
A System Level Perspective on
Branch Architecture Performance

Brad Calder Dirk Grunwald Joel Emer

Department of Computer Science Digital Semiconductor
University of Colorado, Campus Box 430 77 Reed Road (HLO2-3/J3)

Boulder, CO 80302-0430 Hudson, MA 01749
calder,grunwald@cs.colorado.edu emer@vssad.hlo.dec.com

Abstract
Accurate instruction fetch and branch prediction is in-

creasingly important on today’s wide-issue architectures.
Fetch prediction is the process of determining the next in-
struction to request from the memory subsystem. Branch
prediction is the process of predicting the likely out-come
of branch instructions. Many branch and fetch prediction
architectures have been proposed, from simple static tech-
niques to more sophisticated hardware designs. All these
previous studies compare differing branch prediction archi-
tectures in terms of misprediction rates, branch penalties,
or an idealized cycles per instruction.

This paper provides a system-level performance com-
parison of several branch architectures using a full
pipeline-level architectural simulator. The performance
of various branch architectures is reported using execu-
tion time and cycles-per-instruction. For the programs we
measured, our simulations show that having no branch
prediction increases the execution time by 27%. By com-
parison, a highly accurate 512 entry branch target buffer
architecture has an increased execution time of 1.5% when
compared to an architecture with perfect branch prediction.
We also show that the most commonly used branch perfor-
mance metrics, branch misprediction rates and the branch
execution penalty, are highly correlated with program per-
formance and are suitable metrics for architectural studies.

1 Introduction
When a branch is encountered in the instruction stream,

it can cause a change in control flow. This change in control
flow can cause branch penalties that can significantly de-
grade the performance of superscalar pipelined processors.
To overcome these penalties, these processors typically pro-
vide some form of control flow prediction.

Instruction fetch prediction is used each cycle to predict
which instructions to fetch from the instruction cache. In
processors, such as the Alpha 21064, the next sequential
instruction is fetched and speculatively executed from the
instructioncache. If a branch instructioncauses a change in
control flow, the instruction fetched following the branch
can not be used, and a new instruction must be fetched
after the target address is calculated, introducing a pipeline
bubble or unused pipeline step. This is called an instruction

misfetch penalty, and is caused by waiting to identify the
instruction as a branch and to calculate the target address.

Branch Prediction is the process of predicting the
branching direction for conditional branches, whether they
are taken or not, and predicting the target address for return
instructions and indirect branches. The final destinations
for conditional branches, indirect jumps and returns are
typically not available until a later stage of the pipeline.
To improve performance, the processor may elect to fetch
and decode instructions on the assumption that the eventual
branch target can be accurately predicted. If the processor
mispredicts the branch destination or direction, instructions
fetched from the incorrect instruction stream must be dis-
carded, leading to several pipeline bubbles. This is called
a branch mispredict penalty.

Instruction fetch prediction and branch prediction are
both used to reduce pipeline penalties caused by changes
in control flow. The Alpha 21064 processor uses these two
prediction mechanisms in two steps; first performing in-
struction fetch prediction by predicting the next sequential
instruction from the instructioncache, and second perform-
ing branch prediction in the decode stage. The destination
for conditional branches are predicted and checked in the
decode stage. If the fall-through is not predicted then the
calculated target address must be fetched. If the decoded
instruction is a return, the call prediction stack is used; if
the instruction is an indirect jump, the “hint” field provided
for indirect jumps is used. The call prediction stack is a
four-entry circular stack used to mimic the call and return
behavior of programs. The “hint” field is a 12-bit branch
displacement used to indicate the likely destination of a
given indirect branch. Some processors, such as the Intel
Pentium and P6, combine both instruction fetch prediction
and branch prediction into one hardware mechanism, al-
lowing both the instruction fetch and branch prediction to
be performed at the same time.

Usually, branch architectures are studied in isolation,
ignoring other aspects of the system. In those studies, a
variety of metrics are used to assess the performance of
different branch architectures, but it is rare that the perfor-
mance of an entire system (i.e., CPU and memory hierar-
chy) is reported. There are numerous reasons for this; the
complexity of accurately simulating a complex architecture
is daunting, the results are then specific to that architecture

Program Measured Zippy % PAL %PAL
Cycles Cycles Diff Calls Incr

doduc 3852.7 3705.0 -3.8 43 0.0
li 3840.2 3622.7 -5.6 32949 0.0
tomcatv 3428.5 3288.0 -4.1 128 0.0
espresso 798.9 822.1 2.9 86 0.2
gzip 559.2 621.7 11.1 67 0.7
od 545.3 589.1 8.0 193 2.9
porky 472.8 446.6 -5.5 241 0.7
gcc 406.9 403.3 -0.8 180 1.1
compress 305.0 318.8 4.5 208 3.4
bc 227.7 219.7 -3.5 535 0.6
indent 80.8 75.1 -6.9 133 3.1
cfront 68.7 65.8 -4.2 81 1.5
flex 34.2 30.7 -10.0 35 1.0
lic 17.9 15.4 -13.7 337 4.9

Table 1: Verification of Zippy architecture model, showing
the number of actual executed cycles measured on an Alpha
3000-500 minus the PALcall cycles (column “Measured”,
in millions), the number of cycles estimated by Zippy while
simulating the Alpha 3000-500 (“Zippy Cycles”, in mil-
lions), the percent difference in the Zippy model and mea-
sured cycle counts (% Diff), the number of dynamic PAL
calls executed in the measured programs (PAL Calls), and
the percent increase in number of cycles executed if PAL
calls were taken into account.

and it is difficult to translate the performance of that archi-
tecture to another, possibly different architecture.

However, there are advantages to system-level simula-
tions. They provide the reader with a sense of the magnitude
and importance of the problem being solved, and indicate
where further effort should be placed. Furthermore, the
performance metrics, such as execution time and cycles per
instruction, are more understandable to the casual reader.
Lastly, such studies provide a method to calibrate the per-
formance metrics used in other studies with the impact on
system level performance.

This paper provides a system level study of several
branch prediction architectures, including recently pro-
posed two-level correlated branch history architectures. We
performed a system-level simulation of the Alpha AXP
21064, a dual-issue statically-scheduled processor. We
first describe our experimental methodology in x2, and de-
scribe the architectures simulated in x3. The performance
results from the system level study are discussed in x4.
Section 5 measures the accuracy of common branch per-
formance metrics. We then conclude in x6 and x7 with
cautions to the reader to understand the limitations of this
study.

2 Experimental Methodology
We will study several branch prediction architectures

using information from direct-execution simulation. We
used a pipeline-level simulator to measure program exe-
cution time and attribute portions of that time to different
processor subsystems. We first describe the simulator used
and compare measurements from that simulator to mea-

surements from an actual system. We then describe the
programs we measured and how we will compare branch
architecture performance.
2.1 Simulation Methodology

We used Zippy, a cycle-level simulator for the DEC
21064 architecture that simulates all resources on the
21064, including the processor bus, first and second level
caches, main memory, functional units and all hardware
interlocks. Zippy is a direct-execution simulator; the pro-
gram being measured is executed, and events generated by
the program execution are fed to an event-driven simulator.
The version of Zippy we used in this study used the ATOM
instrumentation system [15] to instrument the applications.
A considerable amount of analysis can be performed during
the instrumentation phase. For example, interlocks and de-
pendence between instructions can be computed statically.
Some aspects of the simulation can be simplified as well;
for example, we can statically determine if two instructions
may issue concurrently, and perform a single instruction
cache probe for the pair of instructions.

Zippy can be configured to use one of a number of pro-
cessor and system configurations. The system we simulated
is a DEC Alpha 3000-500 workstation, with a DECchip
AXP 21064 processor clocked at 150Mhz. The system con-
tains an 8KB on-chip direct-mapped instruction cache and
an 8KB on-chip direct-mapped store-around data cache.
The data cache is pipelined and can be accessed every cy-
cle, although data is not available until 2 cycles after it
has been accessed. There is a 512KByte second-level, uni-
fied direct-mapped cache with five cycle latency and access
time. Main memory has a 24 cycle latency and 30 cycle
access time. More information about the AXP 21064 can
be found in the processor reference manual [5].

Table 1 compares the cycle count reported by Zippy
to the actual cycle count taken for the same application,
recorded by the processor cycle counter on an Alpha 3000-
500 processor.1 We ran each application 1000 times, and
the measured values had a 95% confidence interval typically
less than 0.06% of the mean.

The measurements in Table 1 show that the average dif-
ference between the cycle time reported by the Zippy model
and the actual execution time is 6% for the programs we
measured. There are a number of reasons why the estimated
performance of Zippy would differ from the measured per-
formance. First, a different virtual memory page layout
algorithm was used in Zippy than the algorithm used by
OSF on the Alpha 21064. For the estimated Zippy cycle
times shown in Table 1, the layout of the pages in memory
were random rather than the actual bin hopping algorithm
used in OSF/1. The layout of pages in memory will cause
cache conflicts in the physically indexed 2nd level cache
and those penalties can be significant [1, 6]. For instance,
the percent of cycles increased by 27% for tomcatv and
decreased 10% for gzip when the virtual and physical
mappings were identical.

Another difference is that Zippy simulates the proces-
sor executing a single program; it does not simulate the

1We could not accurately gather the cycle counts for eqntott and
wdiff because these programs spawned threads, complicating the per-
formance measurement. The Alpha 3000-500 we measured did not have
the appropriate software to run idl.

Instructions Exec % of Cycles
Program in Millions % Branches Time (s) CPI Issues Stalls ICache DCache TLB
doduc 1149.9 9 24.249 3.195 25.4 47.7 9.7 17.0 0.2
tomcatv 899.7 3 27.654 4.657 16.3 12.6 0.1 70.9 0.2
compress 92.6 14 1.897 3.103 27.0 8.5 0.0 22.3 42.2
eqntott 1810.5 12 14.969 1.253 74.1 11.0 2.5 11.4 1.1
espresso 513.0 17 4.666 1.378 62.3 19.4 3.2 13.9 1.2
gcc 143.7 16 2.314 2.439 35.0 13.6 20.8 25.1 5.5
li 1355.1 18 20.718 2.317 36.7 17.4 15.5 30.3 0.0
bc 93.4 16 1.338 2.171 38.7 17.0 22.9 19.9 1.4
flex 15.5 15 0.185 1.811 47.9 19.1 11.9 20.6 0.4
gzip 309.5 13 3.363 1.646 54.5 19.2 1.6 24.6 0.0
indent 32.6 17 0.463 2.154 40.6 22.7 18.4 17.7 0.7
od 210.3 18 3.648 2.628 31.7 11.3 23.7 31.5 1.9
wdiff 76.2 17 0.984 1.956 43.5 41.5 0.1 14.9 0.0
cfront 16.5 13 0.392 3.594 23.7 10.3 23.2 29.5 13.3
idl 21.1 20 0.287 2.058 41.1 14.6 10.4 26.2 7.7
lic 5.9 17 0.093 2.361 36.2 19.6 20.0 19.9 4.3
porky 163.7 20 2.592 2.399 35.5 16.6 12.1 27.9 7.9
Avg 406.4 15 6.460 2.419 39.4 18.9 11.5 24.9 5.2

Table 2: Application performance from Zippy, assuming perfect branch prediction.

underlying operating system and other programs running
on the system. Normally, when a process requests a sys-
tem service, system code displaces parts of the instruction
and data cache. These problems should be most visible in
short-runningprograms or those that make a number of sys-
tem calls. Table 1 confirms this; short-running programs
such as flex, indent and lic have a high variance. On
the Alpha, a “PALcall” is used to access system routines
and for system-specific functions; the column showing the
number of PALcalls shows that li executes many system
calls, and also has a large variance. Other programs with
a large difference in the execution time initiate I/O, which
causes cache flushes and more system level disturbances.
Even with these aspects of the system not being modeled
by Zippy, the measurements in this experiment show that
Zippy provides a reasonably accurate performance estimate
for the 21064 architecture.

2.2 Programs Measured
We instrumented the programs from the SPECint92

benchmark suite and object-oriented programs written in
C++. Other studies have noted that FORTRAN pro-
grams have very predictable branches. We simulated the
SPECfp92 benchmarks and found that was true. Therefore
we provide results for only two of the programs, doduc
and tomcatv, and concentrate on C and C++ programs
that are harder to predict. The programs were compiled on
a DEC Alpha 3000-400 running OSF/1 V2.0, using either
the DEC C, C++ or FORTRAN compiler. All programs
were compiled with standard optimization (-O). For the
SPECint92 programs, we used the largest input distributed
with the SPECint92 suite. The first two columns in Table 2
show the number of instructions simulated and the percent-
age of those instructions that are branches for the programs
we instrumented. The next two columns give the average
execution time in seconds and the cycles-per-instruction
(CPI) for each program, assuming perfect branch predic-
tion. The remaining columns give the break down of cy-

cles executed, and attributes those cycles to the instruction
issues (Issues), stall cycles due to the inability to issue in-
structions (Stalls), instruction cache misses (ICache), data
cache misses (DCache), and translation look-aside buffer
misses (TLB).

The “Stalls” entry includes interlocks and data depen-
dence constraints that can be computed statically. For ex-
ample, the result of a load is not available until two cycles
after it is issued. An instruction using the result of that load
immediately following the load would have to stall at least
that long. The cycles induced by dependence constraints
are attributed to stalls, but any additional cycles induced by
cache misses are attributed to that cache. We combined all
cache misses from the first and second level cache into the
ICache or DCache value.

2.3 Metrics
We used several metrics to compare branch architecture

performance in this paper. The first two are the increase
in execution time and cycles per instruction. We also com-
pute a metric used in branch architecture papers, called the
branch execution penalty (BEP). The BEP can be used to
select one branch architecture over another.
Percent Increase in Execution Time (%IET) Through-
out the paper, we will compare the execution time of each
program to a system with an unobtainable “perfect” branch
prediction architecture. Perfect branch prediction assumes
that branches are never misfetched or mispredicted. Pro-
gram execution using other branch architectures are speci-
fied as a percent increase in execution time, or slowdown,
relative to the perfect branch execution architecture. The
slowdown includes the affect of all system components.
Cycles Per Instruction (CPI) There is a considerable vari-
ation in the number of instructions issued by an individual
program, as shown in Table 2. Cycles per instruction pro-
vides a more application-independent performance metric
for a given architecture than the %IET. We also use the

CPI to determine if branch performance metrics predict
program performance.
Branch Execution Penalty (BEP) Researchers have used
the percent of mispredicted branches to compare the per-
formance of different branch architectures. However, this
metric is too simplistic for branch target buffer organi-
zations because the miss rate does not take into account
misfetched branches, and may exaggerate the performance
differences in branch architectures. There are two forms of
pipeline penalties we are concerned with: misfetching and
misprediction. Each branch type can be misfetched, but
only conditional branches, indirect jumps and returns can
be mispredicted. The penalty for misfetching is less than
the penalty for misprediction, and a processor design may
tradeoff off one rate for another. We record the percent-
age of misfetched branches (%MfB) and the percentage of
mispredicted branches (%MpB). It is often difficult to un-
derstand how these metrics interact and how they influence
processor performance. Yeh & Patt [17] defined a formula
to combine these branch penalties called the branch execu-
tion penalty:

BEP =
%MfB�misfetch penalty+%MpB�mispred penalty

100

which reflects the average penalty suffered by a branch
due to misfetch and misprediction. A BEP of 0:5 means
that, on average, each branch takes an extra half cycle
to execute; values close to zero are desirable. We have
assumed a one cycle misfetch penalty and a five cycle mis-
predict penalty since these values are appropriate for the
Alpha AXP 21064 architecture. Later we compare the
performance predictability of the percent of mispredicted
branches and the BEP by correlating these metrics to the
programs CPI.

3 Branch Architecture Models
This section describes the branch architectures we simu-

lated in this study. Table 3 gives a summary of these archi-
tectures. We simulated the DECchip 21064 implementation
of the Alpha AXP architecture using perfect branch predic-
tion (Perfect), no branch prediction (No-Pred), backwards
taken/forwards not taken (BTFNT), the default 1-Bit branch
prediction provided on the Alpha 21064 (21064) architec-
ture, pattern history tables (PHT), branch target buffers
(BTB), and two types of correlated conditional branch pre-
diction architectures (PAs and GAg).

For Perfect branch prediction we assume that all branch
targets are fetched correctly without any penalties, so there
are no misfetch or mispredict penalties. This establishes
an upper-bound on the influence that the branch architec-
ture can have on the system architecture. For no branch
prediction (No-Pred), we assume that the instruction fetch
pipeline halts whenever a branch is encountered and the
pipeline stalls until the correct branch destination address is
known. This is the worst possible branch architecture, and
establishes a lower bound on branch performance for the
21064 architecture. For No-Pred, all branches either cause
a misfetch penalty or a mispredict penalty depending on the
type of the branch. The only static branch prediction archi-
tecture we simulated was the simple backward-taken, for-
ward not-taken (BTFNT) architecture. The BTFNT archi-
tecture predicts backwards branches are looping branches

and will be taken, and forward branches are predicted as
not taken.

Most processors now use some form of dynamic condi-
tional branch prediction to improve the branch architecture
performance. The Alpha 21064 used in the 3000-500 we
simulated adds one bit to each instruction in the 8K direct
mapped instruction cache to dynamically predict the direc-
tion of conditional branches. This bit is initialized with the
sign-bit of the PC-relative displacement when the cache
line is read in, initializing the dynamic 1-bit predictors to
BTFNT prediction. Thus, the BTFNT rule is used the
first time the branch is encountered, and a dynamic one-bit
predictor is used thereafter.

Two-bit up-down saturating counters have been shown to
effectively predict the direction of conditional branches and
to outperform 1-bit branch predictors [10, 13]. The pattern
history table (PHT) branch architecture is an example of
an architecture using two-bit saturating up-down counters.
It contains a table of two-bit counters used to predict the
direction for conditional branches. In the direct mapped
PHT architecture (PHT-Direct), the branch address is used
to directly index into the pattern history table to find the
two-bit counter to use when predicting the branch.

Pan et al. [11] and Yeh and Patt [16, 18] investigated
branch-correlation or two-level branch prediction mech-
anisms. Although there are a number of variants, these
mechanisms generally combine the history of several re-
cent branches to predict the outcome of a branch. The
degenerate method (GAg) of Pan et al. [11] uses a global
history register to record the branch correlation. When us-
ing a 2k entry table, the processor maintains a k-bit global
history register that records the outcome of the previous k

branches (e.g., a taken branch is encoded as a 1, and a not-
taken branch as a 0). The register is used as an index into the
pattern history table (PHT), much as the program counter
is used for a direct-mapped PHT. This provides contex-
tual information and correlation about particular patterns
of branches. For the GAg method that we model, we use
a variant described by McFarling [8]. His method used the
exclusive-or of the global history register and the branch
address as the index into the PHT (PHT-GAg).

Branch target buffers (BTB) have been used as a mecha-
nism for branch and instruction fetch prediction, effectively
predicting the behavior of a branch [7, 9, 12, 17]. The In-
tel Pentium is an example of a modern architecture using
a BTB – it has a 256-entry BTB organized as a four-way
associative cache. Only branches that are taken are en-
tered into the BTB. If a branch address appears in the BTB
and the branch is predicted as taken, the stored address is
used to fetch future instructions, otherwise the fall-through
address is used. The “BTB-2Bit” architecture models the
architecture used in the Pentium, where each BTB entry
contains a two-bit saturating counter to predict the direc-
tion of a conditional branch [7]. The Intel P6 architecture
adds to this design by increasing the BTB to a 512 entry
4-way associative design and replaces the 2-bit counters
with 4-bit history registers.

The “BTB-PAs” architecture models the architecture
proposed by Yeh et al [17], where each BTB entry con-
tains a 6-bit history register. This history register is used as
the lower bits of an index into a PHT when predicting con-
ditional branches. The upper bits of the index are the lower
bits of the branch address. In both BTB-2Bit and BTB-

Perfect All branches are correctly predicted, so there are no mispredict nor any misfetch penalties.
No-Pred No Branch Prediction. All branches are either mispredicted or misfetched.
BTFNT Backwards Taken, Forwards Not Taken. Static branch prediction.
21064 1-bit dynamic branch prediction for each instruction in the instruction cache.
PHT-Direct Direct mapped Pattern History Table (PHT).
PHT-GAg A single global history register is XORed with the program counter (PC) and used to index into the PHT.
BTB-2Bit A BTB with each entry containing a 2-Bit counter for conditional branch prediction.
BTB-PAs A BTB where each entry contains a 6-bit history register. This history register is used as the lower bits of an

index into a PHT for predicting conditional branches. The upper bits of the index are the lower bits of the
branch address.

BTB-GAg A decoupled BTB that contains no conditional branch prediction information. Instead, conditional branches
are predicted with the decoupled GAg, as in the PHT-GAg (XOR) architecture.

Infinite BTB’s An infinite BTB that only suffers from misprediction and cold-starts misses. We simulated this model for both
the PAs and GAg (XOR) conditional branch prediction schemes.

Table 3: Architectures Simulated

PAs architectures, the branch prediction information (the
two-bit counter and 6-bit history register), is associated or
coupled with the BTB entry. Therefore, the dynamic con-
ditional branch prediction information can only be used for
branches in the BTB, and branches that miss in the BTB
must use less accurate static prediction.

The “BTB-GAg” is an example of a decoupled design,
where the branch prediction information is not associated
with the BTB and is used for all conditional branches,
including those not recorded in the BTB. This design is
used in the PowerPC 604 [14]. The PowerPC 604 has a
64-entry fully associative BTB that holds the target address
of the most recently taken branches, and uses a separate 512
entry PHT to predict the direction of conditional branches.

We simulated a number of configurations of these ar-
chitectures. In particular, we varied the number of BTB
entries, associativity of the BTB, and the size of the PHT.
All of the BTB designs we simulated only update the BTB
with taken branch addresses. This was shown to be more
effective for both the coupled and decoupled architectures
because the BTB is not filled with fall-through addresses
that are easily calculated [2, 12]. Therefore, on a BTB
miss for the coupled design, the branch is predicted as not
taken. The other static prediction alternative is to predict
the branch using the BTFNT scheme on a BTB miss. In our
studies we have found that statically predicting the branches
as not-taken performs better than BTFNT in this case, es-
pecially when compiler transformations are used to make
the fall through path the most likely executed path [3].

4 Branch Architecture Performance
Throughout this section, the reader should be aware of

the limitations of our study, and should not draw inferences
beyond the systems we model. In particular, the Alpha
AXP 21064 is a statically scheduled, dual-issue proces-
sor. Dynamically-scheduled processors may be more sen-
sitive to branch architecture performance, because more
instructions would be “in-flight,” increasing the mispredict
penalty. It is difficult to extrapolate how our results would
differ with out-of-orderexecution, and this issue is the topic
of a future study.

Table 4 shows the increase in execution time over an ar-
chitecture using Perfect branch prediction for all the branch
architectures we studied averaged over all programs. The

different branch architectures are sorted by percent increase
in execution time; architectures with poorer performance
appear earlier in the table. Table 4 also shows the contribu-
tion of the instruction issues, stalls, caches, TLB, mispre-
dict branch (MpB), and misfetched branch (MfB) penalties
to the cycles needed to execute a program on average, as
described earlier for Table 2. The last three columns give
the actual percentage of mispredicted branches, misfetched
branches, and the branch execution penalty, which com-
bines the %MpB and %MfB into one metric. The %MpB
contains all branches that are mispredicted, including indi-
rect jumps, returns and conditional branches.

Table 4 shows that once a reasonable number of BTB
entries have been added to a branch architecture, overall
performance is best improved by adding resources to other
architectural components, including TLB entries and the
data cache. The results show that it is very important to have
2-bit conditional branch prediction,such as a PHT, although
little performance improvement is seen as the size of the
PHT is increased from a 512 entry PHT to a 4096 entry PHT.
We found that increasing the PHT size for an infinite BTB
beyond 32768 entries provided almost no improvement,
because the remainder of the stalls arise from cold-start
misses in the BTB and PHT.

Table 4 also shows the improved performance when a
64 entry BTB is added to the branch architecture. There is
only a small improvement when using a 4-way associative
BTB over a direct mapped BTB. Likewise, increasing the
BTB from 64 to 512 entries results in only a very small
performance improvement. The average increased percent
of execution time for a 64 entry direct mapped BTB with a
512 entry PHT-GAg is 3.1%. In comparison a more costly
512 entry 4-way associative PAs with a 4096 entry PHT
has an increased percent in execution time of 1.4%. Each
decrease in execution time comes with a price, in both area
and branch architecture complexity and potential increase
in cycle time. Therefore, for a statically scheduled archi-
tecture like the Alpha 21064, the most aggressive branch
prediction architecture that is justified by our experimenta-
tion is a direct mapped 64 entry BTB, with any 512 entry
PHT configuration that we studied. For future architectures
to be viable, they must achieve similar (or better) perfor-
mance for cheaper hardware costs and make no sacrifice in
cycle time [4].

BTB PHT % of Cycles Branch Penalties
Arch Size A Size %IET CPI Iss Stall IC DC TB MpB MfB %MpB %MfB BEP

No-Pred 27.16 2.981 30 15 8 18 4 23.04 0.67 86.85 13.15 4.47
BTFNT 11.10 2.647 35 17 10 22 5 9.47 2.32 30.95 39.00 1.94
21064 8.81 2.605 36 17 10 22 5 6.89 3.29 21.00 53.31 1.58
PHT-GAg 512 6.20 2.549 37 18 10 23 5 3.40 4.05 10.51 63.93 1.16
PHT-Direct 512 5.95 2.542 37 18 11 23 5 2.99 4.11 8.88 64.91 1.09
PHT-Direct 4096 5.77 2.538 37 18 11 23 5 2.73 4.14 8.01 65.39 1.05
PHT-GAg 4096 5.35 2.530 37 18 11 23 5 2.29 4.20 6.90 65.74 1.00
BTB-2Bit 64 1 4.27 2.512 38 18 10 23 5 4.92 0.50 14.72 8.03 0.82
BTB-PAs 64 1 512 3.86 2.504 38 18 10 23 5 4.50 0.51 13.51 8.03 0.76
BTB-PAs 64 1 4096 3.72 2.501 38 18 10 23 5 4.35 0.51 13.04 8.03 0.73
BTB-2Bit 64 4 3.65 2.500 38 18 10 23 5 4.27 0.43 12.92 6.91 0.72
BTB-PAs 64 4 512 3.22 2.492 38 18 11 24 5 3.82 0.43 11.69 6.91 0.65
BTB-GAg 64 1 512 3.13 2.489 38 18 11 24 5 3.12 1.02 9.62 15.51 0.64
BTB-PAs 64 4 4096 3.05 2.488 38 18 11 24 5 3.64 0.43 11.13 6.91 0.63
BTB-GAg 64 4 512 2.91 2.485 38 18 11 24 5 3.06 0.81 9.47 12.59 0.60
BTB-GAg 512 1 512 2.49 2.475 38 19 11 24 5 3.02 0.24 9.35 3.94 0.51
BTB-2Bit 512 1 2.40 2.471 38 19 11 24 5 2.94 0.13 8.73 2.20 0.46
BTB-GAg 512 4 512 2.37 2.472 38 19 11 24 5 3.02 0.06 9.32 1.22 0.48
BTB-GAg Inf 512 2.33 2.471 39 19 11 24 5 3.01 0.00 9.29 0.04 0.46
BTB-GAg 64 1 4096 2.26 2.469 39 19 11 24 5 1.98 1.09 6.02 16.43 0.47
BTB-GAg 64 4 4096 2.04 2.465 39 19 11 24 5 1.92 0.87 5.87 13.44 0.43
BTB-2Bit 512 4 2.00 2.462 39 19 11 24 5 2.48 0.04 7.36 0.77 0.38
BTB-PAs 512 1 512 1.89 2.461 39 19 11 24 5 2.37 0.14 7.17 2.20 0.38
BTB-PAs 512 1 4096 1.74 2.458 39 19 11 24 5 2.17 0.14 6.58 2.20 0.35
BTB-GAg 512 1 4096 1.61 2.455 39 19 11 24 5 1.88 0.27 5.74 4.20 0.33
BTB-PAs 512 4 512 1.49 2.452 39 19 11 24 5 1.90 0.04 5.77 0.77 0.30
BTB-GAg 512 4 4096 1.49 2.452 39 19 11 24 5 1.87 0.07 5.71 1.35 0.30
BTB-GAg Inf 4096 1.44 2.451 39 19 11 24 5 1.86 0.00 5.68 0.04 0.28
BTB-PAs 512 4 4096 1.35 2.448 39 19 11 24 5 1.72 0.04 5.22 0.77 0.27
BTB-PAs Inf 512 1.35 2.448 39 19 11 24 5 1.71 0.00 5.09 0.03 0.25
BTB-PAs Inf 4096 1.21 2.445 39 19 11 24 5 1.54 0.00 4.57 0.03 0.23
BTB-PAs Inf 32768 1.17 2.444 39 19 11 24 5 1.48 0.00 4.40 0.03 0.22
BTB-GAg Inf 32768 1.08 2.443 39 19 11 24 5 1.36 0.00 4.13 0.05 0.21
Perfect 0 2.419 39 19 12 25 5 0 0 0 0 0

Table 4: Average results for all the Branch Architectures sorted in terms of Percent Increase in Execution Time. The average
cycles executed for each architecture is broken down as before.

Table 4 lets us directly compare the performance of
decoupled GAg and coupled PAs architectures with equiv-
alent BTB sizes. For the 64 entry BTB designs, the GAg
scheme performs better than the PAs architecture because
the coupled PAs architecture can only use the conditional
branch prediction information on a BTB hit while the de-
coupled GAg uses the PHT predictors for all conditional
branches. When increasing the size of the BTB to 512 en-
tries, the PAs scheme performance usually surpasses that
of the GAg, largely because of the increased BTB hit rate.
However, this is not true in all cases; for example, a direct-
mapped GAg with 512 BTB entries and 4096 PHT entries
has (marginally) better performance than the correspond-
ing PAs method. In general, the differences between these
two architectures is too small to matter. We feel the GAg
design should be used in an actual implementation, because
the GAg design may be simpler to implement and update,
and the PAs architecture requires extra storage, not needed

in the GAg architecture, since it associates a 6-bit history
register with each BTB entry.

5 The Accuracy of Branch Metrics
Branch architecture research, like all computer archi-

tecture research, is a computationally intensive undertak-
ing. Normally, researchers try to identify a number of
performance metrics that can be easily calculated, yet indi-
cate the likely impact of a particular architectural feature.
For example, the simulations used to accurately simulate
the Alpha 21064 and calculate the CPI used in the pre-
vious sections were approximately 500-1000 times slower
than a simulation that only calculated the branch execution
penalty (BEP). Studies, including our own, have used the
BEP for this very reason: it yields an intuitive performance
metric, and it is significantly easier to calculate than the
CPI. Other studies have used the percent of mispredicted
branches (%MpB) for the same purpose.

Correlation Coeff. (�2)
CPI vs. CPI vs. BEP vs.

Program BEP %MpB %MpB
doduc 0.98 0.99 0.94
tomcatv 0.99 0.88 0.89
compress 1.00 0.92 0.92
eqntott 1.00 0.91 0.90
espresso 1.00 0.96 0.94
gcc 1.00 0.94 0.93
li 0.99 0.95 0.92
bc 0.99 0.96 0.93
flex 1.00 0.92 0.92
gzip 1.00 0.93 0.93
indent 1.00 0.95 0.95
od 0.99 0.97 0.94
wdiff 1.00 0.93 0.93
cfront 0.97 0.99 0.94
idl 1.00 0.95 0.95
lic 1.00 0.93 0.91
porky 0.99 0.94 0.90

Table 5: The square of the correlation-coefficient for each
program across all branch architectures. A �

2
= 1 indicates

that changes in the BEP due to a particular branch archi-
tecture are predictive of the CPI for that program using that
architecture.

We were curious how accurately the BEP and %MpB
predict the CPI for the architecture we examined. The
standard statistical test for this problem is to compute the
sample correlation coefficient, �. Given � for two series,
�

2 represents the probability that the series are linearly
related; �

2
= 99% indicates that 99% of the variation in

one series is predicted by a change in the second series.
The CPI and BEP for all branch architectures averaged
over all programs resulted in �

2
= 99:9%; i.e., over all the

architectures studied, a change in the BEP is a very accurate
predictor for the CPI. The corresponding measurement for
the %MpB is �

2
= 96:9%, indicating that the %MpB is

a slightly less accurate predictor of the CPI than the BEP.
This is only natural, since the BEP includes the misfetch
penalty as well as the mispredict penalty.

The predictive accuracy of the BEP and %MfB is also
consistent across a range of branch architectures. Table 5
lists �2 for each program across all the branch architectures
considered. Table 5 shows that CPI can be accurately pre-
dicted by the BEP and the %MpB, although the BEP is a
more accurate metric. As expected, the BEP also predicts
the %MpB with reasonable accuracy. It is essential to un-
derstand that we are asserting that the predictive quality of
the BEP for the CPI only applies to the statically-scheduled
architecture we model.

It is understandable that the BEP would be correlated
with the CPI on the 21064 architecture. The nominal branch
mispredict penalty is 5 cycles and the misfetch penalty is
1 cycle. In some circumstances, these penalties can vary.
For example, if a load that precedes a conditional branch
misses in the data cache, and the instruction that is the
target of the branch needs the data, then the branch may be

resolved before the miss finishes, masking the mispredict
penalty that might have occured if the load had hit in the
cache. Likewise, if only one instruction in an issue-pair can
actually be issued, the processor has an additional cycle to
determine the next fetch address, masking the misfetch
penalty.

Note that the correlation coefficient does not indicate the
degree of importance of the BEP. It simply indicates that
the BEP and CPI are linearly correlated. The least-squares
solution for all architectures over all programs indicates
that CPI = 2:35+ 0:073� BEP. Thus, although the BEP
is important in the overall CPI, a difference of 1.0 in the
BEP results in a 3.1% increase in the CPI on average. The
branch architectures we examined had a BEP between 0.2
and 2.0.

6 Understanding the scope of this study
A valid question to ask is how do the results presented in

this paper apply to future wide-issue architectures that have
wider instruction issues, deeper pipelines, larger branch
penalties or out-of-order execution? We feel it is impor-
tant to understand the scope of our study, and the intent
of evaluation we have conducted. All of the results we
have described are relatively specific to the 21064 imple-
mentation of the Alpha architecture, although some general
conclusions can be drawn from this study.

Within the limitations imposed by the particular archi-
tecture we studied, we feel that this study is important
because it provides detailed system performance showing
the actual gain in going from no branch prediction (27%
increase in execution time) all the way down to Perfect pre-
diction, using various branch prediction architectures. We
are not aware of any previous study providing this detailed
performance comparison for modern branch prediction ar-
chitectures. We also feel that we have demonstrated that
the BEP is an accurate predictor for the CPI for the class
of architectures we considered. Therefore the BEP metric
should be used when comparing different branch predic-
tion architectures if the real CPI or execution time is not
available; however we recommend that this be confirmed
for architectures radically different than the 21064 archi-
tecture.

Our observations come with an important proviso – the
importance of a branch architecture is highly dependent
on the underlying architecture and the penalties introduced
by other subsystems. For example, data cache overheads
constitute � 24% of the total execution time in the pro-
grams we measured. Larger first and second-level caches
will reduce the cache overhead. Likewise, a dynamically-
schedule architecture may be able to mask a larger fraction
of the cache latency, depending on the processors ability to
predict branches. Simulating the interaction between the
operating system and an application or a mixture of appli-
cations may also indicate that other branch architectures
are more desirable.

7 Conclusions
Microprocessor design is an art that balances many is-

sues, including area and power budgets, design complexity,
patent issues, robustness across a number of applications
and a particular implementation technology. It is impor-
tant to understand the contribution of individual architec-
tural features in the context of the full cpu design. At

some point, architectural designs must address these is-
sues, rather than solely address performance. This paper
provides a system level study of several branch prediction
architectures including recently proposed two-level corre-
lated branch history schemes. We provide the performance
comparison in terms of execution time using a full Alpha
AXP 21064 architectural simulation model.

Our results show, for the processor we examined, that a
significant performance gain is achieved by adding a small
512 entry PHT to the architecture, as was done in the Alpha
21064A. Little benefit is gained by increasing the size of
the PHT. An additional reduction in execution time, half
of that provided by adding the PHT, is seen by adding
a small 64-entry direct mapped BTB, provided that this
does not impact the cycle time. The results also show that
increasing the BTB size and associativity provides minimal
improvements. A processor using a 64 entry direct mapped
BTB with a decoupled 512 entry PHT achieves an execution
time within 3% of the execution time for prefect branch
prediction.

Our results indicate that continuing to improve the
branch behavior for processors and programs similar to
the ones in this study is simply “polishing a round ball”.
This does not mean that reducing the BEP is an unimpor-
tant problem; rather, it means that for further reductions in
the BEP to become meaningful, other pipeline stalls such
as cache and TLB stalls first need to be greatly reduced on
this type of architecture. Alternatively, researchers propos-
ing new branch predictionarchitectures shoulddemonstrate
how they will work on a processor with dynamic out-of-
order execution, deeper pipelines and wider issue widths.
They should also emphasize designs that are faster, less
complex, more testable or easier to implement. We feel a
study similar to this one is needed to determine the impor-
tance of branch prediction on a dynamic execution archi-
tecture.

Acknowledgments
We could not have completed this study without signif-

icant equipment and software support from Digital Equip-
ment Corporation, and the cooperation and assistance of
the many people who have worked on ATOM and Zippy,
particularly Mike McCallig, Alan Eustace, Amitabh Sri-
vastava and Dave Webb. We would also like to thank
the anonymous reviewers for their useful comments. Brad
Calder was supported by an ARPA Fellowship in High
Performance Computing administered by the Institute for
Advanced Computer Studies, University of Maryland. This
work was funded in part by NSF grant No. ASC-9217394
and ARPA contract ARMY DABT63-94-C-0029.

References
[1] Brian N. Bershad, Dennis Lee, Theodore H. Romer, and

J. Bradley Chen. Avoiding conflict misses dynamically in
large direct-mapped caches. In Proceedings of the Sixth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 158–
170, San Jose, California, 1994.

[2] Brad Calder and Dirk Grunwald. Fast & accurate instruction
fetch and branch prediction. In 21st Annual International
Symposium of Computer Architecture, pages 2–11. ACM,
April 1994.

[3] Brad Calder and Dirk Grunwald. Reducing branch costs
via branch alignment. In 6th International Conference on
Architectural Support for Programming Languagesand Op-
erating Systems, pages 242–251. ACM, 1994.

[4] Brad Calder and Dirk Grunwald. Next cache line and set
prediction. In 22nd Annual International Symposium of
Computer Architecture, pages 287–296. ACM, June 1995.

[5] Digital Equipment Corperation, Maynard, Mass. DECchip
21064 Microprocessor: Hardware Reference Manual, Oc-
tober 1992.

[6] R. Kessler and M. Hill. Page placement algorithms for
large direct-mapped real-index caches. ACM Transactions
on Computer Systems, 10(4):338–359, November 1992.

[7] Johnny K. F. Lee and Alan Jay Smith. Branch prediction
strategies and branch target buffer design. IEEE Computer,
21(7):6–22, January 1984.

[8] Scott McFarling. Combining branch predictors. TN 36,
DEC-WRL, June 1993.

[9] Scott McFarling and John Hennessy. Reducing the cost
of branches. In 13th Annual International Symposium of
Computer Architecture, pages 396–403. ACM, 1986.

[10] Ravi Nair. Optimal 2-bit branch predictors. IEEE Transac-
tions on Computers, 44(5):698–702, May 1995.

[11] S.-T. Pan, K. So, and J. T. Rahmeh. Improving the accuracy
of dynamic branch prediction using branch correlation. In
Fifth International Conference on Architectural Support for
ProgrammingLanguagesand Operating Systems, pages 76–
84, Boston, Mass., October 1992. ACM.

[12] Chris Perleberg and Alan Jay Smith. Branch target buffer
design and optimization. IEEE Transactions on Computers,
42(4):396–412, April 1993.

[13] J. E. Smith. A study of branch prediction strategies. In 8th
Annual International Symposium of Computer Architecture,
pages 135–148. ACM, 1981.

[14] S. Peter Song, Marvin Denman, and Joe Chang. The Pow-
erPC 604 RISC microprocessor. IEEE Micro, 14(5):8–17,
October 1994.

[15] Amitabh Srivastava and Alan Eustace. ATOM: A system
for building customized program analysis tools. In 1994
Programming Language Design and Implementation, pages
196–205. ACM, June 1994.

[16] Tse-Yu Yeh and Yale N. Patt. Alternative implementations
of two-level adaptive branch predictions. In 19th Annual
International Symposium of Computer Architecture, pages
124–134, Gold Coast, Australia, May 1992. ACM.

[17] Tse-Yu Yeh and Yale N. Patt. A comprehensive instruc-
tion fetch mechanism for a processor supporting speculative
execution. In 25th International Symposium on Microar-
chitecture, pages 129–139, Portland, Or, December 1992.
ACM.

[18] Tse-Yu Yeh and Yale N. Patt. A comparison of dynamic
branch predictors that use two levels of branch history. In
20th Annual International Symposium of Computer Archi-
tecture, pages 257–266, San Diego, CA, May 1993. ACM.

