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This paper explores the concept micro-architectural
loops and discusses their impact on processor pipelines.

In particular, we establish the relationship betweleonse a D | D REDIR4
loopsand pipeline length and configuration, and show their EDIN _»2)3 ,\_h> """"""" EDIN i_'
impact on performance. We then evaluate libad reso- Clock | [ [ ] [ >
lution loopin detail and propose thdistributed register —_ Resolu
algorithm (DRA) as a way of reducing this loop. It de- Stage otage |

creases the performance loss due to load mis-speculations H Loop Length 4.{

by reducing the issue-to-execute latency in the pipeline. A
new loose loop is introduced into the pipeline by the DRA,
but the frequency of mis-speculations is very low. The re-
duction in latency from issue to execute, along with a low

mis-speculation rate in the DRA result in up to a 4% to 15% loop resolution stage is the execute stdgeop lengthis de-
improvement in performance using a detailed architectural fined to be the number of stages traversed by a loop, and the
simulator. feedback delays the time required to communicate from
the resolution stage to the initiation stagkeoop delayis
the sum of the loop length and feedback delay. Loops with

1 Introduction a loop delay of one are referred to t&ght loops all other
loops are referred to dsose loops

With a loop delay of one, tight loops feed back to the
same pipeline stage. Figure 2 shows examples of tight loops
in the Alpha 21264 processor, such as the next line predic-
tion loop and the integer ALU forwarding loop [3]. The
next line prediction in the current cycle is needed by the
line predictor to determine the instructions to fetch in the
he next cycle, while the ALU computation in the current cycle
is required in the ALU in the next cycle to support back-
to-back execution of dependent instructions. Tight loops
directly impact the cycle time of the processor because the
information being computed is required at the beginning of
the next cycle.

Loose loops extend over multiple pipeline stages. Ex-
amples of loose loops in the Alpha 21264 (Figure 2) are the
LEric Tune did this work while at VSSAD. branch resolution loomnd theload resolution loop The

Figure 1. Micro-architectural loops

Micro-architectural loopsare fundamental to all proces-
sor designs. We define micro-architectural loops as com-
munication loops which exist wherever a computation in
one stage of the pipeline is needed in the same or an ear
lier stage of the pipeline. Loops are caused by control, data
or resource hazards.

Figure 1 illustrates the basic components of a loop. T
initiation stageis the stage where data from a succeeding
stage is fed back. Theesolution stagds the stage that
computes the result needed by a preceding stagelobipe
generating instructions the instruction which initiates the
loop. For branches, the loop generating instruction is a
branch, the loop initiation stage is the fetch stage, and the
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Figure 2. Examples of micro-architectural loops in the Alpha 2126gcpssor [3], represented by solid lines. If the recoveryesta
is different from the initiation stage, it is shown by a ddittie.

branch resolution loop is caused by a control hazard re-imize performance. There are many examples of specula-
sulting from the existence of an unresolved branch in the tion in the Alpha 21264, such as branch prediction, load
pipeline. The fetch unit does not know with certainty which hit prediction, and memory dependence prediction. As long
instruction to fetch until the branch resolves. The load res- as there are no mis-speculations, loose loops do not impact
olution loop is caused by a data hazard resulting from anperformance because the pipeline is always doing useful
unresolved load operation, e.g., did the load hit in the cachework.
or not. The loop occurs because instructions dependent on \when mis-speculations occur, however, the pipeline has
the load cannot issue until the issue queue knows the timegjone work which must be thrown away. The pipeline must
at which the load data will be available. then recover, and restart processing from the mis-speculated
Loose loops can impact performance by restricting the instruction. Mis-speculation recovery may occur at the loop
pipeline’s ability to do useful work. The simplest way to initiation stage or, due to implementation reasons, at an ear-
manage a loose loop is to stall the pipeline while waiting lier stage in the pipeline which we call tliecovery stage
for the loop to resolve. Since no progress is made while The presence of a recovery stage introduces a recovery time,
the pipeline stalls, performance will be negatively impacted. that is, the time it takes the useful instructions to refill the
Thus, an alternative technique of speculating through thepipeline from the recovery stage to the initiation stage. For
loop is often used. Speculating through a loop improves example, the initiation stage for load/store reorder traps in
performance by attempting to make progress while the loopthe 21264 is the issue stage, while the recovery stage is the
resolves instead of simply waiting. Stalling the processor fetch stage. The dotted lines in Figure 2 illustrate where
means that no progress is made every time a loose looghe recovery stage is earlier than the initiation stage.

is encountered, while speculating through the loop allows  The best performance is achieved when there are no mis-
progress to be made, exceptwhen there is a mis-speculatiorspeculations. Every mis-speculation degrades performance.
Stalling the processor is often an acceptable solutionClearly the frequency of loop occurrence (i.e., the number
when the loop length is small. With a simple, 5 stage ofloop generating instructions) and the mis-speculation rate
pipeline, a single cycle branch bubble may not have a sig-are first order determinants of the performance lost. How
nificant impact on performance. Stalling the processor is much performanceis lost per mis-speculated eventis a com-
also a tenable solution when the loop occurs infrequently. plex function of a number of parameters. One measure
The memory barrier loop in the Alpha 21264 is an example of this is the amount of work discarded due to each mis-
of an infrequent loop. When a memory barrier instruction speculation. We term thisseless work
is encountered in the pipeline, the mapping logic stalls the  The product of the frequency of loop occurrence and the
memory barrier instruction and all succeeding instructions. mis-speculation rate determines the number of times use-
The instructions are released to issue when all precedingess work is done. For example, the number of branch mis-
instructions have completed. speculation events is greater in programs with a high oc-
As pipelines get longer and/or loops occur more fre- currence of branches and a high mis-prediction rate, such
guently, speculation is used to manage loose loops and maxas integer programs. The amount of useless work due to



each mis-speculation is a function of the time required to issue machine with branch prediction, dynamic instruction
resolve the loop, and the time required to recover from the scheduling, and multi-threaded execution. It contains a uni-
mis-speculation. The greater these latencies, the greater théed, 128 entry instruction queue (1Q), and has up to 256 in-
impact of the mis-speculation. structions in flight at any time. The minimum pipeline delay
The lower bound of this time is equal to the loop delay for an integer operation with single cycle execution latency
plus the recovery time. The actual latency is augmentedis similar to the Pentium4 [12], around 20 cycles, assuming
by any queuing delays within the loop. For instance, the no stalls or queuing delays in the pipeline. Other operations
branch resolution loop length for the Alpha 21264 encom- may take longer depending on their execution latency.
passes 6 stages, the feedback delay is 1 cycle [3], and there ,
is no recovery time. Thus, the minimum impact of a mis- IQ-EX
speculation is 7 cycles. Inst Fetch 'F[‘as;l'cf;c;‘iccess Retire Unit
The long pipelines in current generation processors infredictions Reg. File Access Memory
crease the loop delay for many loose loops. The Pentium4
design, for example, has a pipeline length greater than {Fontena |[[ [ [ [ | | | [ [ [ [ || sackena
stages and a branch resolution latency on the order of 20
cycles [12]. Pipeline lengths are increasing for two reasons: DEC-IQ / o
higher operating frequency and more architecturally com- Decode .
plex designs. A high operating frequency shrinks the clock e
cycle, resulting in fewer stages of logic fitting within a cy-
cle [1]. Operations that required only one cycle in the past
now take multiple cycles. Architectural advances that in-

crease overall processor throughput also increase pipeline Figure 3 shows the pipeline of the simulated machine.

lengths, W|d.e Issue W'dths’ out—.of—o.rder Instruction I~ 1, this work we focus on the latency between instruction

sue, speculation, and multi-threading increase the amounﬁecode and execute. These are labeled in the figiDESS

of Iogic_ on the processor, and more Iogic_ often requires IQ (decode to insertion into the instruction queue) &éRd

morﬁ_plpelme Istages tohcomplete an olperzlmon.h iDeli EX (issue from instruction queue to execute). Many micro-
This paper looks at the impact pipeline lengths, pipeline , opjteciyral loops traverse this portion of the pipeline, such

configurations, and loose loops have on processor perfor_ ¢ o branch resolution loop and the memory dependence

mance. We show that pe_rfor_mance Is not just affected_ byloop, and processor performance is highly sensitive to the
the overall length of the pipeline, but by the length of crit- length of this region

ical portions of the pipeline that are traversed by k_ey loose Our simulated architecture uses a clustered design simi-
loops. ”,1 particular, we focus on the. load resolution '°°P lar to the 21264 [14]. In particular, we cluster the instruction
and the impact loop length e_md gueuing delay haye on th'_sscheduling logic. As noted in [2], issuinty instructions
Ipop_. Based on our z_inaly5|s, W€ propose a design modi-g ;4 of an instruction gueue dY¥ entries is difficult to im-
fication called theistributed register algorithm (DRA). plement when M and N are large. In our cad€,= 8 and

It moves the time consuming register file access out of theN — 198. Therefore. we allocaté or slot the ,instructions
ISsue to (_execute path and adds a reg|_ster cach_lng mechaét decode to one of eight functional unit clusters. Now the
hism. Using the d(_etalled ASIM [4] architectural S|mulato_r, problem of issuingV/ out of N instructions is reduced to
we show speedup improvements of up to 4% to 15% relatlveissuing one out of approximately/8 instructions, assum-

o thﬁ base rr}ogel. , ed as foll Secii 2ing that instructions are distributed uniformly to all clusters.
The rest of the paper Is organized as follows. Section 21po ppA yses the cluster allocation information to deter-

describes the base architecture and details the load reSOM‘nine which functional units receive which source operands
tion loop. Section 3 shows the impact pipeline lengths and This is described in detail in Section 5 '

configurations have on performance. Sections 4 and 5 dis-

cuss the reasoning behind the proposed design modificatio Lo

and detail the DRA. Results are presented in section 6. Secr—b'l Pipeline Latency
tion 7 explains the relation of our work to prior work related
to register files, and section 8 concludes the paper.

Figure 3. Pipeline of base architecture

The DEC-IQ latency is 5 cycles in the base model. The

5 cycles are required for instruction decoding, register re-
naming, wire delay, and insertion of the instruction into the
2 Processor Model IQ. The latency from IQ-EX is also 5 cycles, which is re-
quired for determining which instruction to issue, reading

We modeled our base processor to be comparable to nexthe pertinent information from the instruction payload, per-

generation super-scalar processors [5, 10]. It is an 8-wideforming register file access, and delivering the instruction



and the source operands to the functional units. The 1Q onlywork. Forwarding enables instructions to get their operands
contains the dependency information required to determinefrom the forwarding logic in the ALUs without having to
when an instruction is ready to issue. The instruction pay- wait for them to be written to the register file. It replaces
load contains the rest of the state for the instruction, such aghis loose loop with a tight loop in the execution logic that
physical register numbers, op codes, and offsets. makes the result computed in a previous cycle available in
Register file access takes 3 cycles, with two of the cyclesthe current cycle.
required purely to drive data to and from the register file.  The base model containsfarwarding bufferwhich re-
The wiring delay is due to the large register file required to tains results for instructions executed in the last 9 cycles.
support an 8 wide issue, out-of-order, SMT machine with Five of these cycles are required to cover long latency op-
both physical registers and architectural state for all threadserations and limit the number of write ports on the register
Furthermore, we require 16 read ports and 8 write ports tofile. The other four cycles cover the time it takes for the re-
support 8-wide issue. sulting data to be written to the register file. The forwarding
The register file design could have fewer ports. The buffer is required for the base architecture to work. As will
full port capability is not needed in most cases because ei-be discussed in Section 5, it is also an integral part of our
ther the operands are forwarded from the execution units,redesign for the register file.
or the number of instructions issued is less than 8, or
not all instructions have 2 input Qperands anq one output, 5 5 | Had Resolution Loop
operand [15]. However, there are implementation problems
with reducing the number of ports. First, which operands The load resolution loop is caused by the non-deterministic
are being forwarded is not known at the time of issue, andlatency of loads. Although the latency of a cache hit is
the register file and forwarding structure are accessed simulknown, whether the load will hit, miss, or have a bank con-
taneously, not sequentially. Accessing them sequentiallyflictin the cache is unknown. This makes it difficult to know
would add additional delay into the 1Q-EX path. Therefore, when to issue load dependent instructions so that they ar-
we cannot suppress the reading of the register file on a hitrive at the functional units in the same cycle that the load
in the forwarding logic. Second, if there are fewer read port data arrives. It is this unknown that necessitates a loose
pairs than functional unit clusters, a complex switching net- loop. As with all loose loops, the pipeline could either stall
work is needed to move operands to the correct functionalor speculate. The Alpha 21064 and 21164 processors stall
units. This also adds additional delay into the 1Q-EX path. the pipeline [7, 8] until the load resolves, while the Alpha
Third, if 16 operands are needed in a cycle, there must be21264 can speculatively issue dependent instructions and
some logic to stall or suppress instructions that will not be recover on a load miss [3].
able to read their operands. For these reasons, a register In our base processor, stalling load dependent instruc-
file with full port capability can be easier to implement and tions effectively adds 5 cycles to the load-to-use latency.
manage, and reducing the number of ports adds unnecessaiStalling may prevent useful work from getting done. To

complexity. avoid this, the base processor speculatively issues load de-
pendent instructions, i.e., it predicts that all loads hit in the
2.2 Managing Issue Loops data cache.

To help discuss the load resolution loop, we define two
terms. Thdoad dependency treis defined to include the
instructions directly or indirectly dependent upon the load.
The set of cycles in which any instructions within the load
dependency tree may issue speculatively is calledahe
shadow In the 21264, the load shadow for integer loads
starts 2 cycles after the load issues, and ends when the load
2.2.1 Forwarding Buffer signals a data cache hit or miss [3].

A loose loop exists between the execution stage and the

register file read stage. A value computed in the executionLoad Mis-speculation Recovery Aslong as the load hits,
stage needs to be written back to the register file before dethere is no penalty for the speculation. A miss, however, re-
pendentinstructions can read the value. Forwarding logic isquires a costly recovery action. For correct operation, all
added in the execution stage to shrink this loop from a looseinstructions within the load dependency tree that have al-
loop to a tight loop. Without forwarding, dependent instruc- ready issued must be reissued after the load resolves. Imple-
tions must wait to issue until their operands are written to mentation choices can further increase the mis-speculation
the register file. While these instructions stall, the pipeline penalty. In the Alpha 21264, the amount of useless work
has fewer instructions to execute, resulting in less availablecan be even higher on an integer load miss because all in-

The 5 cycle IQ-EX latency introduces some challeng-
ing architectural problems. The long latency produces two
loose loops that are managed in different ways to optimize
performance.



structions issued in the load shadow, whether they are in theand show that performance is a function of not just the
load dependency tree or not, are killed and reissued. Fordength of the pipeline, but the configuration of latencies
tunately, most programs have a high load hit rate, and theacross the pipeline.
overall cost of recovering from mis-speculations is signifi-
cantly less that the cost of a non-speculative policy. 3.1 Increasing Pipeline Lengths

We also have a choice of recovery points for a load mis-
speculation. We could make the recovery stage the issue Figure 4 shows the results from increasing the pipeline
stage, by reissuing load dependentinstructions from the 1Q.length of our base machine running a sampling of integer,
Alternatively, the fetch stage could be the recovery stagefloating point, and multi-threaded benchmarks. The decode
by flushing the pipeline and re-fetching instructions start- to execute portion of the pipeline is varied from 6 to 18
ing with the first instruction after the mis-speculated load. cycles, in increments of 4 cycles (2 cycles each for DEC-IQ
Re-fetching is easier to implement, but it dramatically in- and IQ-EX). Speedup numbers are shown relative to the 6
creases the loop recovery time. Our results show that it per-cycle case.
forms significantly worse than reissue. Hence, it was not  We use the Spec95 benchmark suite in our analysis. For
considered further. single threaded runs, we skip from 2 to 4 billion instruc-

tions, warm up the simulator for 1 to 2 million instructions,

IQ Pressure Our base architecture reissues instructions and simulate each benchmark from 90 to 200 million in-
on a load miss. Unlike the 21264, we do not reissue all in- structions. The multi-threaded benchmarks are simulated
structions issued within the load shadow; we only reissue for 100 million instructions total for both threads. Each pro-
instructions that are within the load dependency tree. Thegram in the multi-threaded run skips the same number of
number of instructions reissued is equal to the useless workinstructions as in the single-threaded run. All benchmarks
performed due to load mis-speculations. For each reissuedire compiled with the official Compaq Alpha Spec95 flags.
instruction, there was a previous issue of the same instruc- The greater the pipeline length, the longer the loop delay
tion that was killed. for loops which traverse the pipeline between decode and

Although load speculation with reissue performs better execute. Figure 4 shows that increasing the pipeline length
than no speculation or speculation with re-fetch, it puts ad- by 12 cycles results in a performance loss of up to 24%
ditional pressure on the IQ. The reissue mechanism requiresiue to mis-speculation on loose loops. The two primary
the IQ to retain all issued instructions until it is notified by loops in this region are the branch resolution loop and the
the execution stage that the instructions do not have to reisdoad resolution loop. All benchmarks show a reduction in
sue. The occupancy time of instructions in the 1Q is there- performance as the pipeline lengthens.
fore a function of the 1Q-EX latency. The longer the in-
structions reside in the 1Q after issuing, the less space thert Varying Pipeline Latency (128 Entry 1Q)
is for new, unissued instructions. In our base model, the
loop delay is 8 cycles (loop length of 5 cycles and feedback
delay of 3 cycles). Thus, it takes 8 cycles from the time an
instruction issues to the time the 1Q is notified by the exe-
cution stage that the instruction does not have to reissue ani
can be removed. Once an instruction is tagged for eviction
from the 1Q, extra cycles are needed to clear the entry. If the
machine is operating near full capacity of 8 IPC, more than
half the entries in the IQ may be already issued instructions
in the load dependency tree waiting for the load to resolve.
The instruction window effectively shrinks, resulting in less Figure 4. Performance for varying pipeline lengths.

exposed instruction level parallelism (ILP), and potentially, ~ Pipeline length is varied betweelecodeandexecute Per-
a reduction in useful work. formance is shown relative to the case wéiltycles be-
tween decode and execute. Numbers less than 100% indi-
cate a performance loss. Note that the Y-axis begins at 70%.
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3 Impact of Loop Length

As pipeline lengths increase, so do the loop lengths for  Integer programs are generally impacted by mis-
many loose loops, resulting in more useless work done perspeculations on the branch resolution lo@empress, gcc
mis-speculation. In this section we quantitatively look at andgo perform a significant amount of useless work due
the impact longer pipelines have on performance. Further-to branch mis-predictions. Furthermore, they are also bur-
more, we also investigate various pipeline configurations dened by load misses, resulting in additional performance



degradation. m88ksim however, does not have as many 3.2 Not All Pipelines are Created Equal

branches or branch mis-predictions as the other integer

benchmarks, resulting in less sensitivity to the branch reso- Figure 5 shows the results from varying the pipeline con-

lution loop delay. figuration while retaining the same overall pipeline length.

The syntaxX_ Y represents the latency from DEC-I®&)

and 1Q-EX (¥). Note thatX + Y is constant. The speedup
hown is relative to the 39 configuration, with 3 cycles

We expected floating point programs to be sensitive to
the load resolution loop primarily due to a large number of

load operations and a high load miss rate. Some program rom DEC-IQ and 9 cycles from 1Q-EX. The results indi-

behave as expected, suchtag3d andswim Both pro- S .
cate that not all pipelines are created equal, and reducing the

grams have a reasonable number of loads and load misseI ) ¢ IO-EX i ; b 10 15%
in the data cache, indicating many mis-speculation events. 21eNcy from Q-EX improves per ormance by up to O
even when the overall length of the pipeline remains the

turb3dalso suffers from a fair number of data TLB misses,
where recovery from the beginning of the pipeline impacts same.

performance, not just the latency of the 1Q-EX portion. Fixed Total Latency (128 1Q)

. 120%
Two programshydroandmgrid, also have a large num- 115%

ber of loads and a high data cache miss rate, but are no _ ;..
particularly sensitive to pipeline length. Unlikerb3dand 2 105% 1
swim both these programs also suffer from misses in the 2,4,
second level cache. Therefore, the performance of these g5, |
programs is dominated by the long main memory access la-  gqq |
tency. The loop delay of the load loop, even with a long

03 _9MW5 707 5M9 3
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pipeline, is insignificant in comparison to the main memory & ° S S S @Q@,& d@&Q§§
access latency. & o e

apsi has a reasonably high data cache miss rate; how-
ever, the amount of useless work performed due to load ) :

. . - - . The first number in the legend represents the cycles from
mis-speculations, as indicated by the number of instructions DEC-IQ, while the 2nd number represents the cycles from
reissued, is small. The relatively low IPCabsi combined IQ-EX. All data is shown as speedup relative to to the 3
with the small amount of useless work performed per mis-  case. Note the y-axis begins at 90%.
speculation, suggests ttaisihas long, narrow dependency
chains restricting ILP. Therefore, the performancepsi

is determined more by program characteristics than by the | j55e loops determine how sensitive the processor is to

load resolution loop delay. various pipeline configurations. Loose loops in our base
processor either traverse the entire decode to execution por-

su2cordoes not suffer from many branch or load mis- i f the pipeli b h lution | i
speculations. However, analysis shows that there is a mea: 0N Of the pipeline (branch resolution loop), or traverse

surable amount of useless work resulting from branch mis-1USt the I.Q'EX portion (I_oa_d resolution loop). _There are no
predictions, as noted by the number of instructions killed !oop; Wh.'Ch existonly within the DEC'IQ.SEC“O”' By mov-
due to branch predictions. Therefore, although the number"Y p|pellne stages from the |Q-EX portion tp the [?E_C"Q
of branch mis-speculations is small, the resolution latency portion, we redL_Jce th_e Iength_ O.f loops cqntamed W'th.m the
is large due to queuing delays in the pipeline. Increasing theIQ'EX region without j.eopardlzmg loops in other sgctlons.
pipeline length only exacerbates the situation since the loop 1€ bénchmarks with the greatest performance improve-

length defines the lower bound for resolution latency. mentin Figure 5gwim, turb3dandapsi-swin) are a subset
of the programs that showed the most sensitivity to increas-

Pipeline length impacts multi-threaded performance in ing pipeline lengths in Figure 4. The rest of the benchmarks
the same manner as it impacts the component programsare either sensitive to the branch resolution loop length,
However, the degree of impact is generally less than thatwhich does not change in these simulatiocmnipress, gcc,
of the worst performing component program. For example, go, m88ksim, su2cor, m88ksim-compraas go-su2coy,
go-su2corhas a smaller performance loss thgmalone. or are impacted by other benchmark characteristics such
In multi-threaded execution, the availability of multiple as low ILP @ps) or misses to main memonhydro and
threads prevents the pipeline from issuing deeply down amgrid).
speculative path [16]. Furthermore, when a mis-speculation Reducing the 1Q-EX latency, even at the cost of increas-
occurs on one thread, the other thread(s) can continue doingng DEC-IQ latency, improves performance. The access to
useful work while the mis-speculated thread recovers. a large register file dictates much of this latency. Farkas, et.

Figure 5. Performance for a fixed overall pipeline length.



al. [11] also note that large register files might limit the per- operand is available, and when the second operand is avail-
formance benefit of wide, super-scalar machines. In the restable forturb3d The time is zero for instructions with only

of the paper, we present thestributed register algorithm one operand. 25% of all instructions have 25 cycles or more
(DRA). It reduces the IQ-EX latency and the latency of the between the availability of operands. In fact, even the 9
overall pipeline by moving the time consuming register file cycle forwarding buffer in our base architecture only cov-
access out of the IQ-EX path and placing it in the DEC-1Q ers about 50% of all instructions. Other benchmarks show
path. This primarily reduces the loop delay of the load res- similar characteristics. A register cache may need to be of
olution loop, resulting in less capacity pressure on the 1Q comparable size to a register file to hold all the relevant in-
and less useless work done due to load mis-speculations. formation for the instructions in flight.

4 Distributed Register Algorithm Cycles Between Operand Availability

100.0%

c
o
Much of the IQ-EX latency is determined by the registe £ £ 80.0% e
file access time of 3 cycles. Therefore, the obvious methc & ¢ % /
for reducing the IQ-EX latency is to move the register file £ 5 40.0% /
access out of this path and replace it with a register cact g 20.0%
Register caches are small, generally on the order of 16 3 o.o% : : : : :
32 entries. Given their size, they can be placed close to tl 0 25 50 75 100 125 150
functional units. The size and placement reduce register ¢ Cycles

cess delays and transfer latencies, allowing a register access
latency of one cycle in the general case. This effectively
shrinks the 1Q-EX latency from 5 cycles to 3 cycles, result-
ing in a shorter load resolution loop delay and less wasted
work on a load miss.

A register cache contains a subset of all registers; hence
a register cache, unlike a register file, can suffer from  To increase the capacity of the register cache without in-
operand misses. The data hazard resulting from not know-creasing the access latency, the DRA takes advantage of
ing whether the operand will hit or miss in the register the clustered architecture of the base model and places a
cache introduces a new loose loop to the pipeline, calledsmall register cache callecthustered register cach@€RC)
the operand resolution loop The operand resolution loop  within each functional unit cluster. There are eight CRCs,
has a high frequency of loop occurrence — every instruc- each with 16 entries. This effectively increases the size of
tion that has input operands is a loop generating instruction.the register cache to 128 entries.
Since the number of mis-speculation events is the product To more effectively manage the entries in the CRC, the
of the frequency of loop occurrence and the mis-speculationDRA does one of two things. First, each CRC only stores
rate, even a small operand miss rate is detrimental to perthose operands required by instructions assigned to that
formance. If the number of register cache misses is highfunctional unit cluster. An instruction is assigned a func-
enough, then the amount of work wasted due to registertional unit cluster when it is decoded. Therefore, the DRA
cache misses can offset the savings from a reduced 1Q-EXmay direct the operands for this instruction to a specific
latency. cluster. Note that the same operand may be stored in multi-

Register caches must be small to reduce access latencyle CRCs if it is consumed by instructions assigned to dif-
Given that they are fully associative structures, they needferent clusters.
to be on the order of 16 to 32 entries to achieve a single Second, each CRC only stores operands for a consum-
cycle access latency. A small register cache results in aing instruction that is unlikely to get the operand through
high miss rate for our base architecture because determinether means. To achieve this, we note that one can clas-
ing which values to insert into the cache is a difficult task. sify operands by how a consuming instruction gets those
Register values are frequently used just once [6], so manyoperands. The three classes amompleted operands
of the entries in the register cache may never be accessed ifimely operandsandcachedoperands.
they are forwarded to the consumer through the forwarding Completed operands are already in the register file when
buffer. Also, the number of cycles between the availability a consuming instruction is decoded and can be read at any
of operands for an instruction can be quite large in a wide time. These operands tend to be associated with global reg-
issue, out-of-order machine. isters such as the global pointer and stack pointer. How-

Figure 6 shows the cumulative distribution function for ever, if a register is alive long enough, it can be a completed
the time (in cycles) between when an instruction’s first operand for many instructions. The DRA reads completed

Figure 6. Cumulative distribution function of the time
in cycles between when an instruction’s first operand and
second operand is available. Data is showrtdiob3d



operands from the register file in the DEC-1Q path — after ~ The hardware for this scheme is shown in Figure 7, and

the register is renamed and before the instruction is insertecconsists of aegister pre-read filtering tabléRPFT) com-

into the 1Q. When the instruction enters the 1Q, the operandbined with onecluster register cachéCRC) and onénser-

is inserted into the payload for retrieval when the instruc- tion tablefor each functional-unit cluster. This is in addition

tion issues. Accessing the register file out of the issue pathto structures that already exist in our base model, specif-

was proposed by Tomasulo and others [13]. ically one forwarding buffer per cluster, and a monolithic
Timely operands are those where the consumer of theregister file.

operand is issued not long after the producer of the operand

has issued. The forwarding buffer already inherent t0 Olggcheq

. . Instr Issued CRCs <

base model handles this category of operands by storing Instr > Instr
values computed in the last 9 cycles. — | Rename 1Q »  FUs

Cached operands are those that are inserted into the PreRead/F 1
CRCs. To reduce the capacity pressure on the register Misses | | pegister Miss Insert
cache, only those operands who have consuming instruc 2;3’35:} Re,?i'lzter Srcops | esults
tions that neither pre-read the operand from the register file Eﬁgzﬁ; 1 ) Result Register ;'\',tvén CRGs e
nor read it from the forwarding buffer are placed in the reg- | Pre-Reads Buffer
ister cache. This can happen when an instruction’s operand <
is not in the register file for pre-read, nor does the instruc- RPFT ‘ ‘_
tion issue soon enough after its producer to get the value Failed Pre-Reads | "}Zﬁéﬂn

from the forwarding buffer.

Note that the classification of an operand is determined
by where the consuming instruction got the operand. Thus, Figure 7. Distributed register algorithm (DRA) block di-
an operand with many consumers could be a completed, agram.
timely, and cached operand for each different instruction.

5 DRA Implementation 5.1 Cluster Register Cache (CRC)

In our proposed architecture, operands are delivered to  There are 8 functional unit clusters in our base architec-
the functional units in one of 4 ways. ture, and there is a CRC associated with each cluster. Each
CRC is placed close to it's functional unit cluster to reduce
e Pre-read from the register file: If the operand(s) exists wire delays. Our studies show that a 16 entry CRC is more
in the register file at decode time, (i.e. a completed than adequate to meet our needs. Since only one instruc-
operand), it is pre-read from the register file and sent tion per cycle executes in a functional unit cluster, only 2
to the 1Q. read ports are required per CRC. However, 8 write ports are
needed to handle the maximum number of register values
e Read from the forwarding logic: The base pipeline computed per cycle. The CRC, similar to the forwarding
has 9 stages of forwarding logic to handle requests for buffer, uses a fully associative lookup requiring the use of a
timely operands that were produced in the previous 9 CAM structure.
cycles. The CRCs use a simple FIFO mechanism to manage in-
sertion and removal of entries. A more complex mecha-
e Read from the CRC: CRC lookup happens in parallel nism would be cumbersome and unnecessary because most
with the lookup in the forwarding buffer. There is a 16 register values are only read once before being overwrit-
entry CRC in each of the eight functional unit clusters ten [6]. We modeled a few mechanisms that had almost
that provides cached operands. perfect knowledge of which values were needed, but the
performance improvement over our simple FIFO scheme
o Read from register file on an operand miss: If, during was negligible. Furthermore, register cache capacity pres-
execution, the operand is not available through any of sure is reduced by filtering the operands that get inserted in
the means above, then the operand misses. A miss sigthe CRC.
nal is sent to the register file. The operand is read and Register cache insertions are filtered in one of two ways.
delivered to the IQ payload where it waits for the in- First, only the CRC associated with the functional unit clus-
struction to reissue. This is the recovery path resulting ter an instruction will execute on receives the input register
from a mis-speculation on the operand resolution loop. operands for that instruction. Our base model uses clus-



tered issuing logic similar to the Alpha 21264, and instruc- of outstanding consumers of an operand that will execute
tions are slotted to a particular functional unit cluster (or on the functional unit cluster and that have not yet read the
arbiter according to the 21264 nomenclature) at the time operand. The number of entries in an insertion table is dic-
of decode. Therefore, it's known at decode which source tated by the number of physical registers. Each entry is 2
operands are required in each functional unit cluster. Sec-bits wide. A non-zero entry value indicates that the operand
ond, only those operands that have consumers that have nds needed by instructions assigned to the insertion table’s
read the operand when it leaves the forwarding buffer getfunctional unit cluster. An entry is incremented when the
inserted into the CRC’s. This means that if all consumers of insertion table receives the source register number from the
an operand either pre-read it from the register file or receiveRPFT, and it is decremented every time the associated reg-
the value from the forwarding buffer, then the value is not ister is read from the forwarding buffer.
stored in any CRCs. With 2 bits per entry, the insertion table entries can indi-
The base architecture already contains the logic to detercate a maximum of 3 consumers for each operand per clus-
mine the functional unit cluster an instruction will execute ter. However, most operands have few consumers, so 2 bits
on. However, the second filtering mechanism, determiningis more than adequate.
whether the operand is procured from the register file or the  When an operand is written back (from the forwarding
forwarding buffer, requires additional hardware. Two new buffer) to the register file, a copy is also sent to each of
structures, theegister pre-read filtering table (RPFENd the insertion tables. If the insertion table entry associated

theinsertion table address these issues. with the operand is zero, it is highly likely that there are not
any consumers of this operand in-flight and the value is dis-
5.2 Register Pre-read Filtering Table (RPFT) carded. For all functional unit clusters where the insertion

table entry for an operand is non-zero, there are consumers

The RPFT stores information about the validity of the in flight. The operand is written into the CRCs for those
registers. It has one bit associated with each physical regisfunctional units and the insertion table entries are cleared.
ter. When the bit is set, it indicates that the register is valid Note that operands can reside in multiple functional unit
in the register file. The operand stored in that register is acClusters as Iong as there are outstanding consumers for that
completed operand and can be pre-read prior to issue. Th@perand that will execute on each of those clusters.
bit is set when an operand is written back to the register file.

If the bit is clear, the producer of that operand is in flight, 5.4 Misses
and the operand is not in the register file. The bit is cleared
when the renamer notifies the RPFT that it has allocated a Mis-speculations occur on the operand resolution loop

physical register to be written by an instruction. because the DRA, as implemented, does not guarantee a
After the register renaming stage, the physical registergccessful pre-read or a hit in the forwarding buffer or
numbers for an instruction’s source operands are sent to thgsRcs. Misses happen for one of two reasons. Operands
RPFT. If the bit for a register is set, then the value in the may get dropped from the CRCs before being read due
register file is pre-read and forwarded to the payload portiony capacity pressure and the FIFO replacement policy.
of the 1Q. If the bit is clear, the source register number for Operands may also not get inserted into the CRCs because
the input operand is sent to the insertion table associatedye satyrate at 3 consumers per operand. This occurs when
with the functional unit cluster the instruction is slotted to. 5, operand has more than 3 consumers slotted to the same
The number of 1-bit entries in the RPFT equals the num- fynctional unit. For each operand hit in the forwarding
ber of physical registers in the machine. The structure re-pyffer, the count for that operand in the insertion tables gets
quires 16 read ports, and 8 write ports to handle 8-wide gecremented by one. If there are at least 3 hits in the for-
issue. Weiss and Smith used a similar algorithm to work warding buffer on a single operand, then the count in the
around stalling instructions when they saw a true depen-fynctional unit's insertion table goes to zero and indicates
dency [13]. In their algorithm, a bit set in the scoreboard ng consumers are in-flight that need this operand. Thus, the
indicated a true dependency on an un-computed result, an%perand does not get inserted in the CRC, and any subse-

the dependent instruction was placed in the reservation stagyent consumers executing on the same functional unit take
tions along with the register identifiers for the un-computed an gperand miss.

operands. If one (or both) of an instruction’s operands miss in the

CRC or forwarding buffer, an invalid input is returned in
5.3 Insertion Table place of the real value, and the instruction produces an in-
valid operand. When this happens, signals are sent to both
There is an insertion table associated with each CRCthe register file and the 1Q. The correct input operand value
and functional unit cluster. It keeps count of the number is read from the register file and sent to the 1Q, and the 1Q



readies the instruction for reissue. The instruction is readythat accessing the register file and driving data to the func-
to reissue as soon as the operand reaches the 1Q payload. tional units takes 3 cycles in the base machine, we should
addition to reissuing the instruction with a missing operand, be able to drive data to the payload in the same time. Hence,
all instructions in the dependency tree that have already is-the DEC-IQ portion remains 5 cycles.

sued will also signal the need to reissue as soon as they read We also ran experiments with longer register file access
the invalid operand resulting from a miss in the CRC. The latencies of 5 and 7 cycles to determine the impact the DRA
logic to manage mis-speculations on the operand resolutiorhas on potential future designs. In the case of a 5 cycle ac-
loop is similar to the logic that manages mis-speculations cess latency, the base architecture’s IQ-EX latency is 7 cy-
on the load resolution loop. The only additional hardware cles. The DRA implementation removes the 5 cycle register
required is the wiring to stall the front end of the pipeline file access latency, but needs 1 of these cycles to access the
while the missing operands are read from the register file forwarding buffer and CRCs. Thus, it shrinks the 1Q-EX

and forwarded to the instruction payload. stage to 3 cycles. The DEC-IQ latency increases by 2 to a
total of 7 cycles. This is because the register renaming is
5.5 Stale Register Values complete after the 2nd cycle of DEC-IQ, and it still takes

5 cycles to access the register file and deliver the operands
to the 1Q. For the 7 cycle register read latency, the IQ-EX

The CRC associated with each functional unit is imple- : .
: : stage remains at 3 cycles and the DEC-1Q stage increases to
mented as a simple FIFO structure to avoid the problems9 cycles

associated with managing a complex insertion and replace-
ment algorithm. As a result, stale data needs to be ac-
counted for in the CRC in order to guarantee correctness. 120%
Although rare, a CRC could have stale operands if there 115% ——
is not much pressure on the structure. A physical register 5 110% -
may be reallocated while the old register value resides in g 105% |
the CRC. 2.100% 1

This case is handled when the register is reallocated. The %% ]
destination register numbers are sent to the RPFT, and thes 90% 1
are also forwarded to all CRCs. If the CRC contains an >~

DRA vs. Base Case

ODRA:5_3vs. Base:5_5
BDRA:7_3vs. Base:5_7
ODRA:9_3 vs. Base:5_9

. . O QO > o O $ S S .
operand for a reallocated register, then that entry is inval- <,oé‘Q § & & NS 6\;159 ,ﬁ‘& \0@“’ o@Q% & \P,\&“Q
idated. Note that there are many cycles between when the IS

CRC receives the reallocated registers and when the register
is written with a new value. Therefore, we have enough time
to invalidate the entries in the CRC. An alternate method
would time out the operands in each CRC after a certain
period of time.

Figure 8. Performance improvements with the DRA
relative to the base architecture. TBRA:D1.D2 vs.
Base:B1B2 syntax shows the pipeline latencies for each
configuration. D1 and D2 are the latencies from DEC-1Q
and 1Q-EX, respectively, for the DRA. B1 and B2 represent
6 Results the same latencies for the base configuration. Both config-
urations have the same register file access latency. Note the
graph starts at 85%.

The basic premise behind the DRA is that we remove
the expensive register file access from the 1Q-EX stage and
overlap it with part of the DEC-IQ stage. By doing so, We modeled the architecture described using the
we remove latency from a critical portion of the pipeline ASIM [4] simulation infrastructure with a very detailed, cy-
and possibly increase the latency in other portions of thecle level, execution driven processor model. ASIM forces
pipeline. consideration of logic delays by mimicking hardware re-

In our base processor model, moving the register file ac-strictions within the processor model. This makes it very
cess reduces the 1Q-EX latency from 5 to 3 cycles while difficult to model instantaneous, global knowledge over the
the DEC-IQ latency remains the same. Register file lookup entire model. In hardware, for example, there is a non-unit
takes 3 of the 5 1Q-EX cycles. However, one of these cy- delay between the 1Q and the functional units. Therefore,
cles is still required for accessing the forwarding buffer and there is a lag between the time events occur in the functional
the CRCs, resulting in a 3 cycle IQ-EX latency. In the DEC- units and the time the 1Q makes decisions based upon these
IQ portion, the physical register numbers are available at theevents. ASIM enforces propagation delay restrictions in the
end of the second cycle, providing 3 cycles for accessing thesimulated model, and does not allow us to make decisions
register file and sending the data to the IQ payload. Givenbased upon global knowledge that may lead to inaccuracies
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in our simulations. under 1%, and do not suffer a performance impact from
Figure 8 shows the results using the DRA for the three operand resolution loop mis-speculations. However, even

different register access latencies. Performance is shown ag small miss rate of 1.5% can have a substantial impact on

speedup of the DRA implementation relative to a non-DRA performance, aapsishows. In this case, the work wasted

implementation. For example, the first b&RA:5_3 vs due to mis-speculations on the operand resolution loop out-

Base:55, shows the relative speedup of a DRA implemen- weighs any benefit resulting from a shorter pipeline.

tation with a 5 cycle DEC-IQ latency and a 3 cycle IQ-EX There are two reasons wiapsisuffers a 10%-14% per-

latency relative to a base pipeline with no DRA and a 5 formance loss. First, there is the relatively high miss rate of

cycle latency for both DEC-1Q and 1Q-EX. Both configura- 1.5%. This, combined with a high frequency of loop occur-

tions have a 3 cycle register file access latency. The secondence, results in a large number of reissued instructions and

and third bar in each cluster shows similar information for much wasted work. Secondpsiis not particularly sensi-

a5 and 7 cycle register file access latency, respectively.  tive to pipeline lengths as shown in Figure 4. A 12 cycle
With the exception ofipsiandapsi-swim performance  increase in pipeline length only degraded performance by

improves with a DRA for all configurations. We see an im- 9%. Therefore we gain little by shortening the pipeline, and

provement of up to 4%, 9% and 15% for register file ac- suffer the penalty of high operand miss rates and instruction

cess latencies of 3, 5, and 7 cycles, respectively. Perfor-reissue. The combination of the two situations contributes

mance improves not only because we shift the cycles fromto the performance loss apsi

IQ-EX to DEC-1Q, but because we also shorten the pipeline

by 2 cycles in each case. Those programs that are the most

sensitive to pipeline lengthsgmpress, m8gksim-comprpss  /  Related Work

and/or 1Q-EX latenciessfvim, turb3d benefit the most.

Hierarchical register files are not a new idea. The Cray-

E Operand Location (for 7_3 DRA) 1 had two sets of two-level register files. More recently,

o 100% O Forward Buffer @ PRC [ Pre-Read M Miss Zalamea et. al. explored two-level hierarchical register file

g 90% designs[17]. However, in both cases, compiler support was
2 382; T required to explicitly move values between different levels

S 60% of the register file.

g Cruz et. al. proposed a hierarchical register file design
£ . . ;

o S 0L S LS DS that do_es nqt require c_ompHer support [6]. They use a sin-
e ¢ égb“' DN N <& S8 gle register file with a highly ported upper-level portion that

& § & acts as a register cache, and a lightly ported lower-level that
acts as a register file. The design proposed by Cruz has a
number of shortcomings for our architecture. First of all,
they use mechanisms to manage the entries in their regis-
ter cache that require current information from the instruc-

Figure 9. Hit and miss rates for operand values. Hits are
further segmented into hits from register pre-read, hisnfr
the forwarding buffer, and hits from the DRA. Numbers are

shown for the 73 DRA case, i.e., 7 cycles from DEIT, tion scheduling unit. However, given the latencies in our
3 cycles from IQEX, and a 5 cycle register file access la- pipeline, it is impossible to gather this knowledge and act
tency. Note the graph starts at 40%. on it in a timely manner. Another problem with the de-

sign is the non-deterministic delay for instruction execution
that depends on whether the operands are attained from the
The reason performance degrades is because of misregister cache or register file. Due to the non-deterministic

speculations on the operand resolution loop. Not only will delay, the dependents of an instruction cannot be scheduled
the instruction that suffered an operand miss reissue, but allwith certainty. If an instruction’s dependents are issued with
of the instructions in the dependency tree that have issuedhe assumption that the instruction will “hit” in the register
will also reissue. Figure 9 shows that performance is very cache, then the dependent instructions must stall if the in-
sensitive to operand miss rate. The figure shows the hit andstruction ends up accessing the slower register file. Stalling
miss rates for register operand values. Hits are further segdinstructions which have been issued entails complex con-
mented into hits in the register file during pre-reading, hits trol which can add to the critical path of the processor [9].
in the forwarding buffer, and hits in the CRCs. On average, Finally, the lower-level register file design has fewer ports
more than half the operands are read from the forwardingthan the number of functional units. Hence, there is no
buffer. The remaining operand reads are distributed equallymechanism to handle the case where all instructions issued
between being pre-read from the register file, and read frommiss in the register cache. Even though this is an unlikely
the CRCs. Most benchmarks have an operand miss rate welevent, it must be accounted for.
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8 Summary and Conclusions

In this paper, we explored micro-architectural loops re-
sulting from hazards in the pipeline. In particular, we fo-
cused on a subset of micro-architectural loops, called loose 5
loops, that impact processor performance by forcing the
pipeline to stall or speculate until the loop resolves. We
showed that the performance impact of loose loops is re-
lated to the pipeline length and configuration. In particular,

(3]

(4]

(6]

performance is especially sensitive to the length of the issue

to execute section of the pipeline due to the load resolution

loop. Reducing the latency of issue to execute improves per-
formance even as the overall length of the pipeline remains [7]

the same.

Based on our analysis, we proposed the the DRA as a 8]

way of reducing the issue to execute latency. The DRA
moves the time consuming register file access out of the is-
sue to execute path and replaces it with the clustered register
cache (CRC). Using a very detailed architectural simulator,
we showed performance improvements of up to 4% to 15%,

depending on the pipeline configuration, with the DRA.

Much of our future work focuses on improving the de-
sign of the DRA. For example, retaining pre-read operands
in the instruction payload requires a large amount of hard-
ware. Therefore, a more efficient design might be to for-

(9]

ward the pre-read values to each cluster to be held in an-
other register cache close to the functional units. In addi-[10]

tion, we'd like to investigate a more efficient method of in-
validating stale entries in the CRCs. Also, further analysis

of benchmarks likapsineeds to be done to determine how [11]

we can reduce or eliminate the performance loss.
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