
To appear in the Proceedings of the 36th Annual International Symposium on Microarchitecture (MICRO), December 2003

 1

ABSTRACT

Single-event upsets from particle strikes have become a
key challenge in microprocessor design. Techniques to
deal with these transient faults exist, but come at a cost.
Designers clearly require accurate estimates of processor
error rates to make appropriate cost/reliability trade-offs.
This paper describes a method for generating these
estimates.

A key aspect of this analysis is that some single-bit faults
(such as those occurring in the branch predictor) will not
produce an error in a program's output. We define a
structure's architectural vulnerability factor (AVF) as the
probability that a fault in that particular structure will
result in an error. A structure's error rate is the product of
its raw error rate, as determined by process and circuit
technology, and the AVF.

Unfortunately, computing AVFs of complex structures,
such as the instruction queue, can be quite involved. We
identify numerous cases, such as prefetches, dynamically
dead code, and wrong-path instructions, in which a fault
will not affect correct execution. We instrument a detailed
IA64 processor simulator to map bit-level microarchitec-
tural state to these cases, generating per-structure AVF
estimates. This analysis shows AVFs of 28% and 9% for
the instruction queue and execution units, respectively,
averaged across dynamic sections of the entire CPU2000
benchmark suite.

1. INTRODUCTION
Moore’s Law—the continuous exponential growth in
transistors per chip—has brought tremendous progress in
the functionality and performance of semiconductor
devices, particularly microprocessors. Each succeeding
technology generation has also introduced new obstacles to
maintaining this growth rate. Transient faults due to single
event upsets have emerged as a key challenge whose
importance is likely to increase significantly in the next
few design generations.

Single event upsets arise from energetic particles—such as
neutron particles from cosmic rays and alpha particles
from packaging material—generating electron-hole pairs
as they pass through a semiconductor device. Transistor
source and diffusion nodes can collect these charges. A
sufficient amount of accumulated charge may invert the
state of a logic device—such as a latch, SRAM cell, or
gate—thereby introducing a logical fault into the circuit’s

operation [27]. Because this type of fault does not reflect a
permanent error of the device, it is termed soft or transient.

A device’s error rate due to single event upsets depends on
both the particle flux it encounters and its circuit character-
istics. The particle flux depends on the environment. For
example, at an altitude 1.5km—the altitude of Denver,
Colorado—the neutron flux due to cosmic rays is 3 to 5
times higher than at sea level. Device circuit parameters
that influence the error rate include the amount of charge
stored, the vulnerable cross-section area, and the charge
collection efficiency [22]. As feature sizes shrink, the
smaller amount of charge per device makes a particle
strike more likely to cause an error, but the reduced cross-
section makes a strike on any given device less likely.
These effects roughly cancel for latches and SRAM cells;
thus, the error rate per latch or SRAM bit at a specific
altitude is projected to remain roughly constant or decrease
slightly for the next several technology generations ([12],
[11]). However, in the absence of error correction
schemes, the chip error rate will grow in direct proportion
to the number of bits on the chip. Thus, while Moore’s
Law gives us exponential increases in transistor counts,
this bounty comes at the cost of exponential increases in
error rates for unprotected chips!

Soft errors due to cosmic rays are already making an
impact in industry. In 2000, Sun Microsystems acknowl-
edged cosmic ray strikes on unprotected cache memories
as the cause of random crashes at major customer sites in
its flagship Enterprise server line [3]. Sun is documented
to having lost a major customer to IBM from this episode
[3]. In 1996, Normand [17] reported numerous incidents
of cosmic ray strikes by studying the error logs of several
large computer systems. The fear of cosmic ray strikes
prompted Fujitsu to protect 80% of its 200,000 latches in
its recent SPARC processor with some form of error
detection [1].

A variety of techniques exist to deal with such faults, from
special radiation-hardened circuit designs (e.g., [6]) to
localized error detection and correction (e.g., [1]) to
architectural redundancy (e.g., [26], [23], [20], [2], [16],
[18]). However, all of these approaches introduce a
significant penalty in performance, power, die size, and
design time. Consequently, designers must carefully
weigh the benefits of adding these techniques against their
cost. Although a microprocessor with inadequate protec-
tion from transient faults may prove useless due to its

A Systematic Methodology to Compute the Architectural
Vulnerability Factors for a High-Performance Microprocessor

Shubhendu S. Mukherjee,1 Christopher Weaver,1,2 Joel Emer,1 Steven K. Reinhardt,1,2 and Todd Austin2
{shubu.mukherjee, christopher.t.weaver, joel.emer}@intel.com, {stever, austin}@umich.edu

 1 VSSAD, MMDC, Intel Corporation
334 South Street. Shrewsbury, Massachusetts 01545

2 Advanced Computer Architecture Lab
EECS Department, University of Michigan
1301 Beal Avenue, Ann Arbor, MI 48109

To appear in the Proceedings of the 36th Annual International Symposium on Microarchitecture (MICRO), December 2003

 2

unreliability, excessive protection may make the resulting
product uncompetitive in cost and/or performance.
Unfortunately, tools and techniques to estimate processor
transient error rates are not readily available or fully
understood. Furthermore, because a comprehensive error-
handling strategy is best designed in from the ground up,
these estimates are needed early in the design cycle.

The key to generating these error-rate estimates is
understanding that not all faults in a microarchitectural
structure affect the final outcome of a program. As a
result, an estimate based only on raw device fault rates will
be pessimistic, leading architects to over-design their
processor’s fault-handling features. For example, a single-
bit fault in a branch predictor will not affect the sequence
or results of any committed instructions. We call the
probability that a fault in a processor structure will result
in a visible error in the final output of a program that
structure’s architectural vulnerability factor (AVF). Thus,
the branch predictor’s AVF is 0%. In contrast, a single-bit
fault in the committed program counter will cause the
wrong instructions to be executed, almost certainly
affecting the program’s result. Hence, the AVF for the
committed program counter is effectively 100%. Many
structures will have an AVF that is in between these two
extremes. The overall error rate of a microarchitectural
structure is the product of its raw fault rate and its AVF.
By summing the contributions of all on-chip structures, a
processor architect can map the raw fault rate (dictated by
process and circuit issues) to an overall processor error
rate, and thus determine whether the design meets its error
rate goals (set according to the target market). Signifi-
cantly, this allows an architect to examine the relative
contributions of various structures and identify the most
cost-effective areas to employ fault protection techniques.

This paper estimates AVFs using a novel approach that
tracks the subset of processor state bits required for
architecturally correct execution (ACE). Any fault in a
storage cell that contains one of these bits, which we call
ACE bits, will cause a visible error in the final output of a
program in the absence of error correction techniques. We
call the remaining processor state bits un-ACE bits, as their
specific values are unnecessary for architecturally correct
execution. A fault that affects only un-ACE bits will not
cause an error. The AVF for a single-bit storage cell is
simply the fraction of time that it holds ACE bits.
Assuming that all cells have equal raw fault rates, the AVF
for a structure is the average AVF of its storage cells, or
the average fraction of its cells that hold ACE bits at any
point in time.

The branch predictor’s AVF is thus 0% because all
predictor bits are always un-ACE bits. Similarly, all the
bits in the committed PC are always ACE bits, leading to
an AVF of 100%. The real power of ACE-bit analysis lies
in computing AVFs for structures that hold ACE bits at
some times and un-ACE bits at other times—i.e., most
other processor structures. Rather than enumerate—for
each structure—which bits may matter and which may not,

we simply track the ACE bits through the pipeline,
determine the average number of ACE bits in each
particular structure, and take the ratios of these numbers to
the bit capacities of the structures. This assumption relies
on fault-inducing particle strikes being randomly and
uniformly distributed, as is the case for cosmic rays [28].

A straightforward application of our methodology is to
count the ACE bits in a structure directly using a perform-
ance model. We can also estimate the AVF of a buffering
structure by counting the ACE bits that flow past a point in
the pipeline and applying Little’s Law.

To compute upper bounds on AVFs, we conservatively
assume that every bit is an ACE bit unless we can prove
otherwise. We identify un-ACE bits at both the architec-
tural and microarchitectural levels. We identify five
classes of architectural un-ACE bits. These un-ACE bits
come from NOP instructions, performance-enhancing
instructions (e.g., prefetches), predicated-false instructions,
dynamically dead code, and logical masking. Similarly,
we identify four classes of microarchitectural un-ACE bits.
These are idle or invalid bits, mis-speculated bits, such as
wrong-path instructions, predictor structure bits, and
microarchitecturally dead bits.

Using the above methodology, dynamic slices of the SPEC
2000 benchmark suite, and a performance model, we
compute the AVF for the instruction queue and execution
units of an Itanium2®-like IA64 processor. We find that
the AVF of the instruction queue ranges between 14% and
47%, whereas the AVFs of the execution units range
between 4% and 27%. Because our methodology is
conservative, these fractions are upper bounds on the AVF
numbers. Further refinement of this analysis (e.g.,
derating the hint bits in an IA64 load instruction) could
further lower the AVF estimates. However, we believe we
have captured most of the dominant AVF effects for the
IA-64 architecture and Itanium2®-like microarchitecture
we examined and, hence, we expect the contribution from
further refinement to be small.

The rest of the paper is organized as follows. Section 2
provides background on reliability metrics used in the
industry to express soft error rates. Section 3 describes the
components we must consider to compute the AVF.
Section 4 shows how to compute AVF using the classifica-
tion of Section 3. Section 5 describes our methodology and
Section 6 presents our results. Section 7 describes related
work and Section 8 presents our conclusions.

2. SOFT ERROR BACKGROUND AND
TERMINOLOGY

Section 2.1 describes the error metrics MTBF and FIT. We
discuss vulnerability factors and their impact on error
detection and correction requirements in Section 2.2.

To appear in the Proceedings of the 36th Annual International Symposium on Microarchitecture (MICRO), December 2003

 3

2.1 MTBF and FIT

Vendors express an error budget at a reference altitude in
terms of Mean Time Between Failures (MTBF). Errors
are often further classified as undetected or detected. The
former are typically referred to as silent data corruption
(SDC); we call the latter detected unrecoverable errors
(DUE). Note that detected recoverable errors are not
errors.

For example, for its Power4 processor-based systems, IBM
targets 1000 years system MTBF for SDC errors, 25 years
system MTBF for DUE errors that result in a system crash,
and 10 years system MTBF for DUE errors that result in
an application crash [4]. Note that the processor MTBF
must be significantly higher than the system MTBF,
particularly for large multiprocessor systems.

In this paper we focus on SDC errors. Adding error
detection (but not correction) to a structure eliminates SDC
errors, converting those faults to DUE errors.

Another commonly used unit for error rates is FIT (Error
in Time), which is inversely related to MTBF. One FIT
specifies one failure in a billion hours. Thus, 1000 years

MTBF equals 114 FIT (109 / (24×365×1000)). A zero
error rate corresponds to zero FIT and infinite MTBF.
Designers usually work with FIT because FIT is additive,
unlike MTBF. �

To evaluate whether a chip meets its soft error budget—
possibly via the use of error protection and mitigation
techniques—microprocessor designers use sophisticated
computer models to compute the FIT rate for every
device—RAM cells, latches, and logic gates—on the chip.
The effective FIT rate for a structure is the product of its
raw circuit FIT rate and the structure’s vulnerability factor,
i.e., an estimate of the probability that a circuit fault will

result in an observable error (see the following section).
The overall FIT rate of the chip is calculated by summing
the effective FIT rates of all the structures on the chip.

Current predictions show that typical raw FIT rate
numbers for latches and SRAM cells vary between 0.001 –
0.01 FIT/bit at sea level ([24],[17],[12],[11]). The FIT/bit
is projected to remain in this range for the next several
technology generations, unless microprocessors aggres-
sively lower the supply voltage to reduce the overall power
dissipation of chip. The total FIT contribution of logic
gates today is a negligible fraction of the FIT contribution
from latches [22], so we concern ourselves only with faults
due to strikes on latches and SRAM cells. In the future, if
the contribution of logic becomes non-negligible, we could
incorporate the effective FIT rate due to a logic block into
the FIT rate of the latch that it feeds.

2.2 Vulnerability Factors

The effective FIT rate per bit is influenced by several
vulnerability factors (also known as derating factors or
soft error sensitivity factors). In general, a vulnerability
factor indicates the probability that an internal fault in a
device’s operation will result in an externally visible error.

For example, when a level-sensitive latch is accepting data
rather than holding data, a strike on its stored bit may not
result in an error, because the erroneous stored value will
be overridden by the (correct) input value. If the latch is
accepting data 50% of the time, this effect results in a
timing vulnerability factor for the latch of 50%. For
simplicity, we assume this timing vulnerability factor is
already incorporated in the raw device fault rate. The
computation of the device fault rate also includes some
circuit-level vulnerability factors which are beyond the
scope of this paper.

The architectural vulnerability factor (AVF) expresses the
probability that a visible system error will occur given a bit
flip in a storage cell. The AVF can have a significant
impact on the effective error rate of a processor. Prior
studies with statistical fault injection into RTL models
have demonstrated AVFs of 1%-10% for latches [25] and
0% - 100% across a range of architectural and microarchi-
tectural state bits [13].

Figure 1 illustrates the impact of AVF on the extent of
error detection needed in a microprocessor. Thus, to meet
IBM’s SDC target of 114 FIT in 2005, with 100% AVF we
must protect 80% of the bits (and, hence have 20%
vulnerable bits). However, with an AVF of 10%, we do
not have to protect any bits to meet the target 114 FIT.
Similarly, in 2010 we can meet the target SDC FIT with
80% protection and 10% AVF, but not with 100% AVF.

3. IDENTIFYING UN-ACE BITS
The key to computing AVFs is to determine which bits
affect the final system output (i.e., which are the ACE bits)
and which do not (i.e., the un-ACE bits). Interestingly,
this does not necessarily correspond to meeting the precise
semantics of the architecture. Given a specific execution

1

10

100

1000

10000

100000

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

Year

S
D

C
 F

IT

100% Vulnerable, 100% AVF

20% Vulnerable, 100% AVF

100% Vulnerable, 10% AVF

20% Vulnerable, 10% AVF

IBM Goal

Figure 1. Impact of AVF on SDC FIT of future microprocessors.
For 2003 we assumed 200,000 bits may be vulnerable to cosmic
ray strikes [1] . This figure assumes a FIT/bit of 0.001. The
number of vulnerable bits grows with Moore’s Law.

To appear in the Proceedings of the 36th Annual International Symposium on Microarchitecture (MICRO), December 2003

 4

of program, we only care that the final system output as
observed by a user is correct. Incorrect results not
observed by any user (e.g., dynamically dead instruction
results) are irrelevant, and bits encountering faults leading
to such incorrect results are un-ACE bits.

The definition of a program’s output depends on the user’s
interaction with the program. Normally a program’s
outputs are just the values sent by the program via I/O
operations. However, if a program is run under a debugger,
then program variables examined via the debugger become
outputs, and influence the determination of which bits are
ACE bits.

Similarly, in a multiprocessor system, multiple executions
of the same parallel program may yield different outcomes
due to race conditions. Whether a bit is ACE or un-ACE
may depend on the outcome of a race; our analysis would
use the outcome of the race in the particular execution
under study. (We analyze only a uniprocessor system in
this paper.)

For our purposes, we require a precise definition of what
constitutes an output. Conceptually, we take the broadest
view: an output is a program’s generated value that is sent
to an I/O device. In practice, we do not typically track
values this far. However, we do track values well beyond
the point that they are committed to architectural registers
or stored to memory to determine whether they could
potentially influence the output.

Given this definition of outputs, we would like to deter-
mine which bits are ACE and which are un-ACE. Because
we desire a conservative (upper-bound) AVF estimate, we
first assume that all bits are ACE bits unless we can show
otherwise. We then identify as many sources of un-ACE
bits as we can. We do not need (nor claim to) have a
complete categorization of un-ACE bits; however, the
more comprehensive our analysis is, the tighter our bound
will be. Nevertheless, we believe that the sources below
capture the dominant contributors of un-ACE bits.

For discussion purposes, we divide the sources of un-ACE
bits into two general categories: microarchitectural un-
ACE bits (Section 3.1) and architectural un-ACE bits
(Section 3.2). Section 4 will show how to use this
classification to compute the AVF of hardware structures.

3.1 Microarchitectural Un-ACE Bits

We call processor state bits that cannot influence the
committed instruction path microarchitectural un-ACE
bits. Microarchitectural un-ACE bits can arise from the
following four situations:

• Idle or Invalid State. There are numerous instances in a
microarchitecture when a data or status bit is idle or does
not contain any valid information. Such data and status
bits are un-ACE bits. Control bits are always assumed to
be ACE bits because a strike on a control bit may cause
idle state to be treated as non-idle state.

• Mis-speculated State. Modern microprocessors often
perform speculative operations that may later be found to

be incorrect. Examples of such operations include
branch prediction or speculative memory disambigua-
tion. The bits that represent incorrectly speculated
operations are un-ACE bits.

• Predictor Structures. Modern microprocessors have
many predictor structures, such as branch predictors,
jump predictors, return stack predictors, and store-load
dependence predictors. A fault in such a structure may
result in a misprediction, and will affect performance,
but will not affect correct execution. Consequently, all
such predictor structures contain only un-ACE bits.

• Ex-ACE State. ACE bits become un-ACE bits after their
last use. In other words, the bits are dead. This category
encompasses both architecturally dead values, such as
those in registers, as well as architecturally invisible
state. For example, after a dynamic instance of an in-
struction is issued for the last time from an instruction
queue, it may still persist in a valid state in the instruc-
tion queue, waiting until the processor knows that no
further re-issue will be needed, but a fault in that instruc-
tion will not have any effect on the output of a program.

3.2 Architectural Un-ACE Bits

Architectural un-ACE bits are those that affect correct-path
instruction execution, but only in ways that do not change
the output of the system. For example, a strike on a
storage cell carrying the operand specifier of a NOP
instruction will not affect a program’s computation. We
call the bits of an instruction that are not necessary for an
ACE path un-ACE instruction bits. Below we identify five
sources of architectural un-ACE bits:

• NOP instructions. Most instruction sets have NOP
instructions that do not affect the architectural state of
the processor. Fahs, et al. [9] found 10% NOPs in the
dynamic instruction stream of SPEC2000 integer bench-
mark suite using the Alpha instruction set. On the Intel®
Itanium® processor, Choi, et al. [7] observed 27% retired
NOPs in SPEC2000 integer benchmarks. These
instructions are introduced for a variety of reasons, such
as to align instructions to address boundaries or to fill
VLIW-style instruction templates. Clearly, the only
ACE bits in a NOP instruction are those that distinguish
it from a non-NOP. Depending on the instruction set,
this may be the opcode or the destination register speci-
fier. The remaining bits are un-ACE bits.

• Performance-enhancing instructions. Most modern
instruction sets include performance-enhancing instruc-
tions. For example, a non-binding prefetch instruction
brings data into the cache to reduce the latency of later
loads or stores. A single-bit upset in a non-opcode field
of such a prefetch instruction will not affect the correct
execution of a program. A fault may cause the wrong
data to get prefetched, or may cause the address to
become invalid, in which case the prefetch will be
ignored, but the program semantics will not change.
Thus, the non-opcode bits are un-ACE bits. Fahs, et al.
[9] reported that 0.3% of the dynamic instructions in

To appear in the Proceedings of the 36th Annual International Symposium on Microarchitecture (MICRO), December 2003

 5

SPEC2000 integer suite using the Alpha instruction set
were prefetch instructions. The Itanium2® architecture
has other performance-enhancing instructions, such as
the branch predict hint instruction; none of these were
present in the binaries we used for our evaluation.

• Predicated-false instructions. Predicated instruction-set
architectures, such as IA64, allow instruction execution
to be qualified based on a predicate register. If the
predicate register is true, the instruction will be commit-
ted. If the predicated register is false, the instruction’s
result will be discarded. Clearly, all bits except the
predicate register specifier bits in a predicated-false
instruction are un-ACE bits. A corruption of the predi-
cate register specifier bits may erroneously cause the
instruction to be predicated true. Hence, we conserva-
tively call those ACE instruction bits. However, if the
instruction itself is dynamically dead (see below) and the
predicate register is overwritten before any other inter-
vening use, then the predicate register as well as the
corresponding specifier can be considered un-ACE bits.
In our evaluation, we found about 7% of dynamic
instructions were predicated false.

• Dynamically dead instructions. Dynamically dead
instructions are those whose results are not used. In-
structions whose results are simply not read by any other
instructions are termed first-level dynamically dead
(FDD). Transitively dynamically dead (TDD) instruc-
tions are those whose results are used only by FDD
instructions or other TDD instructions. We consider an
instruction with multiple destination registers dynami-
cally dead only if all its destination registers are unused.

We track FDD and TDD instructions through both
registers and memory. For example, if two instructions
A and B successively write the same register R1 without
any intervening read of register R1, then A is an FDD
instruction tracked via register R1. Similarly, if two
store instructions C and D write the same memory
address M without any intervening load to M, then C is
an FDD instruction tracked via memory address M.

Using the Alpha instruction set running the SPEC2000
integer benchmarks, Butts and Sohi [5] reported about
9% FDD and 3% TDD instructions tracked only via
registers. In contrast, Fahs, et al. [9] found about 14%
FDD and TDD instructions—tracked via both registers
and memory—in their evaluation of SPEC2000 integer
benchmarks running on an Alpha instruction set architec-
ture. Our evaluation with IA64 across portions of 18
SPEC2000 benchmarks shows about 12% FDD and 8%
TDD instructions tracked via both registers and memory.
Our analysis assumes that memory results produced by
FDD and TDD instructions are not used by other I/O
devices. We suspect that our numbers for dynamically
dead instructions are higher than earlier evaluations
because of aggressive compiler optimizations, which has
shown to increase the fraction of dead instructions [5].

In this paper, we count all the opcode and destination
register specifier bits of FDD and TDD instructions as

ACE bits; all other instruction bits are clearly un-ACE
bits. If the opcode bits get corrupted, then the machine
may crash when evaluating those bits. If the destination
register specifier bits get corrupted, then an FDD or TDD
instruction may corrupt a non-dead architectural register,
which could affect the final outcome of the program.
This accounting is conservative, as it is likely that some
fraction of bit upsets in the opcode or destination register
specifier would not lead to incorrect program output.

• Logical masking. There are many bits that belong to
operands in a chain of computation whose values still do
not influence the computation’s results. We say these
bits are logically masked. For example, consider the
following code sequence:

(1) R2 ß R3 OR 0x00FF
(2) R4 ß R2 OR 0xFF00
(3) R3 ß 0
(4) R2 ß 0
(5) output R4

In this case, the lower 16 bits of R4 will be 0xFFFF
regardless of the values of R2 and R3. When the value
of a bit in an operand does not influence the result of the
operation, we call this logical masking. In our example,
bits 0 to 7 (the low order bits) of R3 are logically masked
in instruction 1, and bits 8 to 15 of R2 are masked in
instruction 2. For a bit in a register to be logically
masked (and thus un-ACE), it must be logically masked
for all of its uses. We could identify additional un-ACE
bits by considering transitive logical masking, where the
effects of logical masking are propagated backwards
transitively. In the above code sequence, bits 8 to 15 of
R3 contribute only to bits 8 to 15 of R2, assuming no
other uses of R3. Because bits 8 to 15 of R2 are logi-
cally masked, via transitive logical masking, bits 8 to 15
of R3 are masked as well. We do not evaluate transitive
logical masking in this paper.

We have found that logical masking arises from compare
instructions prior to a branches (where it matters only if
the value is zero or non-zero), bitwise logical operations,
and 32-bit operations in a 64-bit architecture (where we
assume that the upper 32 bits are un-ACE, which may
not be true for certain ISAs, such as the Alpha ISA). For
our purpose, all logically masked bits are un-ACE bits
and can be factored out of the AVF calculation.

Further analysis of a program—not considered in this
paper—can potentially reveal other opportunities for
derating. For example, hint bits in IA64’s load instructions
can be considered un-ACE. Similarly, it may be possible
to identify further logical masking by analyzing values
used by integer adds or floating point operations, but we
do not consider them in this paper.

4. COMPUTING AVF
This section describes how to compute AVF based on the
sources of un-ACE bits from Section 3. Section 4.1
outlines the equations we use to compute AVFs for storage
cells. Section 4.2 shows how to compute AVFs using

To appear in the Proceedings of the 36th Annual International Symposium on Microarchitecture (MICRO), December 2003

 6

Little’s Law [15]. Finally, Section 4.3 shows how to
compute the AVF using a performance model.

4.1 AVF Equations for a Hardware Structure

The AVF of a storage cell is the fraction of time an upset
in that cell will cause a visible error in the final output of a
program. Thus, the AVF for an unprotected storage cell is
the percentage of time the cell contains an ACE bit. For
example, if a storage cell contains ACE bits for a million
cycles out of an execution of ten million cycles, then the
AVF for that cell is 10%.

Although we defined the AVF equations with respect to a
storage cell, in this paper we will compute the AVF for a
whole hardware structure. The AVF for a hardware
structure is simply the average AVF for all its bits in that
structure, assuming that all bits in that structure have the
same circuit composition and, hence, the same raw FIT
rate. Then, the AVF of a hardware structure is equal to:

average number of ACE bits resident in a hardware structure in a cycle

� �

total number of bits in the hardware structure

The above equation can be rewritten as:

� residency (in cycles) of all ACE bits in a structure

� �

total number of bits in the hardware structure × total execution cycles

The latter equation makes it easier to compute the AVF
using a simulator.

4.2 Computing AVFs using Little’s Law
Using Little’s Law [15], we can compute the average
number of ACE bits resident in a structure and, therefore,
the AVF of the structure. Little’s Law can be translated
into the equation N = B×L, where N = average number of
bits in a box, B = average bandwidth per cycle into the
box, and L = average latency of an individual bit through
the box. Applying this to ACE bits, we get the average
number of ACE bits in a box as the product of the average
bandwidth of ACE bits into the box (Bace) times the
average residence cycles of an ACE bit in the box (Lace).
Thus, we can express the AVF of a structure as:

Bace × Lace
� �

total number of bits in the hardware structure

In many cases, it is possible to compute the bandwidth of
ACE bits into a structure and the average residence cycles
of ACE instructions using hardware performance counters,
allowing AVF estimation without a simulation model. In
Section 6.2, we will show how to approximate the AVF of
an instruction queue using the formulation in this section.

4.3 Computing AVFs using a Performance Model

In this paper, we compute the AVFs of two structures—the
instruction queue and execution units—using the Asim
performance model framework (Section 5). To compute
the AVF of a structure using the equation in Section 4.1,
we need the following information:

• sum of all residence cycles of all ACE bits of the objects
resident in the structure during the execution of the
program,

• total execution cycles for which we observe the ACE
bits’ residence time, and

• total number of bits in a hardware structure.

Using a performance model, we can compute all of the
above. Specifically, in this paper, we examine objects that
carry instruction information along the pipeline.

Our AVF algorithm is divided up into three parts. As an
instruction flows through different structures in the
pipeline, we record the residence time of the instruction in
the structure. Then, before the instruction disappears from
the machine—either via a commit or via a squash—we
update the structures it flowed through with a variety of
information, such as the residence cycles, whether the
instruction committed, etc. (part 1). Also, if the instruction
commits, we put the instruction in a post-commit analysis
window to determine if the instruction is dynamically dead
or if there are any bits that are logically masked (part 2).
Finally, at the end of the simulation, using the information
captured in parts 1 and 2, we can easily compute the AVF
of a structure (part 3).

To compute whether an instruction is a first-level dynami-
cally dead (FDD) or a transitively dynamically dead
(TDD) instruction and whether any of the result bits have
logical masking (Section 3.2), we must know about the
future use of an instruction’s result. We use the analysis
window to capture this future use. When an instruction
commits, we enter it into the analysis window, linking it
with the instructions that produced its operands. At any
time, we can analyze the future use of an instruction’s
results by examining its successors in the analysis window.

Table 1. SPEC2000 Benchmarks used in this paper. M = 1
Million.
Integer
Benchmarks

Instructions
Skipped

Floating Point
Benchmarks

Instructions
Skipped

bzip2-source 48,900 M ammp 50,900 M
cc-200 16,600 M applu 500 M
crafty 120,600 M apsi 100 M
eon-kajiya 73,000 M art-110 36,400 M
gap 18,800 M equake 1,500 M
gzip-graphic 2,9000 M facerec 64,100 M
mcf 26,200 M fma3d 23,600 M
parser 71,400 M galgel 5,000 M
perlbmk-makerand 0 M lucas 123,500 M
twolf 185,400 M mesa 73,300 M
vortex_lendian3 59,300 M mgrid 200 M
vpr-route 49,200 M sixtrack 4,100 M
 swim 78,100 M
 wupwise 23,800 M

To appear in the Proceedings of the 36th Annual International Symposium on Microarchitecture (MICRO), December 2003

 7

Of course, because the analysis window must be finite in
size, we cannot always determine the future use precisely.
We found that an analysis window of 40,000 instructions
covers most of the needed future use information.

The analysis window has three sub-windows which
compute FDD, TDD, and logical masking information,
respectively. Each sub-window has two primary data
structures: a linked list of instructions in commit order and
a table indexed via architectural register number or
memory address. The linked list maintains the relative age
information necessary to compute future use. Each entry
in the table maintains the list of producers and consumers
for that register or memory location. The FDD, TDD, and
logical masking information can all be computed using this
list of producers and consumers. Thus, a list with two
consecutive producers for a register R and no intervening
consumer for the same register R can be used to mark the
first producer of R as a dynamically dead instruction.

We used microbenchmarks written in assembly language
to ensure that the analysis window was working correctly.
We explicitly engineered a certain number dynamically
dead instructions and values in these microbenchmarks.
The number of dynamically dead instructions reported by
the analysis window matched up with the expected number
of dynamically dead instructions coded into the bench-
marks.

5. METHODOLOGY FOR EVALUATION
For our evaluation, we use an Itanium2®-like IA64
processor [14] scaled to current technology. This proces-
sor was modeled in detail in the Asim [8] performance
model framework. Red Hat Linux 7.2 was modeled in

detail via an OS simulation front-end. For wrong paths,
we fetch the mis-speculated instructions, but do not have
the correct memory addresses that a load or store may
access. We augmented this processor model with the
instrumentation described in Section 4.3.

Table 1 lists the skip interval and input set selected for
each of the Spec2000 programs used for our analysis. The
benchmarks were compiled with the Intel® electron
compiler (version 7.0) with the highest level of optimiza-
tion. We obtained the number of instructions to skip using
Sherwood et al.’s [21] SimPoint analysis modified for the
IA64 instruction set architecture. For each benchmark, we
obtained a number of simpoints, but here we present
numbers only for the first simpoint of each benchmark. We
ran each simpoint for 100 million instructions (including
NOPs).

6. RESULTS
This section describes our AVF results. Section 6.1
provides a program-level decomposition of various
components in the committed stream of instructions. In
Sections 6.2 and 6.3, we use these program-level compo-
nents as well as microarchitectural states to compute the
AVFs of the instruction queue and execution units,
respectively.

6.1 Program-level Decomposition

Figure 2 shows a decomposition of the dynamic stream of
instructions based on whether the instruction’s output
affects the final output of the benchmark. An instruction
whose result may affect the output is an ACE instruction,
while an instruction which definitely does not affect the
final output is un-ACE. As the figure shows, on average,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bz
ip

2_
so

ur
ce

cc
_2

00
cr

af
ty

eo
n_

ka
jiy

a
ga

p
gz

ip
_g

ra
ph

ic
m

cf
pa

rs
er

pe
rlb

m
k_

m
ak

er
an

d
tw

ol
f

vo
rt

ex
_l

en
di

an
3

vp
r_

ro
ut

e
am

m
p

ap
pl

u
ap

si ar
t

eq
ua

ke
fa

ce
re

c
fm

a3
d

ga
lg

el
lu

ca
s

m
es

a
m

gr
id

si
xt

ra
ck

sw
im

w
up

w
is

e
av

er
ag

e

%
 o

f
co

m
m

it
te

d
 in

st
ru

ct
io

n
s

ACE

TDD_mem

TDD_reg

FDD_mem

FDD_reg

PREFETCH

PREDICATED_FALSE

NOP

NOT_PROCESSED

UNKNOWN

Figure 2.Program-level Decomposition of Committed Instructions. TDD = Transitively Dynamically Dead, FDD = First-level Dynami-
cally Dead, NOT_PROCESSED = instructions not processed at the end of the simulation, UNKNOWN = live or deadness could not be
determined during program execution with our analysis window.

To appear in the Proceedings of the 36th Annual International Symposium on Microarchitecture (MICRO), December 2003

 8

we get about 45% ACE instructions. The rest—55% of the
instructions—are un-ACE instructions. Some of these un-
ACE instructions still contain ACE bits, such as the
opcode bits of prefetch instructions. Because our analysis
is conservative, there may be other opportunities to move
instructions from the ACE to un-ACE category.

In Figure 2, UNKNOWN denotes the instructions for
which we could not determine if the destination register
was live or dead because there was not enough information
in the analysis window to make this determination (Section
0). NOT_PROCESSED is always 20,000 instructions at
the end of the simulation. UNKNOWN and
NOT_PROCESSED instructions account for about 1% of
the total instructions, so they should not affect our analysis
significantly.

NOPs, predicated false instructions, and prefetch instruc-
tions account for 26%, 6.7%, and 1.5%, respectively.
NOPs are introduced in the IA64 instruction stream to
align instructions on three-instruction bundle boundaries.
These NOPs are carried through the Itanium2® pipeline.

Finally, FDD and TDD show the first-level and transitively
dynamic dead instructions. FDD_reg and FDD_mem
denote results that are written back to registers and
memory, respectively. On average, FDD_reg and
FDD_mem account for about 9.4% and 2% of the dynamic
instructions. IA64 has a large number of registers relative
to other instruction sets. Consequently, it produces a
significantly higher fraction of FDD_reg instructions
compared to FDD_mem. Similarly, the TDD_reg and
TDD_mem account for 6.6% and 1.6% of the dynamic
instructions.

6.2 AVF for Instruction Queue

Figure 3 shows what percentage of cycles a storage cell in
the instruction queue contains ACE and un-ACE bits. This
calculation assumes each entry of the instruction queue is
approximately 100 bits. An IA64 instruction is 41 bits, but

the number of bits required in the entry is higher because a
large number of bits are required to capture the in-flight
state of an instruction in the machine. Of these 100 bits,
we estimate that five bits are control bits and cannot be
derated. Of the remaining 95 bits, we do not derate the
seven opcode bits for any instruction. Additionally, we do
not derate the six predicate specifier bits of falsely
predicated instructions or the seven destination register
specifier bits for FDD and TDD instructions.

Figure 3 shows that on average, a storage cell in the
instruction queue contains an ACE bit about 28% of the
time. Thus, the AVF of the instruction queue is 28%. On
average a cell is idle 30% of the cycles and contains an un-
ACE bit about 42% of the cycles. Across the simulated
portions of our benchmark suite, the AVF number ranges
between 14% and 47% for the instruction queue.

Figure 33 also shows that the floating point programs, in
general, have higher AVFs compared to integer programs
(31% vs. 25%, respectively). Floating-point programs
usually have many long-latency instructions and few
branch mispredictions. Hence, they use the instruction
queue more effectively than integer programs, leading to a
higher AVF.

Table 2 shows how to approximate AVFs (at the instruc-
tion level) for the instruction queue using Little’s Law. As
explained in Section 4.2, the AVF of the instruction queue
can be approximated as the ratio of the average number of
ACE instructions in the instruction queue to the total
number of instruction entries in the instruction queue,
which is 64 in our machine. The number of ACE instruc-
tions in the instruction queue, as given by Little’s Law, is
the product of the bandwidth or ACE IPC and the average
number of cycles an instruction in the instruction queue
can be considered to be in ACE state or ACE latency. Note
that an instruction can persist even after it is issued for the
last time. Thus, after an ACE instruction is issued for the
last time, the ACE bits holding the ACE instruction
become un-ACE. We obtained the ACE IPC and ACE
latency from our performance model.

Table 2. AVF breakdown using Little’s Law. # ACE inst = ACE IPC X ACE Latency. AVF ~= # ACE inst / # instruction queue entries.
Integer
Benchmarks

ACE IPC ACE Latency
(cycles)

ACE
Inst

AVF Floating Point
Benchmarks

ACE IPC ACE Latency
(cycles)

#ACE
Inst

AVF

bzip2-source 0.55 22 12 19% ammp 0.23 92 21 33%
cc-200 0.57 18 10 16% applu 0.82 21 18 27%
crafty 0.37 15 6 9% apsi 0.31 31 9 15%
eon-kaj iya 0.36 20 7 11% art-110 0.68 37 25 40%
gap 0.78 17 13 21% equake 0.26 12 3 5%
gzip-graphic 0.60 13 8 12% facerec 0.41 7 3 5%
mcf 0.25 68 17 26% fma3d 0.59 11 7 10%
parser 0.49 24 12 19% galgel 1.10 21 23 35%
perlbmk-makerand 0.38 17 7 10% lucas 1.23 17 21 33%
twolf 0.30 27 8 13% mesa 0.47 16 8 12%
vortex_lendian3 0.42 22 9 15% mgrid 1.28 10 13 21%
vpr-route 0.35 12 4 7% sixtrack 0.66 20 13 21%
 swim 1.08 16 17 27%
 wupwise 1.60 13 20 31%
average 0.45 23 9 15% average 0.77 23 14 23%

To appear in the Proceedings of the 36th Annual International Symposium on Microarchitecture (MICRO), December 2003

 9

Using the ACE IPC and ACE latency, we compute the
AVFs in Table 2. Using this method, we compute an
average AVF of 19%, which is 9% lower than that of
actual AVF for the instruction queue reported earlier. This
difference can be attributed to the ACE bits of un-ACE
instructions, such as prefetch and dynamically dead
instructions, whose results do not affect the final output of
a program (Section 3). Table 2 does not account for these
ACE bits, but Figure 3’s ACE number includes them. If
we did our Little’s Law analysis at the bit-level, instead of
instruction-level as in Table 2, then we would have
matched Figure 3’s average AVF of 28%.

Table 2 also explains why lucas has an AVF similar to
ammp even though lucas has one of the highest ACE IPCs.
This is because the AVF depends on both the ACE IPC as
well as ACE latency. Although lucas has a high ACE IPC,
it has relatively low ACE latency. Consequently, the
product of these two terms results in an AVF similar to
ammp’s, which has a low ACE IPC but a high ACE
latency.

6.3 AVFs for the Execution Units

This section describes the AVF numbers of the execution
units in our simulated machine model. In our six-issue
machine, we have four integer pipes and two floating point
pipes. Integer multiplication is, however, processed in the
floating point pipeline. When integer programs execute
the floating point pipes lie idle.

We assume that the execution units overall have about
50% control latches and 50% datapath latches. First, we
show how to derate the entire execution unit, so that the
results would apply to both the control and datapath

latches. Then, we will show how to further derate the
datapath latches only.

Figure 4 shows that the execution units on average spend
11% of the cycles processing ACE instructions (with a
range of 4% to 27%). Thus, the average AVF of a latch in
the execution units is 11%. Interestingly, the execution
units’ AVF is significantly lower than that of the instruc-
tion queue. This is due to three effects. First, instructions
must wait in the instruction queue until they execute and
retire. Thus, ACE instructions persist longer in the
instruction queue than they take to execute in the execution
units.

Second, speculatively issued instructions succeeding
cache-miss loads must replay through the instruction
queue. However, only the last pass through the execution
units matters for correct execution. The execution unit
state for all prior executions is counted as un-ACE. Note
that this is possible in our processor model because a
corrupted bit in one of the instructions designated for a
replay does not affect the decision to replay. The informa-
tion necessary to make this decision resides elsewhere in
the instruction queue.

Third, the floating point pipes are mostly idle while
executing integer code, greatly reducing their AVFs.

As mentioned earlier, the above analysis computes a single
AVF for both the control and datapath latches in the
execution units. However, the datapath latches themselves
can be further derated based on whether specific datapath
bits are logically masked (Section 3.2) or are simply idle
(Section 3.1). We apply logical masking to data values
(and, hence, datapaths) only; analyzing logical masking for
control latches would be a complex task.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

bz
ip

2_
so

ur
ce

cc
_2

00

cr
af

ty

eo
n_

ka
jiy

a

ga
p

gz
ip

_g
ra

ph
ic

m
cf

pa
rs

er

pe
rlb

m
k_

m
ak

er
an

d

tw
ol

f

vo
rt

ex
_l

en
di

an
3

vp
r_

ro
ut

e

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

av
er

ag
e

%
 o

f
st

at
e

ACE

IDLE

Ex_ACE

WRONG_PATH

TDD_mem

TDD_reg

FDD_mem

FDD_reg

PREFETCH

PREDICATED_FALSE

NOP

UNKNOWN

Figure 3. Breakdown of different architectural and microarchitectural states for the instruction queue. AVF is the % of cycles the instruc-
tion queue contains ACE bits.

To appear in the Proceedings of the 36th Annual International Symposium on Microarchitecture (MICRO), December 2003

 10

We implemented logical masking functions for a small but
important subset of the roughly 2000 static internal
instruction types that we have in our processor model.
This subset contains a variety of functions, including
logical OR, AND, etc. We also estimate that another 20%
of the instructions (including loads, stores, and branches)
will not have any direct logical masking effect. The
combination of these two categories covers the vast
majority of dynamically executed instructions. Figure 4
shows that this logical masking analysis further reduces
the AVF by 0.5% (averaged across both control and data
latches, even though this does not apply to control latches).
We expect that the incremental decrease in AVF due to the
remaining unanalyzed instruction types will be small. We
did not consider transitive logical masking (see Section
3.2), which would further reduce the AVF number for the
datapath latches.

Datapath latches can be further derated by identifying the
fraction of time they remain idle. For example, an IA64
compare instruction produces two predicate values—a
predicate value and its complement. However, in our
simulated implementation, these two result bits are sent
over a 64-bit result bus, leaving 62 of the datapath lanes
idle. This effect further reduces the AVF by 1.5%, as
shown by DATAPATH_IDLE in Figure 4. Depending on
the implementation, however, the DATATPATH_IDLE
portion can also be viewed as bits that get logically
masked at the implementation level. In contrast,
UNIT_IDLE in Figure 4 refers to the whole execution unit
being idle because of the lack of any instruction issued to
that unit.

Overall, factoring in logical masking and idle latches in
datapaths, the average AVF for the execution units is

reduced to 9%. Across the simulated portions of our
benchmark suite, the AVF for the execution units ranges
from 4% to 27%.

7. RELATED WORK
Prior work in estimating AVFs has used statistical fault
injection into hardware RTL models. Kim and Somani
[13] did a systematic fault injection study of Sun Micro-
system’s publicly disclosed picoJava II RTL model and
reported wide variation of AVFs for a variety of picoJava
II’s hardware structures. Wang and Patel [25] injected
faults into an RTL model of the Alpha 21164 processor
and reported AVFs of less than 10% for the pipeline
latches. The biggest advantage of using an RTL model is
that usually the RTL model has all the hardware structures
necessary to create a processor. In contrast, a performance
model, which we use in our paper, has only components
that affect the performance of a processor. Consequently,
we can only report the AVFs of components that are
modeled. Nevertheless, the performance models used in
industry are extremely detailed and capture significant
portions of the processor under design.

We improve upon statistical fault injection into RTL
models in four ways. First, statistical fault injection
requires simulating a large number of fault cases to
provide adequate statistical significance. Using ACE
analysis, our technique provides reasonably tight, determi-
nistic AVF estimates in a single experiment. As a result,
designers can not only generate AVF estimates much more
quickly, but perform more sophisticated analyses—for
example, determine the impact of benchmark selection on
AVF across most of SPEC CPU2000 using multi-million-
instruction samples, as we have done.

Second, ACE analysis provides a more comprehensive
determination of whether faults impact processor opera-

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

bz
ip

2_
so

ur
ce

cc
_2

00

cr
af

ty

eo
n_

ka
jiy

a

ga
p

gz
ip

_g
ra

ph
ic

m
cf

pa
rs

er

pe
rlb

m
k_

m
ak

er
an

d

tw
ol

f

vo
rt

ex
_l

en
di

an
3

vp
r_

ro
ut

e

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

av
er

ag
e

%
 o

f S
ta

te
ACE
DATAPATH IDLE
LOGICAL MASKING

UNIT IDLE
SPECULATIVE_ISSUE
WRONG_PATH
TDD_mem

TDD_reg
FDD_mem
FDD_reg
PREFETCH

PREDICATED_FALSE
NOP
UNKNOWN

Figure 4. Breakdown of different architectural and microarchitectural states for the execution units. ACE above denotes the % of cycles
the execution units contain ACE instructions.

To appear in the Proceedings of the 36th Annual International Symposium on Microarchitecture (MICRO), December 2003

 11

tion. Statistical fault injection methods typically compare
the architectural state of the system with a known good
copy after some fixed number of cycles. In contrast, we
track state through architectural registers and memory
locations to properly categorize faults in values that are
dead or masked.

Third, ACE analysis gives useful insight into system
behavior, such as a breakdown of why un-ACE bits do not
contribute to the program result. The application of
Little’s Law to rough AVF estimation, as described in
Section 4.3, exemplifies the usefulness of ACE analysis’s
more abstract nature.

Finally, fault injection into an RTL model requires an RTL
model, which is generally not available during the
architectural exploration phase of a microprocessor design
project. This paper outlines a technique that can be used to
compute AVFs using a performance model, which is
typically used for architectural exploration for a processor
design. Consequently, using this technique an architect
can anticipate the error protection techniques needed for
specific structures much ahead of the RTL development.
Although statistical fault injection could be applied to a
performance model, it would continue to suffer from the
shortcomings listed above.

Nevertheless, we expect that analysis of RTL models will
continue to be necessary for more accurate fault-rate
estimates later in the design process. The application of
ACE analysis to RTL appears promising, and is an area of
future work.

Additionally, we would like to point out that we draw
heavily upon prior work in measuring the architectural
behavior of processors. Several papers (e.g., [5], [9], [19],
[7]) have quantified the extent of dynamically dead
instructions, prefetches, and NOPs used in modern
microprocessors. Finally, Gomaa, et al.’s CRTR design
[10] relies on logical masking to avoid fault detection
checks on certain logical instructions.

8. CONCLUSIONS
Single-event upsets from particle strikes have become a
key challenge in microprocessor design. Techniques to
deal with these transient faults exist, but come at a cost.
Designers require accurate estimates of processor error
rates to make appropriate cost/reliability trade-offs. This
paper described a method for generating these estimates.

A key aspect of this analysis is that some single-bit faults
(such as those occurring in the branch predictor) will not
produce an error in a program's output. We call the
probability that a fault in a particular structure will result
in an error the structure's architectural vulnerability factor
(AVF). A structure's error rate is the product of its raw
error rate, as determined by process and circuit technology,
and the AVF.

This paper estimated AVFs using a novel approach that
tracks the subset of processor state bits required for
architecturally correct execution (ACE). Any fault in a

storage cell that contained one of these bits, which we
called ACE bits, would cause a visible error in the final
output of a program in the absence of error correction
techniques. We called the remaining processor state bits
un-ACE bits, as their specific values are unnecessary for
architecturally correct execution. A fault that affected only
un-ACE bits would not cause an error. The AVF for a
single-bit storage cell is simply the fraction of time that it
held ACE bits. Assuming that all cells have equal raw
fault rates, the AVF for a structure is the average AVF of
its storage cells, or the average fraction of its cells that
held ACE bits at any point in time.

In this paper we conservatively assumed that every bit is
an ACE bit unless we could prove otherwise. We
identified un-ACE bits at both the architectural and
microarchitectural levels. We identified five classes of
architectural un-ACE bits. These un-ACE bits come from
NOP instructions, performance-enhancing instructions
(e.g., prefetches), predicated-false instructions, dynami-
cally dead code, and logically masked bits. Similarly, we
identify four classes of microarchitectural un-ACE bits.
These are idle or invalid bits, mis-speculated bits, predictor
structure bits, and microarchitecturally dead bits.
Using the above methodology, dynamic slices of the SPEC
2000 benchmark suite, and the Asim performance model,
we computed the AVF for the instruction queue and
execution units of an Itanium2®-like IA64 processor. We
found that the AVF of the instruction queue ranges
between 14% and 40%, whereas the AVF for the execution
units range between 2% and 17%. Because our methodol-
ogy is conservative, these fractions are upper bounds on
the AVF numbers. Further refinement of our analysis
(e.g., derating the hint bits in an IA64 load instruction)
could further lower the AVF estimates. However, we
believe we have captured most of the dominant AVF
effects for the IA-64 architecture and Itanium2®-like
microarchitecture we examined and, hence, we expect the
contribution from further refinement to be small.
Per-structure AVF estimates such as these should help
microprocessor designers to estimate the FIT rate of an
entire processor early in the design cycle. If the processor
does not meet its target FIT rate, then these estimates can
help designers choose the appropriate error detection or
correction schemes to make specific structures less
vulnerable to single-bit upsets. Large structures with high
AVFs, for example, would be obvious candidates for such
error protection. Typically, parity- or ECC-protected bits
are not vulnerable to single bit upsets and, therefore, do
not contribute to the FIT rate of a chip. Thus, microproc-
essor designers can lower the FIT rate of the chip itera-
tively by adding more and more error protection, using
AVF estimates as a guide.

ACKNOWLEDGMENTS
We would like to thank VSSAD members, Intel’s reliability
experts, and the anonymous referees for useful feedback on this
work. We would also like to thank Intel’s Asim group for help

To appear in the Proceedings of the 36th Annual International Symposium on Microarchitecture (MICRO), December 2003

 12

with Asim and Intel’s SoftSDV group for helping us boot an OS
image on the Asim model.

REFERENCES
[1] H. Ando, et al., “A 1.3 GHz Fifth Generation SPARC64 Microprocessor,”

International Solid-State Circuits Conference, 2003.
[2] Todd M. Austin, “DIVA: A Reliable Substrate for Deep Submicron

Microarchitecture Design,” 32nd Annual International Symposium on
Microarchitecture (MICRO), November 1999.

[3] Robert Baumann, “Soft Errors in Commercial Semiconductor Technology:
Overview and Scaling Trends,” IEEE 2002 Reliability Physics Tutorial
Notes, Reliability Fundamentals, pp. 121_01.1 – 121_01.14, April 7,
2002.

[4] D.C.Bossen, “CMOS Soft Errors and Server Design,” IEEE 2002
Reliability Physics Tutorial Notes, Reliability Fundamentals, pp.
121_07.1 – 121_07.6, April 7, 2002.

[5] J.A.Butts and G.Sohi, “Dynamic Dead-Instruction Detection and
Elimination,” 10th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pp. 199 –
210, October 2002.

[6] T.Calin, M.Nicolaidis, and R.Velazco, “Upset Hardened Memory Design
for Submicron CMOS Technology,” IEEE Transactions on Nuclear
Science, Vol. 43, No. 6, December 1996.

[7] Y.Choi, A.Knies, L.Gerke, and T-F Ngai, “The Impact of If-Conversion
and Branch Prediction on Program Execution on the Intel Itanium Proces-
sor,” 34th Annual International Symposium on Microarchitecture
(MICRO), pp. 182 – 191, Dec. 2001.

[8] Joel Emer, Pritpal Ahuja, Nathan Binkert, Eric Borch, Roger Espasa, Toni
Juan, Artur Klauser, Chi-Keung Luk, Srilatha Manne, Shubhendu S. Muk-
herjee, Harish Patil, and Steven Wallace, “Asim: A Performance Model
Framework” , IEEE Computer, 35(2):68-76, Feb. 2002.

[9] B.Fahs, S.Bose, M.Crum, B.Slechta, F.Spadini, T.Tung, S.J.Patel, and
S.S.Lumetta, “Performance Characterization of a Hardware Mechanism for
Dynamic Optimization,” Proceedings of the 34th Annual International
Symposium on Microarchitecture (MICRO), pp. 16 – 27, December 2001.

[10] M.Gomaa, C.Scarbrough, T.N.Vijaykumar, and I.Pomeranz, “Transient
Fault Recovery for Chip Multiprocessors,” 30th Annual International
Symposium on Computer Architecture (ISCA), June 2003.

[11] S.Hareland, J. Maiz, M.Alavi, K.Mistry, S.Walstra, and C.Dai, “ Impact of
CMOS Scaling and SOI on soft error rates of logic processes,” VLSI Tech-
nology Digest of Technical Papers, 2001.

[12] T.Karnik, B.Bloechel, K.Soumyanath, V.De, and S.Borkar, “Scaling trends
of Cosmic Rays induced Soft Errors in static latches beyond 0.18� ,” Sym-
posium on VLSI Circuits Digest of Technical Papers, 2001.

[13] S. Kim and A. K. Somani, “Soft Error Sensitivity Characterization for
Microprocessor Dependability Enhancement Strategy,” Proceedings of the
International Conference on Dependable Systems and Networks (DSN),
2002.

[14] Kevin Krewell, “ Intel’s McKinley Comes Into View,” Microprocessor
Report, Volume 15, Archive 10, October 2001.

[15] E.D.Lazowska, J.Zahorjan, G.S.Graham, and K.C.Sevcik, “Quantitative
System Performance,” Prentice-Hall, Inc., E140nglewood Cliffs, New
Jersey, 1984.

[16] Shubhendu S. Mukherjee, Mike Kontz, and Steven K. Reinhardt, “Detailed
Design and Implementation of Redundant Multithreading Alternatives,”
Proceedings of the 29th Annual International Symposium on Computer
Architecture (ISCA), May 2002.

[17] Eugene Normand, “Single Event Upset at Ground Level,” IEEE
Transactions on Nuclear Science, Vol. 43, No. 6, December 1996.

[18] Steven K. Reinhardt and Shubhendu S. Mukherjee, “Transient Fault
Detection via Simultaneous Multithreading,” Proceedings of the 27th
Annual International Symposium on Computer Architecture (ISCA), June
2000.

[19] Eric Rotenberg, “Exploiting large ineffectual instruction sequences,”
Technical Report, North Carolina State University, November 1999.

[20] Eric Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault
Tolerance in Microprocessor,” Proceedings of Fault-Tolerant Computing
Systems (FTCS), 1999.

[21] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder,
“Automatically Characterizing Large Scale Program Behavior,” 10th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), October 2002.

[22] P.Shivakumar, M.Kistler, S.W.Keckler, D.Burger, and L.Alvisi,
“Modeling the Effect of Technology Trends on the Soft Error Rate of
Combinatorial Logic,” Dependable Systems and Networks, 2002.

[23] T.J.Slegel, et al., “ IBM’s S/390 G5 Microprocessor Design,” IEEE Micro,
pp 12–23, March/April, 1999.

[24] Y.Tosaka, S.Satoh, K.Suzuki, T.Suguii, H.Ehara, G.A.Woffinden, and
S.A.Wender, “ Impact of Cosmic Ray Neutron Induced Soft Errors, on
Advanced Submicron CMOS circuits,” VLSI Symposium on VLSI Tech-
nology Digest of Technical Papers, 1996.

[25] Nicholas Wang and Sanjay Patel, “Modeling the Effect of Transient Errors
on High Performance Microprocessors,” Center for Circuits, Systems, and
Software (C2S2),� 2nd Annual Review, Berkeley, March 18-19, 2003.

[26] Alan Wood, “Data Integrity Concepts, Features, and Technology,” White
paper, Tandem Division, Compaq Computer Corporation.

[27] J.F.Ziegler, et al., “ IBM experiments in soft fails in computer electronics
(1978 – 1994),” IBM Journal of Research and Development, pp. 3 – 18,
Volume 40, Number 1, January 1996.

[28] J.F.Ziegler, “Terrestrial cosmic rays,” IBM Journal of Research and
Development, pp. 19 – 39, Volume 40, Number 1, January 1996.

