
70

The continuous exponential growth
in transistors per chip as described by Moore’s
law has spurred tremendous progress in the
functionality and performance of semicon-
ductor devices, particularly microprocessors.
At the same time, each succeeding technolo-
gy generation has introduced new obstacles
to maintaining this growth rate. Transient
faults caused by single-event upsets have
emerged as a key challenge likely to gain sig-
nificantly more importance in the next few
design generations.

Techniques for dealing with these faults
exist, but they come at a cost. Designers need
accurate soft-error estimates early in the design
cycle to weigh the benefits of error protection
techniques against their costs. This article pre-
sents a method for generating these estimates.

Soft-error sources and impact
Single-event upsets arise when energetic

particles—such as neutron particles from cos-
mic rays and alpha particles from packaging
material—generate electron-hole pairs as they
pass through a semiconductor device. Tran-
sistor source nodes and diffusion nodes can
collect these charges. A sufficient amount of
accumulated charge can invert the state of a

logic device such as a latch, an SRAM cell, or
a gate, thereby introducing a logical fault into
the circuit’s operation.1 Because this type of
fault does not reflect a permanent device mal-
function, we call it soft or transient.

A device’s rate of errors caused by single-
event upsets depends on both the particle flux
it encounters and its circuit characteristics. The
particle flux depends on the environment. In
Denver, Colorado, for example, at an altitude
of 1.5 km, the neutron flux from cosmic rays
is three to five times higher than the flux at sea
level. Device circuit parameters that influence
the error rate include the amount of charge
stored, the vulnerable cross-section area, and
the charge collection efficiency. As feature sizes
shrink, the smaller amount of charge per
device makes a particle strike more likely to
cause an error, but the reduced cross section
makes a strike on any given device less likely.
These effects roughly cancel each other for
latches and SRAM cells; thus, the error rate
per latch or SRAM bit at a specific altitude will
remain roughly constant or decrease slightly
for the next several technology generations.
However, in the absence of error correction
schemes, the chip error rate will grow in direct
proportion to the number of bits on the chip.

PROCESSOR DESIGNERS NEED ACCURATE ESTIMATES OF SOFT-ERROR RATES

EARLY IN THE DESIGN CYCLE TO MAKE APPROPRIATE COST-RELIABILITY

TRADEOFFS. HERE, THE AUTHORS PRESENT A METHOD FOR ESTIMATING THE

ARCHITECTURAL VULNERABILITY FACTOR—THE PROBABILITY THAT A FAULT IN

A PARTICULAR STRUCTURE WILL RESULT IN AN ERROR.

MEASURING ARCHITECTURAL
VULNERABILITY FACTORS

Published by the IEEE Computer Society 0272-1732/03/$17.00  2003 IEEE

Shubhendu S.
Mukherjee

Intel

Christopher T. Weaver
Intel

University of Michigan

Joel Emer
Intel

Steven K. Reinhardt
Intel

University of Michigan

Todd Austin
University of Michigan

Thus, while Moore’s law gives us exponential
transistor count increases, this bounty comes
at the cost of exponential error rate increases
for unprotected chips.

Soft errors caused by cosmic rays are already
making an impact in industry. According to
Robert Baumann in an IEEE 2002 Reliability
Physics Symposium tutorial, Sun Microsystems
acknowledged in 2000 that cosmic ray strikes
on unprotected cache memories had caused
random crashes at major customer sites in its
flagship Enterprise server line, losing a major
customer to IBM as a result of this episode.2 In
1996, Eugene Normand reported numerous
incidents of cosmic ray strikes after studying
the error logs of several large computer sys-
tems.3 The fear of cosmic ray strikes prompted
Fujitsu to protect 80 percent of the 200,000
latches in its recent Sparc processor with some
form of error detection.4

Various techniques exist to deal with such
faults, from special radiation-hardened circuit
designs,5 to localized error detection and cor-
rection (e.g., parity, ECC),4 to architectural
redundancy.6-9 However, all these approaches
introduce a significant penalty in perfor-
mance, power, die size, and design time. Con-
sequently, designers must carefully weigh the
benefits of these techniques against their cost.
Although a microprocessor with inadequate
protection from transient faults might prove
useless because of its unreliability, excessive
protection can make the resulting product
uncompetitive in cost or performance. Unfor-
tunately, tools and techniques for estimating
a processor’s transient error rates are not read-
ily available or fully understood. Furthermore,
because it is best to design a comprehensive
error-handling strategy into the processor
from the ground up, designers need these esti-
mates early in the design cycle.

Computing a processor’s soft-error rate
We classify a processor’s soft-error rate into

two categories: silent data corruption (SDC)
and detected unrecoverable error (DUE).
SDC—the topic of this article—occurs when
an unprotected bit sustains a single-bit upset
leading to undetected incorrect system behav-
ior. In contrast, a DUE event occurs when an
error in a bit is detected (via parity checking,
for example), but the system cannot recover
from that error.

A key aspect of generating SDC rate esti-
mates is that not all faults in a microarchitec-
tural structure affect a program’s final
outcome. As a result, an estimate based only
on raw device fault rates will be pessimistic,
leading architects to overdesign their proces-
sor’s fault-handling features. We call the prob-
ability that a fault in a processor structure will
result in a visible error in a program’s final out-
put that structure’s architectural vulnerability
factor (AVF). For example, a single-bit fault
in a branch predictor will not affect the
sequence or results of any committed instruc-
tions. The branch predictor’s AVF is thus
0 percent. In contrast, a single-bit fault in the
committed program counter will cause the
wrong instructions to execute, almost cer-
tainly affecting the program’s result. Hence,
the AVF for the committed program counter
is effectively 100 percent.

The overall SDC rate of a microarchitec-
tural structure is the product of its raw fault
rate and its AVF. By summing the contribu-
tions of all on-chip structures, a processor
architect can map the raw fault rate (dictated
by process and circuit issues) to an overall
processor SDC rate and thus determine
whether the design meets its SDC rate goals
(set for the target market). Significantly, this
lets the architect examine relative contribu-
tions of various structures and identify the
most cost-effective areas in which to use fault
protection techniques.

To estimate AVFs, we use a new approach
that tracks the subset of processor state bits
required for architecturally correct execution
(ACE)—any execution that generates results
consistent with a system’s correct operation as
observed by a user. Any fault in a storage cell
that contains one of these bits, which we call
ACE bits, will cause a visible error in a pro-
gram’s final output in the absence of error cor-
rection techniques. We call the remaining
processor state bits un-ACE bits because their
specific values are unnecessary for architecturally
correct execution. A fault that affects only un-
ACE bits will not cause an error. The AVF of
a single-bit storage cell is simply the fraction
of time that it holds ACE bits. Assuming that
all cells have equal raw fault rates, a structure’s
AVF is the average AVF of its storage cells or
the average fraction of its cells holding ACE
bits at any time.

71NOVEMBER–DECEMBER 2003

The branch predictor’s AVF is thus 0 per-
cent because all predictor bits are always un-
ACE bits. Similarly, all the bits in the
committed program counter are always ACE
bits, leading to an AVF of 100 percent. The
real power of ACE-bit analysis lies in com-
puting AVFs for structures that hold ACE bits
at some times and un-ACE bits at other
times—that is, most other processor struc-
tures. Rather than enumerate for each struc-
ture which bits might matter and which might
not, we simply track the ACE bits through the
pipeline, determine the average number of
ACE bits in each structure in each cycle, and
obtain the ratios of these numbers to the struc-
tures’ bit capacities. We can use average ACE
bits for this calculation because our fault-
inducing particle strikes are randomly and
uniformly distributed in a structure.

One straightforward application of our
methodology is to count the ACE bits in a
structure directly, using a performance model.
We can also estimate a structure’s AVF by
counting the ACE bits that flow through the
structure and applying Little’s law, which
states that the average capacity of an open sys-
tem is the product of the bandwidth of indi-
vidual objects flowing through the system and
the average residence time of each object in
the system.

It is difficult to precisely classify ACE and
un-ACE bits over a program’s entire execu-
tion. Instead, we assume conservatively that
every bit is an ACE bit unless we can prove it
is un-ACE. We thus compute an upper bound
on the AVF number, obtaining a conservative
estimate of a processor’s SDC rate. We iden-
tify un-ACE bits at both the architectural and
microarchitectural levels.

We identify five sources of architectural un-
ACE bits:

• no-op instructions,
• performance-enhancing instructions

(such as prefetches),
• predicated-false instructions,
• dynamically dead code, and
• logically masked values.

The results of dynamically dead instructions
either are never used by any subsequent
instruction in a program or are used only by
other dynamically dead instructions. We can

classify most bits of such instructions—except
the opcode and some specific bits—as un-ACE
when they are stored in processor structures.

Similarly, we identify four classes of
microarchitectural un-ACE bits:

• idle or invalid,
• misspeculated (such as those for incor-

rect-path instructions),
• prediction only, and
• ex-ACE.

ACE bits become ex-ACE after their last use.
Thus, for example, ACE instruction bits sit-
ting in an instruction queue awaiting possi-
ble replay become ex-ACE if the replay does
not occur.

Using Little’s law to approximate AVFs
With Little’s law,10 we can compute the

average number of ACE bits resident in a
structure and, therefore, the structure’s AVF.
We translate Little’s law as N = B × L, where
N is the average number of bits in a processor
structure, B is the average bandwidth of bits
per cycle into the structure, and L is the aver-
age residence time of an individual bit in the
structure. Applying this equation to ACE bits,
we obtain the average number of ACE bits in
a structure as the product of the average band-
width of ACE bits going into the structure
(BACE) times the average residence cycles of an
ACE bit in the structure (LACE). Thus, we can
express a structure’s AVF as

This formulation is particularly useful in
very early stages of an industrial processor’s
design cycle when even a performance model
may not be available. Alternatively, in many
cases, we can use hardware performance coun-
ters to compute the bandwidth of ACE bits
going into a structure and the average residence
cycles of ACE instructions, allowing AVF esti-
mation without a performance model.

Using a performance model to compute AVFs
Using the methodology described earlier,

dynamic slices of the SPEC CPU2000 bench-
mark suite, and a performance model written
in the Asim framework,11 we computed the

B L
Total number of bits in hardware structure

ACE ACE×

72

MICRO TOP PICKS

IEEE MICRO

AVF for an Itanium 2-like processor’s instruc-
tion queue. Figure 1 plots the state bit break-
down for the instruction queue; a similar plot
for the execution units is available in another
publication.12 We found that the instruction
queue’s AVF ranges from 14 percent to 47 per-
cent, and the execution units’ AVF ranges
from 4 percent to 27 percent. Because our
methodology is conservative, these fractions
are upper bounds on the AVF numbers.

Further refinement of this analysis (for
example, derating the hint bits in an IA-64
load instruction) could further lower the AVF
estimates. Wang, Fertig, and Patel describe
additional instances in which a fault in a con-
ditional branch instruction might not result
in an error in a program’s final output.13 Nev-
ertheless, we believe we have captured most
of the dominant AVF effects for the the Ita-
nium2-like microarchitecture we examined,
and, hence, we expect the contribution of fur-
ther refinement to be small.

Related work
Earlier work in estimating AVFs has applied

statistical fault injection to hardware register-
transfer-level (RTL) models. Kim and Somani
made a systematic fault injection study of Sun
Microsystems’ publicly disclosed picoJava II

RTL model and reported widely varying AVFs
for picoJava II hardware structures.14 Wang
and Patel injected faults into an RTL model
of the Alpha 21164 processor and reported
AVFs of less than 10 percent for the pipeline
latches at the Center for Circuits, Systems, and
Software’s second annual review in 2003. The
greatest advantage of using an RTL model is
that it usually has all the hardware structures
necessary to create a processor. In contrast, a
performance model, which we used in our
study, has only components that affect a
processor’s performance. Consequently, we can
report only the AVFs of modeled components.
Nevertheless, the highly detailed performance
models used in the industry capture significant
portions of the processors under design.

Our methodology improves upon statistical
fault injection into RTL models in four ways.
First, ACE-bit analysis provides determinis-
tic AVF estimates in a single experiment for
any benchmark. In contrast, statistical fault
injection requires many experiments per
benchmark to reach a statistically significant
sample size. Second, by recognizing values
that are dead or masked, ACE analysis pro-
vides a more comprehensive determination of
whether faults affect processor operation,
resulting in tighter AVF estimates. Third,

73NOVEMBER–DECEMBER 2003

0

10

20

30

40

50

60

70

80

90

100

bz
ip

2_
so

ur
ce

cc
_2

00

cr
af

ty

eo
n_

ka
jiy

a

ga
p

gz
ip

_g
ra

p
hi

c

m
cf

p
ar

se
r

p
er

lb
m

k_
m

ak
er

an
d

tw
ol

f

vo
rt

ex
_l

en
di

an
3

vp
r_

ro
ut

e

am
m

p

ap
p

lu

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

av
er

ag
e

Pe
rc

en
ta

ge
 i

n
 S

ta
te

ACE

Idle

Ex_ACE

Wrong_path

Dynamically dead

Prefetch

Predicated_false

No-op

Figure 1. Breakdown of architectural and microarchitectural states for the Itanium 2-like processor’s instruction queue. The AVF is
the percentage of bits in the instruction queue that are ACE bits. The horizontal axis plots the SPEC CPU2000 benchmark suite.

ACE analysis gives useful insight into system
behavior, such as a breakdown of why un-
ACE bits do not contribute to the program
result. The application of Little’s law to rough
AVF estimation exemplifies the usefulness of
the more abstract nature of ACE analysis.
Finally, fault injection into an RTL model
requires an RTL model, which is generally not
available during a microprocessor design pro-
ject’s early stages. In contrast, a performance
model, which we use for ACE analysis, is usu-
ally available at the beginning of a micro-
processor design project.

Using the techniques we’ve described,
microprocessor designers can estimate the

per-structure AVF numbers and hence an entire
chip’s SDC rate relatively quickly. If the micro-
processor does not meet the target SDC rate
(as set by the company or market), these AVF
estimates can help designers choose the appro-
priate error detection or correction schemes,
such as parity or error-correcting codes, to
make specific structures invulnerable to single-
bit upsets. Large structures with high AVFs, for
example, would be obvious candidates for such
error protection. Thus, microprocessor design-
ers can iteratively lower the chip’s SDC rate by
adding increased error protection, using AVF
estimates as a guide. MICRO

References
1. J.F. Ziegler et al., “IBM Experiments in Soft

Fails in Computer Electronics (1978–1994),”
IBM J. Research and Development, vol. 40,
no. 1, Jan. 1996, pp. 3-18.

2. R. Baumann, “Soft Errors in Commercial
Semiconductor Technology: Overview and
Scaling Trends,” IEEE 2002 Reliability
Physics Symp. Tutorial Notes, Reliability
Fundamentals, IEEE Press, 2002, pp. 121-
01.1–121-01.14.

3. E. Normand, “Single-Event Upset at Ground
Level,” IEEE Trans. Nuclear Science, vol. 43,
no. 6, Dec. 1996, pp. 2742-2750.

4. H. Ando et al., “A 1.3GHz Fifth Generation
SPARC64 Microprocessor,” Proc. IEEE Int’l
Solid-State Circuits Conf. (ISSCC 03), IEEE
Press, 2003, pp. 246-247.

5. T. Calin, M. Nicolaidis, and R. Velazco,
“Upset Hardened Memory Design for Sub-
micron CMOS Technology,” IEEE Trans.
Nuclear Science, vol. 43, no. 6, Dec. 1996,

pp. 2874-2878.
6. T.J. Slegel et al., “IBM’s S/390 G5 Micro-

processor Design,” IEEE Micro, vol. 19, no.
2, Mar.-Apr. 1999, pp. 12-23.

7. T.M. Austin, “DIVA: A Reliable Substrate for
Deep Submicron Microarchitecture Design,”
Proc. 32nd Ann. Int’l Symp. Microarchitec-
ture (MICRO-32), IEEE CS Press, 1999, pp.
196-207.

8. S.S. Mukherjee, M. Kontz, and S.K. Rein-
hardt, “Detailed Design and Evaluation of
Redundant Multithreading Alternatives,”
Proc. 29th Ann. Int’l Symp. Computer Archi-
tecture (ISCA 02), IEEE CS Press, 2002, pp.
99-110.

9. S.K. Reinhardt and S.S. Mukherjee, “Transient
Fault Detection via Simultaneous Multi-
threading,” Proc. 27th Ann. Int’l Symp. Com-
puter Architecture (ISCA 2000), ACM Press,
2000, pp. 25-36.

10. E.D. Lazowska et al., Quantitative System
Performance, pp. 42-46, Prentice-Hall, 1984.

11. J. Emer et al., “Asim: A Performance Model
Framework,” Computer, vol. 35, no. 2, Feb.
2002, pp. 68-76.

12. S.S. Mukherjee et al., “A Systematic
Methodology to Compute the Architectural
Vulnerability Factors of a High-Performance
Microprocessor,” to be published in Proc.
36th Ann. Int’l Symp. Microarchitecture
(MICRO-36), IEEE CS Press, 2003.

13. N. Wang , M. Fertig, and S. Patel, “Y-Branch-
es: When You Come to a Fork in the Road,
Take It,” Proc. 12th Int’l Conf. Parallel Archi-
tectures and Compilation Techniques (PACT
03), IEEE CS Press, 2003, pp. 56-67.

14. S. Kim and A.K. Somani, “Soft Error Sensi-
tivity Characterization for Microprocessor
Dependability Enhancement Strategy,”
Proc. Int’l Conf. Dependable Systems and
Networks (DSN 02), IEEE CS Press, 2002,
pp. 416-428.

Shubhendu S. Mukherjee is a senior staff
engineer at Intel’s Massachusetts Micro-
processor Design Center, where he leads the
Fault-Aware Computing Technology (FACT)
project. His research interests include proces-
sor reliability and interconnection networks.
Mukherjee has a BTech in Computer Science
and Engineering from the Indian Institute of
Technology, Kanpur, and an MS and a PhD
in Computer Science from the University of

74

MICRO TOP PICKS

IEEE MICRO

Wisconsin-Madison. He is a member of ACM
and and a senior member of IEEE.

Christopher T. Weaver is a hardware engineer
in the VSSAD labs at Intel’s Massachusetts
Microprocessor Design Center, where he
works in the Fault-Aware Computing Tech-
nology project. His research interests include
reliable computing, performance modeling,
semi-custom and ASIC design, and power and
fault modeling. Weaver has BS degrees in elec-
trical engineering, computer engineering, and
multidisciplinary studies from North Caroli-
na State University and an MS in computer
science and engineering from the University
of Michigan.

Joel Emer is an Intel fellow in the VSSAD group
at Intel. His research interests include high-per-
formance microarchitecture, multithreaded
processors, processor pipeline organization,
processor reliability, and performance-model-
ing frameworks. Emer has a PhD in electrical
engineering from the University of Illinois. He
is a Fellow of the IEEE.

Steven K. Reinhardt is an associate professor
of electrical engineering and computer science
at the University of Michigan in Ann Arbor,

and a consultant to Intel. His research inter-
ests include processor architecture, memory
systems, and computer system simulation.
Reinhardt has a BS from Case Western
Reserve University and an MS from Stanford
University, both in electrical engineering, and
a PhD in computer science from the Univer-
sity of Wisconsin-Madison. He is a member
of the IEEE Computer Society and of ACM.

Todd Austin is an associate professor of elec-
trical engineering and computer science at the
University of Michigan in Ann Arbor. His
research interests include computer architec-
ture, compilers, computer system verification,
and performance analysis tools and tech-
niques. Austin has a PhD in computer science
from the University of Wisconsin.

Direct questions and comments about this
article to Shubhendu S. Mukherjee, MMDC,
Intel Corp., 334 South St., Shrewsbury, MA
01545; shubu.mukherjee@intel.com.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/
dlib/.

75NOVEMBER–DECEMBER 2003

Get access
to individual IEEE Computer Society

documents online.

More than 67,000 articles

and conference papers available!

US$9 per article for members

US$19 for nonmembers

http://computer.org/publications/dlib/

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

