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ABSTRACT 
lnterconnection networks usually consist of a fabric of 

interconnected routers, which receive packets arriving at their 
input ports and forward them to appropriate output ports. 
Unfortunately, network packets moving through these routers 
are often delayed due to conflicting demand for resources, such 
as output ports or buffer space. Hence, routers typically 
employ arbiters that resolve conflicting resource demands to 
maximize the number of matches between packets waiting at 
input ports and free output ports. Efficient design and imple- 
mentation of the algorithm running on these arbiters is critical 
to maximize network performance. 

This paper proposes a new arbitration algorithm called 
SPAA (Simple Pipelined Arbitration Algorithm), which is 
implemented in the Alpha 21364 processor's on-chip router 
pipeline. Simulation results show that SPAA significantly 
outperforms two earlier well-known arbitration algorithms: 
PIM (Parallel Iterative Matching) and WFA (Wave-Front 
Arbiter) implemented in the SGI Spider switch. SPAA outper- 
forms PIM and WFA because SPAA exhibits matching 
capabilities similar to PIM and WFA under realistic conditions 
when many output ports are busy, incurs fewer clock cycles to 
perform the arbitration, and can be pipelined effectively. 
Additionally, we propose a new prioritization policy called the 
Rotary Rule, which prevents the network's adverse perform- 
ance degradation from saturation at high network loads by 
prioritizing packets already in the network over new packets 
generated by caches or memory. 

1. INTRODUCTION 
Cache-coherent, shared-memory multiprocessors with 16 or 

more processors have become common server machines. In 
2001 such machines generated a total revenue of  $9 billion, 
which is roughly 16% of the world-wide server revenue [6]. 
This market segment's revenue tripled in the last four years 
making it the fastest growing segment of the entire server 
market. Major vendors, such as IBM [8][37], Hewlett-Packard 
[19][17][26], SGI [33], and Sun Microsystems [6] offer such 
shared-memory multiprocessors, which scale up to anywhere 
between 24 and 512 processors. 

High performance interconnection networks are critical to 
the success of large-scale shared-memory multiprocessors. Such 
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Figure 1. A router with 8 input ports and 7 output ports, like the 
Alpha 21364 router. The arbiter controls how and which packets 
are forwarded from the input to the output ports. 

networks allow a large number of processors and memory 
modules to communicate with one another using a cache 
coherence protocol. In such systems, a processor's cache miss 
to a remote memory module (or another processor's cache) and 
consequent miss response are encapsulated in network packets 
and delivered to the appropriate processors or memories. The 
performance of many parallel applications, such as database 
servers [29], depends on how rapidly and how many of  these 
miss requests and responses can be processed by the system. 
Consequently, it is extremely critical for networks to deliver 
packets with low latency and high bandwidth. 

An interconnection network usually consists of a fabric of  
small interconnected routers, which receive packets arriving at 
their input ports and forward them to appropriate output ports. 
Unfortunately, packets moving through such routers are often 
delayed due to conflicting demand for resources, such as output 
ports or buffer space. Hence, routers include arbiters to resolve 
conflicting resource demands (Figure 1). The presence of input 
buffers in a router usually divides up the arbitration process into 
two steps: first an input port picks one or more packets from 
those waiting in its buffers, and then an output port picks a 
packet among the packets nominated to it by one or more input 
ports. By definition only one packet can be delivered through 
an output port. 

This paper examines several arbitration algorithm choices 
for the on-chip router in the Alpha 21364 processor [3], which 
runs at 1.2 GI-Iz and uses 152 million transistors to integrate on 
the same chip an aggressive dynamically-scheduled processor, 
1.75 megabytes of second-level cache, two Rambus Direct 
RDRam TM memory controllers, and an interconnecfion network 
router. Efficient design and implementation of these arbiters is 
critical to maximize network throughput, as illustrated by 
Figure 2. Typically, arbitration algorithms try to maximize the 
number of matches between input and output ports to provide 
high local routing throughput. A locally maximal match in a 
router does not necessarily guarantee globally optimal network 
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Figure 2. An illustration of the challenges of an arbitration 
algorithm for the router in Figure 1. The first column lists the 
input ports. Column 2 - 4 list the output port destinations of the 
packets waiting at that input port. Column 2 contains the oldest 
packets to arrive at the specific input port, while column 4 lists the 
corresponding youngest packets. An arbitration algorithm (lets 
call it OPF) that picks the oldest packet from each input port will 
be sub-optimal because output port 3 can deliver only one packet. 
Thus, OPF will result in arbitration collisions at output port 3. In 
contrast, an arbitration algorithm that chooses the shaded packets 
will have the maximum throughput at this router in the current 
arbitration cycle. 

performance. Nevertheless, in our experience, a locally 
maximal match has the first order impact on overall network 
performance. 

The high-frequency implementation of the Alpha 21364 
router made the already difficult task of arbitration even harder. 
The entire 21364 chip, including the router, runs at 1.2 GHz. In 
contrast, earlier generations of such touters ran at much slower 
speeds. For example, the Cray T3E router runs at 75 MHz [31], 
the SGI Spider runs at 100 MHz [16], while IBM's third 
generation Vulcan switch runs at 125 MHz [35]. 

For efficient implementation at 1.2 GHz, we had to pipeline 
the 21364 router. Unfortunately, in the 0.18 micron CMOS 
process that the 21364 was designed for, only up to 12-13 logic 
levels could be incorporated in the 0.83 nanoseconds cycle 
time. This forced us to pipeline the arbitration algorithm itself, 
unlike the SGI switch in which the algorithm was implemented 
within one 10-nanosecond clock cycle. Unfortunately, each 
additional cycle added to the 21364 router's arbitration pipeline 
degraded the network throughput by roughly 5% under heavy 
load 1. Hence, any additional cycles incurred by a more 
complex arbitration algorithm must gain back the performance 
degradation from the added cycles in the pipeline. 

This paper shows that SPAA (Simple Pipelined Arbitration 
Algorithm)--implemented in the 21364 router--significantly 
outperforms two well-known arbitration algorithms--Parallel 
Iterative Matching (PIM) [2] and Wavefront Arbitration (WFA) 
[36], which is implemented in the SGI Spider switch. For 
completeness, we also examine a maximal cardinality matching 
algorithm (MCM), which maximizes the number of matches 
between packets waiting at the input ports and free output ports. 

The number of matches found by PIM and WFA between 
packets waiting at input ports and free output ports is close to 
that of MCM's, which makes both PIM and WFA very 
powerful arbitration algorithms. PIM iterates between the input 
and output ports to find a suitable match of packets, whereas 
WFA makes a pass through a matrix of input and output ports 
to find a suitable match. 

The key to PIM and WFA's high matching capabilities lies 
in their high level of interaction between input and output ports. 

l This measurement was done using SPAA, which is explained later. 

When multiple input ports nominate packets to the same output 
port, na'fve algorithms, such as OPF in Figure 2, can result in 
arbitration "collisions" and consequent poor performance. In 
contrast, both PIM and WFA's  input and output port arbiters 
will interact to choose the appropriate match figr the specific 
arbitration cycle. Unfortunately, such high level of  interaction 
requires a higher number of cycles to implement them com- 
pared to what a simpler algorithm, such as SPAA, would need. 
Additionally, such interaction also makes it hard to pipeline 
these algorithms. 

SPAA is a much simpler algorithm compared to PIM and 
WFA and is more like the OPF algorithm in Figure 2. In 
SPAA, each input port chooses a packet in every cycle to 
nominate to an output port. However, an input port arbiter's 
choice is independent of most of the other input port arbiters. 
Similarly, an output port arbiter chooses a packet from the 
packets nominated to it by the input port arbiters. But, an 
output port arbiter's decision is independent of  tile other output 
port arbiters' decisions. Thus, SPAA minimizes interactions 
between the input and output ports. 

Clearly, because of its reduced interaction between input 
and output port arbiters, SPAA can result in arbitration 
collisions at the output port and, hence, fewer matches than 
what PIM or WFA would offer. Nevertheless, SPAA signifi- 
cantly outperforms both algorithms because of three reasons. 
First, with medium to heavy loads many output ports are busy 
and, hence, an arbitration algorithm need only find matches for 
a few free output ports. Thus, when our seven output ports are 
busy 50% of the time, SPAA's matching capabilities are similar 
to PIM and WFA's. The difference between P]ZM, WFA, and 
SPAA's matching capabilities is negligible when the output 
ports are busy 75% of the time. 

Second, SPAA minimizes its interaction between input and 
output ports, which lowers its matching capabilities, but makes 
it simpler, so that it can be implemented in three cycles in the 
21364 router. WFA would have incurred four cycles to 
implement. Similarly, one iteration of PIM takes, four cycles to 
implement. Multiple iterations of PIM would have incurred 
significantly more cycles and would have obviously performed 
poorly in our environment. Hence, we use only one iteration of 
PIM--which we call P IMl - - in  all our timing evaluations. 

Third, SPAA can be pipelined effectively be~cause it mini- 
mizes interactions between the input and output ports. PIM1 
requires an extra step of interaction between the output and 
input ports, whereas WFA requires interaction between the 
output ports themselves. These features prevent both PIM1 and 
WFA from being pipelined effectively. In our implementation 
both PIM1 and WFA take four cycles, but can start input port 
arbitration every three cycles, whereas SPAA takes three cycles 
and can initiate input port arbitration every cycle. 

Additionally, SPAA nominates a packet to only one output 
port, unlike PIM or WFA, which can nominate the same packet 
to multiple output ports. This has the added benefit that a 
packet can be speculatively read out from an input buffer as 
soon as it is scheduled for delivery by an input port arbiter (but 
before the output port arbitration is complete), much like the 
way direct-mapped caches allow processors to speculatively 
read out data before the address comparison completes [20]. 

Our simulation results show that SPAA significantly outper- 
forms both PIM1 and WFA. We also demonstrate that SPAA 
will continue to deliver higher throughput compared to PIM1 
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Figure 3. A 12-processor Alpha 21364 2D torus network. 

and WFA, if the router were scaled to have twice the pipeline 
length, greater input load, or support bigger networks than the 
21364 was designed for. 

In addition to SPAA, we propose a new pdontization policy 
called the Rotary Rule, which provides a significant boost in 
network performance by preventing the network's adverse 
performance degradation from saturation at high network loads. 
The Rotary Rule pfiontizes the movement of network packets 
already in the network over packets recently generated from the 
processor ports. We demonstrate the effectiveness of the 
Rotary Rule with WFA and SPAA. The Alpha 21364 router 
provides the Rotary Rule as an optional mode programmable at 
boot-time. We do not, however, expect most real applications 
running on a system composed of 21364 processors to create 
such heavy network load that would require us to turn on the 
Rotary Rule. 

The rest of the paper is organized as follows. We first de- 
scribe the 21364's base router architecture in Section 2. Section 
3 discusses PIM, WFA, SPAA, and the Rotary Rule, as well as 
related work. Section 4 discusses our evaluation methodology 
and Section 5 describes our results. Section 6 summarizes the 
paper and presents our conclusions. 

2. TIlE ALPHA 21364 ON-CHIP ROUTER 
Mukherjee, et al. [26] discusses details of the 21364 net- 

work and router architectures. Here we summarize the salient 
features of the network (Section 2.1) and the router pipeline 
(Section 2.2) relevant to this paper. 

2.1 21364 Network Architecture 
The Alpha 21364's on-chip router uses two million transis- 

tors to connect up to 128 processors in a two-dimensional torus 
network (Figure 3). Salient features of the network are: 

• Packets. The network supports seven classes of coherence 
packets for the directory-based cache-coherence protocol. 
These are requests (three flits), forwards (three flits), block 
response (18 or 19 flits), non-block response (two or three 
flits), write I/O (19 flits), read I/O (three flits), and special 
(one flit, excluding no-ops). Each flit is 39 bits--32 bits for 
data and 7 bits for ECC. A 19 flit packet, such as a block 
response, can carry a 64-byte cache block (3 flits for header 
and 16 flits for the cache block). Thus, when an input or an 
output port is scheduled to deliver a packet, the port can be 
busy for two, three, 18, or 19 cycles. An output port is ready 

FirstFlit RT i T ~NN I LA RE RG ~ X ECC 
Nop i Nop op WrQ W 

Second FEit 'Nop Nop INop .WrQl W R Q X EC~. 

(a) 

First Flit ~CC DW LA RE GA X ~CC 
/ Nop ~VrQ W RQ 
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t i 
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Figure 4. Two of the nine logical router pipelines in the 21364. 
(a) shows the router pipeline for a local input port (cache or 
memory controller) to an interprocessor output port (b) shows the 
router pipeline from an interprocessor (north, south, east, or west) 
input port to an interprocessor output port. The first flit goes 
through two pipelines: the scheduhng pipeline (upper pipeline) 
and data pipeline (lower pipeline). Second and subsequent flits 
follow the data pipeline. RT = Router Table Lookup, Nop = No 
operation, T = Transport (wire delay), DW = Decode and Write 
Entry Table, LA = Input Port Arbitration, RE = Read Entry Table 
and Transport, GA = Output Port Arbitration, W = Wait, WrQ = 
Write Input Queue, RQ = Read Input Queue, X = Crossbar, and 
ECC = Error Correction Code. This paper focuses on the LA, RE, 
and GA stages of the pipeline. 

for re-arbitration once all flits of a packet are delivered via the 
port. 

• Virtual Cut-Through Routing. The 21364 uses virtual cut- 
through routing in which flits of a packet proceed through 
multiple routers until the header flit gets blocked at a router. 
Then, all flits of the packet are buffered at the blocking router 
until the congestion clears. Subsequently, the packet is 
scheduled for delivery through the router to the next router 
and the same pattern repeats. To support virtual cut-through 
routing, the 21364's roUter provides buffer space for 316 
packets per input port [26]. Note that a packet is never 
dropped from the network in the absence of errors. 

• Adaptive Routing in the Minimal Rectangle. In the 21364, 
packets adaptively route within the minimum rectangle. 
Given two points in a torus (in this case, the current router 
and the destination processor), one can draw four rectangles 
that contain these two points as their diagonally opposite 
vertices. The minimum rectangle is the one with the minimum 
diagonal distance between the current router and the destina- 
tion. Thus, the adaptive routing algonthm has to pick one 
output port among a maximum of two output ports that a 
packet can route in. Packets that follow adaptive routing may 
not be delivered in order, but the coherence protocol in 21364 
is designed to handle out of order traffic. 

• Virtual Channels. The 21364 router uses virtual channels [9] 
to break deadlocks in the coherence protocol and the routing 
algorithms. It assigns a virtual channel group to each coher- 
ence packet class. By design, these virtual channel groups are 
ordered, such that a request packet can never block a block 
response packet. Each group (except the special class) 
contains three virtual channels: adaptive, VC0, and VC1. 
Packets adaptively route within the adaptive channel until 
they get blocked. 2 Blocked packets are then routed in the 

This is only true for non-I/O packets. Read and Write I/O packets only 
route in the deadlock-free channels to adhere to the Alpha 21364's I/O 
ordering rules. 
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Figure 5. The 21364 router's connection matrix. This figure 
represents the router's crossbar connections in a matrix format. 
"G-X" denotes output port arbiter for output port X. "L-X rpY" 
denotes input port arbiter for input port Xand read port Y. The 
shaded boxes represent no connection. 

deadlock-free channels, VC0 and VC1, which follow strict 
dimension-order routing. Duato [13] has shown that such a 
scheme breaks routing deadlocks in such networks. Because 
of virtual cut-through routing, however, packets can return 
from the deadlock-free channels to the adaptive channel. For 
performance reasons, the adaptive channels have the bulk of 
the packet buffers, whereas the VC0 and VC1 typically have 
one or two buffers. In the 21364 there is a total of 19 virtual 
channels (three for each of the six non-special coherence 
classes and one for the special class). 

• Ports. Each port is 39 bits wide to match the network's flit 
size. Each router has eight input ports and seven output ports. 
The input ports include four 2D torus ports (north, south, east, 
and west), one cache port (that sends cache miss requests, 
etc.), two memory controller ports (that sends responses to 
cache miss requests), and one I/O port. The buffers at each 
input port have two read ports to allow the arbitration algo- 
rithm greater choice in matching inputs to outputs. Like the 
input ports, the output ports are divided into four 2D torus 
ports (north, south, east, and west), two memory controller 
ports, and one I/O port. Inside the processor, the two memory 
controller ports are also fled to the internal cache and, hence, 
there is no separate explicit cache output port. 

2.2 21364 Router Pipeline 
The 21364's router has nine pipeline types based on the 

input and output ports. There are three types of  input and 
output ports: local (cache and memory controllers), interproces- 
sor (off-chip network), and I/O. Any type of input port can 
route packets to any type of output port, leading to nine types of 
pipeline. Figure 4 shows two such pipeline types. 

As Figure 4 shows, the router pipeline in the 21364 consists 
of several stages that perform router table lookup, decoding, 
arbitration, forwarding via the crossbar, and ECC calculations. 
A packet originating from the local port looks up its routing 
information from the router table and loads it up in its header. 
The decode stage decodes a packet's header information and 
writes the relevant information into an entry table, which 
contains the arbitration status of packets and is used in the 
subsequent arbitration pipeline stages. 

The 21364's arbitration pipeline, which is the focus of this 
paper, consists of three stages: LA (input port arbitration), RE 
(Read Entry Table and Transport), and GA (output port 
arbitration). 3 The input port arbitration stage finds packets 
from the input buffers and nominates one of them for output 
port arbitration. Each input buffer has two read ports and each 
read port has an input port arbiter associated with it. Thus, the 
21364 has a total of 16 input port arbiters. The input port 
arbiters perform several readiness tests, such as determining if 
the targeted output port is free, using the information in the 
entry table. 

The output port arbiters accept packet nominations from the 
input port arbiters and decide which packets to dispatch. Each 
output port has one arbiter, so the 21364 has a total of seven 
output port arbiters. Once an output port atbiter selects a 
packet for dispatch, it informs the input port arbiters of its 
decision, so that the input port arbiters can re-nominate the 
unselected packets in subsequent cycles. 

Figure 5 shows the crossbar connection between the input 
and output port arbiters. Although the connections form a 
crossbar between input and output ports, the individual read 
ports are not connected to all the output port,,;. The same 
crossbar connection is followed by the datapath in the X stage 
of the pipeline (Figure 4). 

In addition to the basic pipeline latency, there are six addi- 
tional delay cycles along the path of a packet, including 
synchronization delay, pad receiver and driver delay, and 
transport delay from the pins to the router and from the router 
back to the pins. Thus, the on-chip pin-to-pin latency from a 
network input to a network output is 13 cycles. At 1.2 GHz, 
this leads to a pin-to-pin latency of  10.8 nanoseconds. 

Also, the network links that connect the different 21364 
chips run at 0.8 GHz, which is 33% slower than the internal 
router clock. The input port arbitration internally nominates 
packets at the appropriate cycles so that packets leaving the 
router are synchronized with the off-chip network clock. 

3. ARBITRATION ALGORITHMS 
In the 21364 router, the 16 input port arbiters and 7 output 

port arbiters work together to implement the arbitration 
algorithm. The 21364 router's arbitration problem can be 
modeled in two ways. First, it can be modeled as a matching 
problem in a bipartite graph with 16 input port arbiters and 7 
output port arbiters. Each connection between the input and 
output port arbiters will carry a certain "weight." Then, a 
Maximum Weight Matching (MWM) algorithm, will try to find 
a match that maximizes the total weight of the connections 
selected by the match. Examples of  such MWM algorithms are 
LQF (longest queue firs0, which uses the number of waiting 
packets at an input port as the weight for a connection, and OCF 
(oldest cell firs0, which uses the waiting time for the oldest 
packet at an input buffer as the weight for a connection [24]. 
Unfortunately, the MWM algorithms require O(N 3) iterations in 
the worst case [25], which makes it very difficult to implement 
them in hardware in a few cycles. Also, approximations of the 
MWM algorithm, such as RPA [1], MUCS [12], Laura and 
Serena [25], and Apsara [18], are also not implementable in 
hardware within a few cycles. 

3 The 21364 router's input and output port arbiters are also referred to as 
local arbiters (LA) and global arbiters (GA), respectively [26]. 
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In this paper, as an upper bound we use an algorithm called 
the Maximal Cardinality Matching Algorithm (MCM), which is 
basically MWM with all connections having equal weights. 
MCM exhaustively searches the space for the maximum 
number of matches between input and output port arbiters. We 
use MCM only in our non-timing simulations because we do 
not know how to implement MCM in hardware within a few 
cycles. 

Another way to model the arbitration problem is to use a 
two-dimensional "connection" matrix with input ports forming 
the rows and output ports forming the columns. Such a 
representation makes it easier for us to explain the arbitration 
algorithms we study in this paper. In this representation, an 
input port nominates packets to output ports by filling up the 
corresponding row in the matrix. An output port chooses 
packets from input ports by scanning the corresponding column 
in the matrix. 

Figure 5 shows the connection matrix for the 21364 router. 
Given this representation, an arbitration algorithm for the 21364 
router then needs to answer the following questions: 

• Which packets should an input port arbiter nominate to an 
output port arbiter? An input port arbiter can pick packets 
out of all the buffers in each of the 19 virtual channels. For 
correctness and improved performance, each input port arbiter 
(independent of the arbitration algorithm) obeys some basic 
constraints, such as whether the corresponding output port is 
free to dispatch a packet. Each input port arbiter then selects 
the oldest packet, which satisfies the basic constraints, from 
the least-recently selected virtual channel. An input port 
arbiter fills up the corresponding row in the connection matrix 
with the packets it selects. 

• Can the same packet be nominated multiple times? Any 
packet can proceed along a maximum of two directions 
because 21364 adaptively routes packets within the minimal 
rectangle (Section 2.1). Thus, a packet can be nominated to at 
most two output port arbiters. Multiple nominations have the 
advantage that a packet would have a greater probability of 
being dispatched in the same cycle. However, multiple 
nominations of the same packet also imply extra interaction 
between input and output ports to ensure that the same packet 
is not dispatched through two different output ports. 

• Which packets should an output port arbiter pick from the 
packets nominated to it by the input port arbiters? An output 
port arbiter examines its corresponding column for packets 
nominated to it by all the input port arbiters. Then, to select a 
packet from a column it can use a variety of  policies, such as 
random [11], round-robin [31], least-recently selected [35], 
some kind of a priority chain [10], or the "Rotary Rule." 
Such prioritization policies are easily implemented in hard- 
ware via a priority matrix. We describe the implications of  
some of these policies later in this section. Section 3.4 
describes the Rotary Rule in detail. 

• Can there be multiple iterations (or passes) through the 
matrix? Multiple iterations through the nomination and 
selection procedure allow the arbitration algorithm to find 
more matches compared to a single iteration. However, 
multiple iterations would also incur higher number of  cycles 
to perform the arbitration. 

Answers to the above questions have important implications on 
the hardware implementation of  an arbitration algorithm. For 
example, these choices determine how much synchronization is 

required among all the 23 arbiters (16 for input, 7 for output) in 
the router and whether the arbitration algorithm can be 
effectively pipelined. 

The rest of this section discusses how PIM, WFA, and 
SPAA answer the above questions (Sections 3.1, 3.2, and 3.3). 
Section 3.4 describes the Rotary Rule and how it can be 
incorporated into WFA and SPAA. 

3.1 Parallel Iterative Matching 
The Parallel Iterative Matching (PIM) algorithm, proposed 

by Anderson, et al. [2], was designed to quickly identify a set of 
conflict-free packets for transmission through an ATM switch. 
PIM Works extremely well in such ATM switches where the 
matching algorithm may be implemented in software. The key 
to PIM's success lies in its interaction between input and output 
port arbiters, which avoids arbitration collisions incurred by 
naive algorithms, such as OPF (Figure 2). 

Below we describe the algorithm's three key steps for the 
21364 router: 

1. Nominate. Each unmatched input port arbiter nominates a 
packet for each output port arbiter for which it has a 
packet. The same packet can be nominated to multiple 
output port arbiters. 

2. Grant. If an unmatched output port arbiter receives any 
requests, it accepts one randomly and informs the corre- 
sponding input port arbiter of its decision. 

3. Accept. I f  an input port arbiter receives grants for multiple 
output port arbiters, it selects one randomly. 

PIM iterates over the above three steps until the algorithm 
converges. According to Anderson, et al. [2], PIM usually 
converges within log2N iterations, so the 21364 router would 
need four iterations (N = 16 input port arbiters) of  the above 
three steps. Researchers have proposed variations of  PIM, 
such as iSLIP [23] that can be implemented in hardware, but 
their matching capabilities are similar to PIM's.  

PIM has two properties that make it difficult to implement 
in hardware in a few cycles. First, it can nominate the same 
packet to multiple output port arbiters, even though multiple 
output port arbiters cannot dispatch the same packet. PIM 
avoids multiple dispatches using an additional synchronization 
step (Step 3) between the input and output port arbiters. 
Unfortunately, this synchronization makes it difficult for input 
port arbiters to nominate other packets until they receive their 
grants from the output port arbiters. In other words, it is hard to 
do input port arbitrations in consecutive cycles, which makes it 
difficult to pipeline PIM. 

Second, PIM requires multiple iterations of its three steps. 
This would further increase the delay of  the algorithm. Hence, 
we use a variant of PIM called PIM1, which is PIM with one 
iteration of its three steps. McKeown has shown, however, that 
PIMI ' s  matching capabilities are significantly worse than 
PIM's [24]. 

In our evaluation, we assume that PIM1 takes four cycles 
for arbitration. We would implement PIM1 using a centralized 
16x7 connection matrix, which receives inputs from the input 
port arbiters and lets output port arbiters iterate over its 
columns. The first three cycles of the four cycles consist of 
matrix operations and wire delays: 1.5 cycles to select packets 
from the input ports and load up the matrix (i.e., nominate) and 
1.5 cycles to grant and accept (via passes over the matrix). The 
speed at which the matrix can be evaluated is limited because of 
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Figure 6. Uperatlons of  the Wave-Front Arbiter (Wl'Ti) for  a 4x4 
connection matrix. (a) The dotted lines (with circled numbers) 
show the wave fronts. Each square represents an arbitration cell 
with coordinates i,j. (b) This figure shows an arbitration cell (i,j) 
of  the WFA matrix. 

dependences between the input and output ports and the limited 
number of logic levels (12-13) per cycle in our process 
technology. Further, PIM1 requires a random number genera- 
tor, which will require a few additional logic levels. 

In this implementation of PIM1, a new arbitration can be 
started every three cycles because nominate, grant, and accept 
take a total of three cycles. Starting a grant or accept before the 
prior nominate step is difficult because of two reasons. First, 
the total nominations for the matrix could be up to 54 (unshaded 
boxes in Figure 5). Keeping track of these large number of in- 
flight packets (i.e., nominated, but not delivered) would require 
additional state and could increase the number of cycles 
incurred by PIM1. Second, we would have to maintain multiple 
copies of the matrix to act as buffers for the pipeline stages for 
the arbiters. These matrices must be consistent with one 
another and should not be loaded with stale packets. Again, 
this may further increase the number of cycles incurred by 
PIM1. 

The fourth cycle of PIMI ' s  four-cycle arbitration accounts 
for wire delays from the matrix to the output ports and can be 
pipelined. 

3.2 Wave-Front Arbiter 
Tamir and Chi [36] proposed the Wave-Front Arbiter 

(WFA) for routers in interconnection networks. WFA has been 
implemented in the SGI Spider interconnect [16]. WFA is a 
much lighter-weight algorithm than PIM1 and could be used 
effectively in routers that operate at a much lower frequency 
than that of the 21364 router. For example, WFA in the Spider 
switch operates at 100 MHz and is implemented within a single 
10 nanosecond clock cycle. Also, the key to WFA's  success 
lies in its interaction among the input port arbiters and among 
the output port arbiters, which allows it to avoid arbitration 
collisions that may be incurred by naive algorithms, such as 
OPF (Figure 2). 

WFA operates on the entire connection matrix as a whole. 
First, the input port arbiters load up the matrix with their 
nominations. Then, evaluation of the matrix starts from a 
specific cell in the matrix. The evaluation proceeds in a wave 
front as follows (Figure 6): 

Granti.j = Request Lj and Nij and Wi,j 
Sij = N~ and NOT(Grantij) 
Ei.j = Wi.j and NOT(Grantij) 

The connection matrix is represented in hardware as a two- 
dimensional array of arbitration cells. The position of each cell 
in the connection matrix is denoted by i,j. Request denotes that 
an input port arbiter has nominated a packet for that arbitration 
cell. Grant denotes that the specific arbitration cell has been 
chosen for packet delivery. Then, following the above equa- 
tions, no other cell in the same row (i.e., same input port 
arbiter) and no other cell in the same column (i.e., same output 
port arbiter) as the granted cell, would select any other packet 
for dispatch. Also, note that Nid = S~1j and Wtj = Eij.1. 

Thus, as Figure 6 shows, if the evaluation s t ~ s  with wave- 
front 1, then the cell (0,0) will be evaluated first, followed by 
the cells (0,1) and (1,0), which make up wavefront 2. 
Subsequent wavefronts will be evaluated in this fashion. 

To ensure fairness, the first cell from where the wave fronts 
begin must be chosen carefully. Tamir and Chi suggested using 
a robin-robin scheme to choose the first cell. We will refer to 
this scheme as WFA-base. Section 3.4 will show how to use the 
Rotary Rule to choose the first cell, which we will refer to as 
WFA-rotary. 

Although the WFA is very appealing, it is not amenable to 
efficient pipelining. This is because input port arbiters in 
WFA, like in PIM, can nominate the same packet to multiple 
output port arbiters. PIM uses synchronization between input 
and output port arbiters (Step 3 in PIM) to avoid multiple 
dispatches of the same packet. In contrast, WFA requires 
communication between the output port arbitersmvia the 
propagation of the N and S signals along the columns--to avoid 
dispatching the same packet through multiple output port 
arbiters. Note that WFA uses the same mechanism--i.e., 
interaction among output port arbiters--to avoid arbitration 
collisions and, thereby, provide good matching performance. 
Thus, interaction between output port arbiters is fundamental to 
the WFA algorithm. Additionally, micropipelining the matrix 
operations themselves--by pipelining the "waves" of  the 
WaveFront Arbiter--is difficult because the starting cell (as 
indicated in the last paragraph) changes every cycle. 

We assume a four-cycle arbitration delay for the WFA. Our 
timing is optimistically based on the Wrapped Wave-Front 
Arbiter, proposed by Tamir and Chi. The Wrapped WFA 
provides matching performance similar to that of WFA's,  but 
executes faster in hardware by starting multiple: wavefronts in 
parallel. As in PIM1, the first three cycles of WFA's  four-cycle 
arbitration are spent on matrix operations and wire delays: 1.5 
cycles to nominate packets and load up the matrix and 1.5 
cycles to evaluate the matrix. WFA suffers from the same 
problems as PIM1 (Section 3.1) and hence a new arbitration can 
only be restarted every three cycles. Again, as in PIM1, the 
fourth cycle accounts for wire delays from the matrix to the 
output ports and can be pipelined. 

3.3 Simple Pipelined Arbitration Algorithm 
The Simple Pipelined Arbitration Algorithm (SPAA) im- 

plemented in the 21364 carefully minimizes the impact of  
features, such as interaction between input and output ports, 
which would be hard to pipeline. However, this also makes its 
matching performance much worse than PIM1 and WFA 
because it may not be able to avoid arbitration collisions 
(Figure 2), particularly in the presence of a large number of free 
output ports. Thus, in terms of its matching capability, SPAA 
is more like OPF from Figure 2. 
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Like PIM, SPAA has three steps: 
1. Nominate. Each input port arbiter nominates a packet for 

only one output port arbiter, if there is one. A nominated 
packet cannot be nominated again in subsequent cycles 
until Step 3 of this algorithm completes. 

2. Grant. If an output port arbiter receives multiple requests, 
it selects the packet from the least-recently selected input 
port arbiter. Then, it informs all input port arbiters con- 
nected to it of its decision. 

3. Reset. An input port arbiter resets the state of all nomi- 
nated packets that are not selected by the output port arbi- 
ter, so that they can be nominated again. 

SPAA has three important properties that make it amenable to 
easy hardware implementation and pipelining. First, unlike 
PIM1 or WFA, an input port arbiter nominates a packet to only 
one output port arbiter. This avoids the extra interaction 
required between the input and output port arbiters (as in PIM1) 
or between the output port arbiters (as in WFA). Nevertheless, 
because a pair of input port arbiters shares the same set of input 
buffers via different read ports, the input port arbiters in a pair 
must synchronize to ensure that they do not choose the same 
packet. However, because the synchronization is between pairs 
of input port arbiters located in close proximity, this is not hard 
to implement. 

Nominating a packet to only one output port also has the 
added benefit that a packet can be speculatively read out from 
an input buffer as soon as it is nominated by an input port 
arbiter (but before the output port arbitration is complete), much 
like the way direct-mapped caches allow processors to 
speculatively read out data before the address comparison 
completes [20]. Of course, the read is wasted if the output port 
does not select the specific packet that was speculatively read 
out. 

Second, SPAA can be implemented as a distributed router 
with the input and output port arbiters sitting right next to their 
corresponding ports. In contrast, because of PIM1 and WFA's  
high level of interaction between input and output ports, it is 
easier to implement PIM1 and WFA using a centralized 
connection matrix. The distributed implementation of SPAA 
allows it to directly send input port nominations from the input 
to the output ports without an intervening connection matrix. 
This helps reduce the number of cycles incurred by SPAA. 

Third, SPAA need only maintain a small list of in-flight 
packets--that is, only 16---because each input port can only 
nominate a maximum of one packet. In contrast, aggressive 
and more complicated implementations of PIM1 and WFA 
would have required us to maintain state for 54 in-flight 
packets, which would complicate their implementation. 
SPAA's small number of in-flight packets (i.e., nominated from 
the input port, but not yet accepted by the output port) facili- 
tates effective pipelining of SPAA. Thus, unlike PIM1 and 
WFA, new input port arbitrations in SPAA can be restarted 
every cycle. 

Thus in summary, SPAA incurs only three cycles (Figure 4) 
for its arbitration compared to the four cycles required by PIM1 
or WFA and SPAA can be pipelined efecfively, so that an 
input port arbitration can be started every cycle. SPAA's three 
cycles consist of input port arbitration (i.e., nominate), transport 
from input to output port, and output port arbitration (Figure 4). 

T s aturation..........ql~. 
point J ~  

Delivered J ~ degradation 
Throughput / \ beyond. 

Increasing Network Load 
Figure 7. Possible network behavior with increasing network load. 
Network performance degrades rapidly beyond the saturation 
point. 

SPAA's Step 2 (Grant) selects packets based on the least- 
recently selected policy. We call this SPAA-base. In the next 
subsection, we discuss how SPAA can use the rotary rule to 
select an input port arbiter. We call this SPAA-rotary. 

3.4 Rotary Rule 
Under extremely heavy loads most multiprocessor networks 

suffer from tree saturation [28][30], which can dramatically 
degrade a network's performance beyond the saturation point 
(Figure 7). Such tree saturation occurs when multiple packets 
contend for a single resource (e.g., a link between nodes) 
creating a hot spot. Since only one packet can use the resource, 
other packets must wait. These waiting packets occupy buffers 
and thus delay other packets, even though they may be destined 
for a completely different node and share only one link on their 
paths to their respective destinations. This process continues 
and waiting packets delay other packets producing a tree of 
waiting packets that fans out from the original hot spot. 
Eventually, this clogs the network bringing down the delivered 
throughput of the entire network. 

The 21364 network is no exception and can get saturated at 
extremely high load levels. Interestingly, the network produces 
a cyclic pattern of network link utilization with extremely high 
levels of uniform random input traffic. This is because as the 
network gets saturated, it puts backpressure on the links in the 
tree. Eventually, this backpressure throttles the routers in the 
tree and forces them to avoid injecting new traffic, which 
causes the network congestion to clear up slowly. The period 
of this cycle increases with the diameter of the network because 
it takes longer to fill up the buffers on the path and propagate 
the backpressure. 

Ideally, we would like network throughput to remain at the 
same level as exhibited at the saturation point, instead of 
degrading dramatically beyond the saturation point. Most 
proposed solutions rely on throttling the input network load 
based on some estimate of  congestion, so that the network never 
goes beyond the saturation point. Lopez, et al. [21][22] use the 
number of  busy virtual channels in a router to estimate 
congestion. Baydal, et al. [4] proposes an approach that counts 
a subset (free and useful) of virtual channel buffers to decide 
whether to throttle or not. Other researchers (e.g., [34], [30], 
[38]) have proposed the use of a variety of global heuristics to 
determine congestion. 

Fortunately, the 21364 network has two properties that limit 
the network load. First, a 21364 processor can have only 16 
outstanding cache miss requests to remote memory or caches. 
This limits the load the 21364 network can observe. 

Second, the 21364 is a "direct" network in which the same 
router is responsible for both new traffic (originating from the 
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local ports, such as the cache port or memory controller ports) 
and cross-traffic between routers. Thus, prioritizing the cross- 
traffic over new traffic generated from the local ports has the 
beneficial effect of both clearing the network congestion as well 
as throttling the input load into the network. We call this 
pfiofitization policy the "Rotary Rule." The name is derived 
from the Massachusetts rotaries in which vehicles in the rotary 
has higher priority to exit than vehicles trying to enter the 
rotary. 

It is easy to implement the Rotary Rule for PIM1, WFA, 
.and SPAA. In PIM1 and SPAA, the output port arbiters would 
select packets nominated by the input port arbiters for the 
network ports before they select packets from the local ports. 
Within the network ports, we use least-recently used selection 
policy. In WFA, the selection of the first cell to start the 
arbitration process would follow the Rotary Rule. Thus, cells 
connected to the input port arbiters for the network ports would 
get the highest priority to be the first cell from where the 
wavefronts will start. In this paper, we only evaluate the Rotary 
Rule for WFA and SPAA. We call these variants WFA-rotary 
and SPAA-rotary, respectively. 

The Rotary Rule 's  priofitization of cross-traffic packets can 
create starvation in the network. The 21364 router implements 
an anti-starvation algorithm for certain corner cases. The 
Rotary Rule simply relies on this anti-starvation algorithm to 
clear any starvation caused by its priofitization policy. The 
anti-starvation algorithm assigns two different colors to packets 
waiting at a router: an old color and a new color. If the number 
of  old colored packets exceed a threshold, the 21364 ensures 
that all the old colored packets are drained before any new 
colored packets are routed. Further discussion of the anti- 
starvation algorithm is beyond the scope of this paper. 

The 21364 network provides the Rotary Rule as an optional 
mode programmable at boot time. It is an optional mode 
because we believe most applications will not stress the 
network to the extent of pushing it into saturation. Neverthe- 
less, we provide it both as a "safety net" for the 21364 proces- 
sor and as a mechanism that may have allowed its use in future 
processors with many more outstanding misses (e.g., the next 
generation Alpha 21464 processor would have had 64 out- 
standing misses). 

4. M E T H O D O L O G Y  
This section describes our performance model, traffic pat- 

terns, and performance metric. 

4.1 Performance Model  
Our evaluation of the 21364's arbitration algorithm choices 

is based on two kinds of performance models written in the 
Asim framework [15], unlike Bhuyan [5] or Peh and Dally [27], 
who had used analytical modeling to understand the behavior of 
arbiters and routers 4. Our first model- -what  we call the 
standalone model--al lows us to evaluate the matching 
capabilities of MCM, PIM, PIM1, WFA, and SPAA in a single 
21364 router (just like a cache simulator would allow one to 
evaluate the cache miss ratio without any timing information). 

Our second model- -what  we call the timing model- - i s  an 
extremely detailed performance model of the 21364 router. We 

4 Bhuyan's paper pre-dates PIM1 and WFA. Peh and Dally focused on 
developing analytical models for router pipelines, but did not compare the 
performance of different arbitration algorithms. 

have validated this model against a production-level perform- 
ance model of the 21364 network architecture. We have 
modeled the detailed timing characteristics of  PIM1, WFA- 
base, WFA-rotary, SPAA-base, and SPAA-rotary using this 
timing model. 

We described most of the parameters of the timing runs in 
Section 2.2 and Section 3. In addition, we assume 73 nanosec- 
onds for the memory system's response time, 25 cycles for the 
on-chip L2 cache's response time, and 3 network clocks 
(running at 0.8 GHz) for latency on each network link. Most of 
the results we present in this paper are for a 16-processor (4x4) 
network and a 64-processor (8x8) network. Although the 
21364 network only scales up to 128 processors, Section 5.3 
examines results for a 144-processor (12x12) network to 
understand how the arbitration algorithms may scale for larger 
network configurations. 

4.2 Traffic Patterns 
We evaluate our timing models using a mix of synthetic 

traffic patterns as opposed to real workloads. Simulations of 
real workloads, such as database servers, would have helped us 
make more accurate predictions about the performance impact 
of the different arbitration algorithms. Such simulation, 
however, would have required complex full-system simulation 
(including the operating system), which our modeling infra- 
structure is unable to handle today. Trace-driven simulation 
would have been an alternative, but that also has its limitations 
[7]. 

Nevertheless, synthetic workloads have two advantages. 
First, they often tend to increase the contention for resources for 
sub-optimal/worst case performance scenarios [39]. Second, 
they represent communication patterns in many real-world 
applications [14]. 

Recently, Towles and Dally [39] demonstrated a technique 
to construct synthetic traffic patterns that result in worst-case 
performance for oblivious routers. Unfortunately, there is no 
known similar technique for adaptive routers, such as the 
21364. 

Our synthetic patterns can be defined along two dimensions. 
The first dimension selects the mix of  coherence packets. We 
use 70% two coherence hop transactions (3-flit request and a 
19-flit block response) and 30% three coherence hop transac- 
tions (3-flit request, 3-flit forward, and a 19-flit block response) 
to model a mix of coherence traffic. We, however, ignore 
traffic generated from cache replacements or invalidations to 
make our analysis simpler, s Note that a coherence hop only 
specifies a single packet, which can take multiple router hops 
via the network. 

The second dimension selects the destination of  the requests 
and forwards. We use three patterns for such selection: 
uniform, bit-reversal, and perfect-shuffle. If the bit-coordinate 
of the source processor can be represented as (a~.~, a~.2 . . . .  a~,ao), 
then the destination bit-coordinates for bit-reversal and perfect- 
shuffle are (ao, al ..... an.2,a~.0 and (an_2,an. 3 ..... ao,an.l) respectively. 

4.3 Performance  Metric 
We use the Burton Normal Form (BNF) [14] to express the 

performance of our different arbitration algorithms. A BNF 
graph uses observed latency as its vertical axis and delivered 

5 The 21364 processor can have 16 outstanding cache replacement requests. 
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Figure 8. Standalone comparison of  matching capabilities of  
different arbitration algorithms for a single 21364 router with 
increasing router load for zero output port occupancy. The 
horizontal axis plots the input router load as a fraction o f  the load 
required to saturate MCM. 

throughput as its horizontal axis. For our BNF graphs, we use 
the average latency of a packet through the network as the 
vertical axis. The minimum per-packet latency with a 4x4 
network, uniform random distribution of destinations, and a 
70/30 mix of 2-hop and 3-hop coherence transactions is about 
45 ns (nanoseconds). The 45 ns can be broken into 2.5 ns of 
local port latency, 34 ns of network transit latency for the first 
flit, and 8.5 nanoseconds of latency for the rest of a packet. 
The last number is averaged across the different packet sizes for 
our coherence transaction mixes. 

We represent the delivered throughput as flits/router/ns 
(where ns = nanoseconds). The maximum throughput is two 
flits/router/cycle because the 21364 router has two local ports to 
sink packets and only one flit can be delivered to a local port 
per cycle. Thus, the maximum delivered throughput can be 2.4 
flits/router/nanosecond (= 2 / 0.83). In reality, however, the 
actual delivered throughput will be significantly lower because 
the network links are 33% slower than the processor and the 
network links often carry cross-traffic, whose residence time in 
the network increases with the size of the network. 

We ran each timing simulation for 75,000 cycles. We have 
validated that simulation for this number of cycles is sufficient 
to predict the steady-state behavior of the network. 

5. RESULTS 
This section presents our standalone, timing, and scaling 

results. Although we present our results only for a subset of the 
network sizes and traffic patterns, our results are qualitatively 
similar across a wide spectrum of the design space. 

5.1 Standalone Results 
Figure 8 shows that when all output ports are free MCM, 

PIM, and WFA are indeed superior arbitration algorithms 
compared to PIM1 and SPAA. We generated Figure 8 by 
loading up a single router with input packets and using the 
following assumptions: 

• All arbitration algorithms take one cycle to execute. 

• All output ports are free at the time of the arbitration. 

• 50% of the traffic is local and destined for the local memory 
controller and I/O ports. The rest are destined uniformly for 
the other network ports. 
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Figure 9. Standalone comparison of matching capabilities of  
different arbitration algorithms for a single 21364 router with 
increasing output port occupancy at the MCM saturation load. 

• The number of arbitration matches is averaged across 1000 
iterations of the arbitration algorithms. Because the traffic is 
generated randomly, in some cases even MCM, which 
exhaustively searches for the maximum number of matches, is 
not able to find a perfect match. However, the number of  
matches found by MCM is usually very close to the maxi- 
mum, i.e., seven (because there are seven output ports). 

• Although all algorithms execute in one cycle, they all follow 
the basic 21364 router constraints, such as adaptive routing 
within the minimum rectangle. 

Under the above assumptions, the number of matches found by 
WFA and PIM are almost close to that found by MCM. PIM1 
does slightly worse and SPAA is the worst. At the MCM 
saturation load, the number of matches found by MCM, WFA, 
and PIM are 36% higher than that found by SPAA. P IMI ' s  
number of matches is 14% higher than SPAA's.  

Figure 9, however, shows that under realistic conditions the 
difference between the various arbitration algorithms reduces 
dramatically. Figure 9 plots the arbitration matches per cycle 
for the different algorithms for various levels of output port 
occupancy. In the 21364 router, packet sizes range from 3 to 
19 flits, so when a packet wins an arbitration, it occupies an 
output port for several cycles. It is unnecessary to arbitrate for 
an output port while it is busy delivering a packet. As the 
fraction of occupied output ports increases, the difference 
between the algorithms reduces and completely disappears 
when 75% of the output ports are occupied. 

Thus, under heavy loads (when output port occupancy is 
likely to be high), it  does not matter which arbitration algorithm 
we choose. Rather, it is better to choose an algorithm that is 
more suited to faster implementation. We designed SPAA 
based on this observation. 

Another way to look at these results is that WFA and PIM's 
matching capabilities are more suited to routers with signifi- 
cantly higher number of ports compared to what we have in the 
21364 router. 

5.2 Timing Results 
Figure 10 shows the performance of the five arbitration 

algorithms--PIM1, WFA-base, WFA-rotary, SPAA-base, and 
SPAA-rotary--for  different network sizes and traffic patterns. 
SPAA-base significantly outperforms both PIM1 and WFA- 
base, which perform similarly. For example, in the 4x4 
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Figure 10. This figure shows the performance of the 21364 network with different arbitration algorithms, network sizes (4x4 and 8x8), and 
traffic patterns (Random, Bit Reversal, and Perfect Shuffle). 

network, with random traffic SPAA-base provides about 11% 
higher throughput compared to PIM1 and WFA-base when the 
average packet latency is about 83 nanoseconds. Similarly, in 
the 8x8 network, with random traffic SPAA-base provides 
about 24% higher throughput compared to PIM1 and WFA- 
base when the average packet latency is about 122 nanoseconds. 
The results for bit reversal and perfect shuffle for the 8x8 
network are qualitatively similar. 

Figure 10 also shows that the Rotary Rule prevents both 
WFA-rotary and SPAA-rotary from performance degradation 
under heavy network loads. The 4x4 network does not show 
saturation behavior, so the performance of WFA-base and 
SPAA-base are similar to WFA-rotary and SPAA-rotary 
respectively. In the 8x8 network, WFA-base and SPAA-base 
perform similar to WFA-rotary and SPAA-base respectively, 
until the network hits the saturation point. Thereafter, the 
delivered throughput of both WFA-base and SPAA-base 
degrade rapidly, while WFA-rotary's and SPAA-rotary's 
delivered throughputs continue to increase. 

Thus, at about an average packet latency of 280 nanosec- 
onds, WFA-rotary improves throughput by 16% over WFA- 
base and SPAA-rotary improves throughput by 43% over 
SPAA-base. Note that WFA-base shows less performance 
degradation compared to SPAA-base. We suspect this happens 
because the interaction between WFA's output port arbiters 
(unlike in SPAA) makes the worst case behavior of WFA-base 
better than that of SPAA-base. 

Finally, pipelining provides SPAA a significant boost in 
performance compared to PIM1 and WFA (not shown here). 
For example, if we could implement WFA as a three-cycle 
arbitration mechanism like SPAA, then pipelining is the key 
difference between WFA and SPAA. In an 8x8 network, with 
random traffic SPAA provides a throughput boost of about 8% 
compared to such a configuration of WFA-base with 122 
nanoseconds of average packet latency. This shows pipelining 
the arbitration mechanism does help SPAA's performance. 

5.3 Sca l ing  Results 
This section studies the performance of PIM1, WFA-rotary, 

and SPAA-rotary under three different scaling conditions: with 
twice the router pipeline length as in the 21364 router, with 
higher input load than 21364 can offer, and with a bigger 
network. The router pipeline length could potentially double in 
future generations, given the scaling trends of technology today. 
Figure l la shows the results for PIM1, WFA-rotary, and 
SPAA-rotary for a pipeline two times longer than and running 
at twice the frequency of the 21364 router's pipeline. The 
arbitration latencies for PIM1, WFA-rotary, and SPAA-rotary 
are 8, 8, and 6 cycles respectively. As the figure shows, 
SPAA-rotary performs significantly better with longer pipelines 
because SPAA-rotary is pipelined, unlike the other two 
arbitration algorithms. Thus, for example, at about 100 
nanoseconds of average packet latency, SPAA-rotary provides 
greater than 60% higher throughput compared to PIMI and 
WFA-rotary. 
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Figure 11. Scaling Results for the 21364 router. 
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Figure 1 lb shows the results for the three arbitration algo- 
rithms for an 8x8 network with higher network load. Higher 
network load, in the form of greater number of outstanding 
misses, can be expected from future processors with deeper 
pipelines. Hence, this figure assumes 64 outstanding misses, 
four times higher than that of the 21364 processor. As the 
figure shows, even under such high network loads, SPAA- 
rotary outperforms both PIM1 and WFA-rotary. Thus, for 
example, at about roughly 200 nanoseconds of average packet 
latency, SPAA-rotary provides roughly 13% higher throughput 
compared to WFA-rotary. 

Figure 1 lc shows the scaling results for the 21364 router for 
a 144-processor (12x12) network (Note: the 21364 network can 
only scale up to 128 processors). Like the first two scaling 
results, SPAA-rotary outperforms both PIM1 and WFA-rotary 
significantly. Thus, for a 200 nanoseconds average packet 
latency, SPAA-rotary provides an 18% higher throughput 
compared to WFA-rotary. Interestingly, however, at extremely 
high loads, SPAA-rotary is unable to prevent throughput 
degradation under saturation, whereas WFA-rotary's through- 
put continues to increase, possibly because of its synchroniza- 
tion between output port arbiters. 

6. CONCLUSIONS 
Large-scale cache-coherent shared-memory machines have 

become common server machines. Such machines often 
employ interconnection networks to allow communication 
between processors and memory modules. These interconnec- 
tion networks must deliver low latency and high bandwidth to 
effectively run demanding parallel applications. 

Interconnection networks usually consist of a fabric of 
interconnected touters, which receive packets arriving at their 
input ports and forward them to appropriate output ports. 
Unfortunately, network packets moving through these routers 
are often delayed due to conflicting demand for resources, such 
as output ports or buffer space. Hence, routers typically employ 
arbiters to resolve conflicting resource demands. These 
arbiters try to maximize the number of matches between 
packets waiting at input ports and free output ports. 

Efficient design and implementation of these arbiters is 
critical to maximize network performance. The 1.2 GHz 
implementation of  the Alpha 21364 microprocessor's on-chip 
router, which can connect up to 128 processors in a 2D toms, 
made the already difficult task of designing arbitration 
algorithms even more challenging. Because the 21364's 
implementation allowed very few logic levels--between 12 and 
13 per clock cycle--we had to carefully weigh the complexity 
of an arbitration algorithm against its benefit. 

This paper proposed a new arbitration algorithm called 
SPAA (Simple Pipelined Arbitration Algorithm), which is 
implemented in the 21364 router's pipeline. Simulation results 
showed that SPAA significantly outperforms two earlier well- 
known arbitration algorithms: PIM (Parallel Iterative Matching) 
and WFA (Wave-Front Arbiter), which is implemented in the 
SGI Spider switch. Instead of PIM, which is iterative and 
would have obviously performed poorly in the 21364 router, we 
considered PIM1, which runs only one iteration of the PIM 
algorithm. 

SPAA outperformed PIM1 and WFA, even though both 
PIM1 and WFA have better matching capabilities than SPAA. 
This is because SPAA exhibits matching capabilities similar to 
PIM1 and WFA under realistic conditions when many output 
ports are busy, incurs fewer clock cycles to perform the 
arbitration, and can be pipelined effectively. We also demon- 
strated that SPAA will continue to deliver higher throughput 
compared to PIM1 and WFA, if the router were scaled to have 
twice the pipeline length, incur greater input load, or support 
bigger networks than the 21364 was designed for. 

Additionally, we proposed a new prioritization policy called 
the Rotary Rule, which provided significant boost in network 
performance by preventing the network's adverse performance 
degradation from saturation at high network loads. The Rotary 
Rule priofitizes the movement of network packets already in the 
network over packets recently generated from the processor 
ports. We demonstrated the effectiveness of the Rotary Rule 
with WFA and SPAA. The Alpha 21364 router provides the 
Rotary Rule as an optional mode programmable at boot-time. 

The arbitration algorithm choice for the Alpha 21364 router 
depends largely on its architectural constraints. The arbitration 
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algor i thm did not  need to be as aggressive because  of  a 
m a x i m u m  of  two output  port  choices for each packet,  per- 
packet  arbitration,  and virtual  cut- through routing.  Greater  
rout ing f reedom, fli t-level arbitration, and wormhole  rout ing 
(with shal low buffer ing)  may  reduce the advantage of  S P A A  
over  PIM1 and WFA.  
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