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Abstract

This paper explores the concept ofmicro-architectural
loops and discusses their impact on processor pipelines.
In particular, we establish the relationship betweenloose
loopsand pipeline length and configuration, and show their
impact on performance. We then evaluate theload reso-
lution loop in detail and propose thedistributed register
algorithm (DRA) as a way of reducing this loop. It de-
creases the performance loss due to load mis-speculations
by reducing the issue-to-execute latency in the pipeline. A
new loose loop is introduced into the pipeline by the DRA,
but the frequency of mis-speculations is very low. The re-
duction in latency from issue to execute, along with a low
mis-speculation rate in the DRA result in up to a 4% to 15%
improvement in performance using a detailed architectural
simulator.

1 Introduction

Micro-architectural loopsare fundamental to all proces-
sor designs. We define micro-architectural loops as com-
munication loops which exist wherever a computation in
one stage of the pipeline is needed in the same or an ear-
lier stage of the pipeline. Loops are caused by control, data,
or resource hazards.

Figure 1 illustrates the basic components of a loop. The
initiation stageis the stage where data from a succeeding
stage is fed back. Theresolution stageis the stage that
computes the result needed by a preceding stage. Theloop
generating instructionis the instruction which initiates the
loop. For branches, the loop generating instruction is a
branch, the loop initiation stage is the fetch stage, and the
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Figure 1. Micro-architectural loops

loop resolution stage is the execute stage.Loop lengthis de-
fined to be the number of stages traversed by a loop, and the
feedback delayis the time required to communicate from
the resolution stage to the initiation stage.Loop delayis
the sum of the loop length and feedback delay. Loops with
a loop delay of one are referred to astight loops; all other
loops are referred to asloose loops.

With a loop delay of one, tight loops feed back to the
same pipeline stage. Figure 2 shows examples of tight loops
in the Alpha 21264 processor, such as the next line predic-
tion loop and the integer ALU forwarding loop [3]. The
next line prediction in the current cycle is needed by the
line predictor to determine the instructions to fetch in the
next cycle, while the ALU computation in the current cycle
is required in the ALU in the next cycle to support back-
to-back execution of dependent instructions. Tight loops
directly impact the cycle time of the processor because the
information being computed is required at the beginning of
the next cycle.

Loose loops extend over multiple pipeline stages. Ex-
amples of loose loops in the Alpha 21264 (Figure 2) are the
branch resolution loopand theload resolution loop. The
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Figure 2. Examples of micro-architectural loops in the Alpha 21264 processor [3], represented by solid lines. If the recovery stage
is different from the initiation stage, it is shown by a dotted line.

branch resolution loop is caused by a control hazard re-
sulting from the existence of an unresolved branch in the
pipeline. The fetch unit does not know with certainty which
instruction to fetch until the branch resolves. The load res-
olution loop is caused by a data hazard resulting from an
unresolved load operation, e.g., did the load hit in the cache
or not. The loop occurs because instructions dependent on
the load cannot issue until the issue queue knows the time
at which the load data will be available.

Loose loops can impact performance by restricting the
pipeline’s ability to do useful work. The simplest way to
manage a loose loop is to stall the pipeline while waiting
for the loop to resolve. Since no progress is made while
the pipeline stalls, performance will be negatively impacted.
Thus, an alternative technique of speculating through the
loop is often used. Speculating through a loop improves
performance by attempting to make progress while the loop
resolves instead of simply waiting. Stalling the processor
means that no progress is made every time a loose loop
is encountered, while speculating through the loop allows
progress to be made, except when there is a mis-speculation.

Stalling the processor is often an acceptable solution
when the loop length is small. With a simple, 5 stage
pipeline, a single cycle branch bubble may not have a sig-
nificant impact on performance. Stalling the processor is
also a tenable solution when the loop occurs infrequently.
The memory barrier loop in the Alpha 21264 is an example
of an infrequent loop. When a memory barrier instruction
is encountered in the pipeline, the mapping logic stalls the
memory barrier instruction and all succeeding instructions.
The instructions are released to issue when all preceding
instructions have completed.

As pipelines get longer and/or loops occur more fre-
quently, speculation is used to manage loose loops and max-

imize performance. There are many examples of specula-
tion in the Alpha 21264, such as branch prediction, load
hit prediction, and memory dependence prediction. As long
as there are no mis-speculations, loose loops do not impact
performance because the pipeline is always doing useful
work.

When mis-speculations occur, however, the pipeline has
done work which must be thrown away. The pipeline must
then recover, and restart processing from the mis-speculated
instruction. Mis-speculation recovery may occur at the loop
initiation stage or, due to implementation reasons, at an ear-
lier stage in the pipeline which we call therecovery stage.
The presence of a recovery stage introduces a recovery time,
that is, the time it takes the useful instructions to refill the
pipeline from the recovery stage to the initiation stage. For
example, the initiation stage for load/store reorder traps in
the 21264 is the issue stage, while the recovery stage is the
fetch stage. The dotted lines in Figure 2 illustrate where
the recovery stage is earlier than the initiation stage.

The best performance is achieved when there are no mis-
speculations. Every mis-speculation degrades performance.
Clearly the frequency of loop occurrence (i.e., the number
of loop generating instructions) and the mis-speculation rate
are first order determinants of the performance lost. How
much performance is lost per mis-speculated event is a com-
plex function of a number of parameters. One measure
of this is the amount of work discarded due to each mis-
speculation. We term thisuseless work.

The product of the frequency of loop occurrence and the
mis-speculation rate determines the number of times use-
less work is done. For example, the number of branch mis-
speculation events is greater in programs with a high oc-
currence of branches and a high mis-prediction rate, such
as integer programs. The amount of useless work due to
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each mis-speculation is a function of the time required to
resolve the loop, and the time required to recover from the
mis-speculation. The greater these latencies, the greater the
impact of the mis-speculation.

The lower bound of this time is equal to the loop delay
plus the recovery time. The actual latency is augmented
by any queuing delays within the loop. For instance, the
branch resolution loop length for the Alpha 21264 encom-
passes 6 stages, the feedback delay is 1 cycle [3], and there
is no recovery time. Thus, the minimum impact of a mis-
speculation is 7 cycles.

The long pipelines in current generation processors in-
crease the loop delay for many loose loops. The Pentium4
design, for example, has a pipeline length greater than 20
stages and a branch resolution latency on the order of 20
cycles [12]. Pipeline lengths are increasing for two reasons:
higher operating frequency and more architecturally com-
plex designs. A high operating frequency shrinks the clock
cycle, resulting in fewer stages of logic fitting within a cy-
cle [1]. Operations that required only one cycle in the past
now take multiple cycles. Architectural advances that in-
crease overall processor throughput also increase pipeline
lengths. Wide issue widths, out-of-order instruction is-
sue, speculation, and multi-threading increase the amount
of logic on the processor, and more logic often requires
more pipeline stages to complete an operation.

This paper looks at the impact pipeline lengths, pipeline
configurations, and loose loops have on processor perfor-
mance. We show that performance is not just affected by
the overall length of the pipeline, but by the length of crit-
ical portions of the pipeline that are traversed by key loose
loops. In particular, we focus on the load resolution loop
and the impact loop length and queuing delay have on this
loop. Based on our analysis, we propose a design modi-
fication called thedistributed register algorithm (DRA).
It moves the time consuming register file access out of the
issue to execute path and adds a register caching mecha-
nism. Using the detailed ASIM [4] architectural simulator,
we show speedup improvements of up to 4% to 15% relative
to the base model.

The rest of the paper is organized as follows. Section 2
describes the base architecture and details the load resolu-
tion loop. Section 3 shows the impact pipeline lengths and
configurations have on performance. Sections 4 and 5 dis-
cuss the reasoning behind the proposed design modification
and detail the DRA. Results are presented in section 6. Sec-
tion 7 explains the relation of our work to prior work related
to register files, and section 8 concludes the paper.

2 Processor Model

We modeled our base processor to be comparable to next
generation super-scalar processors [5, 10]. It is an 8-wide

issue machine with branch prediction, dynamic instruction
scheduling, and multi-threaded execution. It contains a uni-
fied, 128 entry instruction queue (IQ), and has up to 256 in-
structions in flight at any time. The minimum pipeline delay
for an integer operation with single cycle execution latency
is similar to the Pentium4 [12], around 20 cycles, assuming
no stalls or queuing delays in the pipeline. Other operations
may take longer depending on their execution latency.

Front End

DEC-IQ
Decode
Register Renaming
IQ Insertion

Back End

Inst Fetch
Predictions

IQ-EX
Inst Issue
Payload Access
Reg. File Access

Retire Unit
Memory

Execute

Figure 3. Pipeline of base architecture

Figure 3 shows the pipeline of the simulated machine.
In this work we focus on the latency between instruction
decode and execute. These are labeled in the figure asDEC-
IQ (decode to insertion into the instruction queue) andIQ-
EX (issue from instruction queue to execute). Many micro-
architectural loops traverse this portion of the pipeline, such
as the branch resolution loop and the memory dependence
loop, and processor performance is highly sensitive to the
length of this region.

Our simulated architecture uses a clustered design simi-
lar to the 21264 [14]. In particular, we cluster the instruction
scheduling logic. As noted in [2], issuingM instructions
out of an instruction queue ofN entries is difficult to im-
plement when M and N are large. In our case,M = 8 and
N = 128. Therefore, we allocate or slot the instructions
at decode to one of eight functional unit clusters. Now the
problem of issuingM out ofN instructions is reduced to
issuing one out of approximatelyN=8 instructions, assum-
ing that instructions are distributed uniformly to all clusters.
The DRA uses the cluster allocation information to deter-
mine which functional units receive which source operands.
This is described in detail in Section 5.

2.1 Pipeline Latency

The DEC-IQ latency is 5 cycles in the base model. The
5 cycles are required for instruction decoding, register re-
naming, wire delay, and insertion of the instruction into the
IQ. The latency from IQ-EX is also 5 cycles, which is re-
quired for determining which instruction to issue, reading
the pertinent information from the instruction payload, per-
forming register file access, and delivering the instruction
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and the source operands to the functional units. The IQ only
contains the dependency information required to determine
when an instruction is ready to issue. The instruction pay-
load contains the rest of the state for the instruction, such as
physical register numbers, op codes, and offsets.

Register file access takes 3 cycles, with two of the cycles
required purely to drive data to and from the register file.
The wiring delay is due to the large register file required to
support an 8 wide issue, out-of-order, SMT machine with
both physical registers and architectural state for all threads.
Furthermore, we require 16 read ports and 8 write ports to
support 8-wide issue.

The register file design could have fewer ports. The
full port capability is not needed in most cases because ei-
ther the operands are forwarded from the execution units,
or the number of instructions issued is less than 8, or
not all instructions have 2 input operands and one output
operand [15]. However, there are implementation problems
with reducing the number of ports. First, which operands
are being forwarded is not known at the time of issue, and
the register file and forwarding structure are accessed simul-
taneously, not sequentially. Accessing them sequentially
would add additional delay into the IQ-EX path. Therefore,
we cannot suppress the reading of the register file on a hit
in the forwarding logic. Second, if there are fewer read port
pairs than functional unit clusters, a complex switching net-
work is needed to move operands to the correct functional
units. This also adds additional delay into the IQ-EX path.
Third, if 16 operands are needed in a cycle, there must be
some logic to stall or suppress instructions that will not be
able to read their operands. For these reasons, a register
file with full port capability can be easier to implement and
manage, and reducing the number of ports adds unnecessary
complexity.

2.2 Managing Issue Loops

The 5 cycle IQ-EX latency introduces some challeng-
ing architectural problems. The long latency produces two
loose loops that are managed in different ways to optimize
performance.

2.2.1 Forwarding Buffer

A loose loop exists between the execution stage and the
register file read stage. A value computed in the execution
stage needs to be written back to the register file before de-
pendent instructions can read the value. Forwarding logic is
added in the execution stage to shrink this loop from a loose
loop to a tight loop. Without forwarding, dependent instruc-
tions must wait to issue until their operands are written to
the register file. While these instructions stall, the pipeline
has fewer instructions to execute, resulting in less available

work. Forwarding enables instructions to get their operands
from the forwarding logic in the ALUs without having to
wait for them to be written to the register file. It replaces
this loose loop with a tight loop in the execution logic that
makes the result computed in a previous cycle available in
the current cycle.

The base model contains aforwarding bufferwhich re-
tains results for instructions executed in the last 9 cycles.
Five of these cycles are required to cover long latency op-
erations and limit the number of write ports on the register
file. The other four cycles cover the time it takes for the re-
sulting data to be written to the register file. The forwarding
buffer is required for the base architecture to work. As will
be discussed in Section 5, it is also an integral part of our
redesign for the register file.

2.2.2 Load Resolution Loop

The load resolution loop is caused by the non-deterministic
latency of loads. Although the latency of a cache hit is
known, whether the load will hit, miss, or have a bank con-
flict in the cache is unknown. This makes it difficult to know
when to issue load dependent instructions so that they ar-
rive at the functional units in the same cycle that the load
data arrives. It is this unknown that necessitates a loose
loop. As with all loose loops, the pipeline could either stall
or speculate. The Alpha 21064 and 21164 processors stall
the pipeline [7, 8] until the load resolves, while the Alpha
21264 can speculatively issue dependent instructions and
recover on a load miss [3].

In our base processor, stalling load dependent instruc-
tions effectively adds 5 cycles to the load-to-use latency.
Stalling may prevent useful work from getting done. To
avoid this, the base processor speculatively issues load de-
pendent instructions, i.e., it predicts that all loads hit in the
data cache.

To help discuss the load resolution loop, we define two
terms. Theload dependency treeis defined to include the
instructions directly or indirectly dependent upon the load.
The set of cycles in which any instructions within the load
dependency tree may issue speculatively is called theload
shadow. In the 21264, the load shadow for integer loads
starts 2 cycles after the load issues, and ends when the load
signals a data cache hit or miss [3].

Load Mis-speculation Recovery As long as the load hits,
there is no penalty for the speculation. A miss, however, re-
quires a costly recovery action. For correct operation, all
instructions within the load dependency tree that have al-
ready issued must be reissued after the load resolves. Imple-
mentation choices can further increase the mis-speculation
penalty. In the Alpha 21264, the amount of useless work
can be even higher on an integer load miss because all in-
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structions issued in the load shadow, whether they are in the
load dependency tree or not, are killed and reissued. For-
tunately, most programs have a high load hit rate, and the
overall cost of recovering from mis-speculations is signifi-
cantly less that the cost of a non-speculative policy.

We also have a choice of recovery points for a load mis-
speculation. We could make the recovery stage the issue
stage, by reissuing load dependent instructions from the IQ.
Alternatively, the fetch stage could be the recovery stage
by flushing the pipeline and re-fetching instructions start-
ing with the first instruction after the mis-speculated load.
Re-fetching is easier to implement, but it dramatically in-
creases the loop recovery time. Our results show that it per-
forms significantly worse than reissue. Hence, it was not
considered further.

IQ Pressure Our base architecture reissues instructions
on a load miss. Unlike the 21264, we do not reissue all in-
structions issued within the load shadow; we only reissue
instructions that are within the load dependency tree. The
number of instructions reissued is equal to the useless work
performed due to load mis-speculations. For each reissued
instruction, there was a previous issue of the same instruc-
tion that was killed.

Although load speculation with reissue performs better
than no speculation or speculation with re-fetch, it puts ad-
ditional pressure on the IQ. The reissue mechanism requires
the IQ to retain all issued instructions until it is notified by
the execution stage that the instructions do not have to reis-
sue. The occupancy time of instructions in the IQ is there-
fore a function of the IQ-EX latency. The longer the in-
structions reside in the IQ after issuing, the less space there
is for new, unissued instructions. In our base model, the
loop delay is 8 cycles (loop length of 5 cycles and feedback
delay of 3 cycles). Thus, it takes 8 cycles from the time an
instruction issues to the time the IQ is notified by the exe-
cution stage that the instruction does not have to reissue and
can be removed. Once an instruction is tagged for eviction
from the IQ, extra cycles are needed to clear the entry. If the
machine is operating near full capacity of 8 IPC, more than
half the entries in the IQ may be already issued instructions
in the load dependency tree waiting for the load to resolve.
The instruction window effectively shrinks, resulting in less
exposed instruction level parallelism (ILP), and potentially,
a reduction in useful work.

3 Impact of Loop Length

As pipeline lengths increase, so do the loop lengths for
many loose loops, resulting in more useless work done per
mis-speculation. In this section we quantitatively look at
the impact longer pipelines have on performance. Further-
more, we also investigate various pipeline configurations

and show that performance is a function of not just the
length of the pipeline, but the configuration of latencies
across the pipeline.

3.1 Increasing Pipeline Lengths

Figure 4 shows the results from increasing the pipeline
length of our base machine running a sampling of integer,
floating point, and multi-threaded benchmarks. The decode
to execute portion of the pipeline is varied from 6 to 18
cycles, in increments of 4 cycles (2 cycles each for DEC-IQ
and IQ-EX). Speedup numbers are shown relative to the 6
cycle case.

We use the Spec95 benchmark suite in our analysis. For
single threaded runs, we skip from 2 to 4 billion instruc-
tions, warm up the simulator for 1 to 2 million instructions,
and simulate each benchmark from 90 to 200 million in-
structions. The multi-threaded benchmarks are simulated
for 100 million instructions total for both threads. Each pro-
gram in the multi-threaded run skips the same number of
instructions as in the single-threaded run. All benchmarks
are compiled with the official Compaq Alpha Spec95 flags.

The greater the pipeline length, the longer the loop delay
for loops which traverse the pipeline between decode and
execute. Figure 4 shows that increasing the pipeline length
by 12 cycles results in a performance loss of up to 24%
due to mis-speculation on loose loops. The two primary
loops in this region are the branch resolution loop and the
load resolution loop. All benchmarks show a reduction in
performance as the pipeline lengthens.

Varying Pipeline Latency (128 Entry IQ)
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Figure 4. Performance for varying pipeline lengths.
Pipeline length is varied betweendecodeandexecute. Per-
formance is shown relative to the case with6 cycles be-
tween decode and execute. Numbers less than 100% indi-
cate a performance loss. Note that the Y-axis begins at 70%.

Integer programs are generally impacted by mis-
speculations on the branch resolution loop.compress, gcc
andgo perform a significant amount of useless work due
to branch mis-predictions. Furthermore, they are also bur-
dened by load misses, resulting in additional performance
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degradation. m88ksim, however, does not have as many
branches or branch mis-predictions as the other integer
benchmarks, resulting in less sensitivity to the branch reso-
lution loop delay.

We expected floating point programs to be sensitive to
the load resolution loop primarily due to a large number of
load operations and a high load miss rate. Some programs
behave as expected, such asturb3d and swim. Both pro-
grams have a reasonable number of loads and load misses
in the data cache, indicating many mis-speculation events.
turb3dalso suffers from a fair number of data TLB misses,
where recovery from the beginning of the pipeline impacts
performance, not just the latency of the IQ-EX portion.

Two programs,hydroandmgrid, also have a large num-
ber of loads and a high data cache miss rate, but are not
particularly sensitive to pipeline length. Unliketurb3dand
swim, both these programs also suffer from misses in the
second level cache. Therefore, the performance of these
programs is dominated by the long main memory access la-
tency. The loop delay of the load loop, even with a long
pipeline, is insignificant in comparison to the main memory
access latency.

apsi has a reasonably high data cache miss rate; how-
ever, the amount of useless work performed due to load
mis-speculations, as indicated by the number of instructions
reissued, is small. The relatively low IPC ofapsi, combined
with the small amount of useless work performed per mis-
speculation, suggests thatapsihas long, narrow dependency
chains restricting ILP. Therefore, the performance ofapsi
is determined more by program characteristics than by the
load resolution loop delay.

su2cordoes not suffer from many branch or load mis-
speculations. However, analysis shows that there is a mea-
surable amount of useless work resulting from branch mis-
predictions, as noted by the number of instructions killed
due to branch predictions. Therefore, although the number
of branch mis-speculations is small, the resolution latency
is large due to queuing delays in the pipeline. Increasing the
pipeline length only exacerbates the situation since the loop
length defines the lower bound for resolution latency.

Pipeline length impacts multi-threaded performance in
the same manner as it impacts the component programs.
However, the degree of impact is generally less than that
of the worst performing component program. For example,
go-su2corhas a smaller performance loss thango alone.
In multi-threaded execution, the availability of multiple
threads prevents the pipeline from issuing deeply down a
speculative path [16]. Furthermore, when a mis-speculation
occurs on one thread, the other thread(s) can continue doing
useful work while the mis-speculated thread recovers.

3.2 Not All Pipelines are Created Equal

Figure 5 shows the results from varying the pipeline con-
figuration while retaining the same overall pipeline length.
The syntaxX Y represents the latency from DEC-IQ (X),
and IQ-EX (Y). Note thatX + Y is constant. The speedup
shown is relative to the 39 configuration, with 3 cycles
from DEC-IQ and 9 cycles from IQ-EX. The results indi-
cate that not all pipelines are created equal, and reducing the
latency from IQ-EX improves performance by up to 15%,
even when the overall length of the pipeline remains the
same.
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90%

95%

100%

105%

110%

115%

120%

co
m

p
gc

c go
m

88 ap
si

hy
dr

o
m

gr
id

su
2c

or
sw

im
tu

rb
3d

m
88

-c
om

p

go
-s

u2
co

r

ap
si-

sw
im

S
p

ee
d

u
p

3_9 5_7 7_5 9_3

Figure 5. Performance for a fixed overall pipeline length.
The first number in the legend represents the cycles from
DEC-IQ, while the 2nd number represents the cycles from
IQ-EX. All data is shown as speedup relative to to the 39
case. Note the y-axis begins at 90%.

Loose loops determine how sensitive the processor is to
various pipeline configurations. Loose loops in our base
processor either traverse the entire decode to execution por-
tion of the pipeline (branch resolution loop), or traverse
just the IQ-EX portion (load resolution loop). There are no
loops which exist only within the DEC-IQ section. By mov-
ing pipeline stages from the IQ-EX portion to the DEC-IQ
portion, we reduce the length of loops contained within the
IQ-EX region without jeopardizing loops in other sections.

The benchmarks with the greatest performance improve-
ment in Figure 5 (swim, turb3d, andapsi-swim) are a subset
of the programs that showed the most sensitivity to increas-
ing pipeline lengths in Figure 4. The rest of the benchmarks
are either sensitive to the branch resolution loop length,
which does not change in these simulations (compress, gcc,
go, m88ksim, su2cor, m88ksim-compressand go-su2cor),
or are impacted by other benchmark characteristics such
as low ILP (apsi) or misses to main memory (hydro and
mgrid).

Reducing the IQ-EX latency, even at the cost of increas-
ing DEC-IQ latency, improves performance. The access to
a large register file dictates much of this latency. Farkas, et.
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al. [11] also note that large register files might limit the per-
formance benefit of wide, super-scalar machines. In the rest
of the paper, we present thedistributed register algorithm
(DRA). It reduces the IQ-EX latency and the latency of the
overall pipeline by moving the time consuming register file
access out of the IQ-EX path and placing it in the DEC-IQ
path. This primarily reduces the loop delay of the load res-
olution loop, resulting in less capacity pressure on the IQ
and less useless work done due to load mis-speculations.

4 Distributed Register Algorithm

Much of the IQ-EX latency is determined by the register
file access time of 3 cycles. Therefore, the obvious method
for reducing the IQ-EX latency is to move the register file
access out of this path and replace it with a register cache.
Register caches are small, generally on the order of 16 to
32 entries. Given their size, they can be placed close to the
functional units. The size and placement reduce register ac-
cess delays and transfer latencies, allowing a register access
latency of one cycle in the general case. This effectively
shrinks the IQ-EX latency from 5 cycles to 3 cycles, result-
ing in a shorter load resolution loop delay and less wasted
work on a load miss.

A register cache contains a subset of all registers; hence
a register cache, unlike a register file, can suffer from
operand misses. The data hazard resulting from not know-
ing whether the operand will hit or miss in the register
cache introduces a new loose loop to the pipeline, called
the operand resolution loop. The operand resolution loop
has a high frequency of loop occurrence — every instruc-
tion that has input operands is a loop generating instruction.
Since the number of mis-speculation events is the product
of the frequency of loop occurrence and the mis-speculation
rate, even a small operand miss rate is detrimental to per-
formance. If the number of register cache misses is high
enough, then the amount of work wasted due to register
cache misses can offset the savings from a reduced IQ-EX
latency.

Register caches must be small to reduce access latency.
Given that they are fully associative structures, they need
to be on the order of 16 to 32 entries to achieve a single
cycle access latency. A small register cache results in a
high miss rate for our base architecture because determin-
ing which values to insert into the cache is a difficult task.
Register values are frequently used just once [6], so many
of the entries in the register cache may never be accessed if
they are forwarded to the consumer through the forwarding
buffer. Also, the number of cycles between the availability
of operands for an instruction can be quite large in a wide
issue, out-of-order machine.

Figure 6 shows the cumulative distribution function for
the time (in cycles) between when an instruction’s first

operand is available, and when the second operand is avail-
able forturb3d. The time is zero for instructions with only
one operand. 25% of all instructions have 25 cycles or more
between the availability of operands. In fact, even the 9
cycle forwarding buffer in our base architecture only cov-
ers about 50% of all instructions. Other benchmarks show
similar characteristics. A register cache may need to be of
comparable size to a register file to hold all the relevant in-
formation for the instructions in flight.
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Figure 6. Cumulative distribution function of the time
in cycles between when an instruction’s first operand and
second operand is available. Data is shown forturb3d.

To increase the capacity of the register cache without in-
creasing the access latency, the DRA takes advantage of
the clustered architecture of the base model and places a
small register cache called aclustered register cache(CRC)
within each functional unit cluster. There are eight CRCs,
each with 16 entries. This effectively increases the size of
the register cache to 128 entries.

To more effectively manage the entries in the CRC, the
DRA does one of two things. First, each CRC only stores
those operands required by instructions assigned to that
functional unit cluster. An instruction is assigned a func-
tional unit cluster when it is decoded. Therefore, the DRA
may direct the operands for this instruction to a specific
cluster. Note that the same operand may be stored in multi-
ple CRCs if it is consumed by instructions assigned to dif-
ferent clusters.

Second, each CRC only stores operands for a consum-
ing instruction that is unlikely to get the operand through
other means. To achieve this, we note that one can clas-
sify operands by how a consuming instruction gets those
operands. The three classes are:completed operands,
timely operands, andcachedoperands.

Completed operands are already in the register file when
a consuming instruction is decoded and can be read at any
time. These operands tend to be associated with global reg-
isters such as the global pointer and stack pointer. How-
ever, if a register is alive long enough, it can be a completed
operand for many instructions. The DRA reads completed
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operands from the register file in the DEC-IQ path — after
the register is renamed and before the instruction is inserted
into the IQ. When the instruction enters the IQ, the operand
is inserted into the payload for retrieval when the instruc-
tion issues. Accessing the register file out of the issue path
was proposed by Tomasulo and others [13].

Timely operands are those where the consumer of the
operand is issued not long after the producer of the operand
has issued. The forwarding buffer already inherent to our
base model handles this category of operands by storing all
values computed in the last 9 cycles.

Cached operands are those that are inserted into the
CRCs. To reduce the capacity pressure on the register
cache, only those operands who have consuming instruc-
tions that neither pre-read the operand from the register file
nor read it from the forwarding buffer are placed in the reg-
ister cache. This can happen when an instruction’s operand
is not in the register file for pre-read, nor does the instruc-
tion issue soon enough after its producer to get the value
from the forwarding buffer.

Note that the classification of an operand is determined
by where the consuming instruction got the operand. Thus,
an operand with many consumers could be a completed,
timely, and cached operand for each different instruction.

5 DRA Implementation

In our proposed architecture, operands are delivered to
the functional units in one of 4 ways.

� Pre-read from the register file: If the operand(s) exists
in the register file at decode time, (i.e. a completed
operand), it is pre-read from the register file and sent
to the IQ.

� Read from the forwarding logic: The base pipeline
has 9 stages of forwarding logic to handle requests for
timely operands that were produced in the previous 9
cycles.

� Read from the CRC: CRC lookup happens in parallel
with the lookup in the forwarding buffer. There is a 16
entry CRC in each of the eight functional unit clusters
that provides cached operands.

� Read from register file on an operand miss: If, during
execution, the operand is not available through any of
the means above, then the operand misses. A miss sig-
nal is sent to the register file. The operand is read and
delivered to the IQ payload where it waits for the in-
struction to reissue. This is the recovery path resulting
from a mis-speculation on the operand resolution loop.

The hardware for this scheme is shown in Figure 7, and
consists of aregister pre-read filtering table(RPFT) com-
bined with onecluster register cache(CRC) and oneinser-
tion tablefor each functional-unit cluster. This is in addition
to structures that already exist in our base model, specif-
ically one forwarding buffer per cluster, and a monolithic
register file.
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Figure 7. Distributed register algorithm (DRA) block di-
agram.

5.1 Cluster Register Cache (CRC)

There are 8 functional unit clusters in our base architec-
ture, and there is a CRC associated with each cluster. Each
CRC is placed close to it’s functional unit cluster to reduce
wire delays. Our studies show that a 16 entry CRC is more
than adequate to meet our needs. Since only one instruc-
tion per cycle executes in a functional unit cluster, only 2
read ports are required per CRC. However, 8 write ports are
needed to handle the maximum number of register values
computed per cycle. The CRC, similar to the forwarding
buffer, uses a fully associative lookup requiring the use of a
CAM structure.

The CRCs use a simple FIFO mechanism to manage in-
sertion and removal of entries. A more complex mecha-
nism would be cumbersome and unnecessary because most
register values are only read once before being overwrit-
ten [6]. We modeled a few mechanisms that had almost
perfect knowledge of which values were needed, but the
performance improvement over our simple FIFO scheme
was negligible. Furthermore, register cache capacity pres-
sure is reduced by filtering the operands that get inserted in
the CRC.

Register cache insertions are filtered in one of two ways.
First, only the CRC associated with the functional unit clus-
ter an instruction will execute on receives the input register
operands for that instruction. Our base model uses clus-
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tered issuing logic similar to the Alpha 21264, and instruc-
tions are slotted to a particular functional unit cluster (or
arbiter according to the 21264 nomenclature) at the time
of decode. Therefore, it’s known at decode which source
operands are required in each functional unit cluster. Sec-
ond, only those operands that have consumers that have not
read the operand when it leaves the forwarding buffer get
inserted into the CRC’s. This means that if all consumers of
an operand either pre-read it from the register file or receive
the value from the forwarding buffer, then the value is not
stored in any CRCs.

The base architecture already contains the logic to deter-
mine the functional unit cluster an instruction will execute
on. However, the second filtering mechanism, determining
whether the operand is procured from the register file or the
forwarding buffer, requires additional hardware. Two new
structures, theregister pre-read filtering table (RPFT)and
the insertion table, address these issues.

5.2 Register Pre-read Filtering Table (RPFT)

The RPFT stores information about the validity of the
registers. It has one bit associated with each physical regis-
ter. When the bit is set, it indicates that the register is valid
in the register file. The operand stored in that register is a
completed operand and can be pre-read prior to issue. The
bit is set when an operand is written back to the register file.
If the bit is clear, the producer of that operand is in flight,
and the operand is not in the register file. The bit is cleared
when the renamer notifies the RPFT that it has allocated a
physical register to be written by an instruction.

After the register renaming stage, the physical register
numbers for an instruction’s source operands are sent to the
RPFT. If the bit for a register is set, then the value in the
register file is pre-read and forwarded to the payload portion
of the IQ. If the bit is clear, the source register number for
the input operand is sent to the insertion table associated
with the functional unit cluster the instruction is slotted to.

The number of 1-bit entries in the RPFT equals the num-
ber of physical registers in the machine. The structure re-
quires 16 read ports, and 8 write ports to handle 8-wide
issue. Weiss and Smith used a similar algorithm to work
around stalling instructions when they saw a true depen-
dency [13]. In their algorithm, a bit set in the scoreboard
indicated a true dependency on an un-computed result, and
the dependent instruction was placed in the reservation sta-
tions along with the register identifiers for the un-computed
operands.

5.3 Insertion Table

There is an insertion table associated with each CRC
and functional unit cluster. It keeps count of the number

of outstanding consumers of an operand that will execute
on the functional unit cluster and that have not yet read the
operand. The number of entries in an insertion table is dic-
tated by the number of physical registers. Each entry is 2
bits wide. A non-zero entry value indicates that the operand
is needed by instructions assigned to the insertion table’s
functional unit cluster. An entry is incremented when the
insertion table receives the source register number from the
RPFT, and it is decremented every time the associated reg-
ister is read from the forwarding buffer.

With 2 bits per entry, the insertion table entries can indi-
cate a maximum of 3 consumers for each operand per clus-
ter. However, most operands have few consumers, so 2 bits
is more than adequate.

When an operand is written back (from the forwarding
buffer) to the register file, a copy is also sent to each of
the insertion tables. If the insertion table entry associated
with the operand is zero, it is highly likely that there are not
any consumers of this operand in-flight and the value is dis-
carded. For all functional unit clusters where the insertion
table entry for an operand is non-zero, there are consumers
in flight. The operand is written into the CRCs for those
functional units and the insertion table entries are cleared.
Note that operands can reside in multiple functional unit
clusters as long as there are outstanding consumers for that
operand that will execute on each of those clusters.

5.4 Misses

Mis-speculations occur on the operand resolution loop
because the DRA, as implemented, does not guarantee a
successful pre-read or a hit in the forwarding buffer or
CRCs. Misses happen for one of two reasons. Operands
may get dropped from the CRCs before being read due
to capacity pressure and the FIFO replacement policy.
Operands may also not get inserted into the CRCs because
we saturate at 3 consumers per operand. This occurs when
an operand has more than 3 consumers slotted to the same
functional unit. For each operand hit in the forwarding
buffer, the count for that operand in the insertion tables gets
decremented by one. If there are at least 3 hits in the for-
warding buffer on a single operand, then the count in the
functional unit’s insertion table goes to zero and indicates
no consumers are in-flight that need this operand. Thus, the
operand does not get inserted in the CRC, and any subse-
quent consumers executing on the same functional unit take
an operand miss.

If one (or both) of an instruction’s operands miss in the
CRC or forwarding buffer, an invalid input is returned in
place of the real value, and the instruction produces an in-
valid operand. When this happens, signals are sent to both
the register file and the IQ. The correct input operand value
is read from the register file and sent to the IQ, and the IQ
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readies the instruction for reissue. The instruction is ready
to reissue as soon as the operand reaches the IQ payload. In
addition to reissuing the instruction with a missing operand,
all instructions in the dependency tree that have already is-
sued will also signal the need to reissue as soon as they read
the invalid operand resulting from a miss in the CRC. The
logic to manage mis-speculations on the operand resolution
loop is similar to the logic that manages mis-speculations
on the load resolution loop. The only additional hardware
required is the wiring to stall the front end of the pipeline
while the missing operands are read from the register file
and forwarded to the instruction payload.

5.5 Stale Register Values

The CRC associated with each functional unit is imple-
mented as a simple FIFO structure to avoid the problems
associated with managing a complex insertion and replace-
ment algorithm. As a result, stale data needs to be ac-
counted for in the CRC in order to guarantee correctness.
Although rare, a CRC could have stale operands if there
is not much pressure on the structure. A physical register
may be reallocated while the old register value resides in
the CRC.

This case is handled when the register is reallocated. The
destination register numbers are sent to the RPFT, and these
are also forwarded to all CRCs. If the CRC contains an
operand for a reallocated register, then that entry is inval-
idated. Note that there are many cycles between when the
CRC receives the reallocated registers and when the register
is written with a new value. Therefore, we have enough time
to invalidate the entries in the CRC. An alternate method
would time out the operands in each CRC after a certain
period of time.

6 Results

The basic premise behind the DRA is that we remove
the expensive register file access from the IQ-EX stage and
overlap it with part of the DEC-IQ stage. By doing so,
we remove latency from a critical portion of the pipeline
and possibly increase the latency in other portions of the
pipeline.

In our base processor model, moving the register file ac-
cess reduces the IQ-EX latency from 5 to 3 cycles while
the DEC-IQ latency remains the same. Register file lookup
takes 3 of the 5 IQ-EX cycles. However, one of these cy-
cles is still required for accessing the forwarding buffer and
the CRCs, resulting in a 3 cycle IQ-EX latency. In the DEC-
IQ portion, the physical register numbers are available at the
end of the second cycle, providing 3 cycles for accessing the
register file and sending the data to the IQ payload. Given

that accessing the register file and driving data to the func-
tional units takes 3 cycles in the base machine, we should
be able to drive data to the payload in the same time. Hence,
the DEC-IQ portion remains 5 cycles.

We also ran experiments with longer register file access
latencies of 5 and 7 cycles to determine the impact the DRA
has on potential future designs. In the case of a 5 cycle ac-
cess latency, the base architecture’s IQ-EX latency is 7 cy-
cles. The DRA implementation removes the 5 cycle register
file access latency, but needs 1 of these cycles to access the
forwarding buffer and CRCs. Thus, it shrinks the IQ-EX
stage to 3 cycles. The DEC-IQ latency increases by 2 to a
total of 7 cycles. This is because the register renaming is
complete after the 2nd cycle of DEC-IQ, and it still takes
5 cycles to access the register file and deliver the operands
to the IQ. For the 7 cycle register read latency, the IQ-EX
stage remains at 3 cycles and the DEC-IQ stage increases to
9 cycles.
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Figure 8. Performance improvements with the DRA
relative to the base architecture. TheDRA:D1 D2 vs.
Base:B1B2 syntax shows the pipeline latencies for each
configuration. D1 and D2 are the latencies from DEC-IQ
and IQ-EX, respectively, for the DRA. B1 and B2 represent
the same latencies for the base configuration. Both config-
urations have the same register file access latency. Note the
graph starts at 85%.

We modeled the architecture described using the
ASIM [4] simulation infrastructure with a very detailed, cy-
cle level, execution driven processor model. ASIM forces
consideration of logic delays by mimicking hardware re-
strictions within the processor model. This makes it very
difficult to model instantaneous, global knowledge over the
entire model. In hardware, for example, there is a non-unit
delay between the IQ and the functional units. Therefore,
there is a lag between the time events occur in the functional
units and the time the IQ makes decisions based upon these
events. ASIM enforces propagation delay restrictions in the
simulated model, and does not allow us to make decisions
based upon global knowledge that may lead to inaccuracies
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in our simulations.
Figure 8 shows the results using the DRA for the three

different register access latencies. Performance is shown as
speedup of the DRA implementation relative to a non-DRA
implementation. For example, the first bar,DRA:5 3 vs
Base:55, shows the relative speedup of a DRA implemen-
tation with a 5 cycle DEC-IQ latency and a 3 cycle IQ-EX
latency relative to a base pipeline with no DRA and a 5
cycle latency for both DEC-IQ and IQ-EX. Both configura-
tions have a 3 cycle register file access latency. The second
and third bar in each cluster shows similar information for
a 5 and 7 cycle register file access latency, respectively.

With the exception ofapsiandapsi-swim, performance
improves with a DRA for all configurations. We see an im-
provement of up to 4%, 9% and 15% for register file ac-
cess latencies of 3, 5, and 7 cycles, respectively. Perfor-
mance improves not only because we shift the cycles from
IQ-EX to DEC-IQ, but because we also shorten the pipeline
by 2 cycles in each case. Those programs that are the most
sensitive to pipeline lengths (compress, m88ksim-compress)
and/or IQ-EX latencies (swim, turb3d) benefit the most.
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Figure 9. Hit and miss rates for operand values. Hits are
further segmented into hits from register pre-read, hits from
the forwarding buffer, and hits from the DRA. Numbers are
shown for the 73 DRA case, i.e., 7 cycles from DECIQ,
3 cycles from IQEX, and a 5 cycle register file access la-
tency. Note the graph starts at 40%.

The reason performance degrades is because of mis-
speculations on the operand resolution loop. Not only will
the instruction that suffered an operand miss reissue, but all
of the instructions in the dependency tree that have issued
will also reissue. Figure 9 shows that performance is very
sensitive to operand miss rate. The figure shows the hit and
miss rates for register operand values. Hits are further seg-
mented into hits in the register file during pre-reading, hits
in the forwarding buffer, and hits in the CRCs. On average,
more than half the operands are read from the forwarding
buffer. The remaining operand reads are distributed equally
between being pre-read from the register file, and read from
the CRCs. Most benchmarks have an operand miss rate well

under 1%, and do not suffer a performance impact from
operand resolution loop mis-speculations. However, even
a small miss rate of 1.5% can have a substantial impact on
performance, asapsishows. In this case, the work wasted
due to mis-speculations on the operand resolution loop out-
weighs any benefit resulting from a shorter pipeline.

There are two reasons whyapsisuffers a 10%-14% per-
formance loss. First, there is the relatively high miss rate of
1.5%. This, combined with a high frequency of loop occur-
rence, results in a large number of reissued instructions and
much wasted work. Second,apsi is not particularly sensi-
tive to pipeline lengths as shown in Figure 4. A 12 cycle
increase in pipeline length only degraded performance by
9%. Therefore we gain little by shortening the pipeline, and
suffer the penalty of high operand miss rates and instruction
reissue. The combination of the two situations contributes
to the performance loss inapsi.

7 Related Work

Hierarchical register files are not a new idea. The Cray-
1 had two sets of two-level register files. More recently,
Zalamea et. al. explored two-level hierarchical register file
designs[17]. However, in both cases, compiler support was
required to explicitly move values between different levels
of the register file.

Cruz et. al. proposed a hierarchical register file design
that does not require compiler support [6]. They use a sin-
gle register file with a highly ported upper-level portion that
acts as a register cache, and a lightly ported lower-level that
acts as a register file. The design proposed by Cruz has a
number of shortcomings for our architecture. First of all,
they use mechanisms to manage the entries in their regis-
ter cache that require current information from the instruc-
tion scheduling unit. However, given the latencies in our
pipeline, it is impossible to gather this knowledge and act
on it in a timely manner. Another problem with the de-
sign is the non-deterministic delay for instruction execution
that depends on whether the operands are attained from the
register cache or register file. Due to the non-deterministic
delay, the dependents of an instruction cannot be scheduled
with certainty. If an instruction’s dependents are issued with
the assumption that the instruction will “hit” in the register
cache, then the dependent instructions must stall if the in-
struction ends up accessing the slower register file. Stalling
instructions which have been issued entails complex con-
trol which can add to the critical path of the processor [9].
Finally, the lower-level register file design has fewer ports
than the number of functional units. Hence, there is no
mechanism to handle the case where all instructions issued
miss in the register cache. Even though this is an unlikely
event, it must be accounted for.
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8 Summary and Conclusions

In this paper, we explored micro-architectural loops re-
sulting from hazards in the pipeline. In particular, we fo-
cused on a subset of micro-architectural loops, called loose
loops, that impact processor performance by forcing the
pipeline to stall or speculate until the loop resolves. We
showed that the performance impact of loose loops is re-
lated to the pipeline length and configuration. In particular,
performance is especially sensitive to the length of the issue
to execute section of the pipeline due to the load resolution
loop. Reducing the latency of issue to execute improves per-
formance even as the overall length of the pipeline remains
the same.

Based on our analysis, we proposed the the DRA as a
way of reducing the issue to execute latency. The DRA
moves the time consuming register file access out of the is-
sue to execute path and replaces it with the clustered register
cache (CRC). Using a very detailed architectural simulator,
we showed performance improvements of up to 4% to 15%,
depending on the pipeline configuration, with the DRA.

Much of our future work focuses on improving the de-
sign of the DRA. For example, retaining pre-read operands
in the instruction payload requires a large amount of hard-
ware. Therefore, a more efficient design might be to for-
ward the pre-read values to each cluster to be held in an-
other register cache close to the functional units. In addi-
tion, we’d like to investigate a more efficient method of in-
validating stale entries in the CRCs. Also, further analysis
of benchmarks likeapsineeds to be done to determine how
we can reduce or eliminate the performance loss.
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Nigel P. Topham. Multiple-banked register file architec-
tures. InProceedings of the 27th Annual International Sym-
posium on Computer Architecture, pages 316–325, Vancou-
ver, British Columbia, June 12–14, 2000. IEEE Computer
Society and ACM SIGARCH.

[7] Digital Equipment Corporation.Alpha 21164 Microproces-
sor Hardware Reference Manual, 1994.

[8] Digital Equipment Corporation.DECchip 21064 and DEC-
chip 21064A Alpha AXP Microprocessors Hardware Refer-
ence Manual, 1994.

[9] John H. Edmondson, Paul I. Rubinfeld, Peter J. Ban-
non, Bradley J. Benschneider, Debra Bernstein, Ruben W.
Castelino, Elizaabeth M. Cooper, Daniel E. Dever, Dale R.
Donchin, Timothy C. Fischer, Anil K. Jain, Shekhar
Mehta, Jeanne E. Meyer, Ronald P. Preston, Vidya Ra-
jagopalan, Chandrasekhara Somanathan, Scott A. Taylor,
and Gilbert M. Wolrich. The internal organization of the Al-
pha 21164, a 300-mhz 64-bit quad-issue CMOS RISC micro-
processor.Digital Technical Journal, 7(1):119–135, 1995.

[10] Joel Emer. Ev8: the post-ultimate alpha. Keynote at Interna-
tional Conference on Parallel Architecture and Compilation
Techniques, September 2001.

[11] Keith I. Farkas, Norman P. Jouppi, and Paul Chow. Register
file design considerations in dynamically scheduled proces-
sors. InProceedings of the Second International Symposium
on High Performance Computer Architecture. IEEE, January
1996.

[12] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel.The Microarchitecture of the Pen-
tium4 Processor. Intel Corporation, February 2001.

[13] M. Johnson. InSuperscalar Microprocessor Design, 1991.

[14] R. E. Kessler, E. J. McLellan, and D. A. Webb. The alpha
21264 microprocessor architecture. InProceedings of the In-
ternational Conference on Computer Design, October 1998.

[15] M. Reilly. Lost cycles due to register port contention.In
htttp://segsrv.shr.cpqcorp.net/arana/qbox/registercache2.html.
Compaq Computer Corporation, February 1998.

[16] J. S. Seng, D. M. Tullsen, and G. Z. N. Cai. Power-sensitive
multithreaded architecture. InProceedings of the Interna-
tional Conference on Computer Design, October 2000.

[17] J. Zalamea, J. Llosa, E. Ayguade, and M. Valero. Two-
level hierarchical register file organization for VLIW proces-
sors. InProceedings of the 33rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (Micro-33), pages
137–146, Los Alamitos, CA, December 10–13 2000. IEEE
Computer Society.

12


