the user’s active task

In this section, we describe the problem of designing an algorithm that can
automatically (or semi-automatically) identify what tasks users are working on
by observing their actions. In order to do so, we will first frame the problem
by describing what we mean by “observe the user”, then proceed to describing
how we will represent a task, and, finally, we will describe various approaches
to solving the actual task identification problem.

4.1.1 Action observations:
Interaction traces filtered with domain knowledge

This section outlines the sensor model of the system, comprising user interaction
traces acquired automatically by the ATLIM as the user goes about regular daily
activities at their workstations.

One option would be to instrument the user’s environment to capture raw,
low-level events, such as key-presses and mouse movements, as well as low-
level application events, such as button presses and menu actions. Previous
efforts, such as by Horvitz et al. [13] for inferring interruptibility, have at-
tempted inferring high-level user states using these low-level actions. However,
since these low-level actions do not easily capture the semantics of the user’s
actions, (e.g.., keystrokes registered in a Word document window versus those
registered typing in a command terminal correspond, semantically to different
types of user actions), we will first try a slightly different approach, which ini-
tially pre-processes low-level input into a high-level action representation. In
addition to differentiating dissimilar semantic categories of user action, this ini-
tial processing step works to consolidate semantically equivalent actions; for
example, viewing the same web page using different web browsers should still
be treated as the same action.

In our initial schema for user action, illustrated in Figure 2, we have ab-
stracted user actions to one of five types: Communicating with someone, Reading



information, Editing/creating a document, Touching (such as moving) a docu-
ment, Switching to an application, and being Idle. The C, R, E, T, and S actions
all accept parameter vectors, which modify the action; the what: parameter
specifies the name of the object being viewed/edited/modified, etc.; the about:
parameter is a feature vector “summarizing” the content being viewed/edited
by the user. These abstract actions allow us to treat events such as opening a
PDF, accessing a web page, or reading e-mail all as “Read” actions, while their
corresponding about: parameter allows documents with different content to be
distinguished. Thus, our simple, high-level action vocabulary provides access to
basic user actions at a larger granularity than user interface events, in addition
to application independence.

A technical challenge associated with analyzing interaction traces arises from
acquiring these action traces from conventional desktop and mobile applica-
tions. Most of the current generation of applications provide extremely limited
support for allowing external applications to access the user’s actions. Moreover,
even in cases where a means of such introspection is provided, these usually re-
quire programming for an application-specific API which cannot be re-used for
other applications. Thus, our technique will be to build pluggable application-
specific modules to interface with individual desktop applications where possi-
ble, and to have these modules translate the application-specific events into our
action ontology. Actions detected by all modules will then be consolidated and
output in a single stream.

4.1.2 Representations of Tasks

As will be described in the next section (4.1.3), the core of the algorithm will
be dedicated to to identifying how actions contribute to certain tasks, even for
new actions and tasks that have previously not been seen. In order for this to be
feasible, the representation of both actions and tasks (introduced as Desc(t;))
have to be sufficiently rich, so that the learning algorithm can generalize what
it has learned to these properties of tasks and actions (instead of the identity
of each of the actions themselves). The drawback of requiring rich represen-
tations of tasks, however, is that it adds to the overhead required of users to
specify these tasks to the system; and as conveyed by Bellotti [1], people have
little patience for adding tasks to their to-do lists. Thus, we will have to con-
sider tradeoffs between richness of representation (which may provide greater
task-identification accuracy), and overhead required of the user to update such
a representation. In Bellotti’s implications for task management design, she
emphasized the need for task list managers to support “quick and easy input”,
requiring “no formal task description, categorization, or decomposition [... and
to support descriptions at] any level of task abstraction for atomic task entries.”
However, providing user interface mechanisms and flexibility in the the process
of specifying tasks may ease the burden somewhat on users to specify some
structure in their task descriptions.
We will consider the following as an initial schema for representing tasks:



High-level event traces

11720 |C: to: <max> tv: <...> |[idle  ]|E: what:<tixt>tv: <...>|
11721 |R: what:<http://..> tv: ||R: what:<http://.> tv: |[idle |[R: what: < http//..> tv: |
11/22 | C: to:<scot > tv:i<..> |[sT:Firefox |[R: what:<http://..> tv:  |[Interrupt:][Idle |
10:30am | 10:35ar [10:40am
1
1
User action ontology: Interrupt ontology:
Communicate with:<id >about:<tv> System interrupt about : < tv >
Read/Access what: < id > about: < tv > Incoming msg from: <id > about: < tv >
Edit/Create what: < id > about: < tv > - - - —
Touch what: < id > id:unique identifier
Switch to app: <id > tv:topic vector )
Idle (some representation of textual content)
N

—————— -Iapplication domain expertsl- -_—————

1
|openoffice domain | [mail | liabber im |
'g £ <keypress'm'> <New Message> <Select buddy>
=1 % <keypress‘a’> <Send> <New message>
% Y <keypress Ctrl+'x'> <Select message> <Type 'Hello'>
£% <Open file “proposal.doc”> <Delete message> <Send message>
=3 <Move message> <Receive message>

Figure 1. Events corresponding to user actions and interruptions first get abstracted into a high-
level action/interruption ontology.

5.

. Task description/tags - Short freeform textual descriptions of the task

Task type - Allow users to specify semantic categories for tasks of their
choice, such as “work”, “home”, “Client X”

. Priority and Deadline - Rough value of “importance level” of this task to

the user; Date/time when the task is due.

Related people - People who are relying on this task’s completion, or who
are required of this task

Related documents - Documents pertaining to the task

To provide the user with flexibility as recommended by Bellotti, most of
these fields will be allowed arbitrary freeform textual descriptions; in addition,
the user interface will provide quick access to formerly specified values. For
specifying related documents, the ATLIM user interface will allow users to select
either from a list of recently accessed documents in the filesystem, or to drag
and drop files directly into the field. See section 4.3.2 for a more detailed
description of our UI design.



As will be described (Section 5), our third phase of investigation will seek
to improve this representation, based both on user feedback regarding whether
they thought the process of describing tasks was decent or too onerous, as well
as based on the task-action mapping algorithm’s performance.

4.1.3 Mapping actions to tasks

Our challenge, thus, is to take our stream of user actions, described in terms of
the user action schemas (4.1.1), and a set of known to-do items provided by the
user in terms of task schemas (4.1.2), and to identify which actions contribute
to which task. This problem can be treated in a number of different ways. These
are considered as follows:

1. Learning - It may be possible for the system to learn correspondences be-
tween action traces and tasks through explicit training data from the user.
This training data will consist of essentially, action traces with correspond-
ing task descriptions from their to-do list. With enough training data, the
system may be able to generalize characteristics of actions and descrip-
tions which let the system identify when the user is performing a particu-
lar task. Depending on how similar we assume people to be, this learning
could be done across users (if we assume similarity) or on an individual
basis.

2. Knowledge-based plan recognition - If the task representation is viewed as
representing a goal, and a library of (partial) plans constituting a map-
ping from sets of actions to goals or sub-goals is available, the problem
of identifying what goal (task) the user is working on at any moment is
analogous to that of plan recognition [4].

The former approach is more general and makes few prior assumptions
about individuals, while the latter relies on specific knowledge about tasks and
individuals’ work practices. The previous approach is therefore more adap-
tive/accommodating to variations among users and work practices. Therefore,
this learning-based approach is more attractive to us, at least initially, since we
know little about our users’ work practices. On the other hand, the primary
risk is that these “pure” learning approaches is that they may require an in-
feasible amount of training data from the user in order to achieve adequate
performance. If this turns out to be the case, we will try various approaches
at incorporate knowledge to effectively “tune” models to individuals in order to
improve performance. Potential approaches of doing this will be discussed in
section 4.1.10.

4.1.4 Approach 1: A classical Bayesian learning formulation

In order for the system to learn associations between actions and tasks, let us
first assume that the user is going to provide the system some assistance, by
providing some training data. This training data will constitute labeled action
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Figure 2. Mockup of ATLIM user interface for displaying the user's recent action history. The
visualisation (top) displays the action classes ordered along a time-line, below which exists a a
graph of the user’'s workstation activity level over time. Below this is a data grid using color
coding to represent parameter values for the action classes, and the inferred most likely task at
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train the system by clicking on transition points between tasks, which causes the visible drop-down
dialog box to appear. This dialog box contains a low-resolution screen shot captured at that
transition point and a choice box containing the contents of their task-list.

streams; specifically, sequences of actions where each sequence is labeled with
the corresponding task that the user was performing. An example such labeled
sequence is illustrated in Figure 2.

For our first approach, let us consider training a machine using only action-
task pairs for identifying to which task a particular action belongs. Our ob-
jective, thus, is to build a learning machine that can take, as examples, a set
of action-task pairs, e.g.: {(ao,t2), (a1,ts), (a2,t4), (a3,t5)...} and then, given
new actions and new tasks not seen previously, produce labels identifying which
actions correspond to the particular tasks. This is challenging because the ma-
chine must generalize to both new tasks and new actions.

Taking a generative Bayesian approach, if we say that we wish to estimate



the most likely task given an action, we have:

P(t
F(a) = argmax P(t|a) = arg max (t,a) = arg max P(t, a)
teT ter  P(a) teT

given action « and the relevant list of task descriptions, 7. So, we need to
estimate the joint distribution P(¢, «), such as, for example, if we represent each
task ¢ and action « as continuous feature vectors in £ and ", respectively.
Unfortunately, this means that the joint distribution we are estimating will be
of size #™+", which will be extremely large and sparse, given that we wish to
keep the training set size, |T'|, as small as possible.

4.1.5 Approach 2: Using a discriminative classifier to reduce dimension-
ality

To get around the dimensionality explosion just described, we can employ meth-
ods designed for learning in highly structured output spaces, such as the modified
perceptron method first considered for re-ranking parse-trees[5]. This method
uses a feature kernel function, ®(«, t) which extracts features from both o and
t, mapping each («, t) pair to ¢-dimensional feature vector, ¢ € R?. In general,
q < (m—+n) because the ¢ features can represent joint features, or features com-
paring features of o with those of t. An example of such a joint feature might
be a value representing the dot-product between the term similarity vectors for
the action and the description of the task:

di(aj, ty) = (about(cy), Desc(ty))

Thus, under this transformation, the feature space becomes not that of all possi-
ble tasks and actions, but that of the the relationship between tasks and actions.

In order to learn associations between actions and tasks under this frame-
work, we can use the perceptron training algorithm modified by Collins [5].
This algorithm is illustrated in Figure 3. In this algorithm, we optimize the vec-
tor W of weights for the feature elements of ®(«, ¢) so that we most often choose
the correct task. Collins provides proof of convergence for W under separable
conditions in [6]. The number of iterations required for convergence depends
on the separability of the data. We do not yet know how separable these action-
task mapping problems are under typical conditions; this will largely depend on
the choice of the feature kernel function, ®(q, t).

The choice of ®(«,t) is crucial for determining the performance of this ap-
proach. Thus, this will be the primary area of investigation for this experiment:
What choice of a joint feature function, ®(«,t), if any, will yield acceptable per-
formance for finding action-task correspondence? To investigate this question, we
start with a basic set of features comparing shared fields in the action schema,
specifically what(«) and about(«), with task fields in Desc(t). This comparison
may be done using textual comparison techniques such as Latent Semantic Anal-
ysis (LSA), [8], which has been applied to many problems involving “semantic”
comparisons between textual passages. If such features are insufficient, we will
next consider auxiliary context, such as those concerned with action sequences.
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1. Initialize W « 0
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4. Output: W*, the final value of W

The most likely task for a given action is then:
F(a) = argmax,cr(®(ay,t;), W*)

Figure 3. Collins’ modified perceptron learning algorithm in terms of tasks

4.1.6 Approach 3: Learning directly from action traces

In addition to the supervised-training based approaches just described, it may
be possible to learn the user’s work patterns and information about their ways
of accomplishing tasks directly from action traces. One approach for doing this
is to identify similarities among different actions, amounting to clustering ac-
tions into action classes. Clustering actions in this way will make it possible to
use a finite “alphabet” of labels to represent the continuous, potentially infinite
variations of actions generated by the user. These metrics could include similar-
ity of the actions themselves, or similarity of their context, such as when, and
how long, or where in action streams they typically occur.

Once such an action alphabet is identified, we could use any standard sequence-
learning technique to identify structure from action sequences. One such tech-
nique would be to treat the sequence of actions as a stochastic process, and to
make a Markov assumption to model action class transition probabilities. The
resulting markov chains could be analyzed for states that exhibit periodicity,
and positive recurrence, and then could be analyzed for their predictive power.
Identifying such recurring states could be helpful for identifying which applica-
tions are used on a regular basis and task-independence. Furthermore, if chain
is reducible, meaning that is not fully connected, the states in the chain could be
partitioned into sets of communicating classes, or relatively self-contained clus-
ters. These communicating classes could be indicative of the the user’s task —
which, if identified, could greatly simplify the process of learning mappings be-
tween tasks and action flows. A hypothetical example of how this might work
is illustrated in Figure 4.

Based on Czerwinski’s observations that people tend to exhibit monitoring
behaviors (or rapidly switching between applications), it may be necessary to
use Markov assumptions of order greater than 1 in order to capture users’ task
flows. We will examine how the order of the Markov process used affects the
system’s predictive performance[29].
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Figure 4. Example of analyzing action sequences; 1) actions are first clustered into action classes;
2) transition probabilities are learned among the action clusters. If the resulting markov chain can
be partitioned into strongly-connected sets, this could be indicative of tasks.

4.1.7 Other approaches: Combining action transitions with action-task
probabilities

As emphasized in the introduction of this section, the approaches outlined in
sections 4.1.4, 4.1.5, and 4.1.6 not comprehensive, but are rather examples of
the types of methods that we will try to apply to this problem. Until we have
captured data and have a chance at evaluating these methods, it is difficult to
discuss a priori the suitability to our particular task.

A final example of another type of approach which is promising by modeling
both action sequences and action-task mappings are Conditional Random Fields,
or CRFs, introduced in [19]. This technique, which learns the probability of an
entire sequence of labels (in our case, tasks) conditioned on an entire sequence
of observations (actions), without having to model the joint distribution, P(«,t)
described in 4.1.4. This is done by modeling only the conditional distributions
of the labels given the observations. Similar to ®(«, t) described in 4.1.5, CRFs
rely on feature functions, but require two; one for transitions and one for obser-
vations. If the CRF is assumed to be a tree, The probability of a sequence of tags



given observations is an exponential of the inner product between these feature
vectors and two parameter vectors to be learned. In our application, transition
probabilities will correspond to the likelihood that one task follows another,
while observation probabilities model the likelihood the user is working on a
task, given the action.

4.1.8 Evaluating methods for learning correspondences between actions
and tasks:
How good is good enough ?

Each of the methods discussed above have advantages and disadvantages; direct
estimation of the joint distribution is simple but maybe intractable due the high
dimensionality of the space, the perceptron modeling technique is distribution-
free but relies on an appropriate choice for a joint feature function, while unsu-
pervised methods require little no training data, but rely on finding an appro-
priate choice for a clustering metric. Which of these methods (or others, such
as Conditional Random Fields) work “best” for the application will depend on
at least the following factors:

1. Accuracy (Test Performance) - How accurately the algorithm can predict
the correct task given an action trace

2. Amount of Training data / supervision required - The amount of explicit
user input, in the form of training, the system requires.

3. Usability of task description - Whether the description schema used by the
method is agreeable to users. Since users will usually have to manually
specify task descriptions often, it is important that the schema is not too
onerous, and either flexible/accommodating to the user’s style or of a
fixed format that most users like.

4. Efficiency - Whether the algorithm can run on conventional desktop com-
puters and not require an unreasonable amount of computational power
or memory

The accuracy we require for the algorithm depends on how exactly the al-
gorithm is to be used within the context of our proactive time-management ap-
plication. Moreover, we realize that there is a large difference between demon-
strating that an algorithm works i.e., that is, that it achieves statistically per-
formance over chance, from being accurate enough to be actually useful to our
application. Since this is an entirely new recognition problem, it is difficult to
predict how well the methods we have proposed will fare. Moreover, we do
not yet know how effective refining the models and techniques will be towards
yielding better results. Therefore, at this stage it is too preliminary for us to
state a performance goal. We can only say that based on other, similar efforts
such as in deducing users’ interruptibility discussed later (section 4.2.1), initial
attempts have yielded meager results. However, initial attempts such as ours



usually help the field to better understand the recognition problem at hand, and
then to iteratively devise more appropriate techniques. Such patterns were ob-
served historically with other, previous challenging recognition problems, such
as speech recognition.

4.1.9 Assumptions made with learning techniques: Consistency and vari-
ability

The techniques just described in 4.1.3 make few prior assumptions regarding
the user’s work patterns, the resources they access, and how they describe the
items on their to-do lists. Our approach, of choosing a large set of general fea-
tures for these learning frameworks, leaves the task of uncovering the structure
(if such a structure even exists) for mapping task descriptions to action traces
to the learning algorithm. On one hand, this is advantageous because we do
not yet know a priori whether such a common patterns exist, either on an in-
dividual basis or, even greater, across individuals. Therefore, our experimental
framework aims to use machinery that starts uninformed about peoples’ work
practices, and learns from examples.

A fundamental assumption in this approach, however, is that people tend
to go about their tasks in a way that exhibits some regularity. The existence
of this regularity is not itself sufficient; this regularity also has to be observ-
able by the learning algorithm through the from the representations that we
choose for each for the action traces and task descriptions. The degree to which
the regularity can be uncovered will largely determine the algorithm’s perfor-
mance; that is, how well the algorithm can predict when the user is working on
particular task-item. Therefore, finding an appropriate representation for these
items (including which features to examine from each) is critical for making the
algorithm perform well.

We would also be interested in seeing whether patterns for mapping task de-
scriptions to their actions are generalizable across individuals; this would enable
models to be re-used and trained between people. Our intuition is that for any
given individual, people tend to go about their tasks in a way that exhibits some
regularity, while across individuals, there is likely a much larger degree of vari-
ability regarding how people work. This variability is influenced by such factors
as personal style/preferences, and degree of familiarity with individual appli-
cations. However, if any common characteristics were found, parts of models
could be shared across users, and training data provided by individuals could
be shared to improve everyone’s models. This could greatly benefit the training
data problem, described next.

Since training data has to be manually provided by the user, it is likely that
the amount of training data required to achieve levels of performance will likely
be the deciding factor of whether the particular approach is feasible. This will
lead us to select the methods that can achieve acceptable performance with
the fewest number of examples. If there is only a small amount of training
data available, compared to the dimensionality of the space, the approximation
error for the system will be likely too great to be able to perform useful gen-



eralizations. One way to approach this is to regularize the learning algorithms,
essentially to favor simpler solutions, given a limited training set. Strategies like
this are described briefly next.

4.1.10 Strategies for improving generalization performance:
Adding domain knowledge, classifier hierarchies, simplifying mod-
els

If our initial approaches with the above methods yield inadequate performance,
we can try pursuing two complementary but different basic strategies: enrich-
ing the input (feature) representations, and, specializing the models/learning
mechanisms. The former is a way of adding more information to the algorithm,
while the latter essentially makes assumptions to reduce the “power” of the
algorithm to make learning more tractable and generalization possible.

There are a couple possible ways to enrich the input representations. One
would be to add explicit domain knowledge; for example, we could build a
knowledge base categorizing a list of known resources and what sort of “ac-
tivity” they represent; for example, “{dilbert, LEISURE}, { java.sun.com/apis,
CODING }, ... ”. Another approach is to perform such labeling by training
lower-level classifiers. If these low-level classifiers could identify characteristics
that do not vary significantly across users, they could be trained across users.
Another example of such a low-level feature might be task transition detection.
The output, then, of these classifiers could then be treated as features into the
larger classifier, such as a log-linear model [18].

Similarly, there are different ways to specialize the learning task. One way is
to make the assumption that each action trace was intended for exactly one of
the user’s known to-do items, simplifying the classification problem to choosing
one among the |T| items instead of having to make |T'| binary decisions.

Finally, as described in the last section, due to the limited amount of training
data, we will likely have to restrict our models to limit the amount of over-fitting
the algorithm performs on the training set. The process, known as regular-
ization, can be accomplished in a variety of ways, depending on the learning
mechanism employed.

4.2 Interruption management

4.2.1 Assessing interruption relevance by task relevance, instead of inter-
ruptibility

Several efforts have recently begun in designing systems that can automatically
assess user interruptibility, or how open a user is to receive a disruption at a par-
ticular time. These investigations have so far largely involved seeking features
which are most predictive of this abstract notion of interruptibility, and evalu-
ating how these features perform when used in classifiers. An extensive early
study by Forgarty et al. laid much of the groundwork in this subject, by con-
sidering a variety of different features within the environment, demonstrating



that the best features to choose were often dependent on the individual, or the
individual’s role within their organization [15]. Meanwhile, Ho, Intille et. al,
demonstrated that physical activity transitions, detected using accelerometers
placed on certain parts of the user’s body, could be a useful measure for their
interruptibility[12]. Related work by Igbal et al. studied whether mental work-
load, sensed by measuring pupil dilation using a head-mounted eye-tracker,
could be used to similarly infer the user’s interruptibility [16].

More recent work by Horvitz et al. demonstrated that interruptibility at the
desktop could be inferred from a combination of desktop application activity
traces, and environmental sensors[13]. While Horvitz’ work continued previ-
ous inquiries in interruptibility, his work explicitly discriminated among types of
interruptions, and user attentional states. He proposed estimating the Expected
Cost of Interruption (ECI) at a particular moment due to a particular type of
disruption, D; as follows:

ECI(E,D;) = _p(I;|E)u(D;,I;)

Where E is a vector-valued variable that represents the observed state of the
user, and I, is either a value for “attentional state” or “interruptability”.

Despite this progress in this area, however, high error rates have demon-
strated that ’interruptability’ is a difficult variable to measure. Moreover, most of
these prototype systems for filtering interruptions were poorly received by users
[14]. Hudson et Ho., believed that this was most likely due to the fact that these
early attempts failed to model many of the subtle aspects of what made some
interrupts important to take immediately and others merely distracting [14]. In
particular, Mark’s interruptability study revealed that interruptions were most
unwelcome when they occurred out of sphere, meaning that they did not pertain
to the user’s current task [21]. Meanwhile, interruptions that pertained to the
current task often were important to take immediately, as they often advanced
the task’s completion. Similar results were reported by O’Conaill et. al, where
it was discovered that approximately 64 percent of interruptions observed ben-
efitted the recipient in some way [25]. Bellotti reported that whether or not to
take an interruption was often influenced by social pressures, i.e., who the in-
terruption was from [1]. Thus, deciding whether or not to take an interruption
involves weighing several factors, including the interruption’s relevance to the
current task, the source of the interruption, the state of other tasks in the queue,
as well as the user’s state-of-mind, such as their workload and stress level. Ac-
cording to Hudson, even for professional knowledge workers such as high-level
managers, deducing whether or not to take an interrupt requires a “complex
tension between wanting to avoid interruption and appreciating its usefulness.”
[14].

We would like to propose that if the models of both the user’s state and
the type of disturbance were elaborated and fitted in a learning framework, the
system would be able to better identify whether a person would be willing to
accept an interruption. First, it would be possible to capture task-relevance rela-
tionships between interruptions and the user’s current task. Second, a learning



framework could adapt to individual variations on how people like to man-
age their interruptions. This effectively involves a generalization of Horvitz’s
technique; instead of distinguishing among a very small set of classes of dis-
turbances, (“real-time telephone”, “audible” and “visual”), and interruptability
states (“low”, “medium”, and “high”), the definitions of D; and I; defined ear-
lier could be expanded to incorporate details of the user’s context as well as the
interrupting event. While ideally, I; would also incorporate features identified
from the earlier studies by Fogarty et al., Ho et al., and Igbal et al., we will focus
on the effect of adding the user’s task context to I;, while enriching D, to model
more aspects of the interruption. In particular, we plan to try incorporating in-
formation regarding the interruption’s source, contents, and inferred relevance
to the user’s tasks. Based on Mark’s conclusions, we believe that this task-based
approach will significantly improve the system’s ability to predict whether the
user will be receptive to a particular interrupt.

4.2.2 Handling different types of interrupts

For simplicity, we will initially consider only two types of interruptions: instant
messages and e-mail. These two types of interruptions are different due to the
former being synchronous, meaning requiring both communcating parties to
be participating simultaneously, while the latter is asynchronous. Considering
both of these types of interruptions will allow us to generalize the system to
other synchronous and asynchronous communications media. For synchronous
media, any system that mediates incoming messages must make an immediate
decision about whether or not to allow the message through to the user, and
should inform the sender about its action. For asynchronous media, on the
other hand, timing is less critical, and therefore, the system has more flexibility
with regard to when and how to deliver the message to the user.

4.2.3 Identifying interrupt-task relationship

The greatest technical challenge with task-based interrupt handling is identify-
ing, for any given interruption, whether it pertains to any of the user’s known
tasks. This problem could be treated as the general problem of identifying the
interrupting topic and matching this topic with existing tasks. Alternatively,
we could approach this problem in a similar fashion to the action-task pairing
technique discussed earlier, by trying to identify characteristics of interruptions
that indicate their relevance to particular tasks. This latter approach, which will
likely require supervision, could employ any of the methods discussed earlier
such as, the perceptron learning technique.

4.3 Redesigning the User Interface:
Time-management tools that incorporate proactivity

As Blandford et. al and Bellotti’s studies showed, most people use an ensem-
ble of separate tools and applications, some digital and others paper-based. It



seems that the reason that such a variety is necessary is that no single tool
available today has all of the features most people need. Most digital tools pro-
vide independent, highly structured views of tasks, such as a calendar, to-do
list and address book, which allows users to set up reminders and easily or-
ganize large volumes of names and addresses. However, inputting entries into
these highly restrictive structured fields often requires more time and are more
tedious than sketching them. Also, by being structured and organized under a
predefined schema, these systems prevent the user from freely spatially organiz-
ing things in the ways that they like. Therefore, many people keep paper-based
lists readily available, which provide more spontaneous input, and representa-
tional/organizational flexibility.

A second reason that the user interface designs for today’s popular time man-
agement tools have to be modified for our use is that the techniques employed
in ATLIM to enable the system to take proactive action will very likely make oc-
casional errors. Unless the user interface is designed to ensure that such errors
are handled in a fail-soft manner, they could cause the user considerable disad-
vantage. Furthermore, even when the system acts correctly, if the user interface
does not make it clear to the user why the system took a particular action, the
user may not understand what the system is doing, and may grow to mistrust
the system in the long run. As these two observations are critical for adoption of
proactive systems, we believe that these concerns should be directly addressed
from the ground-up in the design of the user interface.

As an example of a design philosophy that addresses these issues, Hudson
et. al, ascribe to using inference to promote social translucence among workers
and their collaborators [14]:

We believe the notion of socially translucent systems [10] can pro-
vide one way to approach this challenge. Creating awareness and ac-
countability through making behavior more visible — can allow social
mechanisms to play more effective roles in technology-mediated in-
terruptions. For example, by making information such as the current
activity, location, historical patterns of activity, etc. visible in a way
that does not require vigilance and active maintenance on the part
of the recipient, potential interrupters can make better-informed de-
cisions about whether to interrupt. [While even these mechanisms
are not infallible], when they do fail, it tends to result in negotia-
tion - that is, further social interaction can be used to repair or gloss
over problems. On the other hand, when computer filtering fails,
only anger and sometimes a sense of helplessness results. Informa-
tion and attention are complex social processes that would seem to
require social solutions.

While their philosophy is designed around social processes, such as managing
interruptions from social communications channels, does it also apply to other
proactive aspects of the system, such as task identification, for which action is
less social (i.e, among multiple users) as it is directed towards the individual
user?



If we treat the algorithm performing the task identification as a social actor,
we can apply the original description of “social translucence” to system translu-
cence in general. It makes sense to strive to make it possible for the user to be
aware of the “activity, and historical patterns of activity” of this “actor”, allow-
ing the user to easily determine when it was important to intervene and correct
its activities. Indeed, the notion of such an algorithm serving as a social actor
could eventually become increasingly important as the mechanisms therein be-
come increasingly capable and complex. We could imagine that some day, the
user might be able to “converse” with the algorithm such as to easily express his
or her desires, directly explain its behavior, or engage in negotiations. But for
the moment, the social actor metaphor can be used to just improve the usability
of the system. The second important aspect for such proactivity will be to en-
sure that the potentially erroneous actions taken by the system are to not cause
harm to the user and are entirely reversible.

4.3.1 Design criteria for the user interface

Based on recommendations made by Bellotti regarding designing a better task
list manager (Sec. 2.1), Marks’ observations regarding automatic interrupt fil-
tering [21], and Norman’s recommendations for agent-based user interfaces
[23], we will evaluate potential ATLIM designs with regard to the following
heuristics:

1. Quick, simple and flexible task entry;

2. Freedom for users to freely re-arrange, move, re-organize tasks visually as
they see fit;

3. Easily accessible, constantly visible;

4. Incorporates ATLIM inference algorithms in a way that benefits the user, yet
minimizes the risk posed by incorrect inference; (e.g., exhibits soft-failure,
such as when applied to improving social translucence. )

5. Makes visible the following:

(a) action (i.e., what the system did)

(b) accountability (i.e., why the system behaved as it did),

(c) a means of recovery (i.e., how to undo its action),

(d) a means of prediction/prevention (i.e., what to expect from, and ac-
count for and correct its actions in the future)

6. Allows interactive training of the system in a way that minimizes disruption
to the user; but allows for acquisition of valid training data.

Ultimately, however, the final decision of the suitability of a user interface will
be how well it is received by users, and what effect the interface has on the way
the user works.
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Figure 5. lllustration of Task Matrix Ul scheme for ATLIM: In the matrix view, the task descriptions
are placed in cells, which may be organized as the user sees fit at any location within the matrix.
Task planes allow the user to organize relevant tasks by major theme, as well as by color. The
system varies degree of saturation of the cells of items according to how much attention the tasks
have received during the day.

4.3.2 Task Matrix: a user interface design for ATLIM

With these design criteria in mind, we wish to design a Ul for an integrated to-
do list, calendaring system, and interrupt manager that can use our algorithms
in a way helps the user effectively. One preliminary design is the task matrix,
visible in figure ??.

The design of the task matrix reflects the need for both structure and flex-
ibility, and for the user to maintain a constant ambient awareness of what the
system is doing. The main task matrix consists of a grid of task cells, flanked on
the left by the instream and the right by the completion bin. Each cell contains
one logical “task” including its complete description, and optionally a decom-
position into a list of sub-tasks, each of which can be individually prioritized
and re-arranged. Users may rearrange task cells themselves, relocate them to a
different task plane (high-level categories for sets of tasks), re-label and create
additional task-planes as necessary. The system does not impose any formal
task description schema on the user; instead, the user is provided with a tool
with which they can add optional annotations such as “Deadline” and “Intended
recipient”. The instream consists all of the user’s incoming messages, such as e-




mail, voice-mail and instant messages. Items from the instream can be dragged
between the cells to create a new task, or onto an existing cell to associate the
item with that task. Users may drag completed atoms from the task matrix onto
the completion list.

The task matrix Ul interacts with the ATLIM algorithms in several ways.
First, as the user is working, the ATLIM highlights (in bold) the task it thinks
that the user is working on. If this is incorrect, the user can correct the system
by tapping on the actual task that they are working on. This example is fed
into the learning algorithms to improve its performance in the future. Second,
the Interrupt Manager component of ATLIM automatically takes items from the
instream and attempts to associate them with the appropriate task cell. If the
system makes an incorrect association, this may also be manually correct (at
the user’s convenience) by simply dragging the item off the incorrect cell and
into the correct cell. Similarly, this reinforcement is provided to the interrupt
manager to correct its behavior for future instances.

The task matrix attempts to remind the user of the distribution of their at-
tention across their tasks increasingly coloring items that have gotten attention,
while letting those items that have been neglected go pale. If the user wishes
to see an explicit timeline of their work practices, this will be available in an al-
ternate view. Similarly, a traditional calendar-based view is available to display
those items with an explicit deadline annotation.

The illustrated version of the task matrix interface is intended to occupy
either a portion or the entirety of one of the user’s secondary displays. With
multiple displays becoming increasingly common for users’ desktops work envi-
ronments, moving the task matrix to a secondary, (presumably smaller) display
ensures that the task matrix will interfere minimally with the user’s workflow,
and that the user can maintain a constant peripheral (visual) awareness of the
display without having to explicitly move windows out of the way. Ideally, this
secondary display would also be touch-screen enabled, to make it easy for the
user to interact with the system without having it interfere with the user’s mous-
ing activities.

5 Plan for Investigation

This section proposes a two-year plan for investigation of designing an auto-
matic task-list and interrupt manager that achieves the goals outlined in section
3, by seeking solutions to the problems identified in section 4. The plan is sum-
marized below, divided into stages:

1. Initial data collection (6 months) - The first step will be to build infrastruc-
ture required for collecting user data. This will be done in two sub-stages;
first, infrastructure will be built for capturing action traces from users’ in-
teractions with their major desktop applications, as described in section
4.1.6. After this is complete, we will assemble a group of volunteers to
run this software for collecting an initial base of action traces. The second



sub-phase will be to design infrastructure for facilitating tagging of action
traces with relevant tasks. This will require obtaining the user’s task-list.
We will initially obtain this information from an existing calendaring tool,
such as Microsoft Outlook or iCal. The tagging infrastructure should make
it easy for users to either indicate what they are working on as they work
on the task, or to perform tagging at the end of the day. Once such tagging
is possible, we will attempt to elicit another group of volunteers to use the
system.

. Evaluation of task-identification methods (3 months) - In this phase, we will
compare the various methods outlined in section 4 using data captured in
Phase 1. The objective will be to find which combination of methods
and feature representations yield the best performance, defined under the
criteria described in 4.1.8.

. Improved data collection (2 months) - Based on the observations in Phase
2, we will optimize the feature vectors for better performance, and mod-
ify the data collection mechanisms designed in Phase 1 to support these
improved representations.

. Automatic Task List Manager user interface implementation (2 months) -
This stage will seek to prototype a graphical task-list manager applica-
tion around the methods and representations identified in the previous
sections. This user interface will reveal the task identification algorithm’s
ability to track the user’s active tasks, and will support interactive training
and tagging. This process will involve paper-prototyping, and informal
design evaluations with lab members to identify usability issues with the
system.

. Evaluation of interrupt-task correspondence methods (3 months) - This phase
will be devoted to investigating the challenge outlined in section 4.2.3, for
devising a suitable algorithm that can identify how interrupts pertain to
users’ tasks.

. Interrupt management integration into ATLIM (2 months) - This phase will
take the methods devised for interrupt management developed in phase 5,
and integrate them into the ATLIM UI implemented in Phase 4. This will
involve interfacing with e-mail and instant messenger systems, so that
new e-mails and messages can be intercepted. Also, this will involve de-
veloping a method by which users can easily specify associations between
tasks and interruptions for interactive training, as well as an exploration
of interrupt management policies.

. Iterative user evaluation (3 months) - This phase will be devoted to collect-
ing user impressions from the combined task list and interrupt manager.
Users’ impressions will be collected twice. The first set of evaluations will
seek to identify critical UI design flaws. After these have been corrected, a



second set of evaluations (conducted over a 1-month period) will be per-
formed to gain insight regarding the system’s suitability for its purpose.
Users will be asked to compare the tool with existing desktop time man-
agement/calendaring tools in an attempt to discern whether people are
satisfied with the proactive support provided by the new algorithms.

8. Wrap up and write-up (3 months) - This time is allocated primarily to
writing up results and conclusions.

6 Summary

This proposal presents a plan for investigating the feasibility of applying recog-
nition methods from AI to building tools that can more actively help people keep
track of their time and attentional resources. This project is an effort to pursue
the notion of “calm computing” proposed by Mark Weiser in the 1990s. [30]
It envisions making computers more useful by enabling them to better “under-
stand” users by “watching” them, and automatically interpreting and learning
from their actions.

The proposed investigation focuses on methods for achieving two capabil-
ities: first, autonomously monitoring users’ actions and deducing what tasks
they are working on, and second, monitoring incoming interruptions and au-
tomatically identifying how to handle them. The former will enable software
on the desktop to assist people’s task management schemes in a number of
ways, including automatically keeping track of when and how long a task was
performed, organizing resources used for a task, and predicting how long new
tasks will take. The latter will enable software to act as a personal reception-
ist, intercepting incoming interruptions and deducing whether they should be
queued or passed on. This determination will be made using the user’s task
context, instead of any absolute measure of “interruptability”. The result will
more closely models user’s actual interruption preferences

To test these methods, determine their suitability, and gain initial impres-
sions from users regarding how they might change their daily work patterns,
these devised methods will be incorporated into a prototype Automatic Task
List Interrupt Manager application. This application, in addition to providing
basic to-do list and calendaring capabilities, will be able to proactively assist
users based upon knowledge of their task context in the above mentioned ways.
Feedback gained from this experience, along with performance results from the
analysis algorithms, will be used to make recommendations for the design of
future time and task-management tools.
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