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ABSTRACT 

Single-event upsets from particle strikes have become a 
key challenge in microprocessor design.  Techniques to 
deal with these transient faults exist, but come at a cost.  
Designers clearly require accurate estimates of processor 
error rates to make appropriate cost/reliability trade-offs.  
This paper describes a method for generating these 
estimates.  

A key aspect of this analysis is that some single-bit faults 
(such as those occurring in the branch predictor) will not 
produce an error in a program's output.  We define a 
structure's architectural vulnerability factor (AVF) as the 
probability that a fault in that particular structure will 
result in an error.  A structure's error rate is the product of 
its raw error rate, as determined by process and circuit 
technology, and the AVF. 

Unfortunately, computing AVFs of complex structures, 
such as the instruction queue, can be quite involved.  We 
identify numerous cases, such as prefetches, dynamically 
dead code, and wrong-path instructions, in which a fault 
will not affect correct execution.  We instrument a detailed 
IA64 processor simulator to map bit-level microarchitec-
tural state to these cases, generating per-structure AVF 
estimates.  This analysis shows AVFs of 28% and 9% for 
the instruction queue and execution units, respectively, 
averaged across dynamic sections of the entire CPU2000 
benchmark suite.  

1. INTRODUCTION 
Moore’s Law—the continuous exponential growth in 
transistors per chip—has brought tremendous progress in 
the functionality and performance of semiconductor 
devices, particularly microprocessors.  Each succeeding 
technology generation has also introduced new obstacles to 
maintaining this growth rate.  Transient faults due to single 
event upsets have emerged as a key challenge whose 
importance is likely to increase significantly in the next 
few design generations.  

Single event upsets arise from energetic particles—such as 
neutron particles from cosmic rays and alpha particles 
from packaging material—generating electron-hole pairs 
as they pass through a semiconductor device.  Transistor 
source and diffusion nodes can collect these charges.  A 
sufficient amount of accumulated charge may invert the 
state of a logic device—such as a latch, SRAM cell, or 
gate—thereby introducing a logical fault into the circuit’s 

operation [27].  Because this type of fault does not reflect a 
permanent error of the device, it is termed soft or transient.  

A device’s error rate due to single event upsets depends on 
both the particle flux it encounters and its circuit character-
istics.  The particle flux depends on the environment.  For 
example, at an altitude 1.5km—the altitude of Denver, 
Colorado—the neutron flux due to cosmic rays is 3 to 5 
times higher than at sea level.  Device circuit parameters 
that influence the error rate include the amount of charge 
stored, the vulnerable cross-section area, and the charge 
collection efficiency [22].  As feature sizes shrink, the 
smaller amount of charge per device makes a particle 
strike more likely to cause an error, but the reduced cross-
section makes a strike on any given device less likely.  
These effects roughly cancel for latches and SRAM cells; 
thus, the error rate per latch or SRAM bit at a specific 
altitude is projected to remain roughly constant or decrease 
slightly for the next several technology generations ([12], 
[11]).  However, in the absence of error correction 
schemes, the chip error rate will grow in direct proportion 
to the number of bits on the chip.  Thus, while Moore’s 
Law gives us exponential increases in transistor counts, 
this bounty comes at the cost of exponential increases in 
error rates for unprotected chips! 

Soft errors due to cosmic rays are already making an 
impact in industry.  In 2000, Sun Microsystems acknowl-
edged cosmic ray strikes on unprotected cache memories 
as the cause of random crashes at major customer sites in 
its flagship Enterprise server line [3].  Sun is documented 
to having lost a major customer to IBM from this episode 
[3].  In 1996, Normand [17] reported numerous incidents 
of cosmic ray strikes by studying the error logs of several 
large computer systems.  The fear of cosmic ray strikes 
prompted Fujitsu to protect 80% of its 200,000 latches in 
its recent SPARC processor with some form of error 
detection [1].   

A variety of techniques exist to deal with such faults, from 
special radiation-hardened circuit designs (e.g., [6]) to 
localized error detection and correction (e.g., [1]) to 
architectural redundancy (e.g., [26], [23], [20], [2], [16], 
[18]).  However, all of these approaches introduce a 
significant penalty in performance, power, die size, and 
design time.  Consequently, designers must carefully 
weigh the benefits of adding these techniques against their 
cost.  Although a microprocessor with inadequate protec-
tion from transient faults may prove useless due to its 
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unreliability, excessive protection may make the resulting 
product uncompetitive in cost and/or performance.  
Unfortunately, tools and techniques to estimate processor 
transient error rates are not readily available or fully 
understood.  Furthermore, because a comprehensive error-
handling strategy is best designed in from the ground up, 
these estimates are needed early in the design cycle. 

The key to generating these error-rate estimates is 
understanding that not all faults in a microarchitectural 
structure affect the final outcome of a program.  As a 
result, an estimate based only on raw device fault rates will 
be pessimistic, leading architects to over-design their 
processor’s fault-handling features.  For example, a single-
bit fault in a branch predictor will not affect the sequence 
or results of any committed instructions.  We call the 
probability that a fault in a processor structure will result 
in a visible error in the final output of a program that 
structure’s architectural vulnerability factor (AVF).  Thus, 
the branch predictor’s AVF is 0%.  In contrast, a single-bit 
fault in the committed program counter will cause the 
wrong instructions to be executed, almost certainly 
affecting the program’s result.  Hence, the AVF for the 
committed program counter is effectively 100%.  Many 
structures will have an AVF that is in between these two 
extremes. The overall error rate of a microarchitectural 
structure is the product of its raw fault rate and its AVF. 
By summing the contributions of all on-chip structures, a 
processor architect can map the raw fault rate (dictated by 
process and circuit issues) to an overall processor error 
rate, and thus determine whether the design meets its error 
rate goals (set according to the target market).  Signifi-
cantly, this allows an architect to examine the relative 
contributions of various structures and identify the most 
cost-effective areas to employ fault protection techniques. 

This paper estimates AVFs using a novel approach that 
tracks the subset of processor state bits required for 
architecturally correct execution (ACE). Any fault in a 
storage cell that contains one of these bits, which we call 
ACE bits, will cause a visible error in the final output of a 
program in the absence of error correction techniques.  We 
call the remaining processor state bits un-ACE bits, as their 
specific values are unnecessary for architecturally correct 
execution.  A fault that affects only un-ACE bits will not 
cause an error.  The AVF for a single-bit storage cell is 
simply the fraction of time that it holds ACE bits.  
Assuming that all cells have equal raw fault rates, the AVF 
for a structure is the average AVF of its storage cells, or 
the average fraction of its cells that hold ACE bits at any 
point in time.   

The branch predictor’s AVF is thus 0% because all 
predictor bits are always un-ACE bits.  Similarly, all the 
bits in the committed PC are always ACE bits, leading to 
an AVF of 100%.  The real power of ACE-bit analysis lies 
in computing AVFs for structures that hold ACE bits at 
some times and un-ACE bits at other times—i.e., most 
other processor structures.  Rather than enumerate—for 
each structure—which bits may matter and which may not, 

we simply track the ACE bits through the pipeline, 
determine the average number of ACE bits in each 
particular structure, and take the ratios of these numbers to 
the bit capacities of the structures. This assumption relies 
on fault-inducing particle strikes being randomly and 
uniformly distributed, as is the case for cosmic rays [28]. 

A straightforward application of our methodology is to 
count the ACE bits in a structure directly using a perform-
ance model.  We can also estimate the AVF of a buffering 
structure by counting the ACE bits that flow past a point in 
the pipeline and applying Little’s Law. 

To compute upper bounds on AVFs, we conservatively 
assume that every bit is an ACE bit unless we can prove 
otherwise.  We identify un-ACE bits at both the architec-
tural and microarchitectural levels.  We identify five 
classes of architectural un-ACE bits.  These un-ACE bits 
come from NOP instructions, performance-enhancing 
instructions (e.g., prefetches), predicated-false instructions, 
dynamically dead code, and logical masking.  Similarly, 
we identify four classes of microarchitectural un-ACE bits.  
These are idle or invalid bits, mis-speculated bits, such as 
wrong-path instructions, predictor structure bits, and 
microarchitecturally dead bits. 

Using the above methodology, dynamic slices of the SPEC 
2000 benchmark suite, and a performance model, we 
compute the AVF for the instruction queue and execution 
units of an Itanium2®-like IA64 processor.  We find that 
the AVF of the instruction queue ranges between 14% and 
47%, whereas the AVFs of the execution units range 
between 4% and 27%.  Because our methodology is 
conservative, these fractions are upper bounds on the AVF 
numbers.  Further refinement of this analysis (e.g., 
derating the hint bits in an IA64 load instruction) could 
further lower the AVF estimates.  However, we believe we 
have captured most of the dominant AVF effects for the 
IA-64 architecture and Itanium2®-like microarchitecture 
we examined and, hence, we expect the contribution from 
further refinement to be small.  

The rest of the paper is organized as follows. Section 2 
provides background on reliability metrics used in the 
industry to express soft error rates.  Section 3 describes the 
components we must consider to compute the AVF.  
Section 4 shows how to compute AVF using the classifica-
tion of Section 3. Section 5 describes our methodology and 
Section 6 presents our results.  Section 7 describes related 
work and Section 8 presents our conclusions.  

2. SOFT ERROR BACKGROUND AND 
TERMINOLOGY 

Section 2.1 describes the error metrics MTBF and FIT. We 
discuss vulnerability factors and their impact on error 
detection and correction requirements in Section 2.2. 
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2.1 MTBF and FIT 

Vendors express an error budget at a reference altitude in 
terms of Mean Time Between Failures (MTBF).  Errors 
are often further classified as undetected or detected.  The 
former are typically referred to as silent data corruption 
(SDC); we call the latter detected unrecoverable errors 
(DUE).  Note that detected recoverable errors are not 
errors. 

For example, for its Power4 processor-based systems, IBM 
targets 1000 years system MTBF for SDC errors, 25 years 
system MTBF for DUE errors that result in a system crash, 
and 10 years system MTBF for DUE errors that result in 
an application crash [4].  Note that the processor MTBF 
must be significantly higher than the system MTBF, 
particularly for large multiprocessor systems.  

In this paper we focus on SDC errors.  Adding error 
detection (but not correction) to a structure eliminates SDC 
errors, converting those faults to DUE errors.   

Another commonly used unit for error rates is FIT (Error 
in Time), which is inversely related to MTBF.  One FIT 
specifies one failure in a billion hours.  Thus, 1000 years 

MTBF equals 114 FIT (109 / (24×365×1000)).  A zero 
error rate corresponds to zero FIT and infinite MTBF.  
Designers usually work with FIT because FIT is additive, 
unlike MTBF. �

To evaluate whether a chip meets its soft error budget—
possibly via the use of error protection and mitigation 
techniques—microprocessor designers use sophisticated 
computer models to compute the FIT rate for every 
device—RAM cells, latches, and logic gates—on the chip.  
The effective FIT rate for a structure is the product of its 
raw circuit FIT rate and the structure’s vulnerability factor, 
i.e., an estimate of the probability that a circuit fault will 

result in an observable error (see the following section). 
The overall FIT rate of the chip is calculated by summing 
the effective FIT rates of all the structures on the chip.  

Current predictions show that typical raw FIT rate 
numbers for latches and SRAM cells vary between 0.001 – 
0.01 FIT/bit at sea level ([24],[17],[12],[11]). The FIT/bit 
is projected to remain in this range for the next several 
technology generations, unless microprocessors aggres-
sively lower the supply voltage to reduce the overall power 
dissipation of chip.  The total FIT contribution of logic 
gates today is a negligible fraction of the FIT contribution 
from latches [22], so we concern ourselves only with faults 
due to strikes on latches and SRAM cells.  In the future, if 
the contribution of logic becomes non-negligible, we could 
incorporate the effective FIT rate due to a logic block into 
the FIT rate of the latch that it feeds.  

2.2 Vulnerability Factors 

The effective FIT rate per bit is influenced by several 
vulnerability factors (also known as derating factors or 
soft error sensitivity factors).  In general, a vulnerability 
factor indicates the probability that an internal fault in a 
device’s operation will result in an externally visible error.   

For example, when a level-sensitive latch is accepting data 
rather than holding data, a strike on its stored bit may not 
result in an error, because the erroneous stored value will 
be overridden by the (correct) input value.  If the latch is 
accepting data 50% of the time, this effect results in a 
timing vulnerability factor for the latch of 50%.  For 
simplicity, we assume this timing vulnerability factor is 
already incorporated in the raw device fault rate.  The 
computation of the device fault rate also includes some 
circuit-level vulnerability factors which are beyond the 
scope of this paper.  

The architectural vulnerability factor (AVF) expresses the 
probability that a visible system error will occur given a bit 
flip in a storage cell.  The AVF can have a significant 
impact on the effective error rate of a processor.  Prior 
studies with statistical fault injection into RTL models 
have demonstrated AVFs of 1%-10% for latches [25] and 
0% - 100% across a range of architectural and microarchi-
tectural state bits [13].  

Figure 1 illustrates the impact of AVF on the extent of 
error detection needed in a microprocessor.  Thus, to meet 
IBM’s SDC target of 114 FIT in 2005, with 100% AVF we 
must protect 80% of the bits (and, hence have 20% 
vulnerable bits).  However, with an AVF of 10%, we do 
not have to protect any bits to meet the target 114 FIT.  
Similarly, in 2010 we can meet the target SDC FIT with 
80% protection and 10% AVF, but not with 100% AVF.  

3. IDENTIFYING UN-ACE BITS  
The key to computing AVFs is to determine which bits 
affect the final system output (i.e., which are the ACE bits) 
and which do not (i.e., the un-ACE bits).  Interestingly, 
this does not necessarily correspond to meeting the precise 
semantics of the architecture.  Given a specific execution 
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Figure 1. Impact of AVF on SDC FIT of future microprocessors. 
For 2003 we assumed 200,000 bits may be vulnerable to cosmic 
ray strikes [1] .  This figure assumes a FIT/bit of 0.001.  The 
number of vulnerable bits grows with Moore’s Law.  
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of program, we only care that the final system output as 
observed by a user is correct.  Incorrect results not 
observed by any user (e.g., dynamically dead instruction 
results) are irrelevant, and bits encountering faults leading 
to such incorrect results are un-ACE bits.  

The definition of a program’s output depends on the user’s 
interaction with the program.  Normally a program’s 
outputs are just the values sent by the program via I/O 
operations. However, if a program is run under a debugger, 
then program variables examined via the debugger become 
outputs, and influence the determination of which bits are 
ACE bits.   

Similarly, in a multiprocessor system, multiple executions 
of the same parallel program may yield different outcomes 
due to race conditions.  Whether a bit is ACE or un-ACE 
may depend on the outcome of a race; our analysis would 
use the outcome of the race in the particular execution 
under study.  (We analyze only a uniprocessor system in 
this paper.) 

For our purposes, we require a precise definition of what 
constitutes an output.  Conceptually, we take the broadest 
view: an output is a program’s generated value that is sent 
to an I/O device.  In practice, we do not typically track 
values this far.  However, we do track values well beyond 
the point that they are committed to architectural registers 
or stored to memory to determine whether they could 
potentially influence the output. 

Given this definition of outputs, we would like to deter-
mine which bits are ACE and which are un-ACE.  Because 
we desire a conservative (upper-bound) AVF estimate, we 
first assume that all bits are ACE bits unless we can show 
otherwise.  We then identify as many sources of un-ACE 
bits as we can.  We do not need (nor claim to) have a 
complete categorization of un-ACE bits; however, the 
more comprehensive our analysis is, the tighter our bound 
will be.  Nevertheless, we believe that the sources below 
capture the dominant contributors of un-ACE bits. 

For discussion purposes, we divide the sources of un-ACE 
bits into two general categories: microarchitectural un-
ACE bits (Section 3.1) and architectural un-ACE bits 
(Section 3.2). Section 4 will show how to use this 
classification to compute the AVF of hardware structures.  

3.1 Microarchitectural Un-ACE Bits 

We call processor state bits that cannot influence the 
committed instruction path microarchitectural un-ACE 
bits.  Microarchitectural un-ACE bits can arise from the 
following four situations:  

• Idle or Invalid State.  There are numerous instances in a 
microarchitecture when a data or status bit is idle or does 
not contain any valid information.  Such data and status 
bits are un-ACE bits.  Control bits are always assumed to 
be ACE bits because a strike on a control bit may cause 
idle state to be treated as non-idle state.  

• Mis-speculated State. Modern microprocessors often 
perform speculative operations that may later be found to 

be incorrect.  Examples of such operations include 
branch prediction or speculative memory disambigua-
tion.  The bits that represent incorrectly speculated 
operations are un-ACE bits.  

• Predictor Structures.  Modern microprocessors have 
many predictor structures, such as branch predictors, 
jump predictors, return stack predictors, and store-load 
dependence predictors.  A fault in such a structure may 
result in a misprediction, and will affect performance, 
but will not affect correct execution.  Consequently, all 
such predictor structures contain only un-ACE bits.  

• Ex-ACE State.  ACE bits become un-ACE bits after their 
last use.  In other words, the bits are dead.  This category 
encompasses both architecturally dead values, such as 
those in registers, as well as architecturally invisible 
state. For example, after a dynamic instance of an in-
struction is issued for the last time from an instruction 
queue, it may still persist in a valid state in the instruc-
tion queue, waiting until the processor knows that no 
further re-issue will be needed, but a fault in that instruc-
tion will not have any effect on the output of a program.  

3.2 Architectural Un-ACE Bits 

Architectural un-ACE bits are those that affect correct-path 
instruction execution, but only in ways that do not change 
the output of the system.  For example, a strike on a 
storage cell carrying the operand specifier of a NOP 
instruction will not affect a program’s computation.  We 
call the bits of an instruction that are not necessary for an 
ACE path un-ACE instruction bits.  Below we identify five 
sources of architectural un-ACE bits:  

• NOP instructions. Most instruction sets have NOP 
instructions that do not affect the architectural state of 
the processor.  Fahs, et al. [9] found 10% NOPs in the 
dynamic instruction stream of SPEC2000 integer bench-
mark suite using the Alpha instruction set.  On the Intel® 
Itanium® processor, Choi, et al. [7] observed 27% retired 
NOPs in SPEC2000 integer benchmarks.  These 
instructions are introduced for a variety of reasons, such 
as to align instructions to address boundaries or to fill 
VLIW-style instruction templates.  Clearly, the only 
ACE bits in a NOP instruction are those that distinguish 
it from a non-NOP.  Depending on the instruction set, 
this may be the opcode or the destination register speci-
fier.  The remaining bits are un-ACE bits. 

• Performance-enhancing instructions.  Most modern 
instruction sets include performance-enhancing instruc-
tions.  For example, a non-binding prefetch instruction 
brings data into the cache to reduce the latency of later 
loads or stores.  A single-bit upset in a non-opcode field 
of such a prefetch instruction will not affect the correct 
execution of a program.  A fault may cause the wrong 
data to get prefetched, or may cause the address to 
become invalid, in which case the prefetch will be 
ignored, but the program semantics will not change.  
Thus, the non-opcode bits are un-ACE bits.  Fahs, et al. 
[9] reported that 0.3% of the dynamic instructions in 
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SPEC2000 integer suite using the Alpha instruction set 
were prefetch instructions.  The Itanium2® architecture 
has other performance-enhancing instructions, such as 
the branch predict hint instruction; none of these were 
present in the binaries we used for our evaluation.  

• Predicated-false instructions.  Predicated instruction-set 
architectures, such as IA64, allow instruction execution 
to be qualified based on a predicate register.  If the 
predicate register is true, the instruction will be commit-
ted.  If the predicated register is false, the instruction’s 
result will be discarded.  Clearly, all bits except the 
predicate register specifier bits in a predicated-false 
instruction are un-ACE bits.  A corruption of the predi-
cate register specifier bits may erroneously cause the 
instruction to be predicated true.  Hence, we conserva-
tively call those ACE instruction bits.  However, if the 
instruction itself is dynamically dead (see below) and the 
predicate register is overwritten before any other inter-
vening use, then the predicate register as well as the 
corresponding specifier can be considered un-ACE bits.  
In our evaluation, we found about 7% of dynamic 
instructions were predicated false.  

• Dynamically dead instructions.  Dynamically dead 
instructions are those whose results are not used.  In-
structions whose results are simply not read by any other 
instructions are termed first-level dynamically dead 
(FDD).  Transitively dynamically dead (TDD) instruc-
tions are those whose results are used only by FDD 
instructions or other TDD instructions.  We consider an 
instruction with multiple destination registers dynami-
cally dead only if all its destination registers are unused. 

We track FDD and TDD instructions through both 
registers and memory.  For example, if two instructions 
A and B successively write the same register R1 without 
any intervening read of register R1, then A is an FDD 
instruction tracked via register R1.  Similarly, if two 
store instructions C and D write the same memory 
address M without any intervening load to M, then C is 
an FDD instruction tracked via memory address M.  

Using the Alpha instruction set running the SPEC2000 
integer benchmarks, Butts and Sohi [5] reported about 
9% FDD and 3% TDD instructions tracked only via 
registers.  In contrast, Fahs, et al. [9] found about 14% 
FDD and TDD instructions—tracked via both registers 
and memory—in their evaluation of SPEC2000 integer 
benchmarks running on an Alpha instruction set architec-
ture.  Our evaluation with IA64 across portions of 18 
SPEC2000 benchmarks shows about 12% FDD and 8% 
TDD instructions tracked via both registers and memory.  
Our analysis assumes that memory results produced by 
FDD and TDD instructions are not used by other I/O 
devices.  We suspect that our numbers for dynamically 
dead instructions are higher than earlier evaluations 
because of aggressive compiler optimizations, which has 
shown to increase the fraction of dead instructions [5]. 

In this paper, we count all the opcode and destination 
register specifier bits of FDD and TDD instructions as 

ACE bits; all other instruction bits are clearly un-ACE 
bits.  If the opcode bits get corrupted, then the machine 
may crash when evaluating those bits.  If the destination 
register specifier bits get corrupted, then an FDD or TDD 
instruction may corrupt a non-dead architectural register, 
which could affect the final outcome of the program.  
This accounting is conservative, as it is likely that some 
fraction of bit upsets in the opcode or destination register 
specifier would not lead to incorrect program output.  

• Logical masking. There are many bits that belong to 
operands in a chain of computation whose values still do 
not influence the computation’s results.  We say these 
bits are logically masked.  For example, consider the 
following code sequence: 

(1) R2 ß  R3 OR 0x00FF 
(2) R4 ß  R2 OR 0xFF00 
(3) R3 ß  0 
(4) R2 ß  0 
(5) output R4 

In this case, the lower 16 bits of R4 will be 0xFFFF 
regardless of the values of R2 and R3.  When the value 
of a bit in an operand does not influence the result of the 
operation, we call this logical masking.  In our example, 
bits 0 to 7 (the low order bits) of R3 are logically masked 
in instruction 1, and bits 8 to 15 of R2 are masked in 
instruction 2.  For a bit in a register to be logically 
masked (and thus un-ACE), it must be logically masked 
for all of its uses.  We could identify additional un-ACE 
bits by considering transitive logical masking, where the 
effects of logical masking are propagated backwards 
transitively.  In the above code sequence, bits 8 to 15 of 
R3 contribute only to bits 8 to 15 of R2, assuming no 
other uses of R3.  Because bits 8 to 15 of R2 are logi-
cally masked, via transitive logical masking, bits 8 to 15 
of R3 are masked as well.  We do not evaluate transitive 
logical masking in this paper.  

We have found that logical masking arises from compare 
instructions prior to a branches (where it matters only if 
the value is zero or non-zero), bitwise logical operations, 
and 32-bit operations in a 64-bit architecture (where we 
assume that the upper 32 bits are un-ACE, which may 
not be true for certain ISAs, such as the Alpha ISA). For 
our purpose, all logically masked bits are un-ACE bits 
and can be factored out of the AVF calculation.  

Further analysis of a program—not considered in this 
paper—can potentially reveal other opportunities for 
derating.  For example, hint bits in IA64’s load instructions 
can be considered un-ACE.  Similarly, it may be possible 
to identify further logical masking by analyzing values 
used by integer adds or floating point operations, but we 
do not consider them in this paper.   

4. COMPUTING AVF  
This section describes how to compute AVF based on the 
sources of un-ACE bits from Section 3.  Section 4.1 
outlines the equations we use to compute AVFs for storage 
cells.  Section 4.2 shows how to compute AVFs using 
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Little’s Law [15].  Finally, Section 4.3 shows how to 
compute the AVF using a performance model.  

4.1 AVF Equations for  a Hardware Structure 

The AVF of a storage cell is the fraction of time an upset 
in that cell will cause a visible error in the final output of a 
program.  Thus, the AVF for an unprotected storage cell is 
the percentage of time the cell contains an ACE bit.  For 
example, if a storage cell contains ACE bits for a million 
cycles out of an execution of ten million cycles, then the 
AVF for that cell is 10%. 

Although we defined the AVF equations with respect to a 
storage cell, in this paper we will compute the AVF for a 
whole hardware structure. The AVF for a hardware 
structure is simply the average AVF for all its bits in that 
structure, assuming that all bits in that structure have the 
same circuit composition and, hence, the same raw FIT 
rate. Then, the AVF of a hardware structure is equal to: 

 
average number of ACE bits resident in a hardware structure in a cycle 

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

total number of bits in the hardware structure 
 

The above equation can be rewritten as: 

 
� residency (in cycles) of all ACE bits in a structure  

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

total number of bits in the hardware structure × total execution cycles 

 

The latter equation makes it easier to compute the AVF 
using a simulator.  

4.2 Computing AVFs using Little’s Law 
Using Little’s Law [15], we can compute the average 
number of ACE bits resident in a structure and, therefore, 
the AVF of the structure. Little’s Law can be translated 
into the equation N = B×L, where N = average number of 
bits in a box, B = average bandwidth per cycle into the 
box, and L = average latency of an individual bit through 
the box. Applying this to ACE bits, we get the average 
number of ACE bits in a box as the product of the average 
bandwidth of ACE bits into the box (Bace) times the 
average residence cycles of an ACE bit in the box (Lace).  
Thus, we can express the AVF of a structure as: 

Bace × Lace 
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

total number of  bits in the hardware structure 

In many cases, it is possible to compute the bandwidth of 
ACE bits into a structure and the average residence cycles 
of ACE instructions using hardware performance counters, 
allowing AVF estimation without a simulation model. In 
Section 6.2, we will show how to approximate the AVF of 
an instruction queue using the formulation in this section. 

4.3 Computing AVFs using a Performance Model 

In this paper, we compute the AVFs of two structures—the 
instruction queue and execution units—using the Asim 
performance model framework (Section 5).  To compute 
the AVF of a structure using the equation in Section 4.1, 
we need the following information: 

• sum of all residence cycles of all ACE bits of the objects 
resident in the structure during the execution of the 
program,  

• total execution cycles for which we observe the ACE 
bits’  residence time, and 

• total number of bits in a hardware structure.  

Using a performance model, we can compute all of the 
above.  Specifically, in this paper, we examine objects that 
carry instruction information along the pipeline.  

Our AVF algorithm is divided up into three parts.  As an 
instruction flows through different structures in the 
pipeline, we record the residence time of the instruction in 
the structure.  Then, before the instruction disappears from 
the machine—either via a commit or via a squash—we 
update the structures it flowed through with a variety of 
information, such as the residence cycles, whether the 
instruction committed, etc. (part 1).  Also, if the instruction 
commits, we put the instruction in a post-commit analysis 
window to determine if the instruction is dynamically dead 
or if there are any bits that are logically masked (part 2).  
Finally, at the end of the simulation, using the information 
captured in parts 1 and 2, we can easily compute the AVF 
of a structure (part 3).  

To compute whether an instruction is a first-level dynami-
cally dead (FDD) or a transitively dynamically dead 
(TDD) instruction and whether any of the result bits have 
logical masking (Section 3.2), we must know about the 
future use of an instruction’s result.  We use the analysis 
window to capture this future use.  When an instruction 
commits, we enter it into the analysis window, linking it 
with the instructions that produced its operands.  At any 
time, we can analyze the future use of an instruction’s 
results by examining its successors in the analysis window.  

Table 1. SPEC2000 Benchmarks used in this paper.  M = 1 
Million. 
Integer  
Benchmarks 

Instructions 
Skipped 

Floating Point 
Benchmarks 

Instructions 
Skipped 

bzip2-source 48,900 M ammp 50,900 M 
cc-200 16,600 M applu 500 M 
crafty 120,600 M apsi 100 M 
eon-kajiya 73,000 M art-110 36,400 M 
gap 18,800 M equake 1,500 M 
gzip-graphic 2,9000 M facerec 64,100 M 
mcf 26,200 M fma3d 23,600 M 
parser 71,400 M galgel 5,000 M 
perlbmk-makerand 0 M lucas 123,500 M 
twolf 185,400 M mesa 73,300 M 
vortex_lendian3 59,300  M mgrid 200 M 
vpr-route 49,200 M sixtrack 4,100 M 
  swim 78,100 M 
  wupwise 23,800 M 

 



To appear in the Proceedings of the 36th Annual International Symposium on Microarchitecture (MICRO), December 2003 

                          7 

Of course, because the analysis window must be finite in 
size, we cannot always determine the future use precisely.  
We found that an analysis window of 40,000 instructions 
covers most of the needed future use information.  

The analysis window has three sub-windows which 
compute FDD, TDD, and logical masking information, 
respectively.  Each sub-window has two primary data 
structures: a linked list of instructions in commit order and 
a table indexed via architectural register number or 
memory address.  The linked list maintains the relative age 
information necessary to compute future use.  Each entry 
in the table maintains the list of producers and consumers 
for that register or memory location.  The FDD, TDD, and 
logical masking information can all be computed using this 
list of producers and consumers.  Thus, a list with two 
consecutive producers for a register R and no intervening 
consumer for the same register R can be used to mark the 
first producer of R as a dynamically dead instruction.  

We used microbenchmarks written in assembly language 
to ensure that the analysis window was working correctly.  
We explicitly engineered a certain number dynamically 
dead instructions and values in these microbenchmarks.  
The number of dynamically dead instructions reported by 
the analysis window matched up with the expected number 
of dynamically dead instructions coded into the bench-
marks.  

5. METHODOLOGY FOR EVALUATION 
For our evaluation, we use an Itanium2®-like IA64 
processor [14] scaled to current technology.  This proces-
sor was modeled in detail in the Asim [8] performance 
model framework.  Red Hat Linux 7.2 was modeled in 

detail via an OS simulation front-end.  For wrong paths, 
we fetch the mis-speculated instructions, but do not have 
the correct memory addresses that a load or store may 
access. We augmented this processor model with the 
instrumentation described in Section 4.3.  

Table 1 lists the skip interval and input set selected for 
each of the Spec2000 programs used for our analysis. The 
benchmarks were compiled with the Intel® electron 
compiler (version 7.0) with the highest level of optimiza-
tion. We obtained the number of instructions to skip using 
Sherwood et al.’s [21] SimPoint analysis modified for the 
IA64 instruction set architecture. For each benchmark, we 
obtained a number of simpoints, but here we present 
numbers only for the first simpoint of each benchmark. We 
ran each simpoint for 100 million instructions (including 
NOPs).  

6. RESULTS  
This section describes our AVF results.  Section 6.1 
provides a program-level decomposition of various 
components in the committed stream of instructions.  In 
Sections 6.2 and 6.3, we use these program-level compo-
nents as well as microarchitectural states to compute the 
AVFs of the instruction queue and execution units, 
respectively.  

6.1 Program-level Decomposition 

Figure 2 shows a decomposition of the dynamic stream of 
instructions based on whether the instruction’s output 
affects the final output of the benchmark.  An instruction 
whose result may affect the output is an ACE instruction, 
while an instruction which definitely does not affect the 
final output is un-ACE.  As the figure shows, on average, 
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Figure 2.Program-level Decomposition of Committed Instructions.  TDD = Transitively Dynamically Dead, FDD = First-level Dynami-
cally Dead, NOT_PROCESSED = instructions not processed at the end of the simulation, UNKNOWN = live or deadness could not be 
determined during program execution with our analysis window.  
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we get about 45% ACE instructions.  The rest—55% of the 
instructions—are un-ACE instructions.  Some of these un-
ACE instructions still contain ACE bits, such as the 
opcode bits of prefetch instructions.  Because our analysis 
is conservative, there may be other opportunities to move 
instructions from the ACE to un-ACE category. 

In Figure 2, UNKNOWN denotes the instructions for 
which we could not determine if the destination register 
was live or dead because there was not enough information 
in the analysis window to make this determination (Section 
0).  NOT_PROCESSED is always 20,000 instructions at 
the end of the simulation.  UNKNOWN and 
NOT_PROCESSED instructions account for about 1% of 
the total instructions, so they should not affect our analysis 
significantly.  

NOPs, predicated false instructions, and prefetch instruc-
tions account for 26%, 6.7%, and 1.5%, respectively.  
NOPs are introduced in the IA64 instruction stream to 
align instructions on three-instruction bundle boundaries.  
These NOPs are carried through the Itanium2® pipeline. 

Finally, FDD and TDD show the first-level and transitively 
dynamic dead instructions.  FDD_reg and FDD_mem 
denote results that are written back to registers and 
memory, respectively.  On average, FDD_reg and 
FDD_mem account for about 9.4% and 2% of the dynamic 
instructions.  IA64 has a large number of registers relative 
to other instruction sets.  Consequently, it produces a 
significantly higher fraction of FDD_reg instructions 
compared to FDD_mem.  Similarly, the TDD_reg and 
TDD_mem account for 6.6% and 1.6% of the dynamic 
instructions.  

6.2 AVF for  Instruction Queue  

Figure 3 shows what percentage of cycles a storage cell in 
the instruction queue contains ACE and un-ACE bits.  This 
calculation assumes each entry of the instruction queue is 
approximately 100 bits.  An IA64 instruction is 41 bits, but 

the number of bits required in the entry is higher because a 
large number of bits are required to capture the in-flight 
state of an instruction in the machine.  Of these 100 bits, 
we estimate that five bits are control bits and cannot be 
derated.  Of the remaining 95 bits, we do not derate the 
seven opcode bits for any instruction.  Additionally, we do 
not derate the six predicate specifier bits of falsely 
predicated instructions or the seven destination register 
specifier bits for FDD and TDD instructions.  

Figure 3 shows that on average, a storage cell in the 
instruction queue contains an ACE bit about 28% of the 
time.  Thus, the AVF of the instruction queue is 28%.   On 
average a cell is idle 30% of the cycles and contains an un-
ACE bit about 42% of the cycles.  Across the simulated 
portions of our benchmark suite, the AVF number ranges 
between 14% and 47% for the instruction queue.  

Figure 33 also shows that the floating point programs, in 
general, have higher AVFs compared to integer programs 
(31% vs. 25%, respectively).  Floating-point programs 
usually have many long-latency instructions and few 
branch mispredictions.  Hence, they use the instruction 
queue more effectively than integer programs, leading to a 
higher AVF.  

Table 2 shows how to approximate AVFs (at the instruc-
tion level) for the instruction queue using Little’s Law.  As 
explained in Section 4.2, the AVF of the instruction queue 
can be approximated as the ratio of the average number of 
ACE instructions in the instruction queue to the total 
number of instruction entries in the instruction queue, 
which is 64 in our machine.  The number of ACE instruc-
tions in the instruction queue, as given by Little’s Law, is 
the product of the bandwidth or ACE IPC and the average 
number of cycles an instruction in the instruction queue 
can be considered to be in ACE state or ACE latency. Note 
that an instruction can persist even after it is issued for the 
last time.  Thus, after an ACE instruction is issued for the 
last time, the ACE bits holding the ACE instruction 
become un-ACE.  We obtained the ACE IPC and ACE 
latency from our performance model.  

Table 2. AVF breakdown using Little’s Law. # ACE inst = ACE IPC X ACE Latency.  AVF ~= # ACE inst / # instruction queue entries.  
Integer 
Benchmarks 

ACE IPC ACE Latency 
(cycles) 

# ACE 
Inst 

AVF Floating Point 
Benchmarks 

ACE IPC ACE Latency 
(cycles) 

#ACE 
Inst 

AVF 

bzip2-source 0.55 22 12 19% ammp 0.23 92 21 33% 
cc-200 0.57 18 10 16% applu 0.82 21 18 27% 
crafty 0.37 15 6 9% apsi  0.31 31 9 15% 
eon-kaj iya 0.36 20 7 11% art-110 0.68 37 25 40% 
gap 0.78 17 13 21% equake 0.26 12 3 5% 
gzip-graphic 0.60 13 8 12% facerec 0.41 7 3 5% 
mcf 0.25 68 17 26% fma3d 0.59 11 7 10% 
parser 0.49 24 12 19% galgel 1.10 21 23 35% 
perlbmk-makerand 0.38 17 7 10% lucas 1.23 17 21 33% 
twolf  0.30 27 8 13% mesa 0.47 16 8 12% 
vortex_lendian3 0.42 22 9 15% mgrid 1.28 10 13 21% 
vpr-route 0.35 12 4 7% sixtrack 0.66 20 13 21% 
     swim 1.08 16 17 27% 
     wupwise 1.60 13 20 31% 
average 0.45 23 9 15% average 0.77 23 14 23% 
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Using the ACE IPC and ACE latency, we compute the 
AVFs in Table 2.  Using this method, we compute an 
average AVF of 19%, which is 9% lower than that of 
actual AVF for the instruction queue reported earlier.  This 
difference can be attributed to the ACE bits of un-ACE 
instructions, such as prefetch and dynamically dead 
instructions, whose results do not affect the final output of 
a program (Section 3). Table 2 does not account for these 
ACE bits, but Figure 3’s ACE number includes them.  If 
we did our Little’s Law analysis at the bit-level, instead of 
instruction-level as in Table 2, then we would have 
matched Figure 3’s average AVF of 28%.  

Table 2 also explains why lucas has an AVF similar to 
ammp even though lucas has one of the highest ACE IPCs.  
This is because the AVF depends on both the ACE IPC as 
well as ACE latency.  Although lucas has a high ACE IPC, 
it has relatively low ACE latency.  Consequently, the 
product of these two terms results in an AVF similar to 
ammp’s, which has a low ACE IPC but a high ACE 
latency.  

6.3 AVFs for  the Execution Units 

This section describes the AVF numbers of the execution 
units in our simulated machine model.  In our six-issue 
machine, we have four integer pipes and two floating point 
pipes.  Integer multiplication is, however, processed in the 
floating point pipeline.  When integer programs execute 
the floating point pipes lie idle.  

We assume that the execution units overall have about 
50% control latches and 50% datapath latches.  First, we 
show how to derate the entire execution unit, so that the 
results would apply to both the control and datapath 

latches. Then, we will show how to further derate the 
datapath latches only.  

Figure 4 shows that the execution units on average spend 
11% of the cycles processing ACE instructions (with a 
range of 4% to 27%).  Thus, the average AVF of a latch in 
the execution units is 11%.  Interestingly, the execution 
units’  AVF is significantly lower than that of the instruc-
tion queue.  This is due to three effects. First, instructions 
must wait in the instruction queue until they execute and 
retire.  Thus, ACE instructions persist longer in the 
instruction queue than they take to execute in the execution 
units.   

Second, speculatively issued instructions succeeding 
cache-miss loads must replay through the instruction 
queue.  However, only the last pass through the execution 
units matters for correct execution.  The execution unit 
state for all prior executions is counted as un-ACE.  Note 
that this is possible in our processor model because a 
corrupted bit in one of the instructions designated for a 
replay does not affect the decision to replay.  The informa-
tion necessary to make this decision resides elsewhere in 
the instruction queue.  

Third, the floating point pipes are mostly idle while 
executing integer code, greatly reducing their AVFs.  

As mentioned earlier, the above analysis computes a single 
AVF for both the control and datapath latches in the 
execution units.  However, the datapath latches themselves 
can be further derated based on whether specific datapath 
bits are logically masked (Section 3.2) or are simply idle 
(Section 3.1).  We apply logical masking to data values 
(and, hence, datapaths) only; analyzing logical masking for 
control latches would be a complex task.  
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Figure 3. Breakdown of different architectural and microarchitectural states for the instruction queue.  AVF is the % of cycles the instruc-
tion queue contains ACE bits.   
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We implemented logical masking functions for a small but 
important subset of the roughly 2000 static internal 
instruction types that we have in our processor model.  
This subset contains a variety of functions, including 
logical OR, AND, etc. We also estimate that another 20% 
of the instructions (including loads, stores, and branches) 
will not have any direct logical masking effect.  The 
combination of these two categories covers the vast 
majority of dynamically executed instructions.  Figure 4 
shows that this logical masking analysis further reduces 
the AVF by 0.5% (averaged across both control and data 
latches, even though this does not apply to control latches).  
We expect that the incremental decrease in AVF due to the 
remaining unanalyzed instruction types will be small. We 
did not consider transitive logical masking (see Section 
3.2), which would further reduce the AVF number for the 
datapath latches.  

Datapath latches can be further derated by identifying the 
fraction of time they remain idle.  For example, an IA64 
compare instruction produces two predicate values—a 
predicate value and its complement.  However, in our 
simulated implementation, these two result bits are sent 
over a 64-bit result bus, leaving 62 of the datapath lanes 
idle.  This effect further reduces the AVF by 1.5%, as 
shown by DATAPATH_IDLE in Figure 4. Depending on 
the implementation, however, the DATATPATH_IDLE 
portion can also be viewed as bits that get logically 
masked at the implementation level. In contrast, 
UNIT_IDLE in Figure 4 refers to the whole execution unit 
being idle because of the lack of any instruction issued to 
that unit.   

Overall, factoring in logical masking and idle latches in 
datapaths, the average AVF for the execution units is 

reduced to 9%.  Across the simulated portions of our 
benchmark suite, the AVF for the execution units ranges 
from 4% to 27%.  

7. RELATED WORK 
Prior work in estimating AVFs has used statistical fault 
injection into hardware RTL models.  Kim and Somani 
[13] did a systematic fault injection study of Sun Micro-
system’s publicly disclosed picoJava II RTL model and 
reported wide variation of AVFs for a variety of picoJava 
II’s hardware structures.  Wang and Patel [25] injected 
faults into an RTL model of the Alpha 21164 processor 
and reported AVFs of less than 10% for the pipeline 
latches.  The biggest advantage of using an RTL model is 
that usually the RTL model has all the hardware structures 
necessary to create a processor.  In contrast, a performance 
model, which we use in our paper, has only components 
that affect the performance of a processor.  Consequently, 
we can only report the AVFs of components that are 
modeled.  Nevertheless, the performance models used in 
industry are extremely detailed and capture significant 
portions of the processor under design.  

We improve upon statistical fault injection into RTL 
models in four ways.  First, statistical fault injection 
requires simulating a large number of fault cases to 
provide adequate statistical significance.  Using ACE 
analysis, our technique provides reasonably tight, determi-
nistic AVF estimates in a single experiment.  As a result, 
designers can not only generate AVF estimates much more 
quickly, but perform more sophisticated analyses—for 
example, determine the impact of benchmark selection on 
AVF across most of SPEC CPU2000 using multi-million-
instruction samples, as we have done. 

Second, ACE analysis provides a more comprehensive 
determination of whether faults impact processor opera-
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Figure 4.  Breakdown of different architectural and microarchitectural states for the execution units.  ACE above denotes the % of cycles 
the execution units contain ACE instructions. 
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tion.  Statistical fault injection methods typically compare 
the architectural state of the system with a known good 
copy after some fixed number of cycles.  In contrast, we 
track state through architectural registers and memory 
locations to properly categorize faults in values that are 
dead or masked. 

Third, ACE analysis gives useful insight into system 
behavior, such as a breakdown of why un-ACE bits do not 
contribute to the program result.  The application of 
Little’s Law to rough AVF estimation, as described in 
Section 4.3, exemplifies the usefulness of ACE analysis’s 
more abstract nature. 

Finally, fault injection into an RTL model requires an RTL 
model, which is generally not available during the 
architectural exploration phase of a microprocessor design 
project.  This paper outlines a technique that can be used to 
compute AVFs using a performance model, which is 
typically used for architectural exploration for a processor 
design.  Consequently, using this technique an architect 
can anticipate the error protection techniques needed for 
specific structures much ahead of the RTL development. 
Although statistical fault injection could be applied to a 
performance model, it would continue to suffer from the 
shortcomings listed above. 

Nevertheless, we expect that analysis of RTL models will 
continue to be necessary for more accurate fault-rate 
estimates later in the design process.  The application of 
ACE analysis to RTL appears promising, and is an area of 
future work. 

Additionally, we would like to point out that we draw 
heavily upon prior work in measuring the architectural 
behavior of processors.  Several papers (e.g., [5], [9], [19], 
[7]) have quantified the extent of dynamically dead 
instructions, prefetches, and NOPs used in modern 
microprocessors.  Finally, Gomaa, et al.’s CRTR design 
[10] relies on logical masking to avoid fault detection 
checks on certain logical instructions.  

8. CONCLUSIONS 
Single-event upsets from particle strikes have become a 
key challenge in microprocessor design.  Techniques to 
deal with these transient faults exist, but come at a cost.  
Designers require accurate estimates of processor error 
rates to make appropriate cost/reliability trade-offs.  This 
paper described a method for generating these estimates.  

A key aspect of this analysis is that some single-bit faults 
(such as those occurring in the branch predictor) will not 
produce an error in a program's output.  We call the 
probability that a fault in a particular structure will result 
in an error the structure's architectural vulnerability factor 
(AVF).  A structure's error rate is the product of its raw 
error rate, as determined by process and circuit technology, 
and the AVF. 

This paper estimated AVFs using a novel approach that 
tracks the subset of processor state bits required for 
architecturally correct execution (ACE). Any fault in a 

storage cell that contained one of these bits, which we 
called ACE bits, would cause a visible error in the final 
output of a program in the absence of error correction 
techniques.  We called the remaining processor state bits 
un-ACE bits, as their specific values are unnecessary for 
architecturally correct execution.  A fault that affected only 
un-ACE bits would not cause an error.  The AVF for a 
single-bit storage cell is simply the fraction of time that it 
held ACE bits.  Assuming that all cells have equal raw 
fault rates, the AVF for a structure is the average AVF of 
its storage cells, or the average fraction of its cells that 
held ACE bits at any point in time.   

In this paper we conservatively assumed that every bit is 
an ACE bit unless we could prove otherwise.  We 
identified un-ACE bits at both the architectural and 
microarchitectural levels.  We identified five classes of 
architectural un-ACE bits.  These un-ACE bits come from 
NOP instructions, performance-enhancing instructions 
(e.g., prefetches), predicated-false instructions, dynami-
cally dead code, and logically masked bits.  Similarly, we 
identify four classes of microarchitectural un-ACE bits.  
These are idle or invalid bits, mis-speculated bits, predictor 
structure bits, and microarchitecturally dead bits.   
Using the above methodology, dynamic slices of the SPEC 
2000 benchmark suite, and the Asim performance model, 
we computed the AVF for the instruction queue and 
execution units of an Itanium2®-like IA64 processor.  We 
found that the AVF of the instruction queue ranges 
between 14% and 40%, whereas the AVF for the execution 
units range between 2% and 17%.  Because our methodol-
ogy is conservative, these fractions are upper bounds on 
the AVF numbers.  Further refinement of our analysis 
(e.g., derating the hint bits in an IA64 load instruction) 
could further lower the AVF estimates.  However, we 
believe we have captured most of the dominant AVF 
effects for the IA-64 architecture and Itanium2®-like 
microarchitecture we examined and, hence, we expect the 
contribution from further refinement to be small. 
Per-structure AVF estimates such as these should help 
microprocessor designers to estimate the FIT rate of an 
entire processor early in the design cycle.  If the processor 
does not meet its target FIT rate, then these estimates can 
help designers choose the appropriate error detection or 
correction schemes to make specific structures less 
vulnerable to single-bit upsets.  Large structures with high 
AVFs, for example, would be obvious candidates for such 
error protection.  Typically, parity- or ECC-protected bits 
are not vulnerable to single bit upsets and, therefore, do 
not contribute to the FIT rate of a chip.  Thus, microproc-
essor designers can lower the FIT rate of the chip itera-
tively by adding more and more error protection, using 
AVF estimates as a guide.  
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