Converting Thread-Level Parallelism to
Instruction-Level Parallelism via
Simultaneous Multithreading

JACK L. LO and SUSAN J. EGGERS
University of Washington

JOEL S. EMER

Digital Equipment Corporation
HENRY M. LEVY

University of Washington
REBECCA L. STAMM

Digital Equipment Corporation
and

DEAN M. TULLSEN

University of California, San Diego

To achieve high performance, contemporary computer systems rely on two forms of parallel-
ism: instruction-level parallelism (ILP) and thread-level parallelism (TLP). Wide-issue super-
scalar processors exploit ILP by executing multiple instructions from a single program in a
single cycle. Multiprocessors (MP) exploit TLP by executing different threads in parallel on
different processors. Unfortunately, both parallel processing styles statically partition proces-
sor resources, thus preventing them from adapting to dynamically changing levels of ILP and
TLP in a program. With insufficient TLP, processors in an MP will be idle; with insufficient
ILP, multiple-issue hardware on a superscalar is wasted. This article explores parallel
processing on an alternative architecture, simultaneous multithreading (SMT), which allows
multiple threads to compete for and share all of the processor’s resources every cycle. The
most compelling reason for running parallel applications on an SMT processor is its ability to
use thread-level parallelism and instruction-level parallelism interchangeably. By permitting

This research was supported by Digital Equipment Corporation, the Washington Technology
Center, NSF PYI Award MIP-9058439, NSF grants MIP-9632977, CCR-9200832, and CCR-
9632769, DARPA grant F30602-97-2-0226, ONR grants N00014-92-J-1395 and N00014-94-1-
1136, and fellowships from Intel and the Computer Measurement Group.

Authors’ addresses: J. L. Lo, S. J. Eggers, and H. M. Levy, Department of Computer Science
and Engineering, University of Washington, Box 352350, Seattle, WA 98195-2350; email: {jlo;
eggers; levy}@cs.washington.edu; J. S. Emer and R. L. Stamm, Digital Equipment Corpora-
tion, HLO02-3/J3, 77 Reed Road, Hudson, MA 07149; email: {emer; stamm}@vssad.enet.dec.
com; D. M. Tullsen, Department of Computer Science and Engineering, University of Califor-
nia, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0114; email: tullsen@cs. ucsd.edu.
Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 1997 ACM 0734-2071/97/0800-0322 $03.50

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997, Pages 322-354.

Simultaneous Multithreading . 323

multiple threads to share the processor’s functional units simultaneously, the processor can
use both ILP and TLP to accommodate variations in parallelism. When a program has only a
single thread, all of the SMT processor’s resources can be dedicated to that thread; when more
TLP exists, this parallelism can compensate for a lack of per-thread ILP. We examine two
alternative on-chip parallel architectures for the next generation of processors. We compare
SMT and small-scale, on-chip multiprocessors in their ability to exploit both ILP and TLP.
First, we identify the hardware bottlenecks that prevent multiprocessors from effectively
exploiting ILP. Then, we show that because of its dynamic resource sharing, SMT avoids these
inefficiencies and benefits from being able to run more threads on a single processor. The use
of TLP is especially advantageous when per-thread ILP is limited. The ease of adding
additional thread contexts on an SMT (relative to adding additional processors on an MP)
allows simultaneous multithreading to expose more parallelism, further increasing functional
unit utilization and attaining a 52% average speedup (versus a four-processor, single-chip
multiprocessor with comparable execution resources). This study also addresses an often-cited
concern regarding the use of thread-level parallelism or multithreading: interference in the
memory system and branch prediction hardware. We find that multiple threads cause
interthread interference in the caches and place greater demands on the memory system, thus
increasing average memory latencies. By exploiting thread-level parallelism, however, SMT
hides these additional latencies, so that they only have a small impact on total program
performance. We also find that for parallel applications, the additional threads have minimal
effects on branch prediction.

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures

General Terms: Measurement, Performance

Additional Key Words and Phrases: Cache interference, instruction-level parallelism, multi-
processors, multithreading, simultaneous multithreading, thread-level parallelism

1. INTRODUCTION

To achieve high performance, contemporary computer systems rely on two
forms of parallelism: instruction-level parallelism (ILP) and thread-level
parallelism (TLP). Although they correspond to different granularities of
parallelism, ILP and TLP are fundamentally identical: they both identify
independent instructions that can execute in parallel and therefore can
utilize parallel hardware. Wide-issue superscalar processors exploit ILP by
executing multiple instructions from a single program in a single cycle.
Multiprocessors exploit TLP by executing different threads in parallel on
different processors. Unfortunately, neither parallel processing style is
capable of adapting to dynamically changing levels of ILP and TLP,
because the hardware enforces the distinction between the two types of
parallelism. A multiprocessor must statically partition its resources among
the multiple CPUs (see Figure 1); if insufficient TLP is available, some of
the processors will be idle. A superscalar executes only a single thread; if
insufficient ILP exists, much of that processor’s multiple-issue hardware
will be wasted.

Simultaneous multithreading (SMT) [Tullsen et al. 1995; 1996; Gulati et
al. 1996; Hirata et al. 1992] allows multiple threads to compete for and
share available processor resources every cycle. One of its key advantages

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

