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Abstract

As processor architectures have increased their reliance
on speculative execution to improve performance, the
importance of accurate prediction of what to execute
speculatively has increased. Furthermore, the types of
values predicted have expanded from the ubiquitous
branch and call/return targets to the prediction of
indirect jump targets, cache ways and data values. In
general, the prediction process is one of identifying the
current state of the system, and making a prediction for
some as yet uncomputed value based on that state.
Prediction accuracy is improved by learning what is a
good prediction for that state using a feedback process at
the time the predicted value is actually computed. While
there have been a number of efforts to formally
characterize this process, we have taken the approach of
providing a simple algebraic-style notation that allows
one to express this state identification and feedback
process.  This notation allows one to describe a wide
variety of predictors in a uniform way. It also facilitates
the use of an efficient search technique called genetic
programming, which is loosely modeled on the natural
evolutionary process, to explore the design space. In this
paper we describe our notation and the results of the
application of genetic programming to the design of
branch and indirect jump predictors.

1. Introduction

In the quest for more CPU performance, there is ever
greater use of strategies to increase instruction-level
parallelism, including deep pipelines, super-scalar issue,
and out-of-order issue. In order to achieve a performance
benefit, these techniques have resulted in an increasing
reliance on speculative execution, that is, executing
operations before all the input values are known.

The standard technique for coping with unknown
input values is guessing the value, using the guessed value
in the speculative operation, and eventually resolving
whether the guess was right or not. If the guess was right,
then the computation can proceed. If the guess was wrong,
however, the processor needs to reset its state back to the
point before the guess, and resume with the correct input
values. This process of generating a guess is more
formally called prediction.

Branch prediction is the most commonly seen form of
prediction [14,17,18,11]. In this case, the value being
predicted is the instruction to execute after a branch
instruction, e.g., either the target of the branch or the next
sequential instruction. This information is needed very
early in the pipeline, so that instruction fetch can be
directed to fetch the correct instruction. On the other
hand, the branch result will not be determined until the
branch executes far down the pipeline. Thus, accurate
branch prediction can substantially improve performance
by allowing for the speculative execution of instructions
following the branch before the branch resolves.

While branch prediction is probably the best known
form of prediction, there are many other cases where one
can predict either architectural or implementation values.
Some examples are: indirect jump target prediction [6,8],
return instruction target prediction [5], cache way
prediction [2], cache miss prediction, and data value
prediction [9]. In each of these cases, a value is predicted
and used speculatively pending actual computation of the
value.

Previous work on categorizing and characterizing
predictors has been based on the high-level constructs
from earlier research on branch prediction mechanisms,
such as global-history components or tables of saturating
counters [12,13,18,19].   This seems logical, particularly
for an automated search, because a predictor composed
from such constructs is quite likely to resemble a known
good predictor, whereas a predictor built arbitrarily from
lower-level primitives is less likely to be useful.

Using higher-level constructs, however, means that the
only predictors we are ever going to see are made from
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these familiar building blocks.  We are therefore losing
the chance to find interesting new components of
predictors that we had not previously thought of.  Another
drawback is that while we know many good building
blocks for branch predictors, this may not be the case for
other prediction problems.  So for those problems, we
would likely be more successful starting from lower-level
primitives. Therefore, rather than base a model of
prediction on the various existing predictors, we define a
simple primitive predictor.

The model we have developed allows a large variety of
predictors to be described using a language with a simple
algebraic-style syntax. Our aim is to formalize the process
of specification of predictors in part to facilitate the search
of the design space. Previously, this has been essentially a
manual process, i.e., dependent on the creativity of the
researcher. We aim to provide automatic help.

Thus, given this algebraic-style description for
predictors, we can employ automated search techniques in
order to find new predictors. In particular, the set of
techniques known as genetic programming allows one to
search a general expression design space [7]. It is a
stochastic technique that is well suited to situations where
we do not know much about what solutions might look
like, since it finds increasingly better solutions from a
starting point that can be completely randomly generated.

In Section 2 we provide a framework that can be used
to describe a wide variety of predictors, and a
corresponding algebraic notation that can be used to
simply describe these predictors. In Section 3 we provide
an overview of  genetic programming, and in Section 4 we
describe how we apply it to the task of finding predictors.
In section 5 we describe the results of our genetic
programming experiments to find branch predictors and
indirect jump predictors. Then finally in Section 6 we
conclude with some observations.

2. Predictor Notation

The principal function of any predictor is to take an
input, corresponding to the current state of the system,
and generate an output that predicts some as yet
uncomputed value. Note that this input can be as all-
encompassing of system state as desired. Thus, while most

branch predictor studies have been based on just the
current program counter, PC, as the input for the
predictor, there is no reason not to use other information,
such as the opcode or sign of the branch offset (since
backward branches are likely to be part of loops, and
hence more likely taken). So in general one should
consider using all the information available in earlier pipe
stages of the current or later instructions as well as
information available from earlier instructions in later
pipe stages [2].

Predictors can be divided into two classes: static and
dynamic. In the case of a static predictor the prediction is
always the same logical function of the input to the
predictor. On the other hand, dynamic predictors learn to
make better predictions from information that is only
available after the prediction is made. Dynamic predictors
thus use feedback to learn from past behavior and hence
make better predictions in the future.

The natural, but not necessarily required, time to feed
information back to the predictor is when it is determined
whether the prediction was correct or not. This is referred
to as the time the prediction resolves. Thus, frequently,
the information fed back to the predictor is simply the
accuracy of the prediction. So, in the case of a branch
predictor, whether the branch was taken or not can be fed
back to the predictor to help it improve its predictions. In
addition, however, other information might also be
provided. This overall dynamic prediction scheme can be
viewed as a feedback control system as illustrated in
Figure 1.

In order for such a feedback control system to learn, it
needs some sort of memory. To provide this memory we
define, as a primitive, the structure in Figure 2. This
primitive is basically a memory that is w bits wide and d
entries deep. As with a typical memory, it has two
operations. For our purposes, however, rather than read
and write, the two operations are called predict and
update, and furthermore these two operations are always
used as a pair. Thus, in our example, the operation of the
predictor consists of a predict step in which the memory
is accessed at address index, I, and the value read is used
as the prediction, P. Some time later, when the prediction
resolves, an update value, U, is delivered to the predictor

Input
Prediction
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Figure 1 - Basic Prediction Feedback Loop
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and written into the same location indexed by I. A trivial
extension might involve writing back to a different
location, but we will not consider that case. Similarly, we
do not consider the case where there might be multiple
predictions before there is an update.

We will represent the primitive predictor in Figure 2
as an algebraic expression:

P[w, d]( I; U)

where,
w = width
d = depth
I = index for prediction and update
U = update value

Note that we use a notation in which the static
configuration parameters of the predictor are enclosed in
square brackets ([]). These parameters allow us to describe
a class of predictors of various sizes with one definition. A
specific instance of a predictor has constant values
specified for these parameters.

 Following the configuration parameters are the
dynamic arguments used to generate predictions. These
are enclosed in parentheses (()). These arguments are in
turn partitioned between the input arguments, listed first,
and the update arguments, listed after the semicolon (;).
Other predictors defined in terms of this primitive
predictor will also follow this notation.

Use of this predictor can be thought of as inputting a
series of index, I, and update, U, values and generating a
series of predictions, P.  By using specific values or
expressions as the inputs to the predictor, we can create a
variety of predictors. Thus a simple 1-bit branch predictor
that predicts a branch will behave the same this time as it
did last time can be represented as:

Onebit[d](PC; T) = P[1, d](PC; T);

where,
PC = current program counter
T   = branch resolution

( 0 -> not taken, 1 -> taken)

This expression defines the predictor “Onebit” with
parameter d,  input PC and update expression T as the
expression on the right of the equal sign (=). The
expression on the right describes the size and how to
“wire up” the primitive predictor P to create “Onebit."
Note that this predictor is parameterized by its depth, d.
Therefore, to specify a specific predictor, like that in the
DEC Alpha 21064, we can use Onebit as follows:

A21064[](PC; T) = Onebit[2K]( PC; T);

We can also build up more complex components out of
the simple predictor that can be used to build even more
sophisticated predictors. Thus we can define an array of n-
bit saturating counters each of which counts up or down
based on their update value, such as described in [14] as:

Counter[n,d](I; T) = P[n, d](I; if  T then P+1 else P-1);

Note that in this case we use the value generated by
the predictor, P in this example, as part of the expression
for the update expression. We also have assumed that our
addition and subtraction operations are saturating
operations. Using this predictor and a function MSB that
returns the most-significant bit of a value, we can easily
create the ubiquitous 2-bit counter predictor as:

Twobit[d](PC; T) = MSB(Counter[2,d](PC;T));

Another useful primitive is one that keeps a history of
some value by concatenating the current history value
with the update value. The following expression describes
a predictor that maintains an array of histories of values:

Hist[w, d](I;V) = P[w,d](I; P || V);

Using this primitive one can create a variety of
predictors such as these global and local history or two-
level adaptive branch predictors from Yeh and Patt [18]:

GAg[n]( ;T) = Twobit[2n](Hist[n, 1](0; T); T);

PAg[n, d](PC; T) = Twobit[2n](Hist[n, d](PC; T); T);

Index (I)

Prediction (P)

Update (U)

�
w

d

Figure 2 - Primitive Predictor
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A simple modification of the index expression leads to
the PAp scheme from Pan, So and Rameh [11]:

PAp[n, m, d](PC; T) =
  Twobit[2m](PC || Hist[n, d](PC; T); T);

Similarly, McFarling’s GShare predictor [10] can be
expressed as:

GShare[m](PC; T) =
  Twobit[2m](PC ⊕  Hist[m, 1](0; T); T);

Finally, what may be the most complex commercially
implemented predictor, the choosing predictor [10] used
in the DEC Alpha 21264. This predictor consists of a
local history predictor and a global history predictor that
are selected between by a global history based chooser:

Lhist[](PC;T) = Threebit[1K](Hist[10,1K](PC;T); T);
Ghist[](;T) = Twobit[4K](Hist[12,1](0;T); T);

A21264[](PC; T) = 
if  (MSB(P[2,4K](Hist[12,1](0;T);

   P + (Lhist==T) - (Ghist == T)))
   then Lhist[](PC;T)

else Ghist[](;T);

Where Threebit is the obvious extension of Twobit to
three bit counters.

Through the composition of predictors and various
logic expressions a large variety of predictors can be
created. Note, furthermore, that the predictors need not be
restricted to generating single bit predictions. For
example, one can specify a predictor for indirect jumps.
Following is an expression that builds a table for indirect
jumps that predicts that each indirect jump instruction
will jump to the same target it jumped to last time:

Jump[d](PC; Target) = P[32, d](PC; Target);

We have developed a parser for a version of this
notation called the BP language. This BP language parser
understands the predictor primitive and a variety of
functions. It also understands another primitive, which we
do not use here, that represents a set-associative tag store.

The parser translates BP language expressions into a
set of subroutines that simulate the predictor that the
expression describes. From there it is easy to link the
predictor subroutines to a trace reader to simulate the
performance of the specified predictor.

In the next section, we describe a search technique that
can automatically generate predictors.

3. Genetic Programming

We base our automatic search for predictors on genetic
programming [7]. Genetic programming is derived from
genetic algorithms [4], so we will describe those first.
Genetic algorithms are a method for efficiently searching
extremely large problem spaces.  Their behavior has some
similarities to the way in which natural selection enables
evolution to produce species that are adapted to their
environment.

A genetic algorithm encodes potential solutions to a
given problem as fixed-length bit strings.  Initially, we
generate a set of random bit strings, each of which is
called an individual by analogy to the evolution
paradigm. This set is our initial population or
generation.  We evaluate the fitness of each individual by
computing a metric that reflects how well the solution
encoded by its bit string solves the problem.  This metric
might be the cost of the solution, or a measure of how
close an individual gets to achieving a particular task.

To create the next generation in the evolutionary
process, we create new individuals from old ones by
applying genetic operations that recombine the
components of the old individuals in different ways.
Thus, structures that are part of a good solution that have
developed in some individuals can be combined with
structures developed in other individuals. The resulting
offspring might be an individual combining several good
components and potentially achieving a higher fitness
value.

This process of combining pieces of solutions to form
new solutions is one of the key features of genetic
algorithms.  The other key feature is the way in which the
fitness of an individual influences its propagation in
future generations: The individuals that serve as input to
the genetic operations are chosen with a probability based
on their fitness value.  Individuals with a higher fitness
value have a higher probability of being chosen, so that
they may appear many more times than individuals of
lower fitness value.  This means that the next generation
will contain many individuals that contain one or more
components from successful individuals of the previous
generations, which makes it likely that the average fitness
of the new generation will be better than that of the
previous generation.  By repeating this process many
times, we produce a sequence of successive generations.

The first generation, being a set of random points in
the search space, will usually not contain any reasonable
solutions. The fitness-based selection method will,
however, try out many modifications and combinations of
the slightly better individuals, which generally leads to
much improved solutions within a few generations.
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Genetic algorithms often work very well for problems
where solutions can be encoded in fixed-length strings.
They are too constraining for problems, such as
prediction, where the solutions are general algebraic
expressions or programs.  Genetic programming, which is
closely related to genetic algorithms, is better suited to
these problems.  The only change is that the individuals
are not encoded as fixed-length strings, but as tree
structures, and the genetic operations are adapted to
perform analogous operations on tree structures.  This
allows us to easily represent algebraic expressions or
parse-tree representations of programs, and it allows the
individuals to grow as needed. In our application of this
method, the individuals are BP language expressions that
describe predictors.

4. Genetic Programming Search

To apply genetic programming to automatically
synthesize predictors, we created a set of programs and
scripts to perform the genetic programming search as
follows:

1.  Create initial population of randomly generated
individuals

2.  Rank fitness of individuals in the population by
simulation

3.  Apply genetic operations to create new generation

4.  Repeat steps 2 and 3

More specifically, however, to apply genetic
programming to predictors one needs to map the predictor
problem into the appropriate structure. First, we will
describe how we represent expressions in the BP language
as tree data structures.  Next, we present the genetic
operations that are used to produce new individuals from
old ones.  Then, we describe how these operations are
applied to a generation of individuals to create the next
generation.  We also need to place some constraints on the
expressions that are produced by genetic operations to
ensure that the results are valid BP expressions, that they
do not grow unreasonably large, and that they satisfy
certain other constraints that simplify the implementation
of some aspects of the operations.  Finally, we present the
method we use to determine the fitness of the individuals
in the population.

4.1 Representation of expressions

Individuals are represented by a tree structure which is
easily translated into a corresponding expression in the
BP language.  The tree nodes are divided into the
following categories:

Predictors

A predictor node represents a primitive predictor of
the BP language. It contains the width and height of the

predictor, and has two descendants: The first one
corresponds to the expression used to compute the index
of the predictor, and the second one corresponds to the
expression used to update the state of the predictor.

Functions

We currently use the following functions: XOR, CAT
(concatenation), MASKHI/MASKLO (which return a
given number of the high or low bits), MSB (returns the
highest bit), SATUR (performs a saturating add of a given
width), IF (selects one of two inputs depending on the
value of a third input).  If desired, it is very easy to extend
this set, since the BP language contains many additional
functions.

Terminals

Input values: For each class of prediction problem,
there is a list of the arguments to a predictor. Arguments
are separated into two classes: the input values that are
available immediately, and the update values that are
available after the value being predicted has been
computed.  For branch prediction, the inputs usually
include the PC of the branch instruction, but other
processor state can also be useful, such as the branch
direction (the sign bit of the branch offset).  The update
value for branch prediction is typically the branch
outcome.

Value of a predictor: An expression can be a reference
to the value of another predictor node.  To simplify the
implementation of other parts of the system, it was
expedient to allow only references to the nearest enclosing
predictor. This restricts the class of predictors that can be
generated, and we plan to remove this restriction in the
future.

Integer constants: We allow small integer constants to
be available in expressions.

4.2 Genetic Operations

In this section, we describe the genetic operations that
are used to populate a new generation.

Replication

To ensure that the very best individuals of a generation
are not lost or destroyed by other operations, we copy a
certain number of the best individuals to the next
generation.

Crossover

The most important operation is one that combines the
components of two predictors in a different way to form
two new predictors.  To perform a crossover operation on
two individuals, we randomly choose a node in each of the
two, and exchange the subtrees defined by the two nodes.
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Mutation

There are two kinds of mutation operations; their
purpose is to make small changes to individuals, which
can sometimes be needed to prevent the entire generation
from converging to identical individuals.  We apply
mutation operations to the offspring generated by
crossover operations.

For a node mutation, we randomly choose a node
within the expression tree of the individual, and modify
the node as follows:  If it is a function node, we replace it
with a different function; if that function needs more
arguments than the original function, we create random
expression trees as needed.  If it is a terminal node, we
replace it with another terminal.  If it is a predictor node,
we change the width and/or height of the predictor.

For a subtree mutation, we randomly choose a node
and replace the subtree defined by the node with a
randomly generated subtree of identical height.

Encapsulation

Crossover operations are necessary to combine useful
components of individuals, but they can also be
destructive: They may break up a useful component of an
individual into parts that are meaningless by themselves.
An encapsulation operation makes a randomly chosen
subtree of an individual into an indivisible unit that
cannot be broken apart by a crossover operation or
mutation, although it can still be moved in its entirety [1].
For a randomly chosen encapsulation point, there is no
way to know that this encapsulated component is actually
useful.  However, if it is useful, then individuals that
receive this component through crossover will tend to
improve, and the fitness-based selection and replication
will make those individuals more frequent in the next
generation.  On the other hand, if the component is
useless, then individuals incorporating it will tend not to
be successful, and the component will not propagate and
eventually die out.

There is an opposite operation, called expansion, that
turns an encapsulated subtree back into a regular subtree.
This way, encapsulated expressions still have a chance to
improve by taking part in other operations.

For each of these operations, the individuals serving as
inputs are chosen using a method called tournament
selection. To choose one individual by this method, we
first choose a set of individuals randomly and uniformly
from all the individuals of the current generation; the size
of this set is a parameter called the tournament size.
Then we find the individual in that set that has the best
fitness value, and discard all the other individuals.  The
result is that individuals are chosen according to a

probability distribution that gives higher probability to
individuals with higher fitness values, while less fit
individuals still have some chance to be chosen
occasionally.   How much this probability distribution is
biased towards better individuals is determined by the
tournament size parameter.  For a generation size of 400
individuals, we typically use a tournament size of 8.

4.3 Constraints

In order to produce legal and usable individuals, we
need to impose certain constraints on the results of genetic
operations.  In most cases, we achieve this by first
allowing the operations to proceed oblivious to the
constraints. We then check the result for compliance with
these constraints, and modify the individuals where
necessary.

Our first constraint is to avoid generating predictors of
excessive implementation size (i.e. the number of storage
bits it takes to implement the predictor). To keep the
predictors from growing indefinitely, we limit the
implementation size of any predictor to 512K bits of
storage.  When a predictor exceeds this bound, we reduce
its size until it falls below this limit:  we randomly choose
a predictor node within the expression tree, and reduce
either its width or its height by one step.  Experience has
shown that many of  the predictors that are created do not
use their implementation size efficiently; for example,
many predictors contain subexpressions that contain a
large predictor table whose value does not affect the
output of the entire expression.  Therefore, the somewhat
generous limit of 512K bits was deemed appropriate.

Our second constraint is making sure that the
expression is a legal BP expression.  For example, during
crossover a terminal node that refers to the value of an
enclosing predictor may be moved outside of the update
subtree of that predictor. In this case, if there is another
predictor enclosing the new location, the node will now
automatically refer to the nearest enclosing predictor in its
new context.  If there is no such predictor, the node is
changed to a constant value of 1.  Another problem occurs
when a terminal node that represents an update value is in
a context where that value is not available, e.g., the
branch outcome cannot be used in an indexing expression
of a branch predictor.

Because the widths of  values in the BP system are
important, when generating predictors the system must
explicitly specify the widths of  each expression. As a
simplification, we currently only allow expressions whose
width can be statically determined. In most cases, these
can be determined from the widths of the subexpressions,
except where there is a recursion. In those cases, we pick
a width at random.
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As Koza [7] notes, one often needs to coerce results
into a particular form for the problem being studied. We
found this to be true, so we developed a way of using
templates for the individuals of the initial generation, to
provide a reasonable starting point. For example, one
could use a template that is a predictor with a random
indexing expression and 2-bit saturating counter as the
update expression.  It is possible to have templates where
the user-provided components are forever fixed, or the
entire individual may be changed by genetic operations.
Usually, generating the more complex forms of branch
predictors depended on starting with more advanced
structures in the template.

4.4 Fitness

For the predictors we study, we use the accuracy of the
predictor, expressed as a misprediction rate, as the fitness
metric. To calculate the misprediction rate, we use the BP
language parser to create simulators of predictors from
these BP language expressions. We run those simulators
over instruction traces with a parameterizable training
period to avoid startup effects. In our experiments, we
used Atom [3] generated traces from some SPEC92 and
SPEC95 [15] integer benchmarks (compress, eqntott, gcc,
go, m88ksim, xlisp)  compiled for the DEC Alpha on
Digital Unix with the switches set as submitted to SPEC.
We also used some traces from the IBS benchmark suite
[16]. The simulation output consists of a prediction
accuracy and fitness ranking for each predictor.

Simulating the execution of an entire benchmark every
time we need to evaluate the fitness of the hundreds of
predictors in a generation would make it unbearably slow
to produce the 20-30 generations that are usually needed
to obtain good results. Thus, we use shortened runs to
generate fitness values.

Fortunately, the fitness measure is used only  as an
input  for the tournament selection process, which needs
only the relative ranking of the individuals and
furthermore is a probabilistic process that is unlikely to be
affected by slight inaccuracies in the rankings. Therefore,
we do not need a perfectly accurate fitness value, but only
a roughly accurate ranking of the individuals in a
generation. To generate this ranking, we simulate until we
find a ranking order that is reasonably stable.  Typically,
this requires simulating about one million branches.

Note, however, that if we use a single trace for an
entire benchmark, we would repeatedly use only the first
million events from the trace.  Instead, we use several
shorter samples from the entire trace.  Each sample
contains 5 million predicted events, and for our
experiments we had 2 or 3 samples from each benchmark.

In our experiments, we used two different methods for
ranking predictors. In the first method, we ranked the
individuals in a generation based on just one randomly
selected benchmark, i.e., one benchmark per generation.
This method was relatively fast, and might correspond to
looking for individuals that can survive though successive
eras of drought, flood and temperate weather.

In our second method, we determine the rankings for
each benchmark in a set of benchmarks and then combine
the rankings for each benchmark into a single average
ranking. This second approach is much more time-
consuming, but it avoids the problem of only one
benchmark influencing the outcome of the next
generation. In either case, final evaluations of the
predictors are based on longer runs of the SPEC
benchmarks and IBS traces.

It remains to be shown that the relative fitness
determined using  short traces is actually a good measure
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Figure 3- Performance of Branch Predictors vs. Trace Length
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of the relative fitness for longer traces of benchmark
execution.  We verified this by selecting some of the better
predictors from our experiments, and evaluating their
performance over traces of varying length.

The results of these experiments are presented in
Figures 3 and 4. These figures show the absolute and
relative performance for several branch and indirect jump
predictors as a function of the number of predicted events
in the trace. Each line represents a different predictor,
where each point is calculated by averaging the results of
4 benchmarks: compress, gcc, go, xlisp.

 These curves show that over time the relative ranking
of the predictors is quite stable (or indistinguishably
close), even though the absolute performance varies due to
the differing behavior of the benchmark programs over
time.  Thus, we believe that rankings generated from the
short traces form an adequate input to the tournament
selection process.

5. Results

5.1 Branch Predictors

We chose branch prediction as the first test case for
automated synthesis of predictors. Because we had
previous knowledge of branch predictors, we knew what
kinds of structures are promising and what kind of
prediction accuracy can be achieved by a good predictor.
This gave us the opportunity to tune the system to get
generation to generation improvements. On the other
hand, given the many years of research on human
designed branch predictors, the task of finding new ones
is more difficult.

Figure 5 shows the development of the best and
average individuals over 16 generations of one

experiment; fitness calculations were based on the average
of 8 SPEC traces, and the resulting average misprediction
percentages are shown for each generation.  Each
generation contains 400 individuals.

The graph shows a steady improvement in the
performance of the best predictor. As in this example,
somewhere between 15 and 30 generations the
experiments usually converge to a few distinct predictors,
and the subsequent generations do not achieve any
significant improvement.  Typically, this indicates that the
predictors that can be created from the population using
crossover and mutation do not show any improvement
over the best predictors in the population. Note that the
average performance of a population is more variable and
can even get worse if crossover and mutation generate a
number of useless predictors.

To see how well our automatically generated
predictors fared, we have taken 6 of the better predictors
produced in the course of our experiments, called GP1
through GP6, and 6 well-known human-discovered
predictors. The configurations for the human-made
predictors are specified using the predictor definitions
from  Section 2. In all cases we tried to size the predictors
to about 512K bits. Table 1 shows the average
performance of each predictor for the SPEC benchmarks
we studied (either full runs or 50M branches whichever
came first), and the average for the IBS traces.

The results show that the automatically generated
predictors compared favorably to the human-generated
versions. In fact, three of the predictors were better than
all but the GShare predictor.  Note, however, that we were
not yet able to create any choosing style predictors, due to
the current limitations of our crossover operation.
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We have not shown the predictor expressions for GP1
to GP6, because the predictors that are generated tended
to grow to the point where they consist of very deep tree
structures.  Thus, even though in size these predictors are
comparable to the human-designed predictors they are
logically much more complex, and probably not directly
implementable.

The complexity of these automatically-created
predictors is actually a natural consequence of the genetic
programming process. Genetically created solutions are
typically not very efficient, consisting of many apparently
useless expressions. These expressions, called “introns” in
the genetic programming literature, appear to be needed
to protect the developing expression from crossovers.
Thus, defining a fitness function biased against this sort of
complexity may not work. In any case, we believe that
there is value in just manually identifying  the pieces of
the solution that might be contributing to their
effectiveness, and manually creating better predictors.

In fact, we were able to find numerous interesting
subcomponents of these synthesized predictors. Over a
variety of runs of the experiment, we found the system
“invented” many familiar components of branch
predictors:  saturating counters, global and local branch
histories as well as indirect histories.

There were also some apparently new structures that
could form the basis for practical predictors. Invariably
these were used as part of something like a GShare-style
index (a global history xor’ed with the PC [10]) for a set
of two or three bit counters. Below are some examples of
such predictor components.

First is a global history indexed by a global history,
which keeps around a portion of the older global history
when there is a series of taken or not taken branches.

P0[14,16384](P1[14,1](0; P1 || T); P0 || T)

 Next is a global history biased by the direction of the
branch. If one assumes that backwards branches are
normally taken, and forward branches normally not taken,
then this keeps a history of “unexpected” branch actions:

P[14,1](0;  (P || (DIR ⊕   T))

Next is a predictor that keeps separate global histories
for forward and backward branches, maybe indicating that
it is useful to separate the behaviors of loop branches from
non-loop branches:

P[5,2](DIR; P || T)

 Finally, we found a predictor that keeps a short
history of PC values, which could be useful for tracking
the history of the program:

P0[11,32](P1[5,1024](PC<10:0>; PC<5:0>);
      P0 || PC<4:0>)

5.2 Jump Predictors

In contrast to branch prediction, there has been little
research on predicting the target addresses of jump
instructions that use a register as the target address. We
therefore have little knowledge of what a good jump
predictor looks like.  For the same reason, this is a more
interesting search space because we can expect to find
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predictors that are better than the ones that we already
know.

The inputs that are available to a jump predictor are:
PC, SP (stack pointer), TREG (number of register
containing the jump target), and the target itself  (after the
address has been resolved). The benchmarks we used for
this study were: gcc, go, xlisp and m88ksim.

Table 2 below shows some of the jump prediction
mechanisms that one might think of; note that we only
need to predict the lower 12 bits of the word address
because only targets that are in the instruction cache need
to be predicted.

The best predictors seen during our genetic
programming experiments achieve average misprediction
percentages as low as 15% on long runs of the same set of
programs; this represents a significant improvement over
the three predictors in Table 2.  Since the genetic
programming system had already been developed and
refined using branch prediction as a test case, producing
these jump predictors required very little effort.

One of the simplest predictors that gets significantly better
performance than the simple predictors above is shown
below.  The average misprediction percentage of this
predictor for full runs of the 4 SPEC traces of 1 to 21
million jumps is  33.4%.

P0[16, 16384](PC<3:0> ⊕  SP
    P1[12,16](TREG; TARGET);
    TARGET);

This expression contains a predictor that stores a previous
target, indexed by the target register; this is XORed with
the PC and the SP to form an index into a table of
previous targets.

Another example is the following more complicated
predictor; its misprediction rate is 30.0%.

P0[16, 16384](
SP ⊕   PC ⊕
P1[12,32](TREG; TARGET<11:2>) ⊕
P2[15,32](P3[5,2](1; PC<4:0>);

SP ⊕  TARGET ⊕
P4[12,32](P3;TARGET));

TARGET);

While maybe too complex to implement, this
expression shows some interesting subcomponents that
might be useful for creating more practical predictors.

6. Conclusions

In this paper, we have presented a new language for
describing predictors. This language provides a concise
and unambiguous way for describing a large variety of
predictors. Furthermore, it  allows for their automatic
manipulation, including generating simulators and
automated synthesis. In particular, we have used the
search technique called genetic programming to search
the design space for branch and jump predictors.

The result of these experiments has been the creation
of branch predictors comparable to the best non-choosing

Table 1 - Branch Predictor Performance

Predictor Mispredict
Rate (SPEC)

Mispredict
Rate (IBS)

Predictor Mispredict
Rate (SPEC)

Mispredict
Rate (IBS)

Onebit[1, 512K] 17.7 10.0 GP1 9.7 5.7

Twobit[2, 256K] 13.1 6.7 GP2 9.5 5.0

GShare[18] 6.7 2.7 GP3 9.7 5.7

GAg[18] 7.9 4.0 GP4 7.2 3.0

PAg[18, 8K] 7.9 4.5 GP5 7.0 2.9

PAp[9, 18, 8K] 11.2 5.5 GP6 7.1 2.9

Table 2 - Indirect Jump Predictor Performance

Description BP expression
Misprediction percentage:
average of 4 traces, 35M jumps

use the target of the previous jump p[12,1](1: target) 63%

table of previous targets, indexed by PC p[12,4096]( PC : target) 47%

table of previous targets, indexed by PC and SP p[12,4096]( PC[9..0] || SP[4..0] : target ) 54%
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predictors that have been published. Although these
predictors are logically complex, analysis of their
structure revealed a number of interesting subcomponents
that might be used to develop implementable predictors.
In addition, we created relatively simple indirect jump
target predictors significantly better than those typically
used today.

 Given the base system developed for branch
prediction, generating the indirect jump predictors was a
straightforward one week task. The positive results for
these predictors, and the ease of adaptation of the system,
make trying this technique for other types of predictors
promising.

While we have been encouraged by our results,  the
genetic programming search often generates rather
verbose predictors with portions that contribute little.
While this is a necessary characteristic of genetic
programming, the opportunity still remains for the
automatic reduction of expressions to reduce complexity.
This can include  eliminating unused memory as well
extracting the useful subcomponents of the more accurate
predictors and applying them in a more cost-effective
manner.
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