Combining Static and Dynamic Branch Prediction
to Reduce Destructive Aliasing

Harish Patil and Joel Emer
Alpha Development Group, Compaq Computer Corporation
Harish.Patil@compaq.com Joel. Emer@compaq.com

Abstract

Dynamic branch predictor accuracy is known fo be
degraded by the problem of aliasing that occurs when
two branches with different run-time behavior share an
entry in the dynamic predictor and that sharing results in
mispredictions for the branches. In this paper, we analyze
the use of static prediction of certain branches to relieve
the aliasing problem in dynamic predictors. We report on
our experience with using profile-directed feedback to
select branches that can profitably be predicted statically
in combination with some well known dynamic branch
predictors. We found prediction rate improvements of up
to 75% for a simple branch predictor (ghist) and up to
14% for a very aggressive hybrid predictor (2bcgskew)
Jor certain programs.

1. Introduction

Conditional branch prediction is a vital component of
modern microprocessors. Conditional branches produce
control flow changes that in general can only be known
after the branches are executed. This can result in
pipeline stalls. To minimize these pipeline stalls,
processors rely on branch prediction techniques to
decide which instructions to fetch following a
conditional branch before the branch is executed.
Correct branch predictions avoid pipeline stalls, but an
incorrect prediction degrades performance because the
processor has wasted time and resources evaluating
wrong path instructions. As processor pipelines get
increasingly deeper this performance degradation is
becoming increasingly significant. Hence predicting
conditional branches correctly is very crucial for
performance.

Branch prediction techniques are divided into two main
groups: static and dynamic. Static branch predictors use
the results of pre-run-time analysis whereas dynamic
branch predictors use run-time behavior of recent
branches for making predictions.

Static prediction uses the knowledge of program
structure or profiles from previous runs of a program to
accurately predict the run-time outcome of some

branches. Note that once a branch is predicted statically
the prediction is typically fixed during a run of the
program. On the other hand, dynamic branch prediction
adapts to changing branch behavior of a program while
it is run. Unfortunately, most dynamic predictors suffer
from the ‘aliasing problem’ when two branches share
some location in the dynamic predictor. If the two
branches have different behavior this sharing can cause
the dynamic predictor to repeatedly mispredict the
branches. This effect is called destructive aliasing. The
converse situation where the sharing improves
prediction accuracy is called constructive aliasing.

In theory, the destructive aliasing problem can be
avoided by making surc that each branch gets its own
data location in the dynamic predictor. But that would
make dynamic predictors too large to be practical,
particularly given the sophisticated indexing schemes
used by most modern branch predictors, and would also
climinate the possibility of constructive aliasing.

We analyze a scheme wherein the compiler (or an
executable optimizer) alleviates the destructive aliasing
problem in the dynamic branch predictor by predicting
certain branches statically. The basic scheme was first
proposed in [19]. We found that the key to the
effectiveness of this scheme is choosing the right set of
branches to predict statically. The static prediction
scheme should complement the dynamic prediction
scheme such that statically predicting certain branches
either reduces the conflicts in the dynamic predictor or
captures branches hard for the dynamic predictor to
predict.

In this paper, we describe our experience with
combining static and dynamic branch prediction for the
Alpha architecture. We use profile-based analysis for
selecting branches for static prediction. Such analysis
can be ecasily implemented in an executable optimizer
such as Spike[1]. We combined our static prediction
scheme with well-known dynamic prediction schemes.
We measured the number of conditional branch
mispredictions per thousand instructions executed
(MISPs/KI) with and without static prediction. We
believe MISPs/KI is a better metric than prediction
accuracy for measuring branch predictor effectiveness as

the latter can be deceptive if the test programs have too
few or unevenly distributed branches. Fisher et al. [16]
make a similar argument against using prediction
accuracy as a performance metric.

We found static prediction to be very effective in
conjunction with simple predictors such as ‘ghist’ and
‘gshare’ where static prediction can achieve the effect of
doubling predictor size. In fact, we see an improvement
of up to 75% in the MISPs/KI for ‘ghist’ (4Kbytes:
m88ksim). Hybrid predictors of smaller size (2-4Kbyte)
benefit substantially from static prediction. For example,
the mispredictions per thousand instructions for a
‘2bcgskew’[2] dynamic predictor improved by up to
14% (2Kbytes:gcc) when combined with a static
prediction scheme. Also, programs with a higher branch
density, such as gcc, benefit with static prediction for all
the dynamic predictor configurations we simulated.

Static prediction is pronc to worst-case behavior when
the branches do not behave the same way as anticipated
by the compiler/optimizer. We did observe this
phenomenon with our profile-based static prediction
scheme when certain branches changed behavior going
from the training to the final run. Fortunately, our
planned analysis platform, Spike, can help iron out
differences in branch behaviors in different runs of a
program as it merges profiles from those runs. Further,
as suggested by [5], static prediction hints can be re-
written by a binary rewriting tool to tailor to a particular
input.

In this study, we cxplored the use of static branch
prediction to improve the prediction accuracy of
dynamic branch prediction. The original idea was
proposed in [19]. We experimented with static
prediction schemes that are easy to implement and yet
effective when used with very aggressive dynamic
predictors. We also studied the effect of static prediction
on collisions in various dynamic predictors.

The contributions of this work are as follows:

1] We discovered that although predicting certain
branches statically reduces destructive aliasing in
dynamic predictors the outcomes of those branches are
sometimes crucial for capturing the ‘branch correlation’
principle (described later) that some dynamic predictors
arc based on. Thus, it is sometimes helpful to keep
shifting outcomes of statically predicted branches in the
‘ghist’ register (again described later).

2] We found that the combination of a static and a
dynamic branch prediction scheme is most effective
when the two predictors work on different principles,
i.e., when the two prediction schemes complement each
other. For example, combining a bimodal predictor with
a static predictor predicting highly ‘biased’ (i.e., mostly

taken or not taken) branches shows very little
improvement as both of them target highly biased
branches. On the other hand, combining a ghist predictor
with static prediction of highly biased branches shows
excellent improvement. This is because the ‘ghist’
predictor does well on the set of branches showing
correlation in behavior with other branches and the
correlating branches are not necessarily highly biased.

In addition, we observed some interesting phenomena
during our study:

e Conditional branches that are highly biased are
highly predictable. There was a strong correlation of
prediction accuracies of various dynamic predictors
we simulated with the percentages of highly biased
branches in our test programs. We observed this
phenomenon even though each of the dynamic
predictors simulated works on a different principle.

e Using the right training input for profile-based static
branch prediction is very important. In our
experience with SPEC95 programs we found that
behavior of certain branches can dramatically
change when the input to the programs were
changed from ‘training’ to ‘reference’. We propose
a practicable solution for that problem.

2. Background

Most dynamic branch predictors predict the future
behavior of branches using their past behavior. Simple
branch prediction schemes use either the past behavior
of the branch being predicted (as in ‘bimodal’ [17]
scheme described later) or the behavior of neighboring
branches (as in ‘ghist’, called GAg in [18], scheme) or a
combination of the two (as in ‘gshare’ [7]).

At the heart of most simple branch predictors is a table
of counters. Various branch prediction schemes differ in
the way this table is indexed. On encountering a
conditional branch in program flow, the table of
counters is indexed for the given branch. The most
significant bit of the counter at the indexed entry is used
as the prediction for the branch. The counter is updated
(‘trained’) once the outcome of the branch is known.
Multi-level branch predictors have multiple tables where
the final prediction is determined after a series of
lookups with each lookup using the outcome of the
previous lookup as index. Hybrid branch predictors
combine two or more simple branch predictors. A
“meta-predictor” or “chooser” is used to select among
the predictions from the component predictors. The
training of a hybrid predictor may involve updating all
the component predictors (‘total update’ policy) or only
a subsct of the component predictors (a ‘partial update’
policy). Further the training may depend on whether the
prediction was correct (‘good’) or incorrect (‘bad’).

Depending on the indexing scheme and the size of the
table of counters in a simple branch predictor multiple
branches in a program may share the same counter. This
phenomenon is known as ‘aliasing” and various
branches are said to ‘collide’ with one another. If two
colliding branches behave the same way the collision
may in fact be ‘constructive’ as the two branches drive
the shared counter value in the same direction resulting
in correct predictions. On the other hand, if the two
colliding branches behave differently, they would try to
push the shared counter in different directions causing a
lot of mispredictions. Young et al. [3] have shown that
collisions in dynamic branch predictors are more likely
to be destructive than constructive.

Many researchers have studied aliasing in dynamic
predictors. Sprangle ct al. [4] observe that there are
three basic techniques to deal with the aliasing problem:

1. Increasing predictor size, possibly causing
conflicting branches to map to different locations.

2. Selecting an indexing scheme that best distributes
the available counters among different combinations
of branch address and history.

3. Separating different classes of branches so that they
do not use the same prediction scheme, and thus
cannot possibly interfere.

We belicve that the third technique can be very useful if
one of the prediction schemes used is static prediction
because static prediction can be tuned for a specific
application. Also, the hardware requirement for static
prediction is lower than dynamic prediction schemes.
We assume the presence of two bits of static prediction
hint similar to those available in Intel’s upcoming 1A-64
processor[5]. One bit in the conditional branch
instruction is used to convey the static prediction to the
hardware. The other bit conveys whether to use the
static prediction or not. Thus, as described in [19], one
of the bits is a static sub-component and the other bit is a
static meta-predictor.

We simulated five different dynamic branch prediction
schemes. Three classic simple branch prediction
schemes ‘bimodal’, ‘ghist’ and ‘gshare’ and two of the
best hybrid prediction schemes ‘bi-mode’ and
‘2bcgskew’. We now briefly describe these dynamic
predictors.

The ‘bimodal’[17] branch predictor gets its name from
the ‘bimodal’ distribution in statistics. It works on the
principle that branches in programs are either mostly
taken or mostly not taken. In bimodal branch prediction
scheme a table of saturating up-down counters (typically
2-bit) is maintained in hardware. This table is indexed
with some bits from the address of the conditional

branch being predicted. The most significant bit of the
counter read from the hardware table is used as the
prediction for the branch. The counter is incremented if
the branch is actually taken or decremented if the branch
is actually not taken. The counter values saturate to the
maximum (minimum) value for mostly taken (not taken)
branches. Studies [6] have indicated that there is hardly
any benefit in increasing the size of the hardware table
beyond 8K entries because a table of that size generally
allows cach conditional branch in a typical program to
have its own counter. Thus there is very little aliasing
present in a bimodal table of size larger than 2Kbytes
(8K 2-bit counters).

The “ghist’ (GAg in [18]) branch predictor works on the
principle of ‘branch correlation’. It assumes that the
outcome of a branch is dependent on the outcome of
other branches, i.c., branching behavior is correlated.
The table of saturating up-down counters in a ghist
predictor is indexed using a “ghist’ register. The ‘ghist’
register maintains the ‘global branch history’. It simply
is a record of the outcomes of past few branches in the
running program. On encountering a conditional branch
the current value of the ‘ghist’ register is used to index
the table of counters to obtain a prediction. When the
outcome of the branch is known, it is shifted in the
‘ghist’ register. Unlike the bimodal branch predictor, a
‘ghist’ predictor does benefit from increased table size.
This is because the index used in “ghist’ scheme is based
on the outcome of a few recent branches and these
outcomes keep changing at different program points. So
the prediction for the same branch may use multiple
counters in the hardware table depending on the ‘ghist’
values at the time of prediction. Also, multiple branches
may usc the same counter. Thus, there is a lot of
‘aliasing’ in the “ghist’ scheme.

The c‘gshare’[7] branch prediction scheme tries to
capturc the best of the ‘bimodal’ and the ‘ghist’
prediction schemes. The index for accessing the
hardware table of counters is computed using both the
address of the branch being predicted and the value of
the ‘ghist’ register. Just like the ‘ghist’ predictor aliasing
is a problem for gshare scheme. Further, studies [8] have
shown that the length of the global history is an
important parameter for ‘gshare’ (and also ‘ghist’)
schemes and that the ‘best’ value of history length varies
with hardware table sizes and with programs.

The ‘bi-mode’ predictor [9] is a hybrid predictor with
two gshare components. The choice predictor is a classic
bimodal predictor whose output is used to choose
between the predictions of the two gshare predictions.
The bi-mode predictor uses a partial update policy
whereby only the selected gshare component is updated
with the branch outcome. The choice predictor is always

updated with the branch outcome except that when the
choice is opposite to the branch outcome and the
selected gshare makes a correct final prediction. As
mentioned above, the best history length to use for
gshare varies with table size and test program. Although
in the version of the bi-mode predictor we simulated we
always chose as many bits of global history as required
by the gshare table.

The ‘2bcgskew’ predictor 2] is another hybrid predictor
with two component predictors. One of the component
predictors is a bimodal predictor. The other component,
called ‘e-gskew’, is itself another hybrid predictor with a
bimodal and two gshare components. The same bimodal
predictor is actually used both as a component of the
final predictor (‘2bcgskew’) and a sub-component of the
other component predictor (‘e-gskew’). There is no
choice predictor for the component hybrid predictor.
Instead, a majority vote is taken to choose among the
three outcomes from the sub-component predictors. The
meta-predictor for the overall predictor is a gshare
predictor that chooses between the outcome of the
bimodal and the majority vote. The 2bcgskew’
predictor uses a partial update policy:

¢ On a bad prediction all three banks of the e-gskew
component are updated.

¢ On a correct prediction only the banks participating
to the correct prediction are updated.

o The meta-predictor is updated only when the two
component predictors disagree; the updating either
re-enforces the current choice (on a ‘good’ overall
prediction) or tries to push the meta-predictor to
choose a different component (on a ‘bad’ overall
prediction).

In our simulations of 2bcgskew the indexing functions
for the gshare sub-components (2 predictors in ‘-
gskew’ and the meta predictor) were chosen carefully to
avoid/minimize destructive aliasing. Unlike in the case
of ‘bi-mode’ predictor mentioned above, we did select
the best history lengths for various gshare sub-
components for our simulation of ‘2bcgskew’.

In our simulations we selected between the dynamic
prediction from one of the predictors described above
and the static prediction predetermined by one of our
selection schemes described in Section 4 later.

3. Related Work

Chang et al. [10] propose a branch classification
mechanism. Branches are put into different categories
depending on their run-time behavior. Branches in
different categories are predicted by different predictors
at run-time. They also propose using a static meta-
predictor to choose between static and dynamic
predictions. One of our schemes for static prediction

(Static 95) is based on this work. We identify mostly
taken/not-taken (highly biased) branches as ‘casy to
predict’ branches and predict them statically to free up
space in the dynamic predictor.

Grunwald, Lindsay, and Zorn [11] describe a way to
combine static and dynamic prediction. Static prediction
is used as a “mecta-predictor” in the scheme they
propose. They argue that in a hybrid dynamic predictor
the final outcome is better selected statically. Statically
generated hints are used to select among the outcomes of
various dynamic predictors. Lindsay, in his thesis [19],
investigated the use of a static sub-component in a
hybrid predictor. He obtained excellent results with a
variety of static hybrids he simulated. Our experiments
corroborate his findings. In Lindsay’s work the selection
of branches to be predicted statically was with an
iterative process involving profiling and simulations.
One of the static selection schemes we studied
(Static_Acc) is a simpler, single iteration, version of
Lindsay’s scheme.

Young and Smith[12] use a profile-based code
transformation that exploits branch correlation to
improve the accuracy of static branch prediction
schemes. They analyze the program with the help of the
profile data to figure out whether a given branch
behaves differently if reached via different paths in the
program. If it does then they duplicate code to provide
different static predictions for the branch on different
paths. This use of profile data to exploit correlation
principle is orthogonal to our use of the profile data to
exploit easy-to-predict and hard-to-predict branches. We
can imagine using correlation to further improve the
benefits seen by our static prediction method.

Sprangle ¢t al. [4] describe an ‘agree mechanism’ for
reducing destructive collisions. They propose using a
table accessed by branch addresses to store a ‘bias bit’
for each branch. The ‘bias bit” for a branch indicates the
direction the branch is likely to take. They use a classic
simple predictor with 2-bit counters as well. Although,
instead of using the most significant bit of the outcome
of the simple predictor as the branch prediction they use
it to decide whether to use the ‘bias bit” as the prediction
for the branch being predicted. The idea is that if the
biasing bit is well chosen, two branches using the same
entry in the simple predictor are more likely to update
the counter in the same direction.

The 2bcgskew’ [2] scheme described above uses
special indexing functions for the sub-component
‘gshare’ predictors. The idea is that if two branches
collide in a given sub-component they will not collide in
others. Further, the ‘majority vote’ makes sure that even
if there is a misprediction from a sub-component
predictor due to destructive aliasing it may be

compensated by a possibly good prediction from the
other sub-component.

The ‘bi-mode’ [9] predictor scheme tries to minimize
destructive collisions by channeling branches with the
similar behavior to the same component ‘gshare’. The
meta-predictor in the bi-mode predictor is a classic
bimodal predictor. The outcome of this bimodal
predictor is used to choose between the predictions from
the two gshare component predictors. Thus, for mostly
taken branches one of the gshare predictors will be
selected and for mostly not taken branches the other will
be selected.

The mechanism we examined for reducing conflicts is
orthogonal to the dynamic schemes proposed by other
researchers. The dynamic predictor used in our scheme
can be any modern dynamic predictor using
sophisticated alias-reducing mechanism. In fact, we have
studied combining static prediction with ‘bi-mode’ and
‘2bcgskew’ predictors described above to see if the
aliasing in them can be reduced further.

4. Methodology

We performed all our experiments with the Atom[13]
binary instrumentation tool. We chose test programs
from the SPEC95[14] benchmarks. All the programs
chosen are integer (SPECINT95) benchmarks because
we found that the branches in the floating point
programs (SPECFP95) are highly predictable and hence
uninteresting for branch prediction studies. SPEC-
standard ‘train’ and ‘ref” input sets were used for the test
programs except when the ‘ref” set consisted of multiple
inputs. The multi-input cases, with the selected ‘ref’
input in parentheses, were gcc (2cp-decli), perl
(scrabble.in), go (9stone2l.in), and ijpeg (vigo.ppm).
The test programs were compiled using Compaq’s TRU-
64 Unix compilers with the highest level of
optimizations turned on.

Table 1 shows some characteristics of our test programs.
The columns marked ‘CBRs/KI’ show the number of
dynamic conditional branches per thousand instructions
executed. These columns show for the test programs
typically every 7" or 8" instruction exccuted is a
conditional branch. The values of CBRs/KI also give the
worst case (upper bound) values for our performance
metric MISPs/KI (mispredicts per thousand
instructions).

We instrumented conditional branches in our test
programs using Atom. On ecach conditional branch we
call a procedure that performs branch prediction using a
pre-selected scheme and then updates misprediction
statistics using the prediction and the actual outcome of
the branch.

We ran our experiments in two phases. The first phase
was the sclection phase where we decided which
branches from our test programs will be predicted
statically and what their static predictions should be. We
recorded the decision of this selection phase in a
database. The second phase was the actual simulation of
a dynamic predictor that used static hints from the
previously generated database.

We targeted two types of branches for static prediction:

1. branches that are casy to predict for the dynamic
predictor and

2. branches that are hard to predict for the dynamic
predictor.

The motivation for statically predicting certain branches
is to free up resources in dynamic predictor tables. Our
hypothesis was that the branches in category (1) are
presumably casy to predict hence using up dynamic
resources for them would be a waste. Whereas branches
in category (2) are better predicted statically because the
dynamic predictor is not predicting them correctly.

Table 1. Benchmark Characteristics

Program | #Instructions #Cond.itional Input: Train Input: Train Input:Ref Input:Ref

(static) Branches (static) #Dynamic CBRs/KI #Dynamic CBRSs/KI

CBRs Instructions (dynamic) Instructions (dynamic)
Go 76 K 7777 0.52 Bil. 113 31.7 Bil 117
Gee 314 K 38852 1.4 Bil 155 1.6 Bil 156
Perl 95K 9569 0.01 Bil. 112 25.3 Bil 122
M88ksim 57K 5365 0.09 Bil 108 62.9 Bil 115
Compress 20 K 2238 0.03 Bil. 108 41.4 Bil 123
Ijpeg 62 K 5290 1.3 Bil 69 27.6 Bil. 61

Table 2. Percentage of highly biased branches and branch prediction accuracy
Program Highly Prediction Prediction Prediction Prediction Prediction
biased accuracy: accuracy: accuracy: accuracy: accuracy:
branches Bimodal Ghist Gshare Bimode 2bcgskew
(dynamic): (size (size (size (size (size
bias > 95 16Kbytes) 16Kbytes) 16Kbytes) 16Kbytes) 16Kbytes)
Go 15.9% 75.7% 81.6% 82.0% 80.5% 83.1%
Compress 49.1% 84.5% 93.2% 92.5% 93.1% 93.3%.
Ijpeg 51.2% 89.6% 91.0% 91.2% 91.3% 91.5%.
Gcee 53.9% 89.2% 89.1% 93.7% 93.7% 94.8%
Perl 71.4% 93.7% 94.8% 98.0% 97.7% 98.2%.
M88ksim 85.5% 96.6% 96.4% 98.6% 98.4% 98.9%

We define the faken bias of a branch as the ratio
between the number of times a branch is taken to the
number of times the branch is executed. The not-taken
bias is defined in a similar way. Note that since a branch
is either taken or not taken faken-bias equals (1 — not-
taken-bias). For measurements we define the bias of a
branch as Max(taken-bias, not-taken-bias). The bias of a
branch can also be expressed as a percentage, ¢.g., a
branch with a bias of 95% goes in one direction 95% of
the times it is executed.

For sclecting casy to predict branches, we simply looked
at the bias of various branches. Any branch with a bias
higher than a pre-selected cut-off bias was selected for
static prediction. The actual static prediction for the
branch was set to the direction of the bias (taken / not-
taken). It turns out that highly biased branches are casy
to predict for any dynamic predictor. Hence the phase
for selecting casy to predict branches is independent of
the dynamic predictor simulated in the second phase.

On the other hand, the set of hard to predict branches in
a program changes with the dynamic predictor used to
predict them. The same branch may be casy to predict
for one dynamic predictor but hard for another. Thus, for
selecting hard to predict branches, we actually simulated
the dynamic predictor in the first phase. We then looked
at the prediction accuracy of the simulated dynamic
predictor for each branch. We selected those branches
for static prediction for which the biases of the branches
were higher than their prediction accuracies. The
motivation being that by using the dominant biases of
those branches as static prediction hints final prediction
accuracies for those branches will never be worse.
Notice that our methodology for seclecting hard to
predict branches is more complicated than simple
profiling. We use per-branch prediction accuracy of the
dynamic predictor. This data can be obtained by binary
instrumentation or by on-line performance tools such as
ProfileMe[15]. Grunwald et al. [11] used a similar
technique in their study.

We assume that static prediction can be conveyed to the
hardware using two hint bits as described in [5] — one of
the bits describes the static prediction and the processor
chooses between the static and dynamic prediction
depending on the other hint bits. In our experiments we
found that if the dynamic predictor maintains a global
history (ghist) register then in some cases shifting
outcomes of the statically predicted branches in the ghist
register improves performance of the dynamic predictor
substantially. Controlling the shifting of ghist for
statically predicted branches may be done on a per
application basis using an architectural flag or on a per
branch basis using onc extra hint bit in the conditional
branch instruction.

5. Results

In this section, we report the results of our experiments
to measure the benefit of combining static and dynamic
prediction. For our basic set of experiments, profiling
and measurements for static prediction were done with
the same input. Such experiments with “self-trained”
profiling depict the upper bound on improvements using
static prediction. We discuss results with “cross-trained”
profiling (where profiling and measurements are done
with different inputs) at the end of this section. Also,
unless otherwise noted, we did not shift outcomes of
statically predicted branches in the global history (ghist)
register.

Table 2 shows the prediction accuracies of various
branch prediction schemes for our test programs. Also
shown is the dynamic percentage of highly biased
branches (taken/not taken bias > 95%). There are two
things to note here. First, except for go, many of the
branches in the test programs are highly biased—more
than half the branches executed dynamically have a bias
greater than 95% (Chang et al. [11] had reported similar
findings). Second, there is a correlation between the
percentage of dynamic highly biased branches and
prediction accuracy of any of the branch predictor
schemes simulated. Specifically, the more the

[=a)
(=]

40 N
< X
230 -
=
&
>
= 90
10
0 T T T T
2048 4096 8192 16384 32768
Size (Bytes)
—— MISPy/KI:gshare

—ll— MISPs/KlI:gshare_static ACC

=== Collistions/KI:gshare

=—O=— Collisions/KI:gshare_static ACC
Figure 1. Go (train): gshare +
static prediction: effect of
increasing branch predictor size

7
X
6T
5 AN
% 4 X
£ N
2 %
= 2
O~ -
1
0 T T T T
2048 4096 8192 16384 32768
Size (Bytes)
—— MISPs/Kl:gshare
—— MISPs/KI:gshare_static ACC
=== Collistions/KI:gshare
==O==Collisions/KI:gshare_static ACC

Figure 3. Perl (train): gshare +
static prediction: effect of
increasing branch predictor size

percentage of highly biased branches in a program, the
higher the prediction accuracy of any dynamic predictor
for that program. This correlation holds despite the fact
that the simulated branch predictors work on different
principles. Thus, it appears that highly biased branches
arc highly predictable. Data (except for compress) in
Table 2 supports this hypothesis.

30 K

25 ‘\
2™ > o
;:, e -
= 10

5

0 T T T T

2048 4096 8192 16384 32768
Size (Bytes)
=——d— MISPs/KI:gshare

—fl— MISPs/KI:gshare_static ACC

=== Collistions/KI:gshare

=—O=Collisions/KI:gshare_static ACC
Figure 2. Gcc (train): gshare +
static prediction: effect of
increasing branch predictor size

18
16 —Cns
14 X
g 12 \
= 10 \
§ 8 b— —om > |
M 6
4
2 ———
0 \ \ \ \
2048 4096 8192 16384 32768
Size (Byvtes)
—— MISPs/Kl:gshare

—l— MISPs/KlI:gshare_static ACC

—O— Collistions/KI: gshare

==O== Collisions/KI:gshare static ACC
Figure 4. M88ksim (train): gshare
+ static prediction: effect of
increasing branch predictor size

Figures 1-6 show the effect of increasing branch
predictor size on MISPs/KI with and without static
prediction. The base branch predictor is a gshare. The
static prediction scheme chosen (static Acc) selects
branches cach of which has a bias greater than the
prediction accuracy of gshare for that branch. Also
plotted in the figures are the total numbers of collisions
observed for various data points. The collisions were
counted by maintaining a tag for cach counter in the

——— Y
7 il

Events/KI

2048 4096 8192 16384 32768
Size (Bytes)
—— MISPs/KI: gshare
—l— MISPs/KI:gshare_static ACC

=== Collistions/KI: gshare
—O=—Collisions/KI:gshare_static ACC

Figure 5. Compress (train): gshare +
static prediction: effect of
increasing branch predictor size

ODYN_BP: Dynamic Predictor Alone
ODYN_BP + Static (95)
30 - __HDYN_BP + Static (ACC)

25 4
20 -]]

15 -

MISPs/KI

10 -

2bcgskew Bimodal Gshare Ghist Bimode
Figure 7. Go (train): Effect of
static prediction algorithms
[branch predictor size : 16Kbytes]

dynamic predictor. The tag for a counter was used to
store the address of the last branch using that counter.
When we looked up the table of counters in the dynamic
predictor for a particular branch, if the address of the
branch did not match the tag then we counted the event
as a collision. The number of collisions is expected to
change with static prediction because 1) statically
predicted branches do not index dynamic predictor
tables and 2) if the outcomes of statically predicted
branches are not shifted in ‘ghist’, then the indexing for
dynamically predicted branches changes. When we
found a collision, if the overall prediction was correct
we considered the collision as constructive otherwise we
considered it destructive. Thus, constructive and
destructive collisions as we define them are different,

6*$‘;§t#

—0;

0 T T T T
2048 4096 8192 16384 32768
Size (Bytes)
—&— MISPs/KI:gshare
—l— MISPs/KI:gshare_static ACC
=== Collistions/KI:gshare
=—O=Collisions/KL:gshare_static ACC
Figure 6. ljpeg (train): gshare +
static prediction: effect of
increasing branch predictor size

25 ODYN_BP: Dynamic Predictor Alone
ODYN_BP + Static (95
20 - EDYN BP + Static (ACC)
215 -
&
élﬂ .
5 -
0 ,

2bcgskew Bimodal Gshare Ghist Bimode

Figure 8. Gcec (train): Effect of static
prediction algorithms [branch
predictor size : 16Kbytes].

but simpler to compute, than those defined by Young et
al. [3].

There are many interesting points to note in Figures 1-6.
First, static prediction always improves (i.c., reduces)
MISPs/KI for Gshare for all the test programs at all the
predictor sizes tested. The improvement due to static
prediction is more at smaller predictor size though. The
reason is that there are more collisions for smaller
predictors resulting in more opportunity for static
prediction. Total number of collisions almost always
drop with static prediction except for a few cases,
notably in casec of ijpeg. We looked at the nature
(constructive / destructive) of collisions for all our data
points. It turns out that for ijpeg most of the increased
collisions with static prediction are constructive. Hence
there is no negative impact on MISPs/KI. As mentioned
carlier, collisions depend upon multiple factors
(predictor size, indexing scheme etc.). We do not yet

10 -
9 || EDYN_BP: Dynamic Predictor Alone
ODYN_BP + Static (95)
8 1| HDYN_BP + Static (ACC)
7 -
< 6 - —
D
=
3 -
2 -
1 JII
0 ,
2bcgskew Bimodal Gshare Ghist Bimode
Figure 9. Perl (train): Effect of
static prediction algorithms
[branch predictor size : 16Kbytes].
30
ODYN_BP: Dynamic Predictor Alone
25 | | ODYN_BP + Static (95)
HEDYN BP + Static (ACC)
20 -
<
& 15 1
z
= 10 -
5 -
0 .

2bcgskew Bimodal Gshare Ghist Bimode

Figure 11. Compress (train): Effect
of static prediction algorithms
[branch predictor size : 16Kbytes].

have a good explanation for the fact that with static
prediction constructive collisions increase for ijpeg. This
does, however, suggest another way of sclecting
branches for static prediction: we want to predict only
those branches statically that will boost constructive
collisions and reduce destructive collisions. We plan to
explore this idea in the future.

Figures 7-12 summarize the effect of two different static
prediction schemes on MISPs/KI for our test programs.
There are 5 scts of bars for 5 different dynamic
prediction schemes. Each set of bars depicts MISPs/KI
for three different static prediction schemes: 1) No static
prediction, 2) Static 95: static prediction of branches
with bias greater than 95% (highly biased branches), and
3) Static Acc: static prediction scheme of branches with
bias greater than the accuracy of the corresponding
dynamic predictor (difficult to predict branches). Note

9 ODYN BP: Dynamic Predictor Alone
8 - ODYN BP + Static (95)
EDYN BP + Static (ACCO)

MISPs/KI
n

1 _

o [1TH
2bcgskew Bimodal Gshare Ghist Bimode

Figure 10. M88ksim (train): Effect of

static prediction algorithms [branch
predictor size : 16Kbytes].

ODYN_BP: Dynamic Predictor Alone
9 | ODYN BP+Static (95)
8 EDYN BP + Static (ACC)

67_ —] —

MISPs/KI
3

2bcgskew Bimodal Gshare Ghist Bimode
Figure 12. ljpeg (train): Effect of
static prediction algorithms [branch
predictor size : 16Kbytes].

that the scale on the Y-axis is different for each figure in
7-12.

We see that the bimodal predictor does not benefit at all
with a static prediction scheme of selecting highly
biased branches (static 95). That is because the bimodal
predictor itself targets and does well for highly biased
branches, as highly biased branches drive bimodal
counters to saturation quickly. In addition, a bimodal
dynamic predictor can adapt to changing run-time
behavior of branches and there is hardly any aliasing in
bimodal tables of sizes we simulated. On the other hand,
‘ghist’ consistently improves with static prediction of
highly biased branches as “ghist’ works on the principle
of correlation that nicely complements the ‘bimodal’
nature of static prediction of highly biased branches.
Combining ‘ghist’ with static 95 is effectively like a
‘gshare’ scheme.

Table 3. 2bcgskew :Improvements in
MISPs/KI with two static prediction
schemes for go & gcc

2bcgskew Go: Go: Gcee: Gcee:
Size Static_ | Static_ | Static_ | Static_
95 Acc 95 Acc

2 Kbytes 2.8% 7.7% | 13.4% | 14.1%
4 Kbytes 1.1% 4.1% | 11.1% | 12.0%
8 Kbytes -0.1% 2.2% 8.0% 8.2%
16 Kbytes | -1.1% 0.4% 3.7% 5.2%
32 Kbytes | -2.3% -1.4% 1.8% 4.2%

For m88ksim statically predicting highly biased
branches (static 95) is better than statically predicting
difficult to predict branches (static Acc) for all dynamic
predictors (except, of course, bimodal). Table 2 shows
that most of the branches in m88ksim are highly biased
and predicting them statically drastically reduces
collisions in the dynamic predictors showing
improvements. On the other hand, for programs with
relatively few highly biased branches such as go and
gce, statically predicting hard to predict branches is
better than statically predicting highly biased branches.

Ijpeg shows hardly any improvement with either static
prediction scheme for any dynamic predictor; in fact, it
shows slight degradation for 2bcgskew. One reason may
be the lower frequency of occurrence of conditional
branches in ijpeg -- 69 CBRs/KI as opposed to values
double that for other benchmarks (Table 1). This
suggests that aliasing may not be a problem for ijpeg.
This jibes well with our finding that increasing predictor
size, which is on¢ way of reducing aliasing, benefits
ijpeg very little for any dynamic predictor. On the other
hand, gcc, which has the highest CBRs/KI (and also the
highest number of static CBRs) among all the test
programs, does consistently better with static prediction.
In fact, we have observed that MISPs/KI improve for
gce with increasing capacity for all predictors (except
bimodal) suggesting the presence of a lot of aliasing.

Among the dynamic predictors we simulated, we found
2bcgskew yields the best MISPs/KI. Unlike the other
dynamic predictors it employs two techniques to remove
aliasing: a sophisticated indexing scheme and the use of
bimodal and gshare component predictors that target
different sct of branches. These two techniques seem to
be quite effective in removing aliasing leaving very little
room for improvement with static prediction. Although
at smaller predictor sizes (2-4Kbytes) 2bcgskew did
benefit from static prediction (see Table 3). On the other
hand, we consistently saw improvement for ‘gcc’ which
has the highest CBRs/KI among our test programs even
at larger sizes of 2bcgskew.

Table4. 2bcgskew: Effect of shifting
history for statically predicted branches
Size | Static_|Static |Static_ |Static

(bytes) | 95 95 | Acc |_Acc_

Shift Shift

go 32768 | -2.3% | 3.9% | -1.4% | 5.8%
65536 | -2.4% | 3.6% | -1.5% | 5.0%

gcc 32768 | 1.8% | 5.8% | 4.2% | 9.4%
65536 | -1.8% | 5.3% | 2.1% | 8.9%

perl 32768 | 5.5% | 1.0% | 8.8% | 4.4%

65536 | 0.2% | 0.2% | 3.2% | 4.0%
m88ksim | 32768 | 14.9% | -5.2% | -8.1% | 5.4%
65536 | 19.0% | -6.0% | -14.6% | 6.7%
compress| 32768 | 6.2% | 0.2% | 4.5% | 3.3%
65536 | 11.7% | 0.2% | 5.0% | 3.1%
ijpeg 32768 | -2.8% | 0.6% | -3.5% | 2.0%
65536 | -1.7% | 0.6% | -3.8% | 1.5%

For predictors that usc a global history of branch
outcomes for indexing, shifting or not shifting outcomes
of statically predicted branches will change aliasing. So
we experimented with optionally shifting those
outcomes in the global history register. Our findings for
various sizes of 2bcgskew are tabulated in Table 4.

Columns marked Static 95 and Static Acc show
percentage improvement in MISPs/KI over the basic
dynamic predictor with our two static selection schemes.
Columns marked Static 95 Shift and Static Acc Shift
show improvements (again w.r.t. the basic dynamic
predictor) when each of our static prediction schemes is
accompanied with shifting outcomes of statically
predicted branches in a global history register. We
notice that not all programs benefit from shifting.
However, it is interesting to note that whenever a static
prediction scheme shows degradation (e.g., ijpeg with
Static_Acc) shifting shows improvement (see ijpeg with
Static_Acc_Shift). Also both go and gcc show excellent
improvement with shifting for both our static schemes
even at very large predictor size (64Kbytes).

5.1 Profiling Technique for Static Prediction

All the numbers reported in this section so far were
reported with “self-trained” profiling, i.e., profiling and
measurements were done with the same input to our test
programs. We¢ also repeated our experiments with
“cross-trained” profiling. Before we present the results
we show some statistics on “cross-training” in Table 5.
The table shows that when input is changed from ‘train’
to ‘ref” two things can be noted (1) a different number of
branches are executed and (2) even though many
branches are common to the executions with the two
inputs, the behavior of those branches changes widely at
times.

Ogshare

Ow/ Static_95: REF-REF

B w/ Static_95: TRAIN-REF

O w/ Static_95: merged-TRAIN-REF

Figure 13. Effect of cross-
training on profile-based static
prediction: GSHARE (16KBytes)
+ static prediction (bias > 95)

All the columns in Table 5 show static/dynamic
percentage of branches executed with ‘ref” input. The
column marked “Seen with ..” shows data on branches
that arc executed with both the ‘“train’ and ‘ref’ input,
i.c., it shows the ‘coverage’ obtained by the ‘train’ input.
Except in case of ‘perl’, the ‘train’ input executes almost
all the branches the ‘ref” input does. However, the
behavior of the common branches changes quite a bit
while going from ‘train’ to ‘ref’ input. The column
marked “Majority direction change” shows data on
branches that reverse majority direction when input is
changed from ‘train’ to ‘ref’. In addition statistics on
branches whose bias changes by <5% and >50% is
shown. We see that branch behavior for most programs
varies with input and there is a non-trivial number of
branches showing complete reversal of behavior. This

suggests that inferences based on a ‘train’ profile will
not always hold for ‘ref” runs.

Profile-based optimizations make inferences about
program behavior based on data from profiling runs. If
the behavior of the program changes with input, the
inferences based on the training input become less valid
and sometimes can become completely wrong. In those
cases static prediction can dramatically increase
mispredictions. We observed few such cases in our
experiments on profile based static prediction. Although
the problem caused by change in behavior of programs
with input can be alleviated by modifying profile data as
programs are run with different inputs.

We envision profile-based static prediction being
implemented using a binary re-writing tool such as
Spike[1]. Spike maintains a database of profile data for
every program. As a program runs with different inputs
in ‘instrumentation’ mode, Spike collects execution
profile for the program and updates the profile database.
The program is later modified during the optimization
phase based on the profile database.

For static prediction the profile data will consist of
biases of different branches. We can imagine that as the
profile database is updated anomalies in branch biases
can be removed. For example the profile updating can
filter out profile data about branches that change bias by,
say, more than 5%. As seen in the column marked ‘Bias
change < 5%’ in Table 5 this filtering could still retain
most of the profile data.

Figure 13 shows results from performing static
prediction using cross training. The bars show MISPs/KI
for our test programs for a ‘gshare’ of size 16Kbytes.
There are four bars for cach test program for the
following cases 1) No static prediction 2) Static
prediction with “self-trained” profiling 3) Static
prediction with naive “cross-trained” profiling and 4)
Static prediction with “cross training” with branch

Table 5. Branch behavior: training vs reference input.
Seen with Majority direction Bias change Bias change

TRAIN/REF change <5% >50%

g0 Static 90.1% 9.6% 53.3% 3.0%
Dynamic 100.0% 5.1% 70.0% 0.1%

gce Static 97.6% 3.3% 83.7% 0.7%
Dynamic 100.0% 1.7% 91.3% 0.0%

perl Static 66.7% 7.5% 51.2% 3.8%
Dynamic 89.1% 9.0% 60.4% 7.7%

m88ksim | Static 80.3% 3.1% 69.3% 1.4%
Dynamic 99.1% 5.1% 84.9% 3.8%

compress| Static 95.1% 2.3% 88.1% 1.0%
Dynamic 99.9% 0.0% 58.6% 13.3%

ijpeg Static 99.5% 1.4% 94.7% 0.7%
Dynamic 100.0% 0.1% 97.8% 0.0%

profiles merged by removing from the reference profile
the data for branches with a bias change >5%. As the
third bar in each sct indicates naive cross training can
cause scvere performance degradation in some cases. In
particular, MISPs/KI degrade for perl and m88ksim by a
large amount. Looking at the profiles from runs with
‘train’ and ‘ref’ inputs for these programs we found that
there are some branches whose bias changes widely and
those branches are also executed quite frequently. Thus
for perl and m88ksim static prediction based purely on
‘train’ input is not so valid for ‘ref” input and it hurts
MISPs/KI drastically. As expected, using a merged
profile alleviates the problem as seen by the 4™ bars for
perl and m88ksim.

6. Conclusions

We have analyzed a way to address the problem of
aliasing in dynamic branch predictors. We examined
combining static and dynamic prediction in such a way
that predicting certain branches statically relieves the
aliasing in the dynamic predictor. We measured the
change in collisions in many well-known dynamic
predictors when combined with static prediction. We
studied two ways of using profiling to select branches
for static prediction — first using a fixed cutoff bias to
target easy to predict, highly biased branches and second
using a per branch comparison of bias with prediction
accuracy of a given dynamic predictor to target hard to
predict branches. We found that static prediction can be
quite effective for a) simple dynamic branch predictors
for varying sizes, b) hybrid branch predictors of
relatively small sizes, and ¢) for programs with a lot of
branches irrespective of the type/size of the dynamic
predictor used. We also observed that shifting outcomes
of statically predicted branches in global history register
has a noticeable impact on the overall effectiveness of a
combined static-dynamic predictor.

7. Acknowledgments

We thank Andre Seznec, Venkat Krishnan, and John
Edmondson for their consultation and help during this
work; Geoff Lowney for supporting this effort; and
Srilatha Manne for her suggestions and corrections after
reviewing this paper.

8. References

[1] Robert Cohn, David Goodwin, P.G.Lowney, and N. Rubin,
Spike: An Optimizer for Alpha/NT Executables, The USENIX
Windows NT Workshop Proceedings, Seattle, Wash. (August
1997):17-24.

[2] Andre Seznec, Pierre Michaud, De-aliased Hybrid Branch
Predictors, Research Report number 1229, IRISA, France.
February 1999.

[3] Cliff Young, Nicolas Gloy, and Micheal D. Smith, 4
Comparative Analysis of Schemes for Correlated Branch
Prediction, Proceedings of ISCA 1995: 276-286.

[4] Eric Sprangle, Robert Chappell, Mitch Alsup, and Yale
Patt, The Agree Predictor: A Mechanism for Reducing
Negative Branch History Interference, Proceedings of
ISCA’24 1997.

[5] IA-64 Application Developer’s Architecture Guide Intel
corp. http://developer.intel.com/design/ia64/index.htm

[6] John Henessy and David Patterson, Computer Architecture
a Quantitative Approach, 2™ edition, Morgan Kaufinann
publishers 1996.

[7] Scott McFarling, Combining Branch Predictors, WRL TN-
36, Digital Western Research Lab, June 1993.

[8] Toni Juan, Sanji Sanjeevan, and Juan Navarro, Dynamic
History-Length Fitting: A Third Level of Adaptivity for Branch
Prediction, Proceedings of ISCA’25, 1998.

[9] Chih-Chieh Lee, I-Cheng K. Chen, and Trevor Mudge, The
Bi-mode Branch Predictor, Micro-30, 1997.

[10] P. Chang, E. Hao, T. Y. Yeh, and Y. Patt, Branch
Classification: a new mechanism for improving branch
predictor performance. Micro-27, 1994.

[11] Dirk Grunwald, Donald Lindsay, and Benjamin Zorn,
Static Methods in Hybrid Branch Prediction, Proceedings of
PACT’98 1998.

[12] Cliff Young and Michael Smith, Improving the Accuracy
of Static Branch Prediction Using Branch Correlation,
Proceedings ASPLOS-VI, 1994.

[13] Amitabh Srivastava and Alan Eustace, ATOM: 4 system
for building customized program analysis tools. Proceedings
of PLDI’94, 196-205, 1994.

[14] SPEC CPU’95 information at http://www.spec.org

[15] Jeftrey Dean, James Hicks, Carl Waldspurger, William
Weihl, and George Chrysos. ProfileMe: Hardware support for
instruction-level profiling on out-of-order processors. Micro-
30, 1997.

[16] Josh Fisher and Stefam Freudenberger, Predicting
conditional branch dirvections from previous runs of a
program, Proceedings ASPLOS-V, 1992.

[17] Jim Smith, A Study of Branch Prediction Strategies,
Proceedings of the 8" ISCA, 1981.

[18] Tse-Yu Yeh and Yale Patt, Alternative Implementations
of Two-Level Adaptive Branch Prediction, Proceedings of the
19™ISCA, 1992.

19] Donald Lindsay, Static Methods in Branch Prediction,
Ph.D. thesis, Department of Computer Science, University of
Colorado, 1998.

