Predictive Sequential Associative Cache

Brad Calder Dirk Grunwald
Department of Computer Science,
University of Colorado
Campus Box 430
Boulder, CO 80302-0430
cal der, grunwal d@s. col or ado. edu

Joel Emer
Digital Semiconductor,
77 Reed Road (HLO2-3/J3) Hudson, MA 01749
emer @ssad. hl o. dec. com

December 5, 1994

Abstract

Traditionally, set-associ ative caches areimplemented by comparing al blocksin acache setin parallel
for each reference and then selecting the desired block from the set. By providing more than one location
for holding the data for a particular memory address, set associativity reduces the cache miss rate for
most programs. The traditional solutionis, however, not without cost. As contrasted with direct-mapped
caches, valuesfrom a set-associ ative cache can not be used by the processor, even speculatively, until all
the comparisons complete. This resultsin a greater access time than comparably sized direct-mapped
caches. Fortunately, however, in most programs, cache references are to the most recently used items. A
number of researchers have proposed cache designs that exploit thislocality to reduce access time and
missrate.

In this paper, we propose acache design that provides the same miss rate as atwo-way set associative
cache, but with a access time closer to adirect-mapped cache. Aswith other designs, atraditional direct-
mapped cache is conceptually partitioned into multiple banks, and the blocks in each set are probed, or
examined, sequentially. Other designseither probethe set in afixed order or add extradelay in the access
path for all accesses. We use prediction sources to guide the cache examination, reducing the amount of
searching and thus the average access latency. A variety of accurate prediction sources are considered,
with some being available in early pipeline stages.

1 Introduction

Set-associative caches offer lower miss rates than direct-mapped caches, but usually have alonger access
time. In a set-associative cache, cache blocks are divided into sets and a single fetch address may find its
datain any block of its set. When referencing a cache set, the blocks are examined in parallel. When all
blocks and, in specific, their tags have been read from the set, a tag comparator selects the block containing
the desired data, and passes the data from that block to the processor. The comparator introduces an extra
delay between the availability of the cache data and the time it can be used by the processor, because the
cache can not send the data to the processor, even speculatively, until the comparison is finished. This,
among other factors, increases the cache access or cycle time. By contrast, in adirect-mapped cache, afetch
address can only access a single block, and the data from that block can be speculatively dispatched while
the tags are compared, thus reducing the critical path length. The CACTI cache timing simulator [13] can be
used to approximate theincreased access timefor atwo-way set-associative cache. For caches with 32 byte
cache lines, the same configuration used in our simulation study, the access time for atwo-way associative
cache is 1.51, 1.46 and 1.40 times longer than the access time for a direct mapped cache for 8KB, 16KB
and 32K B caches, respectively.

The design tradeoff between miss rate and access time in set-associative caches versus direct mapped
caches has led several researchers to suggest ways to achieve missrates similar to two-way set-associative
caches with fast access times by using modified direct-mapped caches. Recently, severa researchers have
suggested using aserialized or sequential search to compare tags in set-associative caches. In some of these
schemes, the cache is divided into sets with 2 blocks per set. When accessing a cache set, first one block
is probed. If amatch isfound, processing continues; if not, the second block in the set is probed. If no
match is found, a miss occurs. If the cache line is usually found in the first block to be examined, the
average access time will be less than a direct-mapped cache (because the miss rate would be similar to a
two-way set-associative cache) or atwo-way set-associ ative cache (because the cycle timeisthat of afaster
direct-mapped cache).

Severa variants have been proposed. In this paper, we compare and extend severa proposed schemes
for implementing two-way set-associative caches at the first level of the memory hierarchy. Our technique
uses a number of prediction sources to pick the first block to probe. These predictors include information
about the source or destination of a fetch, the instruction or procedure fetching the data and the effective
fetch address. Our technique offers the low missrate of atwo-way set-associative cache and the low cycle
time of adirect-mapped cache; the performance varies with the accuracy of the prediction information. The
source for prediction information can be adjusted for pipeline constraints; implementors can trade lower
prediction rates for the freedom to reduce timing constraints. In this paper, we examine only two-way
set-associative caches; while higher degrees of associativity can be implemented using these techniques,

there are fewer advantages at higher associativities.
The contributions of this paper are:

1. We extend sequential cache designs to use prediction sources, alowing sequentia two-way set-
associative caches to be used for first-level caches. Our cache design is simpler to implement than
previous designs and more effective.

2. Describe severa prediction sources and their efficacy.

3. Present a performance comparison that distinguishes between access latency and cache occupancy,
or the time the cache is busy during memory references.

2 Prior Work

Sequentia or serial implementations of two-way set-associative caches can be categorized along two di-
mensions. First, they can be categorized by whether the cache is probed in a statically fixed order, or if it
is probed in a dynamically determined order. Second, they can be categorized by the block allocation (and
re-allocation) policy. The addition of a block re-allocation policy is especialy important in those schemes
with afixed probe order.

We will use the diagrams in Figure 1 to clarify issues in the unconventional implementations. We
assumethe reader is familiar with the design of direct-mapped caches and the conventional implementation
of two-way set-associative caches that use content-addressable memory. We assume each cache entry has
an L-bit set index and atag. We use a word-addressed cache to describe the various cache organizationsto
simplify their description. A direct-mapped cache contains 2F cache blocks; when a block address is to be
fetched or loaded into the cache, the lower L bits are used to index into the cache. When fetching an item
from the cache, the remaining address bits are compared to thetag; if these match, theitem is successfully
found in the cache, otherwise a cache miss occurs. In a two-way set-associative cache, only L — 1 bits
are used as a set index. Each cache set contains two blocks. In a conventiona design, the tags in both
blocks are compared concurrently when fetching an address. If either tag matches, the reference has been
found. New entries may be loaded into either block, as determined by the block alocation policy. Usually
a least-recently-used mechanism is employed. A set-associative cache typically has alower missrate than
adirect-mapped cache, but is more difficult to implement and increases the cache access time[5].

2.1 Statically Ordered Cache Probes

Agawal et al [1] proposed the Hash-Rehash cache (HR-Cache) to reduce the miss rate of direct-mapped
caches. AlthoughtheHash-Rehash cache can beused toimplement arbitrary associativity, weonly consider a
two-way set-associative cache, sincethat isthemost cost-effective configuration. The HR-cache organization
uses a fixed probe order and a non-LRU cache allocation/re-all ocation scheme to maximize the number of
first probes that hit.

Figure 1(a) illustrates the structure of the HR-cache. The cache blocks are divided into two banks.
Each bank contains one of the two blocks that comprise aset, and L — 1 bitsare used to index a block in

3

a set. While a conventional set-associative cache matches the tags in paralel, the HR-cache matches the
tags sequentially. The cache is organized as a conventional direct-mapped cache; thus, the cycle time for
accessing anindividual block would befaster than that of a conventional set-associative cache. Cache blocks
are indexed using two distinct hashing functions, and the cache is probed in a fixed order using those hash
functions. We call the cache block addressed by the first hash function the “first block” and the remaining
block the “second block.” If thedataisnot found inthefirst block, the second block isexamined. If the data
isfound in the second block, the contents of the first and second blocks are exchanged. The intuitionis that
by re-allocating the data, successive references will locate the data quicker, because it will be found with
thefirst probe. If the datais not found by the second probe, a miss occurs. Thefirst block is moved to the
second block, since the first block was more likely to have been more recently referenced than the second
block, and the missing block is placed in thefirst block. As shown in later examples, this mechanism does
not implement atrue LRU replacement policy.

Thisprocessiseasier to understand by example. We will use the same reference stream to illustrate the
operation of each cache organization. The references streamiis:

18 reference 010.10
2N reference 001.10

The addresses are specified in binary, and the tag (the high three bits) is separated from the set index (the
low two bits) by an underscore (). Using the cache configuration in Figure 1(a), al of these references map
to the same set.

Since the HR-cache uses a conventional direct-mapped organization, the concept of blocksin a set are
represented by the use of an additional cache index bit to distinguish the two blocks of the set. Before each
example, we assume that address 00010 (at index two) and 001_10 (at index six) are in the two blocks of
the set, and that 001_10 was more recently referenced than 000_10.

In the HR-Cache the first hashing function uses a direct-mapped lookup (formed using the lower-order
bits of the tag, concatenated with the set index), and the second hashing function probes the other block in
the set Thus, fetching the address 010_10 would first probe index two, then index six, while fetching 001_10
would first probe index six and then index two. Figure 1(a) illustrates how the two references are processed
in the HR-Cache. The fetch of 010_10 would examine index two first, and index six second. Since amiss
occurs, the contents of index two (000_10) are moved to index six, and 01010 is loaded into index two.
Notice that block 001_10isreplaced, even though it was more recently referenced than 000_10. A true LRU
replacement strategy would have replaced 000_10. The next reference isto 001_10, which wasjust replaced.
Index six isexamined first, and index two is examined second. Again, amissoccurs. The contents of index
six are moved to index two, and 001_10 isloaded into index six.

Cache simulations by Agarwal [2], and our own simulations, show that the Hash-Rehash cache has a
higher missrate than atwo-way set-associative cache with LRU replacement. There are two obstacles that
limit the performance or practicality of the HR-Cache: the need to exchange entire cache lines and the high

4

missrate. In the HR-Cache, the entirefirst and second blocks must be exchanged if areference isfound in
the second block. This may be a problem for caches with large lines. Some architectures use a 128-byte
cache line, although the processor only retrieves four or eight bytes on each fetch. Exchanging such large
cache lines either requires a several cycle exchange operation, or a design that allows two cache lines to
be rapidly exchanged viaawide cache access. The extra metal and sense amplifiers required for thiswide
access would likely add significantly to both the size and power requirements of the cache. Furthermore,
a specia exchange operation could interfere with the pipelining of normal cache accesses, especidly in
multi-ported designs, and would introduce more bookkeeping for deferred write and fill operations.

The Column-Associative Cache (CA-Cache) of Agarwal and Pudar [2] improved the miss rate and
average access time of the HR-Cache, but still requires that entire cache blocks be exchanged. Like the
HR-Cache, the CA-Cache, shown diagrammeatically in Figure 1(b), dividesthe cache into two banks. Cache
blocks are found using two hashing functions. In the CA-Cache, arehash bit is associated with each cache
block, indicating that the data storedin that cache bl ock woul d be found using the second hash function. The
rehash bit is the exclusive-or of the lowest-order bit in the tag and the bank number. Consider the process
of fetching the addresses 010_10 and 001_10. As before, 000_10 and 001_10 are aready at indices two and
six respectively. When the address 010_10 isfetched, index two would be examined first, followed by index
six. A missoccurs, the datafrom index two ismoved to index six, and 010_10is loaded into index two. The
address 000_10 at index six would now be found using the second hashing function, and the corresponding
rehash hit is set. Note that the more recently referenced block 001 10 was discarded. Now, address 001_10
isreferenced. Index six is examined first; that block does not contain 001_10, but the rehash bit has been
set, indicating that line two can not contain 001_10. Index two is not examined, and the missis issued one
cycle earlier than in the case of the HR-Cache.

In the HR-Cache, the replacement policy always replaces the contents of the second block that is
examined. However, asin our example, that block may have been more recently referenced than the first
block. Now consider the CA-Cache: if a miss occurs and the rehash bit for the first block is set, we know
the first block contains older data than the second block. If the data in the first block was more recent, it
would have been swapped to the other block by some previousreference, setting therehash bit. If therehash
bit is set, the CA-Cache replacement policy replaces the value in the first block. If the rehash bit is not set,
the contents of the first block are transferred to the second block, and the fetched datais stored in the first
block. Our detailed example illustrates a situation where the CA-Cache does not implement a true LRU
replacement a gorithm; however, the CA-Cache does have amissrate close to that of true LRU replacement.

2.2 Dynamically Ordered Cache Probes

In contrast with the HR-Cache and CA-cache schemes, other researchers have devel oped schemesthat use a
dynamic probe ordering and do not rely on special cache allocation or re-allocation policies. Chang et al [4]
proposed a novel organization for a multi-chip 32-way set-associative cache. Their study, and an earlier

5

(c) MRU Cache

Reference Reference
010_10 001_10
Bank O
0 0 0
2| 000_10 X 2| 010_10 » | 2| 000_10
N /
3 N 3 / 3
Bank 1 'S MIss | S Mmiss
4 \ 4 ' 47
\ /
5 \\‘ 5 // 5
6 | 001_10 6 | 000_10 o 6 | 001_10
7 7 7
(8) Hash-Rehash Cache
Reference Reference
010_10 Rehash 001_10 Rehash
Bank 0 Bit Bit
0 0 Not 0
1 1 Examined 1
2| 000_10 £ 2| 010 10 2| 010 10
\
8 \ |3 |- |8 [
Bank 1 \‘ = Miss g < Miss g
4 \ 4 WA 4 WA
5 ‘O |5 5
N
6 | 001_10 L 6| 00010 |v 6 | 001_10
7 T &
(b) Column Associative Cache
Reference Reference
010_10 001_10
Bank 0 MRU MRU
0 0 0
1 bl [
2| 000_10 2| 01010 |v 2| 010 10
Bank 1 = MISS ?
4 4 ool 4
5 5 5
6| 00110 |v 6 | 001_10 6| 00110 |v

Figure 1: Cache Organizations

study by So and Rechtschaffen [11], found that most requests reference the most recently used blocks. Each
set of cache blocks had associated “most recently used” (MRU) information. When accessing a cache set,
the cache provided the block selected by the MRU information. Concurrently, the tags from the different
chips were gathered and compared; if the wrong cache item was used, it was detected and the proper item
was provided on the next cycle. This organization allowed most references (85%-95%) to complete in a
single cycle, and reduced the cycle time of their multi-chip implementation by 30-35%.

Kessler et al [8] proposed asimilar organization. Rather than swap the cachelocationsliketheHR-Cache
and CA-Cache, each pair of cache blocksusesan “MRU bit” to indicate the most recently used block. When
searching for data, the block indicated by the MRU bit is probed first. If the datais not found, the second
block is probed; if the datais found, the MRU bit is inverted, indicating the second block is more recently
used than the first block. If the datais not found, the least recently used block, indicated by the MRU bit, is
replaced. The MRU bit is used to implement an LRU replacement policy, so the MRU-Cache has the same
miss rate as a two-way set-associative cache. The implementation of MRU two-way associative caches is
shown in Figure 1(c). In that diagram, we show the MRU bits as check-marks to the side of each cache
block. In practice, pairs of cache lines, such as lines two and six, share a single MRU bit. When 010_10
isreferenced, block six, the most recently referenced block, is examined first. Since the datais not found,
block two is examined. The missing data is fetched from memory and placed in block two. The MRU bit
is set to indicate that block two is now more recent than block six. On the next reference, block two is
examined first, followed by block six. The MRU bit isupdated to indicate that block six was more recently
used.

The design in [8] focused on large, secondary caches, and the lower cycle time seen by [4] did not
apply. Inthe design by Kessler et al, the MRU bit must be fetched prior to accessing the cache contents to
determine what cache line should be examined first, lengthening the cache access cycle, even if pipelined.
It was felt this cache organization was appropriate for large secondary caches, because searches would be
infrequent and the additional overhead for fetching the MRU bit could be speculatively overlapped with the
first level access.

3 ThePredictive Sequential Associative Cache

Both the HR-Cache and the CA-Cache require that entire cache lines be exchanged and have a worse miss
rate than a cache with an LRU replacement strategy. In most first-level cache designs, the MRU-Cache
requires a slightly longer cycle time to access the MRU prediction information. Furthermore, both the HR-
Cache and M RU-Cache implementations suffer from excessive searching in certain situations. For example,
assume the address references used in the previous examples have completed, and the processor continues
reguesting the alternating addresses 01010, 001 10, . . ., 01010, 001 10. Inthe HR-Cache, address000_10
will continue to be moved between indices two and six, and each reference will be amiss; in the CA-Cache,

these references do not result in further misses. In the MRU-Cache, each reference examines both indices
two and six in the cache, because the pairs of blocks in the MRU-Cache share an MRU bit. The MRU
information “flip-flops” on each reference, insuring that the next access requires two cycles.

These problems are addressed by our proposed cache design, the Predictive Sequential Associative
Cache (PSA-Cache), shown in Figure 1(d). We separate the mechanism used to select probe order from the
mechanism used to guide replacement. Each pair of cache blocks uses an MRU entry to implement LRU
replacement. The PSA-Cache has the same miss rate as the MRU-cache and all other L RU-replacement
caches. We use another table, the steering bit table (SBT), shown on the left side of Figure 1(d) to guide
data access. When fetching a cache line entry, the effective address is used to index into the actual cache.
Likewise, a prediction index is used to select a particular steering bit. As Kessler et al [8] indicated, the
steering bits need to be accessed prior to the cache access. If we use the effective addressto select asteering
bit, this may lengthen the cache access time— arguably, if the effective address were available earlier, cache
accesses would be initiated at an earlier pipeline stage. However, we do not need to use the effective fetch
addressto select asteering bit. We examined a number of sourcesfor prediction indices, and present several
very accurate sources that can be provided by earlier pipeline stages, insuring the steering bit is available
when the cache is accessed.

Separating the replacement mechanism from the prediction mechanism offers immediate benefits, even
for the MRU-Cache design proposed by Kessler et al. Consider an 8K Byte cache split into two banks with
128 pairs of 32 byte lines. The MRU-Cache would use a 128-hit table to indicate the most recently used
block in each pair. The PSA-Cache also uses a 128-hit table to implement an LRU replacement policy;
however, amuch larger table can be used to determine the block that should be probed first when searching
for an address. Each entry “steers’ references to the appropriate cache block. 1f a256-entry SBT was used,
the“flip-flop” examplewould encounter no penalty inthe PSA-cacheif different steering bit entriesare used.
In certain configurations, it is also useful to use arehash bit in the PSA-Cache. Asinthe CA-Cache, we use
thisbit to avoid examining another l[inewhen that line can not possibly contain the requested address, but we
do not use the bit to guide the replacement policy, since the MRU bit provides more accurate information.

Figure 2 shows the operation of the PSA-Cache, indicating both the MRU and rehash bits for each
block. The rehash bit for 000_10 is clear because the 000_10 would be found on thefirst probe; likewisethe
rehash bit for linesix is clear because 001 10 would a so be found on thefirst probe. Figure 2(a) showsthe
reference to address 010_10. Prior to the access, a prediction source was mapped to the third entry in the
steering bit table. That entry indicatesthe first block of the set, i.e., index two, should be probed first. Index
two isexamined first, and the rehash bit for line six isread concurrently. Index two does not contain 010_10.
The rehash bit indicates the contents of block six is not a rehashed entry, and there is no point in examining
index six. The referenced address is not in the cache, and is fetched from memory. The MRU hit indicates
that the block at index six was more recently used than that at index two, so the contents of index two are
replaced with 010_10. Asthe block is replaced, the steering bit used to locate 010_10 istrained, indicating

MRU Rehash Reference

001 10
Bank 0\‘ ¢

MRU Rehash

Ny

A OIE 1
@ 2] 010 10 |v 2| 010 10
5| (@ = =
2 3 3
(D)
IS Bank 1
o 0 4 4
B (1) 5 -
0 6 | 001 10 6| 00110 |v
Steering Bit Table | 7 @ -
(a) First Reference in PSA Cache
MRU Rehash Reference MRU Rehash
Prediction Address 010_10
(D) ’ °
O~ RERE
Q 2 | 000_10 2| 010 10 |v
3 3
() Bank 1 MISS &
Q 4 4
o Not
° Examined| | °
0 6| 00110 |v 6 | 001 10
Steering Bit Table | 7 7

(b) Second Reference in PSA Cache

Figure 2: Diagram of the PSA Cache

Register Numbers,
Relative Offset,
Instruction Properties |

IF DE READ | EXEC | MEM

——

Register Contents

|_|

Effective Address

Figure 3: Pipeline Stages Showing When Prediction Sources Are Available

that bank zero of the set should be probed first on the next reference to 010_10. The prediction source
selects the seventh steering bit when 001_10 isreferenced. The requested addressisfound at index six, and
the MRU bit is changed to indicate that index six is more recently used than index two. If the processor
continues requesting the aternating addresses 010_10, 001_10, . . ., 01010, 001 10, each reference will be
found in thefirst probe.

In summary, we use three data structures to implement three cache mechanisms. The Steering Bit Table
determines which block in a set should be probed first, increasing the number of references found during
thefirst probe. The rehash bits reduce the number of probes, allowing missesto be started earlier or simply
reducing the time the cache is busy, which isimportant for architectures that issue multipleloads per cycle.
The MRU hits provide atrue LRU replacement policy, improving the overall missrate.

3.1 Prediction Sources

To illustrate some of the specific prediction sources available, Figure 3 shows a simple pipeline and the
information available at each stage. We assume aload-store architecture with register-rel ative addressing —
al memory references are of the form M|[R,;, + Offset]. At instruction fetch (4 cycles before the memory
access), we know theinstruction address. Following decode (3 cycles before the memory access), we know
the register number (b) and the address offset (Offset). After the register file has been read (1 cycle prior
to the memory access), we know the contents of R;, and after the execution stage (right at memory access
time), we know the effective address, R, + Offset. In addition we can use the same information from prior
instructions. We examined the foll owing prediction sources:

1. Effective Address. The effective address wasthe most accurate prediction source; however, there may
not be enough timein some designsto computethe effective address and index the steering bitsbefore

10

Ro Offset b Offsat

L[] [[<=] D
&
(a) SBT Index for XOR-5-5 (b) SBT Index for RegNum

Figure 4: Combining Prediction Sources for Steering Bit Table Index

the cache access completes. When using the effective address, the PSA-Cache is a simple extension
to the MRU-Cache with improved performance from alarger steering bit table.

2. Register Contentsand Offset. Computing the effective address involvesafull add. Functionswithout
carry propagation take less time in some designs, thus making the results available in time to index
the steering bit tabl e before the cache access completes. We used the exclusive-or of the contents and
offset to form a prediction address.

3. Register Number and Offset. We can combine the register number and the offset severa cycles before
the cache access. In genera, this provides good performance with small SBTs, but the performance
improvements dropped off for larger tables. There were three reasons. We were using the register
number and not the register contents. Register assignments, particularly at procedure calls, were not
reflected in the prediction information. Also, our target architecture has 32 integer registers, and most
values for Offset were less than 96; some combinations of the register number and offset did not
spread references enough to make use of the entire SBT. Lastly, some registers were used more than
others; in most programs, s 40% of all references were relative to the stack pointer.

We included the stack depth to reduce interference between register usage in different procedures.
We further improved this by including the address of the current procedure. Some of thisinformation
is aready retained by many machines to implement a return-address stack [7], a branch prediction
mechanism used to predict procedure return addresses. We also tried separate steering bit tables for
certain registers.

4. Instruction and Previous References. We al so used the address of theinstructionissuing the reference
and variants of the previous cache reference. These prediction sources were less effective than the
others, and are not discussed further.

We examine four configurations of the PSA-Cache in more detail: the “Eff”, “XOR-5-5", “RegNum”
and “Proc” caches. We simulated an 8K Byte cache with 32 byte lines. Each cache reference is of the form
M| Ry, + offset], and the cache contains 256 32-bytelines. Thelinesare divided into 128 sets. All the cache
modelsuse (R; + offset) >> 5, or Ry 4 offset shifted right five bits, to index into the MRU table. The SBT
entry determines thefirst bank to be examined. Each cache uses a 1024-entry SBT table.

The “Eff” configuration uses (R, + offset) > 5 to index both the cache and the SBT table. This
configuration illustrates the benefits of changing the MRU-Cache to use alarger steering bit table. Figure 4

11

illustrates how the indices for XOR-5-5 and RegNum are formed. The “XOR-5-5" configuration uses
(R, @ offset) > 5), where @ is a bit-wise exclusive or, to index the SBT. In some designs, there may
be enough time to compute the exclusive-or and index the small SBT table before the effective address is
computed, while the arithmetic sum (R, + offset) > 5 would take longer to complete. The “RegNum”
model forms the prediction address by concatenating the register number and the lower five bits of the
offset ((b < 5)|((offset > 5)&0x1F)). The“Proc” configuration extends “RegNum” using an exclusive
or of the destination address from the previous procedure call. Steering-bits resemble a single-bit branch
prediction table; each entry contains a single bit and has no associated tag. Thus, for an 8KByte cache
with 32 byte lines, a 1024-entry Steering Bit Table (SBT) represents ~ 1% overhead. The actua overhead
depends on the mechanism and design of the SBT.

4 Experimental Design and Performance Metrics

We compared the accuracy of the different prediction sources and the performance of the different cache
organi zations using trace-driven simulation. We collected information from 26 C and Fortran programs. We
instrumented the programs from the SPEC92 benchmark suite and other programs, including many from the
Perfect Club [3]. We used ATOM [12] to instrument the programs. Due to the structure of ATOM, we did
not need to record traces and traced the full execution of each program. The programs were compiled on a
DEC 3000-400 using the Alpha AXP-21064 processor and either the DEC C or FORTRAN compilers. Most
programs were compiled using the standard OSF/1 V1.2 operating system. All programs were compiled
with standard optimization (- O).

In this paper, we are primarily concerned with first-level data cache references, because data references
are difficult to predict, and first level caches must be both fast and have low miss rates. Furthermore,
instruction cache misses can be reduced using a number of software techniques [9, 10] and instruction
references are usually very predictable. Thus, even the “Eff” technique described below can be used with
instruction caches. We examined an 8 KByte cache with 32-byte cache lines. We assume the cache uses
awrite-around or no-store-allocate write policy, since earlier work by Jouppi [6] found this to be more
effective than a fetch-on-write or store-allocate policy. The study by Jouppi found an overall lower miss
rate using write-around. Our simulations show a slightly higher missrate, particularly for writes.

5 Trace-Driven Performance Comparison

The cache missrateisnormally used to compare the performance of different cache organizations. However,
we have seen that the access time for direct-mapped caches and traditional set-associative caches differ by
as much as 50%, and thisincreased access timeis not reflected in the missrate. Furthermore, the traditional
two-way set-associ ative cache, the MRU-Cache, and the PSA-Cache all usean LRU replacement a gorithm,

12

Program || #of Instructions | % of Loads | % of Stores |

APS 1,490,454,770 24.70 11.80
CSS 379,319,722 31.76 9.07
LGS 955,807,677 19.95 1051
LWS 14,183,394,882 22.96 9.47
NAS 3,603,798,937 22.68 9.07
ocs 5,187,329,629 21.67 21.81
TFS 1,694,450,064 26.55 11.38
TIS 1,722,430,820 26.91 13.11
WSS 5,422,412,141 22.66 8.89
avinn 5,240,969,586 26.95 9.30
dodoc 1,149,864,756 29.32 7.02
ear 17,005,801,014 22.09 12.67
fpppp 4,333,190,877 35.31 12.64
hydro2d || 5,682,546,752 24.22 8.30
mdljsp2 3,343,833,266 2253 6.52
nasa7 6,128,388,651 28.86 11.12
ora 6,036,097,925 22.26 9.75
spice 16,148,172,565 32,61 4.08
su2cor 4,776,762,363 22.39 10.21
waves 3,554,909,341 21.33 13.39
compress 92,629,658 26.38 9.47
egntott 1,810,540,418 12.77 1.29
espresso 513,008,174 2157 5.08
gee 143,737,915 23.89 11.74
l 1,355,059,387 28.09 14.65
S 1,450,134,411 13.45 5.75

Table 1. Measured attributes of traced programs showing the number of instructions executed during
execution and the percentage of loads and stores.

13

and have identical missrates. However, the PSA-Cache and MRU-Cache may probe the cache several times
to achieve that same missrate, and a“probe rate” may be a more appropriate metric. Furthermore, when
comparing the MRU-Cache and PSA-Cache to the HR-Cache and CA-Cache, we must also include the
differences in missrates. Finally, when comparing any of these methods to a two-way associative cache,
we should include the difference in cycle time between an associative cache and the direct mapped caches
used to implement the sequentia associative caches.

We decided to compare the techniques using a timing model that separates the latency encountered by
the pipeline and the time the cache is busy. Agarwal [2] used a simple timing mode to demonstrate the
performance of the CA-Cache. His model provides an average access time and can be used to compare all
cache organizations that have the same cycle time. However, Agarwa’s timing model did not distinguish
between loads and stores. Conceptually, a processor pipeline must wait until a load is resolved, but need
not wait for a store to finish — in practice, several loads and stores may be waiting to be resolved. Even if
the processor is able to continue to issue loads after a miss, the pending miss may interfere with the loads
that hit in the cache.

5.1 Performance Metrics

We define the cache access latency to be the average time the processor must wait for a memory reference
to be resolved. Similarly, the average cache occupancy is the time the cache is busy for each reference. In
general, a smaller access latency and smaller occupancy is preferred. If the latency is high, the processor
must stall, waiting for data. If the occupancy is high, there is a greater chance outstanding references will
conflict with newly issued references. As we show later, most of the cache designs have the same access
latency, and are differentiated by their cache occupancy. It isdifficult to precisaly quantify the performance
resulting from aparti cular accesslatency and occupancy, because system performancedependsoninstruction
scheduling, the number of out-standing references, the depth of write-buffers and a number of other features
determined by a particular system. However, latency and occupancy, like missrates, can be used to narrow
the design space prior to system-level simulation.

Table 2 defines certain parameters used in our timing model, and Table 3 shows how we cal cul ate access
latency and occupancy. Werecord different hit ratesfor |oads and stores because |oads and stores are treated
differently, athough that distinction is not made explicit in the timing equations to simplify the notation.
The sequential associative caches further divide the hit rate H into hits that are detected on the first cache
probe, H, and those detected on the second probe H,. The CA-Cache and PSA-Cache use the rehash bit
to avoid a second cache probe for some cache misses. In the sequential caches, the missrate M isdivided
into M, denoting the misses detected on the first cache probe, and M, denoting the misses detected on the
second cache probe. The HR-Cache and MRU-Cache always probe the cache twice on misses, and My is
always zero for these caches.

The latency for a cache miss, or miss penalty, is Ty cycles. Thisincludes the time to request the data

14

Tp Timeto probe the cache following thefirst probe, in cycles. In some designs, this
may be larger than one cycle, but we assumeit isone cycle.

Ty Penalty for cache misses, in cycles. Thisincludesthetimeto initiatethe cache miss
and receive the data.

Tr Timeto refill a cache ling, in cycles. This is the time the cache is busy when a
cachelineisrefilled. We assume a 32-byte cache line can be refilled in two cycles.

Tns Extratimeneeded if missescan not be squashed. The*Conservative” timing model

assumes Ty s = Tp, whilethe“Optimistic” timing model assumes Ty s = 0.

Ts Time needed to swap cache linesin the HR-Cache & CA-Cache.

Table 2: Definition of Terms Used in Timing Equations

Cache Access Latency

Cache Occupancy Time

H+ (1+Tyu)M

H+ (1+Tp)M

0

H

Hy + (14 Tp)H, + (1 + Tayr)My + (1+ Tns + T)M,
Hi+(14+Tp+Ts)Hs +(1+Tr)Ms+ (1+Tp 4+ Ts + Tr) M,
0

Hy+(1+Tp + Ts)Hs + My + (1 + Tp)M,

Hy + (14 Tp)H, + (1 + Ty)My + (1 + Tns + Ty)M,
Hy + (14-Tp)H, + (1+ Tr)M; + (1 + Tp + Tr) M,

0

Hi+ (14 Tp)Hs + My + (1 + Tp) M,

Direct Load

& 2-Way Store

HR-Cache Load

& CA-Cache | Store

MRU Load

& PSA Store

Table 3: Timing Equations Used To Compare Performance. In the HR-Cache and MRU-Cache, al misses
take two cycles, meaning that M; = 0 and M, = M. The raw cache access time is a single cycle. We
assumeTp = landTs = 4Tg — 2.

15

2.4

292 a Latency (Optimistic)
o Latency (Conservative)
2 m Occupancy

'1

-
»

=
N

[EEN
N

Average Cycles Per Reference

T IIII[I
T II]_I

Eff

1 : I : ' ' ' ' ' '
S
=

N

Direct
Rehash
CAC
MRU
XOR-5-5
RegNum
Proc

Figure 5: Latency and Occupancy for Conservative and Optimistic Configurations. The occupancy is the
same for both the Conservative and Optimistic configurations. Parameters are Ty = 10,7 = 2,Ts =
ATr — 2,Tp = 1. Cache size is 8KBytes, with 32 byte lines. The values shown are the arithmetic means
averaged over al programs.

16

from lower levels of the memory hierarchy, moveit on-chip and load it into the cache. In some cases, amiss
can beinitiated speculatively and “squashed” in alater cycle. Thisreduces the latency for a miss, because
the miss can be initiated a cycle earlier. Our “Conservative” cache timing model does not initiate misses
speculatively, while our “Optimistic” timing model assumes a cache miss can be speculatively initiated
and squashed one cycle later. We use the term Ty (“non-squashing™) to reflect the additiona time spent
servicing missesif the miss can not be speculatively initiated.

While the latency determines how long the processor must wait for references to be resolved, the
occupancy determines how long the cache is busy. Although the miss pendlty is Ts cycles, the cache is
only busy when the cache lines are being reloaded, or Tz cycles. The HR-Cache and CA-Cache exchange
cache linesto improve the average access latency and we assumeit takes T's cycles to swap two cache lines.
Agarwa’s timing model [2] combines the notion of latency and occupancy, and argued that T's should be a
singlecycle. We fedl alarger value is more reasonable, particularly for large cache lines, such as 32 or 128
bytes. There would be increased wiring density needed to exchange two complete cache linesin asingle
cycle, possibly increasing the cycletime. If wecan reload half acachelineinasinglecycle (i.e, Tr = 2), it
could be argued that we could exchange a cache linein 4Tg — 2 cycles, because two half-lines have already
been read by the time we determine the lines must be swapped.

Table 3 shows the timing model. Stores do not stall the processor, and have alatency of zero. Consider
the load latency for the CA-Cache. If the first probe resultsin a hit, a cycle was spent. If the second probe
isahit, the pipelinewas stalled two cycles. At this point, the cache lines must be swapped, but the pipeline
does not wait for this to finish. However, the cache lines must be swapped before the next cache reference
begins. If areference missesin the first bank, and the rehash bit indicates that it can not hit in the second
bank, the pipeline stalls for 1 + Ty cycles. If the second bank must be examined, the processor stalls
for 1 + Ty cycles, and may stall for an additiona T g cycles if the miss can not be started early. In the
CA-Cache, the cache is occupied while the cache is probed, the cache lines are swapped or cache lines are
refilled.

5.2 Performance Comparison

The graph in Figure 5 summarizes the latency and occupancy, while Tables 4, 5 and 6 provide more
detailed information. In each configuration, the cache miss penalty isten cycles (T3; = 10), it takes two
issuesto refill aline (Tr = 2) and six cyclesto swap cache lines (T's = 4Tg — 2). Each cache is 8 KBytes
with 32 byte lines. The latency is given for both the conservative timing model, where cache misses can
not be speculatively initiated, and the optimistic model, where they can. The occupancy does not depend
on the ability to speculatively initiate cache misses, and is the same for both timing models. Latency and
occupancy are measured in average cycles per reference. Although Tables 4 and 5 show the latency and
occupancy can be lessthan one, the averages shown in Figure 5 are not, and the vertical axisis bounded by
one.

17

PSA Cache
[Program || Direct | 2Way | Rehash | CAC | MRU | Eff | XOR-5-5 | RegNum | Proc
APS 1.24 1.13 131 113 117 | 113 117 1.20 | 119
CSS 1.44 117 1.39 1.21 1.23 | 1.18 1.23 127 | 1.24
LGS 0.88 0.81 0.86 0.83 082 | 0.81 0.86 089 | 0.87
LWS 111 091 111 0.94 095 | 091 0.97 098 | 0.98
NAS 143 1.20 1.39 1.24 124 | 1.20 1.22 123 | 1.22
OoCs 1.36 1.30 1.35 1.32 131 | 1.30 131 133 | 133
SDS 1.01 1.04 117 1.02 1.06 | 1.04 1.10 111 | 111
TFS 1.30 1.25 1.29 1.26 126 | 1.25 1.29 1.29 | 1.30
TIS 154 1.30 1.73 1.32 140 | 1.30 1.36 149 | 152
WSS 1.48 1.38 151 1.39 142 | 1.39 1.46 150 | 152
Perf Club Mean 1.28 1.15 131 117 119 | 1.15 1.20 1.23 | 1.23
Perf Club StdDev 0.22 0.18 0.23 0.18 0.19 | 0.18 0.18 020 | 0.21
avinn 1.30 1.22 1.33 1.22 124 | 1.22 1.22 123 | 1.23
doduc 1.70 1.37 1.71 141 145 | 1.38 142 145 | 143
ear 0.88 0.79 1.07 0.80 083 | 0.79 0.80 081 | 081
fpppp 1.23 0.90 1.16 0.94 0.96 | 0.90 1.03 1.07 | 1.02
hydro2d 2.12 1.96 211 2.00 1.99 | 197 2.05 2.02 | 2.05
mdljsp2 1.14 1.01 1.27 1.03 1.06 | 1.02 1.03 1.06 | 1.06
nasa’ 3.86 3.69 3.80 3.72 3.78 | 3.70 3.76 3.75 | 3.76
ora 0.96 0.70 0.79 0.72 0.72 | 0.70 0.74 0.75 | 0.72
spice 3.58 3.28 3.60 3.33 3.38 | 3.29 3.35 343 | 342
su2cor 4.18 414 4.34 413 418 | 4.14 4.19 422 | 420
swm256 2.52 3.03 5.29 2.92 332 | 3.03 3.08 314 | 314
tomcatv 3.58 3.83 5.92 3.95 412 | 3.83 3.89 394 | 398
waveb 1.30 1.15 157 1.15 122 | 1.15 117 126 | 1.25
SPECfp Mean 2.18 2.08 2.61 2.10 217 | 2.09 2.13 216 | 2.16
SPECfp StdDev 1.22 131 1.75 131 136 | 131 1.32 132 | 133
compress 2.22 1.86 1.98 1.92 1.90 | 1.86 1.86 191 | 189
egntott 1.49 1.33 148 1.35 136 | 1.33 1.34 136 | 1.35
espresso 1.36 1.25 1.33 1.26 128 | 1.25 1.25 131 | 1.30
gce 1.32 1.08 131 112 1.13 | 1.08 1.13 119 | 116
li 1.34 0.99 1.23 1.03 1.05 | 0.99 1.06 113 | 1.09
sC 2.16 1.99 2.23 2.02 2.03 | 1.99 2.00 2.06 | 2.03
SPECint Mean 1.65 141 1.59 1.45 146 | 142 1.44 149 | 147
SPECint StdDev 0.43 0.41 0.41 0.42 041 | 041 0.39 039 | 0.39
Overall Mean 1.76 1.62 1.95 1.64 1.68 | 1.63 1.67 1.70 | 1.69
Overall StdDev 0.92 0.98 1.32 0.98 1.02 | 0.98 0.98 099 | 099

Table 4: Cache Access Latency for Optimistic Timing Model with T3y = 10 Cycles, T = 2 Cycles,
Ts = 4Tr — 2 Cycles.

18

PSA Cache
[Program || Direct | 22Way | Rehash | CAC | MRU | Eff | XOR-5-5 | RegNum | Proc
APS 1.24 1.13 1.37 117 1.20 | 1.16 1.20 1.23 1.22
CSS 1.44 117 1.45 1.24 1.25 | 119 1.25 1.29 1.26
LGS 0.88 0.81 0.88 0.84 0.83 | 0.82 0.86 089 | 0.87
LWS 111 091 1.15 0.96 096 | 0.92 0.98 099 | 099
NAS 143 1.20 1.46 1.28 1.27 | 1.23 1.25 1.26 1.25
OoCs 1.36 1.30 143 1.37 137 | 1.33 1.35 1.37 1.37
SDS 1.01 1.04 1.21 1.03 1.07 | 1.05 111 112 112
TFS 1.30 1.25 1.35 1.29 128 | 1.27 131 131 1.32
TIS 154 1.30 1.83 1.36 142 | 1.32 1.38 151 154
WSS 1.48 1.38 1.59 143 145 | 141 1.49 153 155
Perf Club Mean 1.28 1.15 1.37 1.19 121 | 117 1.22 1.25 1.25
Perf Club StdDev 0.22 0.18 0.26 0.19 0.20 | 0.19 0.19 020 | 0.22
avinn 1.30 1.22 1.38 1.24 125 | 123 1.23 124 | 1.24
doduc 1.70 1.37 1.80 1.44 147 | 140 1.44 148 145
ear 0.88 0.79 111 0.81 0.83 | 0.79 0.80 081 | 081
fpppp 1.23 0.90 1.20 0.95 097 | 091 1.04 1.07 1.03
hydro2d 2.12 1.96 2.24 2.07 2.04 | 2.00 2.09 207 | 211
mdljsp2 1.14 1.01 1.32 1.05 1.08 | 1.02 1.04 1.07 1.07
nasa’ 3.86 3.69 411 391 390 | 381 3.88 389 | 3.90
ora 0.96 0.70 0.80 0.72 0.72 | 0.70 0.74 0.75 | 0.72
spice 3.58 3.28 3.86 3.48 349 | 3.39 3.46 354 | 354
su2cor 4.18 414 471 431 436 | 4.24 4.30 437 | 435
swm256 2.52 3.03 5.75 3.03 340 | 3.10 3.15 322 | 322
tomcatv 3.58 3.83 6.43 412 425 | 3.89 3.99 406 | 411
waveb 1.30 1.15 1.67 1.18 124 | 117 1.19 1.28 1.27
SPECfp Mean 2.18 2.08 2.80 2.18 223 | 213 2.18 222 | 222
SPECfp StdDev 1.22 131 1.93 1.38 142 | 1.35 1.36 1.38 1.39
compress 2.22 1.86 2.10 2.00 196 | 191 191 1.96 1.94
egntott 1.49 1.33 153 1.38 138 | 1.35 1.36 1.38 1.37
espresso 1.36 1.25 1.38 1.29 130 | 1.27 1.27 1.33 1.32
gce 1.32 1.08 1.37 1.15 115 | 110 1.15 1.21 1.18
li 1.34 0.99 1.28 1.05 1.06 | 1.01 1.07 1.15 111
sC 2.16 1.99 2.38 2.10 209 | 204 2.05 211 | 2.09
SPECint Mean 1.65 141 1.67 1.49 149 | 144 147 153 1.50
SPECint StdDev 0.43 0.41 0.45 0.44 043 | 043 0.41 041 | 041
Overall Mean 1.76 1.62 2.07 1.70 1.73 | 1.66 1.70 1.74 | 1.73
Overall StdDev 0.92 0.98 1.45 1.04 1.06 | 1.01 1.02 1.03 1.04

Table 5: Cache Access Latency for Conservative Timing Model with Ty = 10 Cycles, T = 2 Cycles,
Ts = 4Tr — 2 Cycles.

19

PSA Cache
[Program || Direct | 2Way | Rehash | CAC | MRU | Eff | XOR-5-5 | RegNum | Proc
APS 111 1.09 1.78 154 118 | 1.14 1.19 125 | 1.23
CSS 113 1.08 1.80 152 117 | 111 1.18 1.23 | 1.20
LGS 1.05 1.03 1.33 1.22 1.09 | 1.06 1.14 118 | 114
LWS 1.08 1.04 158 1.36 111 | 1.06 117 118 | 117
NAS 1.14 1.10 1.82 155 119 | 114 1.19 1.20 | 117
OoCs 117 1.16 2.00 1.71 131 | 122 1.27 131 | 132
SDS 1.06 1.06 1.44 1.22 111 | 1.08 117 119 | 1.20
TFS 112 111 1.70 148 1.20 | 1.18 1.25 1.26 | 1.27
TIS 117 113 2.20 1.66 125 | 115 1.24 139 | 141
WSS 1.15 1.13 1.93 1.61 124 | 118 1.30 135 | 137
Perf Club Mean 112 1.09 1.76 1.49 119 | 113 1.21 125 | 1.25
Perf Club StdDev 0.05 0.04 0.26 0.17 0.07 | 0.05 0.05 0.07 | 0.09
avinn 111 1.09 1.62 1.37 113 | 111 111 113 | 112
doduc 1.18 111 2.19 1.75 1.26 | 1.17 1.23 1.27 | 1.23
ear 1.05 1.03 152 1.22 1.10 | 1.04 1.06 1.08 | 1.07
fpppp 1.10 1.03 1.73 1.46 115 | 107 1.23 1.28 | 1.23
hydro2d 1.28 1.24 2.50 1.97 138 | 1.31 1.45 143 | 146
mdljsp2 1.07 1.05 1.56 1.27 112 | 1.06 1.08 111 | 110
nasa’ 1.63 1.59 4.24 3.37 186 | 1.75 1.84 185 | 185
ora 1.05 1.00 1.28 1.18 1.03 | 1.00 1.06 1.08 | 1.02
spice 154 1.48 3.80 2.99 1.70 | 1.60 1.67 1.76 | 1.75
su2cor 1.70 1.69 470 3.42 205 | 191 1.98 207 | 204
swm256 1.36 1.46 541 2.55 1.94 | 156 1.65 1.73 | 1.73
tomcatv 1.56 1.61 5.92 3.14 216 | 1.71 1.84 191 | 196
waveb 1.14 111 2.23 1.65 130 | 1.20 1.24 135 | 1.34
SPECfp Mean 1.29 1.27 2.98 2.10 148 | 1.35 142 146 | 145
SPECfp StdDev 0.24 0.26 1.62 0.87 041 | 0.32 0.34 035 | 0.36
compress 1.30 1.22 2.38 2.05 134 | 128 1.28 135 | 132
egntott 112 1.08 1.63 141 114 | 111 113 115 | 113
espresso 111 1.09 1.60 141 116 | 112 113 1.20 | 118
gce 113 1.08 1.87 155 1.20 | 1.13 1.21 129 | 1.24
li 1.14 1.07 1.83 153 117 | 1.10 1.20 131 | 1.26
sC 1.29 1.26 2.68 2.09 144 | 1.38 1.40 149 | 145
SPECint Mean 1.18 1.13 2.00 1.67 124 | 119 1.22 130 | 1.27
SPECint StdDev 0.09 0.08 0.44 0.31 0.12 | 0.12 0.10 012 | 0.11
Overall Mean 1.21 1.18 2.35 1.80 133 | 1.24 131 136 | 1.34
Overall StdDev 0.18 0.19 1.23 0.66 031 | 0.24 0.25 026 | 0.27

Table 6: Average Cache Occupancy with Ty = 10 Cycles, T = 2 Cycles, Ts = 4Tr — 2 Cycles. The
Cache Occupancy isthe same for the the Conservative (T s = 1) and Optimistic (Tns = 0) models.

20

In genera, the latency for the associative caches are ~ 5 — 10% smaller than that of the direct mapped
cache; exact values can be found in thetables. It isimportant to understand that this paper is not comparing
the effectiveness of direct vs. associative caches; we assume that associative caches are desired, and an
efficient implementation techniqueis needed. In our performance comparison, we examined caches with a
small miss penalty, Ths = 10, because we feel the PSA-Cache is appropriate for first level caches. Asthe
miss penalty increases, al two-way associ ative caches further reduce thelatency, dueto the reduce missrate.
The access time for a two-way associative cache depends on the cache size and a number of other factors.
As mentioned, the access time for atwo-way associative cache is 1.51, 1.46 and 1.40 times longer than the
access time for a direct mapped cache for 8KB, 16KB and 32KB caches, respectively. It isincorrect to
simply scale the cycles per memory reference show in Tables 4, 5 and 6 by these values, since the data cache
access time typically limits the system cycle time and has a much broader impact on system performance.
For example, assume we design a system using an 8KByte cache with a 3 nanosecond clock. Table 4
would imply that atwo-way set associative cache would lower the average cycles per memory reference by
10-15%, by reducing the miss rate. However, such a cache would also be 1.51 times slower, with a4.53ns
cycle time. By comparison, the sequentia cache configurations shown in Table 4 maintain the same 3ns
cycle time, and reduce the average cycles per reference.

Thelatenciesfor most of the two-way associative caches are amost identical ; thisisnot surprising, since
the equations for latency in Table 3 are identical for the HR, CA, MRU and PSA caches. Any difference
in the latency arises from different hit rates, and the fraction of references resolved on the first or second
cycle. Only the HR-Cache has a notably higher miss rate. Table 4 demonstrates several points also seen
in the remaining tables. First, for some programs (sw256 and t ontat v), two-way set-associativity
increases the missrate. For the remaining programs, the ideal two-way set associative cache has the best
performance, followed by the PSA-Cache using the “Eff” prediction address; however, this configuration
simply extends the MRU-Cache to use alarger table of prediction bits, and it may not be possibleto usethe
effective address to index atable of steering bits and access the datain a single cycle. However, the “Eff”
column demonstrates how to improve the MRU-Cache design of Kessler et al for the domains considered
in [8]. The next most effective configuration is “XOR-5-5" followed by the CA-Cache. The “XOR-5-5"
configuration requires an exclusive-or of the contents of the register and offset before the SBT is accessed,;
this may not be possible in some designs. However, the “Proc” design provides almost equal performance
with considerably more flexible timing constraints. The prediction sources for the“Proc” configuration are
availableimmediately after theinstruction is decoded.

In Table 6, the direct and traditional two-way cache have the lowest occupancy; this is understandable,
because all cache operations either take one cycle (hit) or 1+ T cycles (miss). In the CA-Cache and PSA-
Cache, rehash bitsare used to avoid examining the second half of the cache in some situations. Agarwal [2]
used the rehash bit to reduce the latency by initiating misses one cycle earlier. In our “Optimistic” timing
model, the rehash bit has no effect on latency because misses are always initiated early, but rehash bits

21

influence occupancy in all configurations. There is still a notable difference between the “Optimistic’
and “ Conservative’ timing model, even when the rehash bits are used, indicating that the specul ative miss
initiation is useful even when the rehash bit can not avoid probing the cache a second time.

We fedl that occupancy is an important metric, because it determines how quickly memory references,
both loads and stores, can be issued without contention in the cache. Occupancy directly affects cache
latency, but is highly dependent on machine and system architectures and instruction scheduling.

6 Conclusions

In this paper, we have primarily focused on the Predictive Sequential Associative Cache as a mechanism to
implement two-way associative on-chip caches. We proposed two metrics, latency and occupancy, suitable
for comparing associative cache designs. Variants of the PSA-Cache have better performance, in terms
of latency and occupancy, than other proposed designs. We feel the PSA-Cache variants are easier to
implement than designs that exchange cache lines, particularly for larger cache lines.

Our simultation study showed that al the techniques had comparable latency, with variants of the PSA-
Cache having the lowest latency. The PSA-Cache a so had the lowest occupancy. The “Eff” design hasthe
best performance, but the “XOR-5-5" may be easier to implement.

There are a number of other design criteria not immediately evident from our performance metrics.
First, the PSA-Cache may have fewer power requirements than other caches since a single bank is probed.
Furthermore, since the PSA-Cache is divided into two banks that can be operated independently, it may be
possible to support multiple references without dual-porting the banks. A similar argument can be made
for the CA-Cache, but it would require extensive book-keeping to maintain correctness while blocks are
exchanged. Lastly, the PSA-Cache mechanism may a so be appropriatefor larger, secondary caches directly
controlled by the processor. The Steering Bit Table can be small, and implemented on the processor, while
the MRU Table, cache tags and data can be implemented off-chip.

Acknowledgements

We would like to thank Alan Eustace and Amitabh Srivastava for developing ATOM. Brad Calder was
supported by an ARPA Fellowship in High Performance Computing administered by the Institute for
Advanced Computer Studies, University of Maryland Thiswork wasfunded in part by NSF grant No. ASC-
9217394, NSF grant No. CCR-9404669, ARPA contract ARMY DABT63-94-C-0029 and a software grant
from Digital Equipment Corp.

22

References

[1]

[2]

(3]

[4]

(3]
6]

[7]

(8]

(9]

[10]

[11]

[12]

Anant Agarwal, John Hennesy, and Mark Horowitz. Cache performance of operating systems and
multiprogramming. ACM Transactions on Computer Systems, 6:393-431, November 1988.

Anant Agarwal and Steven D. Pudar. Column-associative caches: A technique for reducing the
miss rate of direct mapped caches. In 20th Annual Annual International Symposium on Computer
Architecture, SGARCH Newsletter, pages 179-190. |EEE, 1993.

M. Berry. The Perfect Club Benchmarks: Effective performance evaluation of supercomputers. The
International Journal of Supercomputer Applications, 3(3):5-40, Fall 1989.

J. H. Chang, H. Chao, and K. So. Cache design of a sub-micron CMOS System/370. In 14th Annual
Annual International Symposium on Computer Architecture, SGARCH Newsletter, pages 208—213.
|EEE, June 1987.

Mark Hill. A case for direct-mapped caches. |EEE Computer, 21(12):25-40, December 1988.

Norm Jouppi. Cache write policies and performance. In 20th Annual Annual International Symposium
on Computer Architecture, SSGARCH Newsletter, pages 191-201. IEEE, May 1993.

David R. Kadi and Philip G. Emma. Branch history table prediction of moving target branches due
to subroutine returns. In 18th Annual Annual International Symposium on Computer Architecture,
S GARCH Newsletter, pages 34-42. ACM, May 1991.

R. R. Kesdler, Richard Jooss, Alvin Lebeck, and Mark D. Hill. Inexpensive implementations of set-
associativity. In 16th Annual Annual International Symposium on Computer Architecture, SGARCH
Newsletter. IEEE, May 1989.

Scott McFarling. Program optimization for instruction caches. In Proceedings of the 3rd Symposium
on Architectural Support for Programming Languages and Operating Systems, pages 183-191. ACM,
1988.

Wen mei W. Hwu and Pohua P. Chang. Achieving high instruction cache performance with an
optimizing compiler. In 16th Annual Annual International Symposium on Computer Architecture,
S GARCH Newsletter, pages 242-251. ACM, ACM, 1989.

Kimming So and Rudolph N. Rechtschaffen. Cache operations by MRU change. |EEE Transactions
on Computers, 37(6):700-709, June 1988.

Amitabh Srivastava and Alan Eustace. ATOM: A system for building customized program analy-
sis tools. In Proceedings of the SGPLAN'94 Conference on Programming Language Design and
Implementation. ACM, 1994.

23

[13] Steven J. E. Wilton and Norman P. Jouppi. An enhanced access and cycle time model for on-chip
caches. Report 93/5, DEC Western Research Lab, 1993.

24

Load Hit Rates for Different Applications

Direct

Program Loads Stores

Hf Hs Mf Ms Hf Hs Mf

APS | 0.62 | 0.00 | 0.06 | 0.00 || 0.27 | 0.00 | 0.05
CSS | 0.71 | 0.00 | 0.07 | 0.00 || 0.18 | 0.00 | 0.04
LGS | 0.63 | 0.00 | 0.02 | 0.00 || 0.28 | 0.00 | 0.07
LWS | 0.67 | 0.00 | 0.04 | 0.00 || 0.26 | 0.00 | 0.03
NAS | 0.64 | 0.00 | 0.07 | 0.00 || 0.24 | 0.00 | 0.05
OCS | 0.41 | 0.00 | 0.09 | 0.00 || 0.32 | 0.00 | 0.18
SDS | 0.70 | 0.00 | 0.03 | 0.00 || 0.26 | 0.00 | 0.02
TFS | 0.64 | 0.00 | 0.06 | 0.00 || 0.17 | 0.00 | 0.13
TIS | 059 | 0.00 | 0.09 | 0.00 || 0.32 | 0.00 | 0.01
WSS | 0.64 | 0.00 | 0.08 | 0.00 || 0.21 | 0.00 | 0.08
avinn | 0.69 | 0.00 | 0.06 | 0.00 || 0.26 | 0.00 | 0.00
doduc | 0.72 | 0.00 | 0.09 | 0.00 || 0.12 | 0.00 | 0.08
ear | 0.61 | 0.00 | 0.02 | 0.00 || 0.33 | 0.00 | 0.03
fpppp | 0.69 | 0.00 | 0.05 | 0.00 || 0.19 | 0.00 | 0.07

hydro2d | 0.61 | 0.00 | 0.14 | 0.00 || 0.09 | 0.00 | 0.17

mdljsp2 | 0.74 | 0.00 | 0.04 | 0.00 || 0.22 | 0.00 | 0.01
nasa7 | 041 | 0.00 | 0.31 | 0.00 || 0.20 | 0.00 | 0.07
ora | 0.67 | 0.00 | 0.03 | 0.00 || 0.30 | 0.00 | 0.01
spice | 0.62 | 0.00 | 0.27 | 0.00 || 0.09 | 0.00 | 0.02
su2cor | 0.34 | 0.00 | 0.35 | 0.00 || 0.08 | 0.00 | 0.23

swm256 | 0.56 | 0.00 | 0.18 | 0.00 || 0.09 | 0.00 | 0.17

tomeatv | 0.49 | 0.00 | 0.28 | 0.00 || 0.11 | 0.00 | 0.12
wave5 | 0.55 | 0.00 | 0.07 | 0.00 || 0.21 | 0.00 | 0.18

compress | 0.59 | 0.00 | 0.15 | 0.00 || 0.25 | 0.00 | 0.01

egntott | 0.85 | 0.00 | 0.06 | 0.00 || 0.08 | 0.00 | 0.01

espresso | 0.75 | 0.00 | 0.06 | 0.00 || 0.16 | 0.00 | 0.04

gcc | 0.61 | 0.00 | 0.06 | 0.00 || 0.25 | 0.00 | 0.08
li | 059 | 0.00 | 0.07 | 0.00 || 0.30 | 0.00 | 0.04
sc | 055 | 0.00 | 0.15 | 0.00 || 0.14 | 0.00 | 0.16

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

25

Program

APS
CSS
LGS
LWS
NAS
OCs
SDS
TFS
TIS
WSS
avinn
doduc
ear
fpppp
hydro2d
mdljsp2
nasa’
ora
spice
su2cor
swm256
tomcatv
waveb
compress
egntott
espresso
gce

li

sC

0.60
0.69
0.63
0.65
0.63
041
0.68
0.64
0.53
0.62
0.67
0.68
0.58
0.66
0.59
071
0.38
0.67
0.57
031
0.27
0.25
0.50
0.58
0.84
0.74
0.58
0.57
0.53

0.27
0.18
0.27
0.26
0.23
0.32
0.26
0.17
0.32
0.20
0.26
0.12
0.33
0.18
0.09
0.22
0.20
0.27
0.09
0.08
0.07
0.06
0.20
0.25
0.08
0.16
0.24
0.30
0.14

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.05
0.04
0.07
0.02
0.05
0.18
0.01
0.13
0.01
0.08
0.00
0.06
0.03
0.07
0.17
0.01
0.06
0.03
0.02
0.22
0.20
0.16
0.18
0.01
0.01
0.03
0.08
0.04
0.16

26

Program

APS
CSS
LGS
LWS
NAS
OCs
SDS
TFS
TIS
WSS
avinn
doduc
ear
fpppp
hydro2d
mdljsp2
nasa’
ora
spice
su2cor
swm256
tomcatv
waveb
compress
egntott
espresso
gce

li

sC

0.61
071
0.63
0.66
0.64
041
0.69
0.64
0.57
0.63
0.68
071
0.61
0.69
0.60
0.73
0.38
0.67
0.59
0.33
0.49
043
0.54
0.58
0.85
0.75
0.60
0.59
0.55

0.02
0.01
0.01
0.02
0.03
0.01
0.02
0.03
0.03
0.02
0.02
0.01
0.01
0.05
0.01
011
0.00
0.08
0.16
011
0.15
0.02
0.04
0.01
0.02
0.02
0.01
0.05

0.28
0.19
0.28
0.27
0.24
0.33
0.26
0.17
0.32
021
0.26
0.12
0.34
0.20
0.09
0.22
021
0.30
0.09
0.07
0.09
0.10
0.20
0.25
0.08
0.16
0.25
031
0.14

0.01
0.03
0.00
0.02
0.05
0.00
0.04
0.00
0.02
0.00
0.02
0.01
0.01
0.07
0.00
0.01
0.00
0.01
0.05
0.03
0.04
0.07
0.00
0.00
0.01
0.02
0.01
0.03

0.02
0.02
0.03
0.01
0.03
0.13
0.01
0.09
0.01
0.04
0.00
0.03
0.01
0.04
0.10
0.00
0.04
0.00
0.01
0.18
0.14
0.08
011
0.01
0.01
0.02
0.05
0.02
0.12

27

Program

APS
CSS
LGS
LWS
NAS
OCs
SDS
TFS
TIS
WSS
avinn
doduc
ear
fpppp
hydro2d
mdljsp2
nasa’
ora
spice
su2cor
swm256
tomcatv
waveb
compress
egntott
espresso
gce

li

sC

0.59
0.68
0.63
0.64
0.62
0.40
0.67
0.63
051
0.61
0.67
0.67
0.58
0.66
0.59
0.70
0.33
0.67
0.55
0.30
021
0.18
0.49
0.58
0.83
0.74
0.58
0.57
0.53

0.28
0.18
0.28
0.27
0.24
0.35
0.26
0.17
0.32
021
0.26
0.12
0.33
0.19
0.09
0.22
021
0.30
0.09
0.07
0.05
0.04
0.19
0.25
0.08
0.16
0.25
0.30
0.14

0.02
0.03
0.01
0.02
0.08
0.01
0.07
0.01
0.03
0.00
0.03
0.01
0.02
011
0.00
0.02
0.00
0.01
011
0.10
0.06
0.10
0.00
0.00
0.01
0.04
0.01
0.08

0.02
0.01
0.03
0.01
0.02
0.07
0.01
0.06
0.01
0.03
0.00
0.03
0.01
0.03
0.06
0.00
0.02
0.00
0.01
0.12
0.07
0.06
0.08
0.00
0.00
0.02
0.03
0.01
0.07

28

Program

APS
CSS
LGS
LWS
NAS
OCs
SDS
TFS
TIS
WSS
avinn
doduc
ear
fpppp
hydro2d
mdljsp2
nasa’
ora
spice
su2cor
swm256
tomcatv
waveb
compress
egntott
espresso
gce

li

sC

0.63
0.74
0.64
0.69
0.66
041
0.70
0.64
0.61
0.65
0.69
0.74
0.62
0.72
0.61
0.75
041
0.70
0.64
0.34
0.50
047
0.56
0.62
0.86
0.76
0.63
0.62
0.57

0.02
0.01
0.01
0.02
0.05
0.02
0.03
0.04
0.04
0.04
0.04
0.01
0.01
0.10
0.02
0.19
0.00
0.14
0.25
0.16
0.24
0.03
0.06
0.02
0.03
0.02
0.02
0.08

0.29
0.19
0.28
0.28
0.24
0.35
0.26
0.17
0.32
0.22
0.26
0.13
0.35
0.22
0.09
0.22
0.22
0.30
0.09
0.09
0.09
011
0.20
0.25
0.08
0.16
0.26
0.32
0.15

0.02
0.04
0.01
0.03
0.13
0.01
0.07
0.01
0.04
0.00
0.04
0.02
0.02
0.14
0.00
0.03
0.00
0.01
011
0.14
0.08
011
0.01
0.01
0.02
0.04
0.02
0.08

0.01
0.01
0.02
0.01
0.02
0.02
0.01
0.05
0.00
0.02
0.00
0.02
0.00
0.03
0.03
0.00
0.01
0.00
0.01
011
0.03
0.04
0.07
0.00
0.00
0.01
0.03
0.01
0.07

29

Program

APS
CSS
LGS
LWS
NAS
OCs
SDS
TFS
TIS
WSS
avinn
doduc
ear
fpppp
hydro2d
mdljsp2
nasa’
ora
spice
su2cor
swm256
tomcatv
waveb
compress
egntott
espresso
gce

li

sC

0.59
0.68
0.60
0.62
0.64
0.40
0.63
0.60
0.55
0.57
0.69
0.70
0.61
0.60
0.54
0.73
0.36
0.65
0.58
0.29
0.46
0.40
0.53
0.62
0.85
0.76
0.58
0.55
0.56

0.27
0.17
0.25
0.23
0.22
0.34
0.23
0.16
0.29
0.19
0.25
0.12
0.34
0.18
0.08
0.22
0.20
0.28
0.09
0.08
0.09
0.09
0.20
0.25
0.08
0.16
0.24
0.28
0.14

0.02
0.03
0.01
0.02
0.10
0.01
0.07
0.01
0.03
0.00
0.03
0.01
0.02
011
0.00
0.02
0.00
0.01
011
0.10
0.06
0.10
0.00
0.01
0.02
0.04
0.01
0.08

0.01
0.01
0.03
0.01
0.02
0.05
0.01
0.06
0.00
0.03
0.00
0.02
0.01
0.03
0.06
0.00
0.02
0.00
0.01
0.12
0.07
0.05
0.08
0.00
0.00
0.01
0.03
0.01
0.07

30

Program

APS
CSS
LGS
LWS
NAS
OCs
SDS
TFS
TIS
WSS
avinn
doduc
ear
fpppp
hydro2d
mdljsp2
nasa’
ora
spice
su2cor
swm256
tomcatv
waveb
compress
egntott
espresso
gce

li

sC

0.56
0.64
0.56
0.61
0.63
0.39
0.63
0.60
042
0.53
0.68
0.66
0.60
0.56
0.56
071
0.36
0.64
0.50
0.26
0.40
0.36
045
0.57
0.83
0.70
0.52
048
0.50

0.25
0.17
0.25
0.23
021
0.34
021
0.15
0.27
0.17
0.25
011
0.33
0.17
0.08
0.22
021
0.28
0.09
0.06
0.09
0.09
0.18
0.24
0.07
0.15
0.22
0.25
0.13

0.02
0.03
0.01
0.02
0.08
0.01
0.06
0.01
0.03
0.00
0.03
0.01
0.02
0.10
0.00
0.02
0.00
0.01
011
0.09
0.07
0.10
0.00
0.00
0.01
0.04
0.01
0.06

0.02
0.01
0.03
0.01
0.02
0.07
0.01
0.06
0.00
0.03
0.00
0.02
0.01
0.03
0.07
0.00
0.03
0.00
0.01
0.12
0.08
0.05
0.08
0.00
0.00
0.02
0.03
0.01
0.09

31

Program

APS
CSS
LGS
LWS
NAS
OCs
SDS
TFS
TIS
WSS
avinn
doduc
ear
fpppp
hydro2d
mdljsp2
nasa’
ora
spice
su2cor
swm256
tomcatv
waveb
compress
egntott
espresso
gce

li

sC

0.57
0.67
0.59
0.62
0.64
0.39
0.63
0.59
0.39
051
0.68
0.69
0.60
0.60
0.53
071
0.35
0.67
051
0.28
0.40
031
0.46
0.59
0.85
071
0.55
0.52
0.52

0.02
0.01
0.01
0.02
0.04
0.02
0.03
0.04
0.04
0.03
0.03
0.01
0.01
0.07
0.01
0.16
0.00
0.12
0.19
0.15
0.18
0.03
0.06
0.02
0.02
0.02
0.02
0.07

0.25
0.18
0.26
0.23
0.24
0.34
021
0.15
0.28
0.18
0.25
0.13
0.33
0.18
0.08
0.22
021
0.30
0.09
0.07
0.09
0.09
0.18
0.25
0.08
0.15
0.23
0.25
0.14

0.02
0.03
0.01
0.02
0.08
0.01
0.06
0.01
0.03
0.00
0.03
0.01
0.02
0.10
0.00
0.02
0.00
0.01
011
0.09
0.07
0.10
0.00
0.01
0.01
0.04
0.01
0.06

0.02
0.01
0.03
0.01
0.02
0.07
0.01
0.06
0.00
0.03
0.00
0.02
0.01
0.03
0.07
0.00
0.03
0.00
0.01
0.12
0.08
0.05
0.08
0.00
0.00
0.02
0.03
0.01
0.09

32

