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Abstract

Previous research has shown that the SPEC benchmarks
achieve low miss ratios in relatively small instruction caches. This
paper presents evidence that current software-development prac-
tices produce applications that exhibit substantially higher
instruction-cache miss ratios than do the SPEC benchmarks. To
represent these trends, we have assembled a collection of applica-
tions, called the Instruction Benchmark Suite (IBS), that provides
a better test of instruction-cache performance. We discuss the
rationale behind the design of IBS and characterize its behavior
relative to the SPEC benchmark suite. Our analysis is based on
trace-driven and trap-driven simulations and takes into full
account both the application and operating-system components of
the workloads.

This paper then reexamines a collection of previously-pro-
posed hardware mechanisms for improving instruction-fetch per-
formance in the context of the IBS workloads. We study the impact
of cache organization, transfer bandwidth, prefetching, and pipe-
lined memory systems on machines that rely on the use of rela-
tively small primary instruction caches to facilitate increased
clock rates. We find that, although of little use for SPEC, the right
combination of these techniques substantially benefits IBS. Even
so, under IBS, a stubborn lower bound on the instruction-fetch
CPI remains as an obstacle to improving overall processor per-
formance.
Key words: code bloat, address traces, caches, instruction fetch-
ing.

1 Introduction
It has long been recognized that the best selection of memory-

system parameters, such as cache size, associativity and line size,
is highly dependent on the workload that a machine is expected to
support [Smith85]. Because application and operating system
code continually evolves to incorporate new functions, and
because memory technologies are constantly changing in capabil-
ity and cost, it follows that memory-system parameters must be
continually re-evaluated to achieve the best possible performance.
This paper studies trends in software development that cause pro-
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grams to grow in size and examines the impact of these trends on
one important aspect of memory-system design: the fetching of
instructions.

As application and operating system software evolves to
include more features and to become more portable, maintainable
and reliable, it also tends to consume more memory resources.
The “bloating” of code affects a memory-system hierarchy at all
levels and in a variety of ways: the larger static sizes of program
executables occupy more disk space; the larger working sets of
bloated programs require more physical main memory; bloated
programs use virtual memory in a more sparse and fragmented
manner, making their page-table entries less likely to fit in TLBs;
finally, the increased path lengths of bloated code can reduce its
locality, making caches less effective in holding code close to the
processor for rapid execution.

Improvements in memory technology have offset some of
these trends. For example, main-memory DRAMs have quadru-
pled in size roughly every 2 to 3 years and their price has dropped
steadily from about $800 per megabyte in 1986 to a current price
of about $40 per megabyte [Touma92]. Magnetic disk drives have
exhibited similar improvements in capacity and reduction in cost
[Touma92]. However, technology trends have resulted in more
complex trade-offs in the case of TLBs and caches. Although con-
tinued advancements in integrated-circuit densities make it possi-
ble to allocate more die area to on-chip cache structures,
reductions in cycle times constrain the maximum size and asso-
ciativity of primary on-chip caches [Jouppi94]. These constraints
follow from simple physical arguments that show that increasing
cache size and associativity increases access times [Olukutun92,
Wada92, Wilton94]. As a result, the primary caches in processors
that have targeted fast cycle times (100+ MHz) usually have low
associativity and are limited in size to 4-16KB [MReport94,
MReport95]. The net effect of these trends is that primary caches
have exhibited little growth during the past 10 years [Brunner91].
This results in code bloat having a larger relative impact on the
instruction cache than on other parts of the system.

When CPU performance is reported in terms of SPECmarks
[SPEC91], the effects of code bloat on system performance in an
actual work environment are not revealed. Although the SPEC
benchmarks are periodically upgraded (SPEC89, SPEC92 and the
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recent SPEC95), they are done so under a set of constraints that
make them less than ideal for exercising certain aspects of system
performance. For example, they must be highly portable, they
must be relatively easy to run, and the benchmarks themselves
must constitute the majority of the code being run. The conse-
quences are that the SPEC benchmarks make little use of OS ser-
vices (see Table 1), do not include graphical user interfaces
(which are non-standard across UNIX, VMS and Windows NT),
and are relatively small because they do not link complicated
libraries that aren’t already included with the benchmarks. Conse-
quently, instruction cache performance is one aspect of the system
that is not well tested by the SPEC benchmarks (see also Table 1).
In fact, the SPEC benchmarks have evolved to be even less
demanding of instruction caches with their second release in
1992. A study of the effects of code bloat on instruction-cache
performance must extend beyond SPEC to include a new set of
workloads that better represents these trends.

This paper makes three main contributions. First, it describes
and analyzes several common software-development practices
that lead to growth in application and operating system code. This
analysis includes the design of a new collection of workloads
called theInstruction Benchmark Suite (IBS). Second, this paper
re-evaluates several previously-proposed methods for improving
instruction-fetching performance in the context of bloated code
and new technology constraints. These methods include adding
and tuning asecond level of on-chip cache and then optimizing
the interface between the primary and secondary cache by adjust-
ing the transferbandwidth, byprefetching instructions, bybypass-
ing the cache on a line refill and bypipelining the memory system.
Our simulations show that the IBS workloads are more sensitive
to these optimizations than are the SPEC benchmarks, and that
they exhibit larger absolute improvements in performance when
these optimizations are applied. Third, our benchmark suite and
its corresponding address traces, complete with operating system
references, are available to the research community so that our
findings can be confirmed and to enable further architectural stud-
ies.

In the next section, we examine related work on benchmark
characterization and methods for improving instruction-fetching
performance. In Section 3, we briefly describe our methodology
and analysis tools. Section 4 studies software-development prac-
tices that cause programs to grow in size and relates these trends
to our design of IBS, while Section 5 evaluates methods for
recovering some of the I-cache performance lost to IBS.

Benchmark

Execution Time (%) Total
Memory

CPI

Components of Memory CPI

User OS I-cache (CPI instr ) D-cache (CPI data) TLB (CPI tlb ) CPU (CPIwrite)

SPECint89 97% 3% 0.285 0.067 0.100 0.044 0.074

SPECfp89 98% 2% 0.967 0.100 0.668 0.020 0.179

SPECint92 97% 3% 0.271 0.051 0.084 0.073 0.063

SPECfp92 98% 2% 0.749 0.053 0.436 0.134 0.126

Table 1:   Memory System Performance of the SPEC Benchmarks

This table shows the memory-system performance of the SPEC benchmarks as measured by a hardware logic analyzer connected
to the CPU pins of a DECstation 3100 running Ultrix. The DECstation 3100 uses a 16.6-MHz R2000 processor and implements split,
direct-mapped, 64-KB, off-chip I- and D-caches with 4-byte lines. The miss penalty for both the I- and D-caches is 6 cycles. The
R2000 TLB is fully-associative and holds 64 mappings of 4-KB pages.

Performance is reported in terms of cycles per instruction (CPI). Because this is a single-issue machine, the base CPI is 1.0, assum-
ing no pipeline interlocks and a perfect memory system. The actual CPI, as measured by the logic analyzer, is higher primarily
because of the memory-system stalls which are summarized under Components of Memory CPI.

2 Related Work
In recent years, much of the architecture research community

has settled on using the SPEC benchmark suite as a measure of
uniprocessor system performance1 and considerable effort has
been expended by commercial computer manufacturers to tune
system performance on these workloads [Gee93]. Despite its pop-
ularity for evaluating a wide range of architectural structures,
SPEC warns against the use of the SPEC89 or SPEC92 bench-
marks for testing memory or I/O performance [SPEC93]. In par-
ticular, the SPEC benchmark suite is not a good test of
instruction-cache performance, a point made most persuasively by
Gee et al., who have shown through exhaustive simulation that
most of the SPEC benchmarks fit easily into relatively small I-
caches over a range of associativities and line sizes [Gee93].

One reason that the SPEC benchmarks exhibit such good I-
cache performance is due to their infrequent invocation of operat-
ing system services. Memory-system studies that use workloads
with a greater reliance on operating system services have found
that much larger caches and TLBs are often required to attain sat-
isfactory performance [Clark83, Emer84, Clark85, Clark88,
Smith85, Alexander85, Alexander86, Agarwal88, Borg90,
Mogul91, Torrellas92, Flanagan93, Chen93, Chen94, Huck93,
Cvetanovic94, Maynard94, Nagle93, Nagle94].

Several hardware-based methods have been proposed to
reduce the penalty of misses in small, direct-mapped primary I-
caches. The most straightforward is to add a second level of
cache, either on or off chip, to reduce time-consuming references
to main memory [Short88, Baer87, Baer88, Przybylski89,
Przybylski90, Happel92, Kessler91, Olukotun91, Jouppi94,
Wang89]. Other methods focus on optimizing the interface from
the primary I-cache to the next level in the memory hierarchy,
whether it be a second-level cache, or main memory. These meth-
ods include the tuning of cache line sizes andbandwidth
[Przybylski90], prefetching [Farrens89, Hill87, Smith78,
Smith92, Pierce95], pipelining [Jouppi90, Olukotun92,
Palcharla94] andbypassing [Hennessy90].

There are also software-based methods for improving I-cache
performance. Compilers can reduce conflict misses by carefully
placing procedures in memory with the assistance of execution-
profile information and through call-graph analysis [Hwu89,
McFarling89, Torrellas95]. When a cache is physically-indexed

1. During the past three ISCAs, over two thirds of the papers dealing with
uniprocessor architecture issues used the SPEC benchmarks.
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and larger than the page size, operating systems can implement
page-allocation algorithms that more evenly distribute pages in
the cache to help prevent conflict misses [Bray90, Kessler92,
Bershad94].

Most previous studies of workloads with a significant operat-
ing system component have tended to consider simple memory
systems. Most of the effort in these studies went into the collec-
tion of complete address traces that include multi-task and operat-
ing system references. Unfortunately, the resulting address traces
are typically not publicly available and require considerable time
and resources to recollect. It is therefore difficult to reproduce the
findings of these studies or to investigate the performance of the
workloads they consider on more sophisticated memory system
designs. For this reason, most of the studies of more highly-opti-
mized memory systems tend to use easily-traceable, single-task
workloads (like those from SPEC) that do not stress instruction-
fetching hardware in a significant way.

This work re-evaluates a collection of aggressive hardware-
based instruction fetching optimizations on a more challenging
workload than was used in earlier analysis. This workload is
designed to represent current trends in software development. We
do not consider the aforementioned software-based methods, nor
do we consider compiler optimizations that can affect code bloat
for better or sometimes for worse (e.g., trace scheduling, loop
unrolling, procedure inlining).

3 Methodology
All experiments were run on MIPS-based DECstations under

Ultrix 3.1 and Mach 3.0. Table 2 summarizes the benchmarks and
operating systems in the IBS workload suite. The IBS workloads
are mainly programs that we actually use in our day-to-day work

Workload Description

mpeg_play mpeg_play (version 2.0) from the Berkeley Plateau
Research Group. Displays 85 frames from a com-
pressed video file [Patel92].

jpeg_play The xloadimage (version 3.0) program written by Jim
Frost. Displays two JPEG images.

gs Ghostscript (version 2.4.1) distributed by the Free
Software Foundation. Renders and displays a single
postscript page with text and graphics in an X win-
dow.

verilog Verilog-XL (version 1.6b) simulating the logic design
of an experimental microprocessor.

gcc The GNU C compiler (version 2.6)

sdet A multiprocess, system performance benchmark
which includes programs that test CPU performance,
OS performance and I/O performance. From the
SPEC SDM benchmark suite.

nroff Unix text formatting program shipped with Ultrix 3.1.

groff GNU C++ implementation of the Unix nroff text for-
matting program. Version 1.09.

OS Description

Ultrix Version 3.1 from Digital Equipment Corporation.

Mach CMU’s version mk77 of the Mach 3.0 kernel and ver-
sion uk38 of the 4.3 BSD UNIX server.

Table 2:  The IBS Workloads

All benchmarks were compiled with the Ultrix MIPS C com-
piler version 2.1, using the -O2 optimization flag.

and that we feel exhibit poor performance. Our Mosaic WWW
browser frequently invokesmpeg_play, jpeg_play andgs,
where they limit good interactive performance. Theverilog
workload is a logic simulation of an experimental GaAs processor
being developed in our hardware design group. Thegcc workload
is similar to the SPEC workload of the same name, but uses our
more recent version of the compiler. We selected one of the work-
loads from the SPEC SDM suite (sdet) to represent our frequent
use of typical UNIX commands such asmkdir, mv, rm, find,
make, diff, nroff, etc. Thegroff workload is the same as
nroff, but rewritten in C++. Table 3 shows measurements made
by a hardware monitor which confirm that the IBS workloads
exhibit many more stall cycles due to instruction-cache misses
than the SPEC92 benchmarks.

Our analysis of IBS uses two different and complementary
methods: trace-driven and trap-driven simulation. For trace-
driven simulation, we gathered address traces, complete with all
user and operating system references, by usingMonster, a hard-
ware logic analyzer connected to the CPU pins of a DECstation
3100 [Nagle92]. Because the caches on this machine are imple-
mented off chip, all memory references were captured using this
technique. Long, continuous traces were obtained by stalling the
DECstation while unloading the trace buffer in the logic analyzer
whenever it became full. A total of 100 MB of references were
collected from each workload. Although stalling the processor
when the trace buffer becomes full leads to some trace distortion,
we found the resulting simulation error to be small. As a check,
simulation results using these traces were compared with mea-
surements made by a non-invasive (i.e., non-stalling) hardware
monitor and the two agreed within a 5% margin of error. To add
an additional degree of confidence to our measurements and to
take into account inherent variations in performance due to oper-
ating system effects, we use a trap-driven simulator calledTape-
worm II [Uhlig94, Uhlig95]. Tapeworm simulates cache
performance while running alongside the system in the OS kernel,
enabling us to conduct multiple experimental trials for each work-
load and cache configuration.

We adopt a simple performance model based on cycles-per-
instruction (CPI) that focuses on instruction-fetching performance
[Emer84, Hennessey90, Smith92]:

whereCPIinstr is the performance lost to instruction-cache misses
and CPIother is determined by the instruction-issue rate and all

Benchmark

Execution
Time (%) Components of CPI

User OS
I-cache

(CPIinstr )
D-cache
(CPIdata)

Write
(CPIwrite )

IBS (Mach 3.0) 62% 38% 0.36 0.28 0.16

IBS (Ultrix 3.1) 76% 24% 0.19 0.30 0.11

SPECint92 97% 3% 0.05 0.08 0.06

SPECfp92 98% 2% 0.05 0.44 0.13

Table 3:  Memory Performance of the IBS Workloads

This table shows the memory-system performance of the IBS
benchmarks as measured by a hardware logic analyzer con-
nected to a DECstation 3100 (the measurements were made
in the same manner as described in Table 1). For the pur-
poses of comparison, the SPEC92 measurements from
Table 1 are duplicated here.

CPI CPIinstr CPIother+=
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other sources of processor stalls, such D-cache misses, TLB
misses, CPU pipeline interlocks and issue constraints. The I-cache
component, CPIinstr can be further factored into:

whereMPI is the I-cache miss ratio (misses per instruction) and
CPM is the I-cache miss penalty (cycles per miss).

For multi-level cache configurations, both the first-level (L1)
cache and the second-level (L2) cache contribute to CPIinstr. We
determined the L1 contribution by simulating an L1 cache backed
by a perfect L2 cache (no L2 misses). L2 contribution is deter-
mined by simulating an L2 cache backed by main memory.

Some of our comparisons with the SPEC92 benchmarks are
based on miss ratios reported by Gee et al. in [Gee93]. Because
Gee et al. performed their study on the same machine type (MIPS-
based DECstations) and with the same type of compiler used in
this study, meaningful comparisons can be made. For the purposes
of illustrating certain points, and to extend our analysis, we
selected certain programs from SPEC92 to perform our own sim-
ulations and measurements. These programs, the integer bench-
markseqntott, espresso andgcc, span the range of SPEC
benchmark sizes with respect to I-cache performance. Gee et al.
characterizeeqntott as small,espresso as medium andgcc
as large in size.

4 Analysis of IBS
In this section, we analyze and compare the instruction-fetch-

ing requirements of both SPEC92 and IBS. Our analysis includes
a discussion of some of the reasons behind software growth and
relates these trends to our design of IBS.

4.1 The Instruction-fetching Demands of
Bloated Code

To get a clear picture of the overall I-cache requirements of the
SPEC92 and IBS suites, we measured the average performance of
their workloads in caches ranging in size from 8-KB to 256-KB
(see Figure 1). Following the Three-Cs model of cache perfor-
mance [Hill87], this graph is a stacked-bar chart that breaks the
cause of misses into three components: capacity, conflict and
compulsory misses.1 Capacity misses are removed by larger
caches and conflict misses are removed by higher degrees of
cache associativity. Figure 1 clearly illustrates that the IBS bench-
marks benefit much more from larger and more associative I-
caches than do the SPEC92 benchmarks. To achieve approxi-
mately the same level of performance as the SPEC92 benchmarks
in a direct-mapped, 8-KB I-cache, the IBS workloads require a
direct-mapped, 64-KB I-cache, or a highly-associative, 32-KB I-
cache.

Table 4 gives another view of the I-cache performance of these
workloads by summarizing the individual MPI values for each of
the IBS workloads when running in an 8-KB I-cache. Note that
IBS under Mach 3.0 exhibits an MPI that is 4 times as large as
SPEC92. Also note that the same IBS workload suite running
under different operating systems exhibits different average MPI
values (The MPI under Mach 3.0 is about 35% higher than it is
under Ultrix 3.1).

1. I/O and paging activity can cause a significant number of compulsory
D-cache misses. However, compulsory misses account for a negligible
fraction of all I-cache misses in both the SPEC92 and the IBS work-
loads because these workload exhibit little paging in their text seg-
ments after they become cached in the filesystem disk-block cache. As
a result, compulsory misses are not visible on this plot.

CPIinstr MPI CPM⋅=

In addition to MPI, Table 4 also gives the percentage of time
each workload spends executing in the OS kernel and user-level
OS servers. While the SPEC92 benchmarks tend to spend most of
their time executing in a single task, the execution of the IBS
workloads is spread across multiple address-space domains,
including the kernel and the user-level BSD and X servers.
Figure 2 illustrates some differences in the structure of the
SPEC92 and IBS workloads to help explain the reasons behind
their distributions in execution times, and the resulting differences
in their I-cache performance. Each of the SPEC92 benchmarks
generally consist of a single task that only uses the operating sys-
tem to load its executable text and to provide some minimal file
service for reading inputs. On the other hand, the IBS workloads
are composed of many more components, reflecting the increas-
ingly modular nature of modern applications and operating sys-
tems. For example, they each link multiple code libraries to gain
access to a variety of OS services that are themselves imple-
mented in modular, independent units.

4.2 Reasons for Code Bloat
The benchmarks in IBS were carefully selected to reflect sev-

eral software-development practices that inevitably lead to growth

Figure 1: Capacity and Conflict Misses in
SPEC92 and IBS

This figure shows I-cache misses per instruction (MPI) for the
SPEC92 and IBS workloads. The stacked bars show the rel-
ative contribution of capacity and conflict misses to the over-
all MPI. Capacity misses were approximated by simulating an
8-way, set-associative cache to remove most conflict misses.
Conflict misses were found by simulating a direct-mapped
cache and counting the number of additional misses com-
pared to the 8-way set-associative simulation. The I-cache
line size for all simulations was 32 bytes.
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in program sizes. These development practices are a consequence
of increasing demands on softwarefunctionality, portability and
maintainability by both application users and developers.

Functionality

To remain competitive, software developers are under constant
pressure to add new features and functions to their programs. For
example, many commercial applications now support the capabil-
ity to output non-textual data (graphs, images, video, etc.) in a
graphical user interface. Such features are usually implemented
with the help of multiple layers of system software that comprise
a window system. The dominant window system in UNIX-based
workstations is X11 [Scheifler86], which includes an X display

Workload Misses per 100
Instructions (MPI)

Workload Components
(% of Execution Time)

Suite OS Application User Kernel BSD X

IBS Mach 3.0 mpeg_play 4.28 40% 23% 30% 7%

jpeg_play 2.39 67% 13% 17% 3%

gs 5.15 47% 34% 10% 9%

verilog 5.28 75% 14% 11% 0%

gcc 4.69 75% 17% 8% 0%

sdet 6.05 10% 70% 20% 0%

nroff 3.99 80% 5% 15% 0%

groff 6.51 82% 13% 5% 0%

IBS Mach 3.0 Average 4.79 62% 22% 14% 2%

IBS Ultrix 3.1 Average 3.52 76% 16% 8%

SPEC92 Ultrix 4.1 Average 1.10 98% 2% 0%

Table 4:  Detailed I-cache Performance of the IBS Workloads

This table reports misses per instruction (MPI) for individual IBS workloads when running in an 8-KB, direct-mapped I-cache with a 32-byte
line. Detailed MPI values are given for Mach 3.0 only. For the purposes of comparison, the average MPI for the IBS workloads running
under Ultrix 3.1 and the SPEC92 benchmarks running under Ultrix 4.1 are also given. The SPEC92 results are based on miss ratios
reported by Gee et al. in [Gee93]. Workload components include the user application task(s), the Mach 3.0 kernel, and the BSD and X dis-
play servers. The relative importance of each of these Workload Components is given as a fraction of total execution time.

Name
Service

AFS File
Service

stdio

Figure 2: The Components of the SPEC92 and IBS Workloads

Most of the SPEC92 benchmarks consist of a single task that only rely on the operating system to load their executable text and for small
file reads. The IBS workloads, however, consist of several modules that communicate through same-task or remote-task procedure calls.

4.3 BSD
Service X Display

Service
A SPEC92

Ultrix Kernel Mach Kernel

File System
Networking

• Paging and VM • Mach Threads (and Scheduling)

External
Paging

User Task

• File System (e.g., UFS, AFS)

• Mach Tasks (Virtual Address Spaces)

• Mach Ports (Inter-process Communication and RPC)

Service

A Core IBS
User Task

tk

Xlib

BSD API
Emulation

X Window
Manager

server, a window manager and a set of application-linked libraries
that implement the core X calls and higher-level graphical objects
such as thetk widget set [Ousterhout94]. The use of any X appli-
cation implies that all of these layers of code will be activated,
increasing instruction path lengths over workloads with simple
textual user interfaces. The IBS workloads represent the overhead
of graphics functionality by including the X applications
jpeg_play andmpeg_play, which decode and display com-
pressed still images and moving video, respectively. IBS also
includesgs, a postscript interpreter that renders full-page layouts,
consisting of text and graphics, in an X window.
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Some applications bloat in size over time because new func-
tions are added to their own core code. As an example of this, IBS
includes a recent version of thegcc benchmark which exhibits an
MPI that is about 15% higher than the older (and smaller) version
of gcc used in SPEC. IBS also includes the logic simulatorver-
ilog, which has steadily grown in size with each new release,
and which has one of the highest miss ratios among all the appli-
cations in IBS.

Portability

To reach the largest possible marketplace, software developers
must contend with the problem of making their applications run
under several different operating systems and instruction-set
architectures. Two different software techniques that increase
application portability areAPI emulation andABI emulation.

Porting an application to a different operating system requires
that it be rewritten to use theapplication-procedure interfaces or
APIs of the new host OS. To simplify this process, some operating
systems, including Windows NT [Custer93], Mach 3.0
[Accetta86], and others [Bomberger92, Cheriton84, Malan91,
Rozier92, Wiecek92], have been designed to emulate multiple
APIs. Overhead due to API emulation is represented in IBS
through the use of a 4.3 BSD emulation library that is dynamically
linked into the address space of each user application. To isolate
this effect, Table 4 also gives the average MPI of IBS running
under Ultrix 3.1, a system that does not include the overhead of
API emulation. The difference in MPI between the two systems is
also due, in part, to other structural differences between Ultrix and
Mach (see the next section on maintainability).

By emulating oneapplication-binary interface (ABI) in terms
of another, some of the difficulties with porting an application to a
new instruction-set architecture can be avoided. ABI emulation is
sometimes used to ease the transition from an older processor
architecture to a newer one. For example, DEC implements ABI
emulation by statically translating VAX and MIPS binaries into
Alpha binaries [Sites92]. Apple uses a similar strategy to dynami-
cally translate 68040 binaries to the PowerPC architecture
[Koch94]. Several other examples of ABI emulators are given in
[Cmelik94]. ABI emulation causes code bloat because several
host instructions are usually required to emulate a single source
instruction. An emulation environment typically also includes a
large amount of additional execution state, such as translated
instruction blocks or jump tables that lead to frequent indirect
jumps [Cmelik94]. We are currently looking for an ABI emulation
workload to include in the IBS.

Maintainability

As it grows in size and complexity, application and system
software becomes increasingly difficult to maintain. To help man-
age this complexity, software developers rely on techniques such
as object-oriented programming and the restructuring of code into
independent and interchangeable modules. For example, the Win-
dows NT Executive bases all of its system abstractions, such as
processes, threads and files on an object-oriented model
[Custer93]. Windows NT also separates its different API servers
(Win32, OS/2, POSIX, etc.) into independent modules or sub-
systems that are loaded into the system only as needed [Custer93].

The benefits of object-oriented and modular code are well-rec-
ognized [Budd91], but because they incur a variety of overheads,
these techniques come with a cost. The IBS benchmark suite rep-
resents these costs in two ways. First, we run the IBS benchmarks
under Mach 3.0, a micro-kernel operating system that uses modu-
larity concepts similar to Windows NT by implementing portions
of its code in separate user-level servers. As noted previously, the
average MPI of the IBS benchmarks running under Mach is about
35% higher than when they run under the less modular, mono-

lithic-kernel Ultrix. Second, IBS includes the benchmarkgroff
which is thenroff text-formatting program rewritten in an
object-oriented programming language (C++). Notice from
Table 4 that the MPI ofgroff is about 60% higher than that of
nroff when run on the same input. Although IBS currently
includes only one C++ program, we believe thatgroff is repre-
sentative of the poor I-cache performance exhibited by C++ pro-
grams in general. This assertion is supported by the recent work of
Calder et al. who have performed a more detailed study of 10 C
and 10 C++ programs in [Calder94]. Calder et al. report that to
achieve equivalent average miss ratios, the C++ programs consid-
ered in their study require I-caches that are about four times as
large as those required by their C programs.

4.3 Analysis Summary and Comments
The IBS workloads were selected to represent basic pressures

on software development that invariably lead to larger programs.
As such, they must necessarily include forms of code that make
them less portable and harder to use as a benchmark in compari-
son with SPEC. Nevertheless, most of the workloads in IBS (with
the exception ofverilog) are widely available and can be run on
most UNIX-based systems.

Although it could be argued that the programs in IBS could be
rewritten to remove their various inefficiencies, they would also
lose many of their desirable properties with respect to functional-
ity, portability and maintainability. Therefore, we take these trends
as given and now focus on ways to design instruction-fetching
hardware to help recover some of the performance lost to bloated
code.

5 Instruction Fetch Support for IBS
The IBS workloads require significantly larger I-caches to

achieve the same miss rates as the SPEC benchmarks, but cycle-
time constraints prevent level-1 (L1) caches from providing the
size and/or associativity necessary to deliver good performance
[Jouppi94]. However, integration levels have reached a point
where small L1 caches can be supported by a variety of on-chip
structures that reduce the L1 miss penalty. The remainder of this

Parameters

Configuration

Economy High Performance

Next Level in Hierarchy Main Memory Ideal Off-chip Cache

Latency to First Word (Cycles) 30 12

Bandwidth (Bytes/Cycle) 4 8

CPIinstr (SPEC) 0.54 0.18

CPIinstr (IBS) 1.77 0.72

Table 5:  CPI instr  for Base System Configurations

Both configurations contain an 8-KB, direct-mapped, on-chip
L1 I-cache. In the economy configuration, the L1 I-cache is
backed by main memory, while the high-performance config-
uration is backed by a large, off-chip cache. These latencies
and bandwidths were selected by surveying a number of pro-
cessors in [MReport94]. Latency is the number of cycles until
the first word is returned to the cache. For example, a system
with a 12-cycle latency and a bandwidth of 8 bytes/cycle
requires 12 cycles to return the first 8 bytes and delivers 8
additional bytes in each subsequent cycle. Filling a 32-byte
line would require 12+1+1+1 = 15 cycles. For our base con-
figurations, we consider an ideal off-chip cache with zero
contribution to CPIinstr. Our simulations show that for IBS, a
512-KB, direct-mapped I-cache is close to ideal, contributing
only 0.03 to the total CPIinstr.
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paper examines the effectiveness of some of these structures when
supporting IBS.

Our analysis begins with two baseline configurations outlined
in Table 5. Theeconomy configuration represents a low-end mem-
ory system, while thehigh-performance configuration represents
a more-costly, but better-performing memory system that imple-
ments an off-chip cache between the on-chip caches and main
memory. We extend both configurations by adding an on-chipsec-
ond-level (L2) cache and then explore various L2 design
tradeoffs. After arriving at an optimized L2 design, we consider
how bandwidth, prefetching, bypassing andpipelining the L1-L2
interface can further improve performance.

Throughout this section, we draw on the work of numerous
researchers who have explored various instruction-fetching tech-
niques, including multi-level caching, prefetching and pipelined-
memory systems [Farrens89, Hill87, Kessler91, Jouppi90,
Jouppi94, Olukotun92, Przybylski,89, Smith78, Smith82]. This
work uses IBS to compare and evaluate these various architectural
mechanisms under a more challenging workload. Throughout this
analysis, we only consider instruction references. This allows us
to factor away data-reference effects that might cloud our specific

Figure 3: Total CPI instr  vs. L2 Line Size

These plots show the CPIinstr when an on-chip, direct-
mapped L2 cache is added to both baseline configurations.
The L2 cache reduces an L1 miss to a 6-cycle latency with a
bandwidth of 16 bytes per cycle. This reduces the CPIinstr of
an 8-KB, direct-mapped L1 I-cache to 0.34. Total CPIinstr is
computed by adding this value to the stalls caused by L2
misses.

The dotted lines represent the CPIinstr for the baseline config-
urations.
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study of instruction fetching behavior. However, because an L2
cache is likely to be shared by both instructions and data, our
results represent a lower bound relative to an actual system.

5.1 Configuring Multi-level Caches for IBS
Our first optimization adds a non-pipelined on-chip L2 cache

to both baseline configurations. Figure 3 plots the resulting com-
bined L1 and L2 contributions to CPIinstr across a range of L2
cache and line sizes. For the economy configuration, even the
smallest L2 cache improves performance over the baseline, pro-
vided that the line size is tuned. In contrast, the high-performance
system requires at least a 32-KB or 64-KB on-chip L2 cache to
improve over its baseline. Comparing the two systems, we see
that at 64-KB, the economy configuration’s performance matches
the high-performance baseline configuration. This suggests that a
processor with a 64-KB on-chip L2 I-cache and an economy
memory system could provide better I-fetch performance than a
processor with a high-performance memory system where the L2
cache is implemented off-chip.

Because an L2 cache is not in the critical path, its associativity
is not restricted in the same way as our baseline L1 cache.1

Figure 4:  CPI instr  vs. L2 Associativity

These plots show the performance benefits of associativity
with a 64-KB L2 cache. Notice that the performance of the
economy configuration with an 8-way, set-associative cache
is nearly equivalent to that of a direct-mapped cache backed
by a high-performance memory system.

The dotted line represents the best CPIinstr for the direct-
mapped, 64-byte line, 64-KB configurations in Figure 3.
Notice that the y-axis starts at 0.34, the value of the base L1
CPIinstr value.
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Figure 4 shows the benefits of L2 cache associativity. Notice that
both configurations exhibit the greatest reduction in CPIinstr
(approximately 25%) between the direct-mapped and 2-way set-
associative caches; further increases in associativity (up to 8-way
set-associative) only reduce CPIinstr another 20%.

Increased associativity improves miss rates by reducing con-
flict misses. As a result, associativity also reduces variability in

1. The additional delay due to the associative lookup will increase the
access time to the L2 cache, possibly increasing the L1-L2 latency by 1
full cycle. This would increase the L1 contribution to CPIinstr from
0.34 to 0.38. It is also possible that the increase would be small enough
so as not to impact the latency. Przybylski [Przybylski88] and Wilton
[Wilton94] present detailed models that accurately account for these
effects.

4 8 16 32 64 128 256 512 1K

gs

4 8 16 32 64 128 256 512 1K

verilog

4 8 16 32 64 128 256 512 1K
I-cache Size (KB)

espresso1-way
2-way
4-way

4 8 16 32 64 128 256 512 1K

eqntott

Figure 5: Variability in CPI instr  versus I-cache Size
and Associativity

These plots show variability in performance of physically-
indexed I-caches. Performance varies because the alloca-
tion of virtual pages to physical cache page frames is dif-
ferent from run to run of a given workload. Each datapoint
above represents 5 experimental trials conducted with the
Tapeworm simulator running in an actual system. Variabil-
ity is reported on the y-axis in terms of one standard devia-
tion of CPIinstr.
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performance caused by random OS page-mapping effects in a
physically-indexed cache [Kessler91, Sites88]. Variability occurs
because different page mappings cause different patterns of con-
flict misses from run to run of a workload. Figure 5 shows that the
amount of variability is a function of the workload, cache size and
associativity. Workloads such aseqntott andespresso (from
the SPEC benchmark suite) tend to exhibit little performance vari-
ation, but certain workloads from IBS (such asverilog andgs)
are highly variable with certain cache sizes. The plots also show
that small amounts of associativity reduce variability by avoiding
conflict misses before they happen. This suggests that on-chip,
associative L2 caches offer an attractive alternative to the
recently-proposed cache miss lookaside (CML) buffers
[Bershad94], which detect and remove conflict misses only after
they begin to affect performance.

A final advantage of associativity is that it allows designers to
more easily add cache memory in increments smaller than a
power of two. Recent examples of this include the SuperSPARC,
with its 5-way, 20-KB L1 I-cache and the DEC 21164, with its 3-
way 96-KB L2 cache [MReport92, MReport94]. This is especially
important for on-chip caches because chip size and layout con-
straints might provide enough area to increase a cache’s associa-
tivity by 1, but not enough area to double the size of the cache.
The ability to change cache sizes in smaller increments also helps
to more optimally allocate chip die-area among various on-chip
memory-system structures (I-cache, D-cache, TLB) [Nagle94].

5.2 Tuning the L1-L2 Interface
For both configurations, a 64-KB 8-way, set-associative L2

cache contributes less than one third to the total CPIinstr, making
the 8-KB L1 I-cache the performance bottleneck (see Figure 4).
Although the basic structure (size and associativity) of the L1 I-
cache is constrained, a number of optimizations to the interface
between the L1 and L2 caches is still possible. We now focus on
such techniques.

Bandwidth

Figure 6 shows that increasing the bandwidth to the L1 cache
significantly improves performance by reducing the L1 cache’s
fill latency.1 This relationship between bandwidth and latency
suggests that low-bandwidth systems can achieve similar perfor-
mance improvements by implementing a dual-ported cache. The
dual-ported cache allows the processor to continue execution as
soon as the missing instruction is returned from memory, hiding
fill costs and reducing the effective latency.

Figure 6 also shows that a side-effect of increased bandwidth
is an increase in the optimal L1 line size (denoted by the black
symbols). This benefits cache design in two ways. First, increas-
ing the line size decreases the size of the cache tags. Second, the
reduction in area reduces the cache access time. The Mulder area
model predicts a 10% reduction in area when moving from a 16-
byte to a 64-byte line (8-KB, direct-mapped cache) [Mulder91],
while the Wilton and Jouppi timing model shows a 6% decrease in
access time [Wilton94].

The incremental improvements due to increasing bandwidth
begin to diminish for rates greater than 16 bytes/cycle. Moreover,
building large cache busses (> 128 bits) can consume a significant
amount of chip area and possibly impact the overall cache size.
This suggests that once the L1-L2 interface reaches a bandwidth
of 16 or 32 bytes/cycle, other techniques might be better suited to

1. Fill latency is the number of cycles required to fill a line once the sys-
tem begins writing data into the cache. For example, a system that can
deliver 4 bytes/cycle would have fill latency of 4 cycles when filling a
16 byte line.
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improving the L1 cache performance. To investigate this, we fixed
the L1-L2 interface at 16 bytes/cycle and used this configuration
to examine the effects of prefetching, bypassing and pipelining.

Prefetching
One simple prefetch strategy is sequential prefetch-on-miss,

where a cache miss is serviced by fetching both the missing line
and the next N sequential lines into the cache. Table 6 shows that
for small line sizes, prefetching can significantly improve perfor-
mance. The table also shows a result previously noted by Smith
[Smith82]: prefetching over multiple small lines yields better per-
formance than implementing a cache with longer lines. For exam-
ple, the cache with the 64-byte line has a CPIinstr of 0.297, while
the cache with the 16-byte line and 3 prefetched lines has a lower
CPIinstr of 0.260. Both configurations return 64 bytes of instruc-
tions, but the system with the longer line size forces it to fetch
more potentially useless instructions and to cause more conflict
misses. This is particularly true for a miss on the second half of a

Figure 6: Bandwidth and L1 CPI instr  vs. Line Size

This figure shows the L1 contribution to CPIinstr for a
direct-mapped, 8-KB I-cache backed by an L2 cache with
a 6-cycle latency. For these data, the execution model
assumes the processor must wait for the entire cache line
to refill before it resumes execution.
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Lines Prefetched 16 32 64

0 0.439 0.335 0.297

1 0.305 0.271 —

2 0.270 — —

3 0.260 — —

Table 6:  Prefetching

This table shows the L1 CPIinstr (8-KB, direct-mapped) for
various line sizes and prefetch lengths. The L1-L2 bandwidth
is 16 bytes/cycle and the execution model assumes that the
processor must stall until both the miss and the prefetches
are returned to the cache. Prefeches are not cancelled.

The cells with an “—”, denote data points that are either not
reasonable, or that show an increase in CPIinstr.

long cache line because the system must fetch the first half of the
line. Our simulations show that when the miss occurs near the end
of a line, instructions in the first part of the line are often evicted
from the cache before they are referenced. The finer granularity of
a 16-byte line overcomes this problem by beginning the fetch
closer to the missing word, while allowing the system to prefetch
instructions that have a greater potential for being referenced.1

Bypassing

Sequential prefetch-on-miss can be enhanced by placing the
missing line into both the cache and into special bypass buffers.
These dual-ported buffers allow the processor to continue execu-
tion as soon as the missing word has returned from the L2 cache.
Under this scheme, as the cache refills, the processor may only
fetch instructions from the bypass buffers. Table 7 shows CPIinstr
with and without bypassing logic.

To avoid cache pollution due to prefetching, we modified the
prefetching+bypassing configuration to only cache prefetched
lines if they were used by the processor. For configurations with a
small number of prefetches and a small to medium line size, this
modification actually reduced performance (not pictured).

Pipelining

The final enhancement that we investigate is pipelining the L1-
L2 interface. This allows the L2 cache to accept and fill a request
on every cycle with some latency between requests and refills.
During cycles where the processor hits in the cache, the memory
pipeline is kept busy with sequential prefetch requests.2 These
prefetches are not placed directly into the cache; instead, they are
stored in a special memory, called astream buffer [Jouppi90].

We model the stream buffer as a fully-associative, dual-ported
memory that can store N prefetched lines (see Table 8) and that
can be accessed in parallel with the cache. On a miss in both the I-
cache and the stream buffer, a request is sent to memory for the
missing line. In the N cycles following the miss request,

1. Our simulations also show that a 64-byte line with 16-byte sub-block
allocation can perform almost as well as a 16-byte line with 3 line
prefetch. On a cache miss, the system only refills the missing sub-
block and all subsequent sub-blocks in the line. While the sub-block
configuration had more cache pollution, the decrease in refill cost pro-
vided the performance gains.

2. Pipelining the memory system also allows data references to be mixed
with instruction prefetch requests.

Number of
Lines

Prefetched
Line Size (Bytes)

No Bypass Buffers
Line Size (Bytes)

With Bypass Buffers

16 32 64 16 32 64

0 0.439 0.335 0.297 — 0.296 0.226

1 0.305 0.271 — — 0.218 0.224

2 0.270 — — 0.205 — —

3 0.260 — — 0.181 — —

Table 7:  Prefetching + Bypassing

This table compares the performance of configurations with
and without bypass buffers. Bypass buffers reduce CPIinstr
by allowing the processor to continue execution as soon as
the missing word returns.

For each system, there are as many bypass buffers as lines
returned from the memory system (fetched + prefetched
lines). The cells with an “—”, denote data points that are
either not reasonable or that show an increase in CPIinstr.
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N additional sequential lines are also requested from memory.
Upon its return from memory, the initial missing line is placed
into the I-cache and forwarded to the processor. The prefetched
lines are stored in the stream buffer and only move to the I-cache
when they are used by the processor. If a miss in both the I-cache
and the stream buffer occurs before the control logic can issue all
N prefetch requests, prefetching is cancelled and a new miss
request is issued. After the miss request is issued, prefetching
begins again, starting with the line following the new missing
address.

Simulation results show that stream buffers can effectively
improve I-fetch performance until the buffer size reaches about 6
lines — reducing CPIinstr 66% for the 16 bytes/cycle configura-
tion and 59% for the 32 bytes/cycle configuration. After 6 lines,
the improvements become marginal. For a stream buffer with a
small number of lines, its effective size can be increased by modi-
fying the prefetch algorithm to prefetch additional instructions
when a stream buffer line is moved to the cache.

The data in Table 7 and Table 8 also show that, for a limited
number of prefetched lines, prefetch+bypass can perform as well
as a pipelined memory system with stream buffers. We believe
that this is due to the different policies for caching prefetched
instructions: the prefetch+bypass system caches all prefetched
lines while the stream buffer system caches only those lines that
are used by the processor. Code fragments such as short subrou-
tine calls and short conditional forward branches in loops benefit
from the caching-all-prefetched-instructions policy. Further,
Pierce has shown that even if the prefetching is on the not-taken
path of a branch, these wrong-path prefetched instructions are fre-
quently used soon enough after the prefetch that they benefit from
being cached [Pierce95].

This comparison also shows how subtle differences in cache
and prefetch policies can influence performance, underscoring the
point that there are numerous tradeoffs with respect to bandwidth,
latency, line size, prefetching, bypassing and pipelining in the
memory hierarchy.

Summary of Optimizations

Figure 7 summarizes the optimizations. For both configura-
tions, adding an associative L2 cache provides the largest perfor-
mance gains. The improvement is quite dramatic in the case of the
economy system. The largest performance improvement in the
L1-L2 interface is achieved with the addition of pipelining. In the
high-performance system, the L1 CPIinstr (0.11 for the 16-

Number of Lines
in Stream Buffer

16 Bytes/Cycle
CPIinstr

32 Bytes/Cycle
CPIinstr

0 0.439 0.287

1 0.267 0.186

3 0.184 0.137

6 0.147 0.118

12 0.122 0.103

18 0.114 0.099

Table 8:  Pipelined System with a Stream Buffer

The L1 cache line size is set by the bandwidth between the
L1 and L2 caches (16 or 32 bytes/cycle). This allows the
memory system to accept a request on every cycle.

This execution model assumes that instructions can be
moved from the stream buffer to the I-cache without incur-
ring a penalty. Some implementations may incur a 1 cycle
penalty during the move if an instruction fetch cannot be
serviced by the stream buffers.

byte/cycle configuration) is the dominant factor in total CPIinstr
(0.18). While this an acceptable level of I-cache performance for a
single-issue machine, dual- or quad-issue machines with a mini-
mum CPI of 0.50 and 0.25, respectively, will spend a considerable
amount of time stalling on I-cache misses.

Our conclusions would be very different if we had used the
SPEC benchmark suite. For example, the optimal on-chip L2 line
size for SPEC is (at least) 256 bytes, and associativity decreases
CPIinstr a mere 0.026. Under SPEC, the optimal L2 cache configu-
ration would have a total CPIinstr of only 0.083, before any opti-
mizations to the L1-L2 interface. Some L1 enhancements would
also yield significantly different results. For example, the optimal
8-KB L1 line size for a 16-byte/cycle configuration is 128 bytes,
which is double the optimal line size for IBS. However, with a
CPIinstr of only 0.083, there is little motivation to consider the
other L1-L2 interface optimizations.

6 Conclusions and Future Work
Relying on the SPEC benchmarks to predict the instruction

performance of a proposed memory system design would be
unwise, since they are simply unreflective of the complex applica-
tions that will run on new machines. We have suggested an alter-
native set of benchmarks and have described the ways in which

Figure 7: Summary of L1 and L2 Cache Optimizations

This figure shows the cumulative effect of the various optimi-
zations. In both configurations, adding an 8-way, set-associa-
tive on-chip L2 cache significantly reduced the CPIinstr. For
the Economy Configuration, prefetching, bypassing and a
pipelined memory system reduced the L1 CPIinstr below the
L2’s CPIinstr. However, for the High-Performance Configura-
tion, the L1 cache remains the dominate factor in perfor-
mance.

0.0 0.5 1.0 1.5 2.0
CPIinstr

Baseline

On-Chip L2

Bandwidth

Prefetching

Bypassing

Pipelining

0.0 0.5 1.0 1.5 2.0

Baseline

On-Chip L2

Bandwidth

Prefetching

Bypassing

Pipelining

L1 CPIinstr

L2 CPIinstr

High-Performance

Economy

Configuration

Configuration



11

they illustrate trends in software leading to relatively poor instruc-
tion locality. Using these benchmarks, we have shown how one
might design and refine a two-level on-chip cache. This design is
quite different than that one might choose based on the SPEC92
benchmarks alone. Simulation results show that this design con-
tributes at least 0.18 cycles to the CPI. This is a considerable
reduction from an initial baseline design, but shows that instruc-
tion-fetch overhead will be an important component of the execu-
tion time of future multi-issue processors that rely on small
primary caches to facilitate high clock rates.

This study did not consider more aggressive (non-sequential)
prefetching schemes, or the interactions between branch-predic-
tion and instruction-fetching hardware. By making the IBS traces
available, we hope to encourage the exploration of these more
sophisticated hardware mechanisms on demanding workloads.
The IBS traces include both instruction and data memory refer-
ences, and cover the full activity of all user and kernel processes.
To obtain the traces, consult our home page at
http://www.eecs.umich.edu/~bassoon.
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