
Predictive Sequential Associative Cache

Brad Calder Dirk Grunwald

Department of Computer Science,

University of Colorado

Campus Box 430

Boulder, CO 80302-0430

calder,grunwald@cs.colorado.edu

Joel Emer

Digital Semiconductor,

77 Reed Road (HLO2-3/J3) Hudson, MA 01749

emer@vssad.hlo.dec.com

December 5, 1994

Abstract

Traditionally, set-associative caches are implemented by comparing all blocks in a cache set in parallel

for each reference and then selecting the desired block from the set. By providing more than one location

for holding the data for a particular memory address, set associativity reduces the cache miss rate for

most programs. The traditional solution is, however, not without cost. As contrasted with direct-mapped

caches, values from a set-associative cache can not be used by the processor, even speculatively, until all

the comparisons complete. This results in a greater access time than comparably sized direct-mapped

caches. Fortunately, however, in most programs, cache references are to the most recently used items. A

number of researchers have proposed cache designs that exploit this locality to reduce access time and

miss rate.

In this paper, we propose a cache design that provides the same miss rate as a two-way set associative

cache, but with a access time closer to a direct-mapped cache. As with other designs, a traditional direct-

mapped cache is conceptually partitioned into multiple banks, and the blocks in each set are probed, or

examined, sequentially. Other designs either probe the set in a fixed order or add extra delay in the access

path for all accesses. We use prediction sources to guide the cache examination, reducing the amount of

searching and thus the average access latency. A variety of accurate prediction sources are considered,

with some being available in early pipeline stages.

1

1 Introduction

Set-associative caches offer lower miss rates than direct-mapped caches, but usually have a longer access

time. In a set-associative cache, cache blocks are divided into sets and a single fetch address may find its

data in any block of its set. When referencing a cache set, the blocks are examined in parallel. When all

blocks and, in specific, their tags have been read from the set, a tag comparator selects the block containing

the desired data, and passes the data from that block to the processor. The comparator introduces an extra

delay between the availability of the cache data and the time it can be used by the processor, because the

cache can not send the data to the processor, even speculatively, until the comparison is finished. This,

among other factors, increases the cache access or cycle time. By contrast, in a direct-mapped cache, a fetch

address can only access a single block, and the data from that block can be speculatively dispatched while

the tags are compared, thus reducing the critical path length. The CACTI cache timing simulator [13] can be

used to approximate the increased access time for a two-way set-associative cache. For caches with 32 byte

cache lines, the same configuration used in our simulation study, the access time for a two-way associative

cache is 1.51, 1.46 and 1.40 times longer than the access time for a direct mapped cache for 8KB, 16KB

and 32KB caches, respectively.

The design tradeoff between miss rate and access time in set-associative caches versus direct mapped

caches has led several researchers to suggest ways to achieve miss rates similar to two-way set-associative

caches with fast access times by using modified direct-mapped caches. Recently, several researchers have

suggested using a serialized or sequential search to compare tags in set-associative caches. In some of these

schemes, the cache is divided into sets with 2 blocks per set. When accessing a cache set, first one block

is probed. If a match is found, processing continues; if not, the second block in the set is probed. If no

match is found, a miss occurs. If the cache line is usually found in the first block to be examined, the

average access time will be less than a direct-mapped cache (because the miss rate would be similar to a

two-way set-associative cache) or a two-way set-associative cache (because the cycle time is that of a faster

direct-mapped cache).

Several variants have been proposed. In this paper, we compare and extend several proposed schemes

for implementing two-way set-associative caches at the first level of the memory hierarchy. Our technique

uses a number of prediction sources to pick the first block to probe. These predictors include information

about the source or destination of a fetch, the instruction or procedure fetching the data and the effective

fetch address. Our technique offers the low miss rate of a two-way set-associative cache and the low cycle

time of a direct-mapped cache; the performance varies with the accuracy of the prediction information. The

source for prediction information can be adjusted for pipeline constraints; implementors can trade lower

prediction rates for the freedom to reduce timing constraints. In this paper, we examine only two-way

set-associative caches; while higher degrees of associativity can be implemented using these techniques,

there are fewer advantages at higher associativities.
The contributions of this paper are:

2

1. We extend sequential cache designs to use prediction sources, allowing sequential two-way set-
associative caches to be used for first-level caches. Our cache design is simpler to implement than
previous designs and more effective.

2. Describe several prediction sources and their efficacy.

3. Present a performance comparison that distinguishes between access latency and cache occupancy,
or the time the cache is busy during memory references.

2 Prior Work

Sequential or serial implementations of two-way set-associative caches can be categorized along two di-

mensions. First, they can be categorized by whether the cache is probed in a statically fixed order, or if it

is probed in a dynamically determined order. Second, they can be categorized by the block allocation (and

re-allocation) policy. The addition of a block re-allocation policy is especially important in those schemes

with a fixed probe order.

We will use the diagrams in Figure 1 to clarify issues in the unconventional implementations. We

assume the reader is familiar with the design of direct-mapped caches and the conventional implementation

of two-way set-associative caches that use content-addressable memory. We assume each cache entry has

an L-bit set index and a tag. We use a word-addressed cache to describe the various cache organizations to

simplify their description. A direct-mapped cache contains 2L cache blocks; when a block address is to be

fetched or loaded into the cache, the lower L bits are used to index into the cache. When fetching an item

from the cache, the remaining address bits are compared to the tag; if these match, the item is successfully

found in the cache, otherwise a cache miss occurs. In a two-way set-associative cache, only L � 1 bits

are used as a set index. Each cache set contains two blocks. In a conventional design, the tags in both

blocks are compared concurrently when fetching an address. If either tag matches, the reference has been

found. New entries may be loaded into either block, as determined by the block allocation policy. Usually

a least-recently-used mechanism is employed. A set-associative cache typically has a lower miss rate than

a direct-mapped cache, but is more difficult to implement and increases the cache access time [5].

2.1 Statically Ordered Cache Probes

Agarwal et al [1] proposed the Hash-Rehash cache (HR-Cache) to reduce the miss rate of direct-mapped

caches. Although the Hash-Rehash cache can be used to implement arbitrary associativity, we only consider a

two-way set-associative cache, since that is the most cost-effective configuration. The HR-cache organization

uses a fixed probe order and a non-LRU cache allocation/re-allocation scheme to maximize the number of

first probes that hit.

Figure 1(a) illustrates the structure of the HR-cache. The cache blocks are divided into two banks.

Each bank contains one of the two blocks that comprise a set, and L � 1 bits are used to index a block in

3

a set. While a conventional set-associative cache matches the tags in parallel, the HR-cache matches the

tags sequentially. The cache is organized as a conventional direct-mapped cache; thus, the cycle time for

accessing an individual block would be faster than that of a conventional set-associative cache. Cache blocks

are indexed using two distinct hashing functions, and the cache is probed in a fixed order using those hash

functions. We call the cache block addressed by the first hash function the “first block” and the remaining

block the “second block.” If the data is not found in the first block, the second block is examined. If the data

is found in the second block, the contents of the first and second blocks are exchanged. The intuition is that

by re-allocating the data, successive references will locate the data quicker, because it will be found with

the first probe. If the data is not found by the second probe, a miss occurs. The first block is moved to the

second block, since the first block was more likely to have been more recently referenced than the second

block, and the missing block is placed in the first block. As shown in later examples, this mechanism does

not implement a true LRU replacement policy.

This process is easier to understand by example. We will use the same reference stream to illustrate the

operation of each cache organization. The references stream is:

1st reference 010 10

2nd reference 001 10

The addresses are specified in binary, and the tag (the high three bits) is separated from the set index (the

low two bits) by an underscore (). Using the cache configuration in Figure 1(a), all of these references map

to the same set.

Since the HR-cache uses a conventional direct-mapped organization, the concept of blocks in a set are

represented by the use of an additional cache index bit to distinguish the two blocks of the set. Before each

example, we assume that address 000 10 (at index two) and 001 10 (at index six) are in the two blocks of

the set, and that 001 10 was more recently referenced than 000 10.

In the HR-Cache the first hashing function uses a direct-mapped lookup (formed using the lower-order

bits of the tag, concatenated with the set index), and the second hashing function probes the other block in

the set Thus, fetching the address 010 10 would first probe index two, then index six, while fetching 001 10

would first probe index six and then index two. Figure 1(a) illustrates how the two references are processed

in the HR-Cache. The fetch of 010 10 would examine index two first, and index six second. Since a miss

occurs, the contents of index two (000 10) are moved to index six, and 010 10 is loaded into index two.

Notice that block 001 10 is replaced, even though it was more recently referenced than 000 10. A true LRU

replacement strategy would have replaced 000 10. The next reference is to 001 10, which was just replaced.

Index six is examined first, and index two is examined second. Again, a miss occurs. The contents of index

six are moved to index two, and 001 10 is loaded into index six.

Cache simulations by Agarwal [2], and our own simulations, show that the Hash-Rehash cache has a

higher miss rate than a two-way set-associative cache with LRU replacement. There are two obstacles that

limit the performance or practicality of the HR-Cache: the need to exchange entire cache lines and the high

4

miss rate. In the HR-Cache, the entire first and second blocks must be exchanged if a reference is found in

the second block. This may be a problem for caches with large lines. Some architectures use a 128-byte

cache line, although the processor only retrieves four or eight bytes on each fetch. Exchanging such large

cache lines either requires a several cycle exchange operation, or a design that allows two cache lines to

be rapidly exchanged via a wide cache access. The extra metal and sense amplifiers required for this wide

access would likely add significantly to both the size and power requirements of the cache. Furthermore,

a special exchange operation could interfere with the pipelining of normal cache accesses, especially in

multi-ported designs, and would introduce more bookkeeping for deferred write and fill operations.

The Column-Associative Cache (CA-Cache) of Agarwal and Pudar [2] improved the miss rate and

average access time of the HR-Cache, but still requires that entire cache blocks be exchanged. Like the

HR-Cache, the CA-Cache, shown diagrammatically in Figure 1(b), divides the cache into two banks. Cache

blocks are found using two hashing functions. In the CA-Cache, a rehash bit is associated with each cache

block, indicating that the data stored in that cache block would be found using the second hash function. The

rehash bit is the exclusive-or of the lowest-order bit in the tag and the bank number. Consider the process

of fetching the addresses 010 10 and 001 10. As before, 000 10 and 001 10 are already at indices two and

six respectively. When the address 010 10 is fetched, index two would be examined first, followed by index

six. A miss occurs, the data from index two is moved to index six, and 010 10 is loaded into index two. The

address 000 10 at index six would now be found using the second hashing function, and the corresponding

rehash bit is set. Note that the more recently referenced block 001 10 was discarded. Now, address 001 10

is referenced. Index six is examined first; that block does not contain 001 10, but the rehash bit has been

set, indicating that line two can not contain 001 10. Index two is not examined, and the miss is issued one

cycle earlier than in the case of the HR-Cache.

In the HR-Cache, the replacement policy always replaces the contents of the second block that is

examined. However, as in our example, that block may have been more recently referenced than the first

block. Now consider the CA-Cache: if a miss occurs and the rehash bit for the first block is set, we know

the first block contains older data than the second block. If the data in the first block was more recent, it

would have been swapped to the other block by some previous reference, setting the rehash bit. If the rehash

bit is set, the CA-Cache replacement policy replaces the value in the first block. If the rehash bit is not set,

the contents of the first block are transferred to the second block, and the fetched data is stored in the first

block. Our detailed example illustrates a situation where the CA-Cache does not implement a true LRU

replacement algorithm; however, the CA-Cache does have a miss rate close to that of true LRU replacement.

2.2 Dynamically Ordered Cache Probes

In contrast with the HR-Cache and CA-cache schemes, other researchers have developed schemes that use a

dynamic probe ordering and do not rely on special cache allocation or re-allocation policies. Chang et al [4]

proposed a novel organization for a multi-chip 32-way set-associative cache. Their study, and an earlier

5

000_10

001_10

4

5

6

7

010_10

0

1

2

3

000_10

4

5

6

7

Bank 0

Bank 1

0

1

2

3

000_10

0

1

2

3

001_10

4

5

6

72nd

Reference
010_10

Reference
001_10

2nd

MISS MISS

1ST

1ST

(a) Hash-Rehash Cache

010_10

0

1

2

3

000_10

4

5

6

7

✔

000_10

0

1

2

3

001_10

4

5

6

7

Bank 1

Bank 0

2nd

Rehash
Bit

010_10

0

1

2

3

001_10

4

5

6

7

Reference
010_10

Reference
001_10

1ST

Rehash
Bit

MISS MISS

1ST Not
Examined

(b) Column Associative Cache

MRU

010_10

0

1

2

3

001_10

4

5

6

7

✔000_10

0

1

2

3

001_10

4

5

6

7

✔

Bank 1

Bank 0

2nd

MRU

010_10

0

1

2

3

001_10

4

5

6

7

✔

Reference
010_10

Reference
001_10

2nd

MISS

1ST

1ST

(c) MRU Cache

Figure 1: Cache Organizations

6

study by So and Rechtschaffen [11], found that most requests reference the most recently used blocks. Each

set of cache blocks had associated “most recently used” (MRU) information. When accessing a cache set,

the cache provided the block selected by the MRU information. Concurrently, the tags from the different

chips were gathered and compared; if the wrong cache item was used, it was detected and the proper item

was provided on the next cycle. This organization allowed most references (85%-95%) to complete in a

single cycle, and reduced the cycle time of their multi-chip implementation by 30-35%.

Kessler et al [8] proposed a similar organization. Rather than swap the cache locations like the HR-Cache

and CA-Cache, each pair of cache blocks uses an “MRU bit” to indicate the most recently used block. When

searching for data, the block indicated by the MRU bit is probed first. If the data is not found, the second

block is probed; if the data is found, the MRU bit is inverted, indicating the second block is more recently

used than the first block. If the data is not found, the least recently used block, indicated by the MRU bit, is

replaced. The MRU bit is used to implement an LRU replacement policy, so the MRU-Cache has the same

miss rate as a two-way set-associative cache. The implementation of MRU two-way associative caches is

shown in Figure 1(c). In that diagram, we show the MRU bits as check-marks to the side of each cache

block. In practice, pairs of cache lines, such as lines two and six, share a single MRU bit. When 010 10

is referenced, block six, the most recently referenced block, is examined first. Since the data is not found,

block two is examined. The missing data is fetched from memory and placed in block two. The MRU bit

is set to indicate that block two is now more recent than block six. On the next reference, block two is

examined first, followed by block six. The MRU bit is updated to indicate that block six was more recently

used.

The design in [8] focused on large, secondary caches, and the lower cycle time seen by [4] did not

apply. In the design by Kessler et al, the MRU bit must be fetched prior to accessing the cache contents to

determine what cache line should be examined first, lengthening the cache access cycle, even if pipelined.

It was felt this cache organization was appropriate for large secondary caches, because searches would be

infrequent and the additional overhead for fetching the MRU bit could be speculatively overlapped with the

first level access.

3 The Predictive Sequential Associative Cache

Both the HR-Cache and the CA-Cache require that entire cache lines be exchanged and have a worse miss

rate than a cache with an LRU replacement strategy. In most first-level cache designs, the MRU-Cache

requires a slightly longer cycle time to access the MRU prediction information. Furthermore, both the HR-

Cache and MRU-Cache implementations suffer from excessive searching in certain situations. For example,

assume the address references used in the previous examples have completed, and the processor continues

requesting the alternating addresses 010 10; 001 10; : : : ; 010 10; 001 10. In the HR-Cache, address 000 10

will continue to be moved between indices two and six, and each reference will be a miss; in the CA-Cache,

7

these references do not result in further misses. In the MRU-Cache, each reference examines both indices

two and six in the cache, because the pairs of blocks in the MRU-Cache share an MRU bit. The MRU

information “flip-flops” on each reference, insuring that the next access requires two cycles.

These problems are addressed by our proposed cache design, the Predictive Sequential Associative

Cache (PSA-Cache), shown in Figure 1(d). We separate the mechanism used to select probe order from the

mechanism used to guide replacement. Each pair of cache blocks uses an MRU entry to implement LRU

replacement. The PSA-Cache has the same miss rate as the MRU-cache and all other LRU-replacement

caches. We use another table, the steering bit table (SBT), shown on the left side of Figure 1(d) to guide

data access. When fetching a cache line entry, the effective address is used to index into the actual cache.

Likewise, a prediction index is used to select a particular steering bit. As Kessler et al [8] indicated, the

steering bits need to be accessed prior to the cache access. If we use the effective address to select a steering

bit, this may lengthen the cache access time – arguably, if the effective address were available earlier, cache

accesses would be initiated at an earlier pipeline stage. However, we do not need to use the effective fetch

address to select a steering bit. We examined a number of sources for prediction indices, and present several

very accurate sources that can be provided by earlier pipeline stages, insuring the steering bit is available

when the cache is accessed.

Separating the replacement mechanism from the prediction mechanism offers immediate benefits, even

for the MRU-Cache design proposed by Kessler et al. Consider an 8KByte cache split into two banks with

128 pairs of 32 byte lines. The MRU-Cache would use a 128-bit table to indicate the most recently used

block in each pair. The PSA-Cache also uses a 128-bit table to implement an LRU replacement policy;

however, a much larger table can be used to determine the block that should be probed first when searching

for an address. Each entry “steers” references to the appropriate cache block. If a 256-entry SBT was used,

the “flip-flop” example would encounter no penalty in the PSA-cache if different steering bit entries are used.

In certain configurations, it is also useful to use a rehash bit in the PSA-Cache. As in the CA-Cache, we use

this bit to avoid examining another line when that line can not possibly contain the requested address, but we

do not use the bit to guide the replacement policy, since the MRU bit provides more accurate information.

Figure 2 shows the operation of the PSA-Cache, indicating both the MRU and rehash bits for each

block. The rehash bit for 000 10 is clear because the 000 10 would be found on the first probe; likewise the

rehash bit for line six is clear because 001 10 would also be found on the first probe. Figure 2(a) shows the

reference to address 010 10. Prior to the access, a prediction source was mapped to the third entry in the

steering bit table. That entry indicates the first block of the set, i.e., index two, should be probed first. Index

two is examined first, and the rehash bit for line six is read concurrently. Index two does not contain 010 10.

The rehash bit indicates the contents of block six is not a rehashed entry, and there is no point in examining

index six. The referenced address is not in the cache, and is fetched from memory. The MRU bit indicates

that the block at index six was more recently used than that at index two, so the contents of index two are

replaced with 010 10. As the block is replaced, the steering bit used to locate 010 10 is trained, indicating

8

0

1

0

0

1

0

1

1

Pr
ed

ic
tio

n
A

dd
re

ss

Steering Bit Table

010_10

0

1

2

3

001_10

4

5

6

7

✔

Bank 1

Bank 0

Steering
Bit Is

Updated

010_10

0

1

2

3

001_10

4

5

6

7

✔

Reference
001_10

1ST

RehashRehash MRUMRU

(a) First Reference in PSA Cache

0

1

0

0

1

0

1

1

Prediction Address

Steering Bit Table

010_10

0

1

2

3

001_10

4

5

6

7

✔000_10

0

1

2

3

001_10

4

5

6

7

✔

Bank 1

Bank 0

Reference
010_10

MISS

1ST

MRU Rehash

Not
Examined

RehashMRU

(b) Second Reference in PSA Cache

Figure 2: Diagram of the PSA Cache

9

IF DE READ EXEC MEM

Register Numbers,
Relative Offset,
Instruction Properties

Register Contents

Effective Address

Figure 3: Pipeline Stages Showing When Prediction Sources Are Available

that bank zero of the set should be probed first on the next reference to 010 10. The prediction source

selects the seventh steering bit when 001 10 is referenced. The requested address is found at index six, and

the MRU bit is changed to indicate that index six is more recently used than index two. If the processor

continues requesting the alternating addresses 010 10; 001 10; : : : ; 010 10; 001 10, each reference will be

found in the first probe.

In summary, we use three data structures to implement three cache mechanisms. The Steering Bit Table

determines which block in a set should be probed first, increasing the number of references found during

the first probe. The rehash bits reduce the number of probes, allowing misses to be started earlier or simply

reducing the time the cache is busy, which is important for architectures that issue multiple loads per cycle.

The MRU bits provide a true LRU replacement policy, improving the overall miss rate.

3.1 Prediction Sources

To illustrate some of the specific prediction sources available, Figure 3 shows a simple pipeline and the

information available at each stage. We assume a load-store architecture with register-relative addressing –

all memory references are of the form M [R

b

+ Offset]. At instruction fetch (4 cycles before the memory

access), we know the instruction address. Following decode (3 cycles before the memory access), we know

the register number (b) and the address offset (Offset). After the register file has been read (1 cycle prior

to the memory access), we know the contents of R
b

, and after the execution stage (right at memory access

time), we know the effective address, R
b

+ Offset. In addition we can use the same information from prior

instructions. We examined the following prediction sources:

1. Effective Address. The effective address was the most accurate prediction source; however, there may
not be enough time in some designs to compute the effective address and index the steering bits before

10

Offset

<5>

Rb

<5>

SBT Index

Offset

<5><5>
b

SBT Index

(a) SBT Index for XOR-5-5 (b) SBT Index for RegNum

Figure 4: Combining Prediction Sources for Steering Bit Table Index

the cache access completes. When using the effective address, the PSA-Cache is a simple extension
to the MRU-Cache with improved performance from a larger steering bit table.

2. Register Contents and Offset. Computing the effective address involves a full add. Functions without
carry propagation take less time in some designs, thus making the results available in time to index
the steering bit table before the cache access completes. We used the exclusive-or of the contents and
offset to form a prediction address.

3. Register Number and Offset. We can combine the register number and the offset several cycles before
the cache access. In general, this provides good performance with small SBTs, but the performance
improvements dropped off for larger tables. There were three reasons. We were using the register
number and not the register contents. Register assignments, particularly at procedure calls, were not
reflected in the prediction information. Also, our target architecture has 32 integer registers, and most
values for Offset were less than 96; some combinations of the register number and offset did not
spread references enough to make use of the entire SBT. Lastly, some registers were used more than
others; in most programs, � 40% of all references were relative to the stack pointer.

We included the stack depth to reduce interference between register usage in different procedures.
We further improved this by including the address of the current procedure. Some of this information
is already retained by many machines to implement a return-address stack [7], a branch prediction
mechanism used to predict procedure return addresses. We also tried separate steering bit tables for
certain registers.

4. Instruction and Previous References. We also used the address of the instruction issuing the reference
and variants of the previous cache reference. These prediction sources were less effective than the
others, and are not discussed further.

We examine four configurations of the PSA-Cache in more detail: the “Eff”, “XOR-5-5”, “RegNum”

and “Proc” caches. We simulated an 8KByte cache with 32 byte lines. Each cache reference is of the form

M [R

b

+ offset], and the cache contains 256 32-byte lines. The lines are divided into 128 sets. All the cache

models use (R
b

+ offset) >> 5, or R
b

+ offset shifted right five bits, to index into the MRU table. The SBT

entry determines the first bank to be examined. Each cache uses a 1024-entry SBT table.

The “Eff” configuration uses (R

b

+ offset) � 5 to index both the cache and the SBT table. This

configuration illustrates the benefits of changing the MRU-Cache to use a larger steering bit table. Figure 4

11

illustrates how the indices for XOR-5-5 and RegNum are formed. The “XOR-5-5” configuration uses

(R

b

L

offset) � 5), where
L

is a bit-wise exclusive or, to index the SBT. In some designs, there may

be enough time to compute the exclusive-or and index the small SBT table before the effective address is

computed, while the arithmetic sum (R

b

+ offset) � 5 would take longer to complete. The “RegNum”

model forms the prediction address by concatenating the register number and the lower five bits of the

offset ((b� 5)j((offset� 5)&0x1F)). The “Proc” configuration extends “RegNum” using an exclusive

or of the destination address from the previous procedure call. Steering-bits resemble a single-bit branch

prediction table; each entry contains a single bit and has no associated tag. Thus, for an 8KByte cache

with 32 byte lines, a 1024-entry Steering Bit Table (SBT) represents � 1% overhead. The actual overhead

depends on the mechanism and design of the SBT.

4 Experimental Design and Performance Metrics

We compared the accuracy of the different prediction sources and the performance of the different cache

organizations using trace-driven simulation. We collected information from 26 C and Fortran programs. We

instrumented the programs from the SPEC92 benchmark suite and other programs, including many from the

Perfect Club [3]. We used ATOM [12] to instrument the programs. Due to the structure of ATOM, we did

not need to record traces and traced the full execution of each program. The programs were compiled on a

DEC 3000-400 using the Alpha AXP-21064 processor and either the DEC C or FORTRAN compilers. Most

programs were compiled using the standard OSF/1 V1.2 operating system. All programs were compiled

with standard optimization (-O).

In this paper, we are primarily concerned with first-level data cache references, because data references

are difficult to predict, and first level caches must be both fast and have low miss rates. Furthermore,

instruction cache misses can be reduced using a number of software techniques [9, 10] and instruction

references are usually very predictable. Thus, even the “Eff” technique described below can be used with

instruction caches. We examined an 8 KByte cache with 32-byte cache lines. We assume the cache uses

a write-around or no-store-allocate write policy, since earlier work by Jouppi [6] found this to be more

effective than a fetch-on-write or store-allocate policy. The study by Jouppi found an overall lower miss

rate using write-around. Our simulations show a slightly higher miss rate, particularly for writes.

5 Trace-Driven Performance Comparison

The cache miss rate is normally used to compare the performance of different cache organizations. However,

we have seen that the access time for direct-mapped caches and traditional set-associative caches differ by

as much as 50%, and this increased access time is not reflected in the miss rate. Furthermore, the traditional

two-way set-associative cache, the MRU-Cache, and the PSA-Cache all use an LRU replacement algorithm,

12

Program # of Instructions % of Loads % of Stores

APS 1,490,454,770 24.70 11.80
CSS 379,319,722 31.76 9.07
LGS 955,807,677 19.95 10.51
LWS 14,183,394,882 22.96 9.47
NAS 3,603,798,937 22.68 9.07
OCS 5,187,329,629 21.67 21.81
TFS 1,694,450,064 26.55 11.38
TIS 1,722,430,820 26.91 13.11
WSS 5,422,412,141 22.66 8.89
alvinn 5,240,969,586 26.95 9.30
dodoc 1,149,864,756 29.32 7.02
ear 17,005,801,014 22.09 12.67
fpppp 4,333,190,877 35.31 12.64
hydro2d 5,682,546,752 24.22 8.30
mdljsp2 3,343,833,266 22.53 6.52
nasa7 6,128,388,651 28.86 11.12
ora 6,036,097,925 22.26 9.75
spice 16,148,172,565 32.61 4.08
su2cor 4,776,762,363 22.39 10.21
wave5 3,554,909,341 21.33 13.39
compress 92,629,658 26.38 9.47
eqntott 1,810,540,418 12.77 1.29
espresso 513,008,174 21.57 5.08
gcc 143,737,915 23.89 11.74
li 1,355,059,387 28.09 14.65
sc 1,450,134,411 13.45 5.75

Table 1: Measured attributes of traced programs showing the number of instructions executed during
execution and the percentage of loads and stores.

13

and have identical miss rates. However, the PSA-Cache and MRU-Cache may probe the cache several times

to achieve that same miss rate, and a “probe rate” may be a more appropriate metric. Furthermore, when

comparing the MRU-Cache and PSA-Cache to the HR-Cache and CA-Cache, we must also include the

differences in miss rates. Finally, when comparing any of these methods to a two-way associative cache,

we should include the difference in cycle time between an associative cache and the direct mapped caches

used to implement the sequential associative caches.

We decided to compare the techniques using a timing model that separates the latency encountered by

the pipeline and the time the cache is busy. Agarwal [2] used a simple timing model to demonstrate the

performance of the CA-Cache. His model provides an average access time and can be used to compare all

cache organizations that have the same cycle time. However, Agarwal’s timing model did not distinguish

between loads and stores. Conceptually, a processor pipeline must wait until a load is resolved, but need

not wait for a store to finish – in practice, several loads and stores may be waiting to be resolved. Even if

the processor is able to continue to issue loads after a miss, the pending miss may interfere with the loads

that hit in the cache.

5.1 Performance Metrics

We define the cache access latency to be the average time the processor must wait for a memory reference

to be resolved. Similarly, the average cache occupancy is the time the cache is busy for each reference. In

general, a smaller access latency and smaller occupancy is preferred. If the latency is high, the processor

must stall, waiting for data. If the occupancy is high, there is a greater chance outstanding references will

conflict with newly issued references. As we show later, most of the cache designs have the same access

latency, and are differentiated by their cache occupancy. It is difficult to precisely quantify the performance

resulting from a particular access latency and occupancy, because system performance depends on instruction

scheduling, the number of out-standing references, the depth of write-buffers and a number of other features

determined by a particular system. However, latency and occupancy, like miss rates, can be used to narrow

the design space prior to system-level simulation.

Table 2 defines certain parameters used in our timing model, and Table 3 shows how we calculate access

latency and occupancy. We record different hit rates for loads and stores because loads and stores are treated

differently, although that distinction is not made explicit in the timing equations to simplify the notation.

The sequential associative caches further divide the hit rate H into hits that are detected on the first cache

probe, H
f

, and those detected on the second probe H
s

. The CA-Cache and PSA-Cache use the rehash bit

to avoid a second cache probe for some cache misses. In the sequential caches, the miss rate M is divided

into M
f

, denoting the misses detected on the first cache probe, and M
s

denoting the misses detected on the

second cache probe. The HR-Cache and MRU-Cache always probe the cache twice on misses, and M
f

is

always zero for these caches.

The latency for a cache miss, or miss penalty, is T
M

cycles. This includes the time to request the data

14

T

P

Time to probe the cache following the first probe, in cycles. In some designs, this
may be larger than one cycle, but we assume it is one cycle.

T

M

Penalty for cache misses, in cycles. This includes the time to initiate the cache miss
and receive the data.

T

R

Time to refill a cache line, in cycles. This is the time the cache is busy when a
cache line is refilled. We assume a 32-byte cache line can be refilled in two cycles.

T

NS

Extra time needed if misses can not be squashed. The “Conservative” timing model
assumes T

NS

= T

P

, while the “Optimistic” timing model assumes T
NS

= 0.
T

S

Time needed to swap cache lines in the HR-Cache & CA-Cache.

Table 2: Definition of Terms Used in Timing Equations

Cache Access Latency
Cache Occupancy Time

Direct Load
H + (1 + T

M

)M

H + (1 + T

R

)M

& 2-Way Store
0
H

HR-Cache Load
H

f

+ (1 + T

P

)H

s

+ (1 + T

M

)M

f

+ (1 + T

NS

+ T

M

)M

s

H

f

+(1+T

P

+T

S

)H

s

+(1+T

R

)M

f

+(1+T

P

+T

S

+T

R

)M

s

& CA-Cache Store
0
H

f

+ (1 + T

P

+ T

S

)H

s

+M

f

+ (1 + T

P

)M

s

MRU Load
H

f

+ (1 + T

P

)H

s

+ (1 + T

M

)M

f

+ (1 + T

NS

+ T

M

)M

s

H

f

+ (1 + T

P

)H

s

+ (1 + T

R

)M

f

+ (1 + T

P

+ T

R

)M

s

& PSA Store
0
H

f

+ (1 + T

P

)H

s

+M

f

+ (1 + T

P

)M

s

Table 3: Timing Equations Used To Compare Performance. In the HR-Cache and MRU-Cache, all misses
take two cycles, meaning that M

f

= 0 and M
s

= M . The raw cache access time is a single cycle. We
assume T

P

= 1 and T
S

= 4T
R

� 2.

15

1

1.2

1.4

1.6

1.8

2

2.2

2.4

D
ire

ct

2-
W

ay

R
eh

as
h

C
A

C

M
R

U E
ff

X
O

R
-5

-5

R
eg

N
um

P
ro

c

A
ve

ra
ge

 C
yc

le
s

P
er

 R
ef

er
en

ce Latency (Optimistic)
Latency (Conservative)
Occupancy

Figure 5: Latency and Occupancy for Conservative and Optimistic Configurations. The occupancy is the
same for both the Conservative and Optimistic configurations. Parameters are T

M

= 10; T
R

= 2; T
S

=

4T
R

� 2; T
P

= 1. Cache size is 8KBytes, with 32 byte lines. The values shown are the arithmetic means
averaged over all programs.

16

from lower levels of the memory hierarchy, move it on-chip and load it into the cache. In some cases, a miss

can be initiated speculatively and “squashed” in a later cycle. This reduces the latency for a miss, because

the miss can be initiated a cycle earlier. Our “Conservative” cache timing model does not initiate misses

speculatively, while our “Optimistic” timing model assumes a cache miss can be speculatively initiated

and squashed one cycle later. We use the term T

NS

(“non-squashing”) to reflect the additional time spent

servicing misses if the miss can not be speculatively initiated.

While the latency determines how long the processor must wait for references to be resolved, the

occupancy determines how long the cache is busy. Although the miss penalty is T
M

cycles, the cache is

only busy when the cache lines are being reloaded, or T
R

cycles. The HR-Cache and CA-Cache exchange

cache lines to improve the average access latency and we assume it takes T
S

cycles to swap two cache lines.

Agarwal’s timing model [2] combines the notion of latency and occupancy, and argued that T
S

should be a

single cycle. We feel a larger value is more reasonable, particularly for large cache lines, such as 32 or 128

bytes. There would be increased wiring density needed to exchange two complete cache lines in a single

cycle, possibly increasing the cycle time. If we can reload half a cache line in a single cycle (i.e., T
R

= 2), it

could be argued that we could exchange a cache line in 4T
R

� 2 cycles, because two half-lines have already

been read by the time we determine the lines must be swapped.

Table 3 shows the timing model. Stores do not stall the processor, and have a latency of zero. Consider

the load latency for the CA-Cache. If the first probe results in a hit, a cycle was spent. If the second probe

is a hit, the pipeline was stalled two cycles. At this point, the cache lines must be swapped, but the pipeline

does not wait for this to finish. However, the cache lines must be swapped before the next cache reference

begins. If a reference misses in the first bank, and the rehash bit indicates that it can not hit in the second

bank, the pipeline stalls for 1 + T

M

cycles. If the second bank must be examined, the processor stalls

for 1 + T

M

cycles, and may stall for an additional T
NS

cycles if the miss can not be started early. In the

CA-Cache, the cache is occupied while the cache is probed, the cache lines are swapped or cache lines are

refilled.

5.2 Performance Comparison

The graph in Figure 5 summarizes the latency and occupancy, while Tables 4, 5 and 6 provide more

detailed information. In each configuration, the cache miss penalty is ten cycles (T
M

= 10), it takes two

issues to refill a line (T
R

= 2) and six cycles to swap cache lines (T
S

= 4T
R

� 2). Each cache is 8 KBytes

with 32 byte lines. The latency is given for both the conservative timing model, where cache misses can

not be speculatively initiated, and the optimistic model, where they can. The occupancy does not depend

on the ability to speculatively initiate cache misses, and is the same for both timing models. Latency and

occupancy are measured in average cycles per reference. Although Tables 4 and 5 show the latency and

occupancy can be less than one, the averages shown in Figure 5 are not, and the vertical axis is bounded by

one.

17

PSA Cache
Program Direct 2-Way Rehash CAC MRU Eff XOR-5-5 RegNum Proc

APS 1.24 1.13 1.31 1.13 1.17 1.13 1.17 1.20 1.19
CSS 1.44 1.17 1.39 1.21 1.23 1.18 1.23 1.27 1.24
LGS 0.88 0.81 0.86 0.83 0.82 0.81 0.86 0.89 0.87
LWS 1.11 0.91 1.11 0.94 0.95 0.91 0.97 0.98 0.98
NAS 1.43 1.20 1.39 1.24 1.24 1.20 1.22 1.23 1.22
OCS 1.36 1.30 1.35 1.32 1.31 1.30 1.31 1.33 1.33
SDS 1.01 1.04 1.17 1.02 1.06 1.04 1.10 1.11 1.11
TFS 1.30 1.25 1.29 1.26 1.26 1.25 1.29 1.29 1.30
TIS 1.54 1.30 1.73 1.32 1.40 1.30 1.36 1.49 1.52
WSS 1.48 1.38 1.51 1.39 1.42 1.39 1.46 1.50 1.52
Perf Club Mean 1.28 1.15 1.31 1.17 1.19 1.15 1.20 1.23 1.23
Perf Club StdDev 0.22 0.18 0.23 0.18 0.19 0.18 0.18 0.20 0.21
alvinn 1.30 1.22 1.33 1.22 1.24 1.22 1.22 1.23 1.23
doduc 1.70 1.37 1.71 1.41 1.45 1.38 1.42 1.45 1.43
ear 0.88 0.79 1.07 0.80 0.83 0.79 0.80 0.81 0.81
fpppp 1.23 0.90 1.16 0.94 0.96 0.90 1.03 1.07 1.02
hydro2d 2.12 1.96 2.11 2.00 1.99 1.97 2.05 2.02 2.05
mdljsp2 1.14 1.01 1.27 1.03 1.06 1.02 1.03 1.06 1.06
nasa7 3.86 3.69 3.80 3.72 3.78 3.70 3.76 3.75 3.76
ora 0.96 0.70 0.79 0.72 0.72 0.70 0.74 0.75 0.72
spice 3.58 3.28 3.60 3.33 3.38 3.29 3.35 3.43 3.42
su2cor 4.18 4.14 4.34 4.13 4.18 4.14 4.19 4.22 4.20
swm256 2.52 3.03 5.29 2.92 3.32 3.03 3.08 3.14 3.14
tomcatv 3.58 3.83 5.92 3.95 4.12 3.83 3.89 3.94 3.98
wave5 1.30 1.15 1.57 1.15 1.22 1.15 1.17 1.26 1.25
SPECfp Mean 2.18 2.08 2.61 2.10 2.17 2.09 2.13 2.16 2.16
SPECfp StdDev 1.22 1.31 1.75 1.31 1.36 1.31 1.32 1.32 1.33
compress 2.22 1.86 1.98 1.92 1.90 1.86 1.86 1.91 1.89
eqntott 1.49 1.33 1.48 1.35 1.36 1.33 1.34 1.36 1.35
espresso 1.36 1.25 1.33 1.26 1.28 1.25 1.25 1.31 1.30
gcc 1.32 1.08 1.31 1.12 1.13 1.08 1.13 1.19 1.16
li 1.34 0.99 1.23 1.03 1.05 0.99 1.06 1.13 1.09
sc 2.16 1.99 2.23 2.02 2.03 1.99 2.00 2.06 2.03
SPECint Mean 1.65 1.41 1.59 1.45 1.46 1.42 1.44 1.49 1.47
SPECint StdDev 0.43 0.41 0.41 0.42 0.41 0.41 0.39 0.39 0.39

Overall Mean 1.76 1.62 1.95 1.64 1.68 1.63 1.67 1.70 1.69
Overall StdDev 0.92 0.98 1.32 0.98 1.02 0.98 0.98 0.99 0.99

Table 4: Cache Access Latency for Optimistic Timing Model with T

M

= 10 Cycles, T
R

= 2 Cycles,
T

S

= 4T
R

� 2 Cycles.

18

PSA Cache
Program Direct 2-Way Rehash CAC MRU Eff XOR-5-5 RegNum Proc

APS 1.24 1.13 1.37 1.17 1.20 1.16 1.20 1.23 1.22
CSS 1.44 1.17 1.45 1.24 1.25 1.19 1.25 1.29 1.26
LGS 0.88 0.81 0.88 0.84 0.83 0.82 0.86 0.89 0.87
LWS 1.11 0.91 1.15 0.96 0.96 0.92 0.98 0.99 0.99
NAS 1.43 1.20 1.46 1.28 1.27 1.23 1.25 1.26 1.25
OCS 1.36 1.30 1.43 1.37 1.37 1.33 1.35 1.37 1.37
SDS 1.01 1.04 1.21 1.03 1.07 1.05 1.11 1.12 1.12
TFS 1.30 1.25 1.35 1.29 1.28 1.27 1.31 1.31 1.32
TIS 1.54 1.30 1.83 1.36 1.42 1.32 1.38 1.51 1.54
WSS 1.48 1.38 1.59 1.43 1.45 1.41 1.49 1.53 1.55
Perf Club Mean 1.28 1.15 1.37 1.19 1.21 1.17 1.22 1.25 1.25
Perf Club StdDev 0.22 0.18 0.26 0.19 0.20 0.19 0.19 0.20 0.22
alvinn 1.30 1.22 1.38 1.24 1.25 1.23 1.23 1.24 1.24
doduc 1.70 1.37 1.80 1.44 1.47 1.40 1.44 1.48 1.45
ear 0.88 0.79 1.11 0.81 0.83 0.79 0.80 0.81 0.81
fpppp 1.23 0.90 1.20 0.95 0.97 0.91 1.04 1.07 1.03
hydro2d 2.12 1.96 2.24 2.07 2.04 2.00 2.09 2.07 2.11
mdljsp2 1.14 1.01 1.32 1.05 1.08 1.02 1.04 1.07 1.07
nasa7 3.86 3.69 4.11 3.91 3.90 3.81 3.88 3.89 3.90
ora 0.96 0.70 0.80 0.72 0.72 0.70 0.74 0.75 0.72
spice 3.58 3.28 3.86 3.48 3.49 3.39 3.46 3.54 3.54
su2cor 4.18 4.14 4.71 4.31 4.36 4.24 4.30 4.37 4.35
swm256 2.52 3.03 5.75 3.03 3.40 3.10 3.15 3.22 3.22
tomcatv 3.58 3.83 6.43 4.12 4.25 3.89 3.99 4.06 4.11
wave5 1.30 1.15 1.67 1.18 1.24 1.17 1.19 1.28 1.27
SPECfp Mean 2.18 2.08 2.80 2.18 2.23 2.13 2.18 2.22 2.22
SPECfp StdDev 1.22 1.31 1.93 1.38 1.42 1.35 1.36 1.38 1.39
compress 2.22 1.86 2.10 2.00 1.96 1.91 1.91 1.96 1.94
eqntott 1.49 1.33 1.53 1.38 1.38 1.35 1.36 1.38 1.37
espresso 1.36 1.25 1.38 1.29 1.30 1.27 1.27 1.33 1.32
gcc 1.32 1.08 1.37 1.15 1.15 1.10 1.15 1.21 1.18
li 1.34 0.99 1.28 1.05 1.06 1.01 1.07 1.15 1.11
sc 2.16 1.99 2.38 2.10 2.09 2.04 2.05 2.11 2.09
SPECint Mean 1.65 1.41 1.67 1.49 1.49 1.44 1.47 1.53 1.50
SPECint StdDev 0.43 0.41 0.45 0.44 0.43 0.43 0.41 0.41 0.41

Overall Mean 1.76 1.62 2.07 1.70 1.73 1.66 1.70 1.74 1.73
Overall StdDev 0.92 0.98 1.45 1.04 1.06 1.01 1.02 1.03 1.04

Table 5: Cache Access Latency for Conservative Timing Model with T
M

= 10 Cycles, T
R

= 2 Cycles,
T

S

= 4T
R

� 2 Cycles.

19

PSA Cache
Program Direct 2-Way Rehash CAC MRU Eff XOR-5-5 RegNum Proc

APS 1.11 1.09 1.78 1.54 1.18 1.14 1.19 1.25 1.23
CSS 1.13 1.08 1.80 1.52 1.17 1.11 1.18 1.23 1.20
LGS 1.05 1.03 1.33 1.22 1.09 1.06 1.14 1.18 1.14
LWS 1.08 1.04 1.58 1.36 1.11 1.06 1.17 1.18 1.17
NAS 1.14 1.10 1.82 1.55 1.19 1.14 1.19 1.20 1.17
OCS 1.17 1.16 2.00 1.71 1.31 1.22 1.27 1.31 1.32
SDS 1.06 1.06 1.44 1.22 1.11 1.08 1.17 1.19 1.20
TFS 1.12 1.11 1.70 1.48 1.20 1.18 1.25 1.26 1.27
TIS 1.17 1.13 2.20 1.66 1.25 1.15 1.24 1.39 1.41
WSS 1.15 1.13 1.93 1.61 1.24 1.18 1.30 1.35 1.37
Perf Club Mean 1.12 1.09 1.76 1.49 1.19 1.13 1.21 1.25 1.25
Perf Club StdDev 0.05 0.04 0.26 0.17 0.07 0.05 0.05 0.07 0.09
alvinn 1.11 1.09 1.62 1.37 1.13 1.11 1.11 1.13 1.12
doduc 1.18 1.11 2.19 1.75 1.26 1.17 1.23 1.27 1.23
ear 1.05 1.03 1.52 1.22 1.10 1.04 1.06 1.08 1.07
fpppp 1.10 1.03 1.73 1.46 1.15 1.07 1.23 1.28 1.23
hydro2d 1.28 1.24 2.50 1.97 1.38 1.31 1.45 1.43 1.46
mdljsp2 1.07 1.05 1.56 1.27 1.12 1.06 1.08 1.11 1.10
nasa7 1.63 1.59 4.24 3.37 1.86 1.75 1.84 1.85 1.85
ora 1.05 1.00 1.28 1.18 1.03 1.00 1.06 1.08 1.02
spice 1.54 1.48 3.80 2.99 1.70 1.60 1.67 1.76 1.75
su2cor 1.70 1.69 4.70 3.42 2.05 1.91 1.98 2.07 2.04
swm256 1.36 1.46 5.41 2.55 1.94 1.56 1.65 1.73 1.73
tomcatv 1.56 1.61 5.92 3.14 2.16 1.71 1.84 1.91 1.96
wave5 1.14 1.11 2.23 1.65 1.30 1.20 1.24 1.35 1.34
SPECfp Mean 1.29 1.27 2.98 2.10 1.48 1.35 1.42 1.46 1.45
SPECfp StdDev 0.24 0.26 1.62 0.87 0.41 0.32 0.34 0.35 0.36
compress 1.30 1.22 2.38 2.05 1.34 1.28 1.28 1.35 1.32
eqntott 1.12 1.08 1.63 1.41 1.14 1.11 1.13 1.15 1.13
espresso 1.11 1.09 1.60 1.41 1.16 1.12 1.13 1.20 1.18
gcc 1.13 1.08 1.87 1.55 1.20 1.13 1.21 1.29 1.24
li 1.14 1.07 1.83 1.53 1.17 1.10 1.20 1.31 1.26
sc 1.29 1.26 2.68 2.09 1.44 1.38 1.40 1.49 1.45
SPECint Mean 1.18 1.13 2.00 1.67 1.24 1.19 1.22 1.30 1.27
SPECint StdDev 0.09 0.08 0.44 0.31 0.12 0.12 0.10 0.12 0.11

Overall Mean 1.21 1.18 2.35 1.80 1.33 1.24 1.31 1.36 1.34
Overall StdDev 0.18 0.19 1.23 0.66 0.31 0.24 0.25 0.26 0.27

Table 6: Average Cache Occupancy with T
M

= 10 Cycles, T
R

= 2 Cycles, T
S

= 4T
R

� 2 Cycles. The
Cache Occupancy is the same for the the Conservative (T

NS

= 1) and Optimistic (T
NS

= 0) models.

20

In general, the latency for the associative caches are � 5� 10% smaller than that of the direct mapped

cache; exact values can be found in the tables. It is important to understand that this paper is not comparing

the effectiveness of direct vs. associative caches; we assume that associative caches are desired, and an

efficient implementation technique is needed. In our performance comparison, we examined caches with a

small miss penalty, T
M

= 10, because we feel the PSA-Cache is appropriate for first level caches. As the

miss penalty increases, all two-way associative caches further reduce the latency, due to the reduce miss rate.

The access time for a two-way associative cache depends on the cache size and a number of other factors.

As mentioned, the access time for a two-way associative cache is 1.51, 1.46 and 1.40 times longer than the

access time for a direct mapped cache for 8KB, 16KB and 32KB caches, respectively. It is incorrect to

simply scale the cycles per memory reference show in Tables 4, 5 and 6 by these values, since the data cache

access time typically limits the system cycle time and has a much broader impact on system performance.

For example, assume we design a system using an 8KByte cache with a 3 nanosecond clock. Table 4

would imply that a two-way set associative cache would lower the average cycles per memory reference by

10-15%, by reducing the miss rate. However, such a cache would also be 1.51 times slower, with a 4.53ns

cycle time. By comparison, the sequential cache configurations shown in Table 4 maintain the same 3ns

cycle time, and reduce the average cycles per reference.

The latencies for most of the two-way associative caches are almost identical; this is not surprising, since

the equations for latency in Table 3 are identical for the HR, CA, MRU and PSA caches. Any difference

in the latency arises from different hit rates, and the fraction of references resolved on the first or second

cycle. Only the HR-Cache has a notably higher miss rate. Table 4 demonstrates several points also seen

in the remaining tables. First, for some programs (swm256 and tomcatv), two-way set-associativity

increases the miss rate. For the remaining programs, the ideal two-way set associative cache has the best

performance, followed by the PSA-Cache using the “Eff” prediction address; however, this configuration

simply extends the MRU-Cache to use a larger table of prediction bits, and it may not be possible to use the

effective address to index a table of steering bits and access the data in a single cycle. However, the “Eff”

column demonstrates how to improve the MRU-Cache design of Kessler et al for the domains considered

in [8]. The next most effective configuration is “XOR-5-5,” followed by the CA-Cache. The “XOR-5-5”

configuration requires an exclusive-or of the contents of the register and offset before the SBT is accessed;

this may not be possible in some designs. However, the “Proc” design provides almost equal performance

with considerably more flexible timing constraints. The prediction sources for the “Proc” configuration are

available immediately after the instruction is decoded.

In Table 6, the direct and traditional two-way cache have the lowest occupancy; this is understandable,

because all cache operations either take one cycle (hit) or 1+ T

R

cycles (miss). In the CA-Cache and PSA-

Cache, rehash bits are used to avoid examining the second half of the cache in some situations. Agarwal [2]

used the rehash bit to reduce the latency by initiating misses one cycle earlier. In our “Optimistic” timing

model, the rehash bit has no effect on latency because misses are always initiated early, but rehash bits

21

influence occupancy in all configurations. There is still a notable difference between the “Optimistic”

and “Conservative” timing model, even when the rehash bits are used, indicating that the speculative miss

initiation is useful even when the rehash bit can not avoid probing the cache a second time.

We feel that occupancy is an important metric, because it determines how quickly memory references,

both loads and stores, can be issued without contention in the cache. Occupancy directly affects cache

latency, but is highly dependent on machine and system architectures and instruction scheduling.

6 Conclusions

In this paper, we have primarily focused on the Predictive Sequential Associative Cache as a mechanism to

implement two-way associative on-chip caches. We proposed two metrics, latency and occupancy, suitable

for comparing associative cache designs. Variants of the PSA-Cache have better performance, in terms

of latency and occupancy, than other proposed designs. We feel the PSA-Cache variants are easier to

implement than designs that exchange cache lines, particularly for larger cache lines.

Our simultation study showed that all the techniques had comparable latency, with variants of the PSA-

Cache having the lowest latency. The PSA-Cache also had the lowest occupancy. The “Eff” design has the

best performance, but the “XOR-5-5” may be easier to implement.

There are a number of other design criteria not immediately evident from our performance metrics.

First, the PSA-Cache may have fewer power requirements than other caches since a single bank is probed.

Furthermore, since the PSA-Cache is divided into two banks that can be operated independently, it may be

possible to support multiple references without dual-porting the banks. A similar argument can be made

for the CA-Cache, but it would require extensive book-keeping to maintain correctness while blocks are

exchanged. Lastly, the PSA-Cache mechanism may also be appropriate for larger, secondary caches directly

controlled by the processor. The Steering Bit Table can be small, and implemented on the processor, while

the MRU Table, cache tags and data can be implemented off-chip.

Acknowledgements

We would like to thank Alan Eustace and Amitabh Srivastava for developing ATOM. Brad Calder was

supported by an ARPA Fellowship in High Performance Computing administered by the Institute for

Advanced Computer Studies, University of Maryland This work was funded in part by NSF grant No. ASC-

9217394, NSF grant No. CCR-9404669, ARPA contract ARMY DABT63-94-C-0029 and a software grant

from Digital Equipment Corp.

22

References

[1] Anant Agarwal, John Hennesy, and Mark Horowitz. Cache performance of operating systems and

multiprogramming. ACM Transactions on Computer Systems, 6:393–431, November 1988.

[2] Anant Agarwal and Steven D. Pudar. Column-associative caches: A technique for reducing the

miss rate of direct mapped caches. In 20th Annual Annual International Symposium on Computer

Architecture, SIGARCH Newsletter, pages 179–190. IEEE, 1993.

[3] M. Berry. The Perfect Club Benchmarks: Effective performance evaluation of supercomputers. The

International Journal of Supercomputer Applications, 3(3):5–40, Fall 1989.

[4] J. H. Chang, H. Chao, and K. So. Cache design of a sub-micron CMOS System/370. In 14th Annual

Annual International Symposium on Computer Architecture, SIGARCH Newsletter, pages 208–213.

IEEE, June 1987.

[5] Mark Hill. A case for direct-mapped caches. IEEE Computer, 21(12):25–40, December 1988.

[6] Norm Jouppi. Cache write policies and performance. In 20th Annual Annual International Symposium

on Computer Architecture, SIGARCH Newsletter, pages 191–201. IEEE, May 1993.

[7] David R. Kaeli and Philip G. Emma. Branch history table prediction of moving target branches due

to subroutine returns. In 18th Annual Annual International Symposium on Computer Architecture,

SIGARCH Newsletter, pages 34–42. ACM, May 1991.

[8] R. R. Kessler, Richard Jooss, Alvin Lebeck, and Mark D. Hill. Inexpensive implementations of set-

associativity. In 16th Annual Annual International Symposium on Computer Architecture, SIGARCH

Newsletter. IEEE, May 1989.

[9] Scott McFarling. Program optimization for instruction caches. In Proceedings of the 3rd Symposium

on Architectural Support for Programming Languages and Operating Systems, pages 183–191. ACM,

1988.

[10] Wen mei W. Hwu and Pohua P. Chang. Achieving high instruction cache performance with an

optimizing compiler. In 16th Annual Annual International Symposium on Computer Architecture,

SIGARCH Newsletter, pages 242–251. ACM, ACM, 1989.

[11] Kimming So and Rudolph N. Rechtschaffen. Cache operations by MRU change. IEEE Transactions

on Computers, 37(6):700–709, June 1988.

[12] Amitabh Srivastava and Alan Eustace. ATOM: A system for building customized program analy-

sis tools. In Proceedings of the SIGPLAN’94 Conference on Programming Language Design and

Implementation. ACM, 1994.

23

[13] Steven J. E. Wilton and Norman P. Jouppi. An enhanced access and cycle time model for on-chip

caches. Report 93/5, DEC Western Research Lab, 1993.

24

Load Hit Rates for Different Applications
Direct

Program Loads Stores
H

f

H

s

M

f

M

s

H

f

H

s

M

f

M

s

APS 0.62 0.00 0.06 0.00 0.27 0.00 0.05 0.00
CSS 0.71 0.00 0.07 0.00 0.18 0.00 0.04 0.00
LGS 0.63 0.00 0.02 0.00 0.28 0.00 0.07 0.00
LWS 0.67 0.00 0.04 0.00 0.26 0.00 0.03 0.00
NAS 0.64 0.00 0.07 0.00 0.24 0.00 0.05 0.00
OCS 0.41 0.00 0.09 0.00 0.32 0.00 0.18 0.00
SDS 0.70 0.00 0.03 0.00 0.26 0.00 0.02 0.00
TFS 0.64 0.00 0.06 0.00 0.17 0.00 0.13 0.00
TIS 0.59 0.00 0.09 0.00 0.32 0.00 0.01 0.00

WSS 0.64 0.00 0.08 0.00 0.21 0.00 0.08 0.00
alvinn 0.69 0.00 0.06 0.00 0.26 0.00 0.00 0.00
doduc 0.72 0.00 0.09 0.00 0.12 0.00 0.08 0.00

ear 0.61 0.00 0.02 0.00 0.33 0.00 0.03 0.00
fpppp 0.69 0.00 0.05 0.00 0.19 0.00 0.07 0.00

hydro2d 0.61 0.00 0.14 0.00 0.09 0.00 0.17 0.00
mdljsp2 0.74 0.00 0.04 0.00 0.22 0.00 0.01 0.00

nasa7 0.41 0.00 0.31 0.00 0.20 0.00 0.07 0.00
ora 0.67 0.00 0.03 0.00 0.30 0.00 0.01 0.00

spice 0.62 0.00 0.27 0.00 0.09 0.00 0.02 0.00
su2cor 0.34 0.00 0.35 0.00 0.08 0.00 0.23 0.00

swm256 0.56 0.00 0.18 0.00 0.09 0.00 0.17 0.00
tomcatv 0.49 0.00 0.28 0.00 0.11 0.00 0.12 0.00

wave5 0.55 0.00 0.07 0.00 0.21 0.00 0.18 0.00
compress 0.59 0.00 0.15 0.00 0.25 0.00 0.01 0.00

eqntott 0.85 0.00 0.06 0.00 0.08 0.00 0.01 0.00
espresso 0.75 0.00 0.06 0.00 0.16 0.00 0.04 0.00

gcc 0.61 0.00 0.06 0.00 0.25 0.00 0.08 0.00
li 0.59 0.00 0.07 0.00 0.30 0.00 0.04 0.00

sc 0.55 0.00 0.15 0.00 0.14 0.00 0.16 0.00

25

Rehash
Program Loads Stores

H

f

H

s

M

f

M

s

H

f

H

s

M

f

M

s

APS 0.60 0.02 0.00 0.06 0.27 0.01 0.00 0.05
CSS 0.69 0.03 0.00 0.06 0.18 0.01 0.00 0.04
LGS 0.63 0.01 0.00 0.02 0.27 0.00 0.00 0.07
LWS 0.65 0.02 0.00 0.04 0.26 0.01 0.00 0.02
NAS 0.63 0.02 0.00 0.07 0.23 0.00 0.00 0.05
OCS 0.41 0.01 0.00 0.08 0.32 0.00 0.00 0.18
SDS 0.68 0.00 0.00 0.04 0.26 0.00 0.00 0.01
TFS 0.64 0.01 0.00 0.06 0.17 0.00 0.00 0.13
TIS 0.53 0.04 0.00 0.10 0.32 0.00 0.00 0.01

WSS 0.62 0.02 0.00 0.08 0.20 0.01 0.00 0.08
alvinn 0.67 0.01 0.00 0.06 0.26 0.00 0.00 0.00
doduc 0.68 0.04 0.00 0.09 0.12 0.01 0.00 0.06

ear 0.58 0.01 0.00 0.04 0.33 0.01 0.00 0.03
fpppp 0.66 0.03 0.00 0.04 0.18 0.01 0.00 0.07

hydro2d 0.59 0.02 0.00 0.13 0.09 0.00 0.00 0.17
mdljsp2 0.71 0.02 0.00 0.05 0.22 0.00 0.00 0.01

nasa7 0.38 0.04 0.00 0.30 0.20 0.02 0.00 0.06
ora 0.67 0.02 0.00 0.01 0.27 0.00 0.00 0.03

spice 0.57 0.05 0.00 0.27 0.09 0.00 0.00 0.02
su2cor 0.31 0.01 0.00 0.36 0.08 0.02 0.00 0.22

swm256 0.27 0.01 0.00 0.45 0.07 0.00 0.00 0.20
tomcatv 0.25 0.02 0.00 0.51 0.06 0.00 0.00 0.16

wave5 0.50 0.02 0.00 0.09 0.20 0.01 0.00 0.18
compress 0.58 0.04 0.00 0.12 0.25 0.00 0.00 0.01

eqntott 0.84 0.02 0.00 0.06 0.08 0.00 0.00 0.01
espresso 0.74 0.02 0.00 0.05 0.16 0.00 0.00 0.03

gcc 0.58 0.03 0.00 0.06 0.24 0.01 0.00 0.08
li 0.57 0.03 0.00 0.05 0.30 0.01 0.00 0.04

sc 0.53 0.02 0.00 0.15 0.14 0.00 0.00 0.16

26

CAC
Program Loads Stores

H

f

H

s

M

f

M

s

H

f

H

s

M

f

M

s

APS 0.61 0.02 0.01 0.03 0.28 0.01 0.01 0.02
CSS 0.71 0.03 0.02 0.03 0.19 0.01 0.01 0.02
LGS 0.63 0.01 0.01 0.01 0.28 0.00 0.03 0.03
LWS 0.66 0.02 0.01 0.01 0.27 0.01 0.00 0.01
NAS 0.64 0.02 0.02 0.03 0.24 0.00 0.02 0.03
OCS 0.41 0.01 0.03 0.05 0.33 0.00 0.05 0.13
SDS 0.69 0.01 0.01 0.02 0.26 0.00 0.00 0.01
TFS 0.64 0.01 0.02 0.03 0.17 0.00 0.04 0.09
TIS 0.57 0.04 0.03 0.03 0.32 0.00 0.00 0.01

WSS 0.63 0.02 0.03 0.04 0.21 0.01 0.02 0.04
alvinn 0.68 0.01 0.02 0.02 0.26 0.00 0.00 0.00
doduc 0.71 0.04 0.02 0.03 0.12 0.01 0.02 0.03

ear 0.61 0.01 0.01 0.01 0.34 0.01 0.01 0.01
fpppp 0.69 0.03 0.01 0.01 0.20 0.01 0.01 0.04

hydro2d 0.60 0.02 0.05 0.07 0.09 0.00 0.07 0.10
mdljsp2 0.73 0.02 0.01 0.01 0.22 0.00 0.00 0.00

nasa7 0.38 0.04 0.11 0.18 0.21 0.02 0.01 0.04
ora 0.67 0.02 0.00 0.00 0.30 0.00 0.00 0.00

spice 0.59 0.06 0.08 0.15 0.09 0.00 0.01 0.01
su2cor 0.33 0.02 0.16 0.19 0.07 0.02 0.05 0.18

swm256 0.49 0.02 0.11 0.11 0.09 0.01 0.03 0.14
tomcatv 0.43 0.03 0.15 0.17 0.10 0.01 0.04 0.08

wave5 0.54 0.03 0.02 0.03 0.20 0.01 0.07 0.11
compress 0.58 0.04 0.04 0.08 0.25 0.00 0.00 0.01

eqntott 0.85 0.02 0.01 0.03 0.08 0.00 0.00 0.01
espresso 0.75 0.02 0.02 0.03 0.16 0.00 0.01 0.02

gcc 0.60 0.03 0.02 0.03 0.25 0.01 0.02 0.05
li 0.59 0.03 0.01 0.02 0.31 0.01 0.01 0.02

sc 0.55 0.02 0.05 0.08 0.14 0.01 0.03 0.12

27

MRU
Program Loads Stores

H

f

H

s

M

f

M

s

H

f

H

s

M

f

M

s

APS 0.59 0.04 0.02 0.03 0.28 0.01 0.02 0.02
CSS 0.68 0.05 0.02 0.02 0.18 0.01 0.02 0.01
LGS 0.63 0.01 0.01 0.01 0.28 0.01 0.03 0.03
LWS 0.64 0.04 0.01 0.01 0.27 0.01 0.01 0.01
NAS 0.62 0.04 0.02 0.03 0.24 0.01 0.02 0.02
OCS 0.40 0.02 0.02 0.06 0.35 0.00 0.08 0.07
SDS 0.67 0.02 0.02 0.01 0.26 0.00 0.01 0.01
TFS 0.63 0.01 0.03 0.02 0.17 0.00 0.07 0.06
TIS 0.51 0.10 0.04 0.02 0.32 0.00 0.01 0.01

WSS 0.61 0.04 0.04 0.03 0.21 0.01 0.03 0.03
alvinn 0.67 0.03 0.04 0.01 0.26 0.00 0.00 0.00
doduc 0.67 0.08 0.03 0.02 0.12 0.02 0.03 0.03

ear 0.58 0.04 0.01 0.01 0.33 0.02 0.01 0.01
fpppp 0.66 0.06 0.01 0.01 0.19 0.02 0.02 0.03

hydro2d 0.59 0.03 0.08 0.05 0.09 0.00 0.11 0.06
mdljsp2 0.70 0.05 0.01 0.01 0.22 0.00 0.00 0.00

nasa7 0.33 0.09 0.17 0.12 0.21 0.03 0.02 0.02
ora 0.67 0.03 0.00 0.00 0.30 0.01 0.00 0.00

spice 0.55 0.10 0.12 0.12 0.09 0.00 0.01 0.01
su2cor 0.30 0.04 0.17 0.18 0.07 0.02 0.11 0.12

swm256 0.21 0.29 0.15 0.08 0.05 0.04 0.10 0.07
tomcatv 0.18 0.29 0.17 0.13 0.04 0.07 0.06 0.06

wave5 0.49 0.07 0.03 0.02 0.19 0.02 0.10 0.08
compress 0.58 0.05 0.06 0.06 0.25 0.00 0.00 0.00

eqntott 0.83 0.03 0.02 0.02 0.08 0.00 0.00 0.00
espresso 0.74 0.03 0.02 0.03 0.16 0.00 0.01 0.02

gcc 0.58 0.05 0.02 0.02 0.25 0.01 0.04 0.03
li 0.57 0.06 0.01 0.02 0.30 0.02 0.01 0.01

sc 0.53 0.04 0.07 0.06 0.14 0.01 0.08 0.07

28

Eff
Program Loads Stores

H

f

H

s

M

f

M

s

H

f

H

s

M

f

M

s

APS 0.63 0.00 0.02 0.03 0.29 0.00 0.02 0.01
CSS 0.74 0.00 0.02 0.02 0.19 0.00 0.02 0.01
LGS 0.64 0.00 0.01 0.01 0.28 0.00 0.04 0.02
LWS 0.69 0.00 0.01 0.01 0.28 0.00 0.01 0.01
NAS 0.66 0.01 0.02 0.02 0.24 0.00 0.03 0.02
OCS 0.41 0.01 0.05 0.03 0.35 0.00 0.13 0.02
SDS 0.70 0.00 0.02 0.01 0.26 0.00 0.01 0.01
TFS 0.64 0.00 0.03 0.02 0.17 0.00 0.07 0.05
TIS 0.61 0.00 0.04 0.02 0.32 0.00 0.01 0.00

WSS 0.65 0.00 0.04 0.02 0.22 0.00 0.04 0.02
alvinn 0.69 0.00 0.04 0.01 0.26 0.00 0.00 0.00
doduc 0.74 0.01 0.04 0.02 0.13 0.01 0.04 0.02

ear 0.62 0.00 0.01 0.00 0.35 0.00 0.02 0.00
fpppp 0.72 0.00 0.01 0.01 0.22 0.00 0.02 0.03

hydro2d 0.61 0.01 0.10 0.03 0.09 0.00 0.14 0.03
mdljsp2 0.75 0.00 0.02 0.01 0.22 0.00 0.00 0.00

nasa7 0.41 0.02 0.19 0.11 0.22 0.02 0.03 0.01
ora 0.70 0.00 0.00 0.00 0.30 0.00 0.00 0.00

spice 0.64 0.01 0.14 0.10 0.09 0.00 0.01 0.01
su2cor 0.34 0.00 0.25 0.10 0.09 0.00 0.11 0.11

swm256 0.50 0.00 0.16 0.07 0.09 0.00 0.14 0.03
tomcatv 0.47 0.00 0.24 0.07 0.11 0.00 0.08 0.04

wave5 0.56 0.00 0.03 0.02 0.20 0.00 0.11 0.07
compress 0.62 0.00 0.06 0.05 0.25 0.00 0.01 0.00

eqntott 0.86 0.00 0.02 0.02 0.08 0.00 0.01 0.00
espresso 0.76 0.00 0.03 0.01 0.16 0.00 0.02 0.01

gcc 0.63 0.00 0.02 0.02 0.26 0.00 0.04 0.03
li 0.62 0.00 0.02 0.01 0.32 0.00 0.02 0.01

sc 0.57 0.00 0.08 0.05 0.15 0.00 0.08 0.07

29

XOR-5-5
Program Loads Stores

H

f

H

s

M

f

M

s

H

f

H

s

M

f

M

s

APS 0.59 0.04 0.02 0.03 0.27 0.02 0.02 0.01
CSS 0.68 0.05 0.02 0.02 0.17 0.02 0.02 0.01
LGS 0.60 0.04 0.01 0.01 0.25 0.03 0.03 0.03
LWS 0.62 0.06 0.01 0.01 0.23 0.05 0.01 0.01
NAS 0.64 0.03 0.02 0.03 0.22 0.02 0.02 0.02
OCS 0.40 0.02 0.05 0.03 0.34 0.01 0.10 0.05
SDS 0.63 0.06 0.02 0.01 0.23 0.03 0.01 0.01
TFS 0.60 0.04 0.03 0.02 0.16 0.01 0.07 0.06
TIS 0.55 0.06 0.04 0.02 0.29 0.02 0.01 0.00

WSS 0.57 0.08 0.04 0.03 0.19 0.03 0.03 0.03
alvinn 0.69 0.01 0.04 0.01 0.25 0.00 0.00 0.00
doduc 0.70 0.05 0.03 0.02 0.12 0.02 0.03 0.02

ear 0.61 0.01 0.01 0.01 0.34 0.00 0.01 0.01
fpppp 0.60 0.12 0.01 0.01 0.18 0.03 0.02 0.03

hydro2d 0.54 0.09 0.07 0.05 0.08 0.01 0.11 0.06
mdljsp2 0.73 0.02 0.01 0.01 0.22 0.00 0.00 0.00

nasa7 0.36 0.07 0.18 0.12 0.20 0.03 0.02 0.02
ora 0.65 0.04 0.00 0.00 0.28 0.02 0.00 0.00

spice 0.58 0.07 0.13 0.11 0.09 0.00 0.01 0.01
su2cor 0.29 0.05 0.24 0.11 0.08 0.01 0.11 0.12

swm256 0.46 0.05 0.16 0.07 0.09 0.01 0.10 0.07
tomcatv 0.40 0.07 0.21 0.10 0.09 0.02 0.06 0.05

wave5 0.53 0.03 0.03 0.02 0.20 0.01 0.10 0.08
compress 0.62 0.00 0.06 0.05 0.25 0.00 0.00 0.00

eqntott 0.85 0.02 0.02 0.02 0.08 0.01 0.01 0.00
espresso 0.76 0.01 0.03 0.02 0.16 0.00 0.02 0.01

gcc 0.58 0.05 0.02 0.02 0.24 0.02 0.04 0.03
li 0.55 0.07 0.02 0.01 0.28 0.03 0.01 0.01

sc 0.56 0.01 0.08 0.05 0.14 0.01 0.08 0.07

30

RegNum
Program Loads Stores

H

f

H

s

M

f

M

s

H

f

H

s

M

f

M

s

APS 0.56 0.07 0.02 0.03 0.25 0.04 0.02 0.02
CSS 0.64 0.09 0.02 0.02 0.17 0.02 0.02 0.01
LGS 0.56 0.07 0.01 0.01 0.25 0.04 0.03 0.03
LWS 0.61 0.07 0.01 0.01 0.23 0.05 0.01 0.01
NAS 0.63 0.03 0.02 0.03 0.21 0.03 0.02 0.02
OCS 0.39 0.03 0.04 0.04 0.34 0.01 0.08 0.07
SDS 0.63 0.07 0.02 0.01 0.21 0.04 0.01 0.01
TFS 0.60 0.04 0.03 0.02 0.15 0.02 0.06 0.06
TIS 0.42 0.19 0.04 0.02 0.27 0.04 0.01 0.00

WSS 0.53 0.12 0.04 0.03 0.17 0.05 0.03 0.03
alvinn 0.68 0.01 0.03 0.02 0.25 0.00 0.00 0.00
doduc 0.66 0.09 0.03 0.02 0.11 0.02 0.03 0.02

ear 0.60 0.02 0.01 0.01 0.33 0.01 0.01 0.01
fpppp 0.56 0.16 0.01 0.01 0.17 0.04 0.02 0.03

hydro2d 0.56 0.06 0.07 0.05 0.08 0.01 0.10 0.07
mdljsp2 0.71 0.05 0.01 0.01 0.22 0.00 0.00 0.00

nasa7 0.36 0.06 0.16 0.14 0.21 0.03 0.02 0.03
ora 0.64 0.06 0.00 0.00 0.28 0.02 0.00 0.00

spice 0.50 0.15 0.12 0.12 0.09 0.01 0.01 0.01
su2cor 0.26 0.08 0.19 0.15 0.06 0.03 0.11 0.12

swm256 0.40 0.11 0.15 0.08 0.09 0.01 0.09 0.08
tomcatv 0.36 0.11 0.18 0.12 0.09 0.02 0.07 0.05

wave5 0.45 0.11 0.03 0.02 0.18 0.03 0.10 0.08
compress 0.57 0.05 0.06 0.06 0.24 0.01 0.00 0.00

eqntott 0.83 0.03 0.02 0.02 0.07 0.01 0.00 0.00
espresso 0.70 0.06 0.02 0.02 0.15 0.01 0.01 0.02

gcc 0.52 0.11 0.02 0.02 0.22 0.04 0.04 0.03
li 0.48 0.15 0.02 0.02 0.25 0.07 0.01 0.01

sc 0.50 0.07 0.07 0.05 0.13 0.02 0.06 0.09

31

Proc
Program Loads Stores

H

f

H

s

M

f

M

s

H

f

H

s

M

f

M

s

APS 0.57 0.06 0.02 0.03 0.25 0.04 0.02 0.02
CSS 0.67 0.07 0.02 0.02 0.18 0.01 0.02 0.01
LGS 0.59 0.05 0.01 0.01 0.26 0.03 0.03 0.03
LWS 0.62 0.07 0.01 0.01 0.23 0.04 0.01 0.01
NAS 0.64 0.02 0.02 0.03 0.24 0.00 0.02 0.02
OCS 0.39 0.03 0.04 0.04 0.34 0.01 0.08 0.07
SDS 0.63 0.07 0.02 0.01 0.21 0.04 0.01 0.01
TFS 0.59 0.05 0.03 0.02 0.15 0.02 0.06 0.06
TIS 0.39 0.22 0.04 0.02 0.28 0.04 0.01 0.00

WSS 0.51 0.14 0.04 0.03 0.18 0.04 0.03 0.03
alvinn 0.68 0.01 0.03 0.02 0.25 0.00 0.00 0.00
doduc 0.69 0.06 0.03 0.02 0.13 0.01 0.03 0.02

ear 0.60 0.02 0.01 0.01 0.33 0.01 0.01 0.01
fpppp 0.60 0.12 0.01 0.01 0.18 0.03 0.02 0.03

hydro2d 0.53 0.10 0.07 0.05 0.08 0.01 0.10 0.07
mdljsp2 0.71 0.04 0.01 0.01 0.22 0.00 0.00 0.00

nasa7 0.35 0.07 0.16 0.14 0.21 0.02 0.02 0.03
ora 0.67 0.02 0.00 0.00 0.30 0.00 0.00 0.00

spice 0.51 0.14 0.12 0.12 0.09 0.00 0.01 0.01
su2cor 0.28 0.06 0.19 0.16 0.07 0.02 0.11 0.12

swm256 0.40 0.11 0.15 0.08 0.09 0.01 0.09 0.08
tomcatv 0.31 0.16 0.18 0.13 0.09 0.02 0.07 0.05

wave5 0.46 0.10 0.03 0.02 0.18 0.02 0.10 0.08
compress 0.59 0.03 0.06 0.06 0.25 0.01 0.00 0.00

eqntott 0.85 0.02 0.02 0.02 0.08 0.00 0.01 0.00
espresso 0.71 0.05 0.02 0.02 0.15 0.01 0.01 0.02

gcc 0.55 0.08 0.02 0.02 0.23 0.03 0.04 0.03
li 0.52 0.10 0.02 0.02 0.25 0.07 0.01 0.01

sc 0.52 0.05 0.07 0.05 0.14 0.01 0.06 0.09

32

