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Single-bit upsets from transient
faults have emerged as a key challenge in
microprocessor design. These faults arise from
energetic particles—such as neutrons from
cosmic rays and alpha particles from packag-
ing material—generating electron-hole pairs
as they pass through a semiconductor device.
Transistor source and diffusion nodes can col-
lect these charges. A sufficient amount of
accumulated charge can invert the state of a
logic device, such as an SRAM cell, a latch, or
a gate, thereby introducing a logical fault into
the circuit’s operation.1 Because this type of
fault does not reflect a permanent device fail-
ure, we call it soft or transient.

Soft errors will be an increasing burden for
microprocessor designers as the number of
on-chip transistors continues to grow expo-
nentially. The raw error rate per latch or
SRAM bit is projected to remain roughly

constant or decrease slightly for the next sev-
eral technology generations.2,3 Thus, unless
we add error protection mechanisms or use
a more robust technology (such as silicon-
on-insulator), a microprocessor’s error rate
will grow in direct proportion to the num-
ber of devices we add to it in each succeed-
ing generation.

A direct approach to reducing error rates
involves adding error correction or recovery
mechanisms to a design. Unfortunately, these
mechanisms come at a significant cost in
power, performance, and area. Furthermore,
these techniques might be overkill for most of
the microprocessor market, which requires
good reliability but not bulletproof operation.
This article focuses on an alternative approach
to reducing a microprocessor’s soft-error rate:
reducing the likelihood that a transient fault
will cause the processor to declare an error
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condition. We propose two variations on this
theme, with specific application to a micro-
processor instruction queue.

Effects of soft errors
Figure 1 illustrates the possible outcomes

of a single-bit fault. (In this article, we con-
sider only single-bit faults; multiple-bit faults
are orders of magnitude less common.) Out-
comes labeled 1, 2, and 3 indicate nonerror
conditions. Outcome 4 represents the most
insidious form of error, silent data corruption
(SDC), in which a fault induces the system to
generate erroneous outputs. To avoid SDC,
designers often employ basic error detection
mechanisms, such as parity. These mecha-
nisms provide fail-stop behavior but no error
correction, leading to detected unrecoverable
errors (DUEs).

We subdivide DUE events according to
whether the detected fault would affect the
final outcome of the execution. We call benign
detected faults false DUE events (outcome 5 in
Figure 1) and others true DUE events (out-
come 6). In most situations, it is impossible
for a processor to determine at the time a fault
is detected whether it is benign. The conserv-
ative approach is to signal all detected faults as
errors (for example, via a machine-check
exception).

Interestingly, protecting a structure with an
error detection mechanism increases the struc-
ture’s overall error rate contribution. Faults
that would have been benign will be signaled,
generating false DUE events. These faults are
in addition to errors that would have been
SDC events and are now true DUE events.

Microprocessor vendors typically set target
maximum SDC and DUE rates for their
processors. We can calculate SDC and DUE
rates for a particular processor structure as the
product of the raw error rate of the structure’s
storage cells (that is, the single-bit-fault rate)
and the probability that a single-bit fault will
cause an SDC event (outcome 4 in Figure 1)
or a DUE event (outcomes 5 or 6). We call
the latter probabilities the device’s architec-
tural vulnerability factors (AVFs). The SDC
and DUE rates for the entire processor are
simply the sums of the rates of all the struc-
tures in the processor.

Mukherjee et al. introduced the concept
of architecturally correct execution (ACE)

to compute the AVFs of microprocessor
structures.4 Architecturally correct execu-
tion is any execution that generates results
consistent with the system’s correct opera-
tion as observed by a user. Individual
instructions can generate incorrect results
without violating ACE if those results are
never observed outside the system (for exam-
ple, they are dead values). We call a bit an
ACE bit if it contains information that will
affect the program’s final outcome; other-
wise, it is an un-ACE bit.

An unprotected storage cell’s SDC AVF is
the fraction of cycles in which it contains an
ACE bit. For a storage cell covered by an error
detection scheme with no recovery, the frac-
tion of cycles in which it contains an ACE bit
corresponds to its true DUE AVF (that is, the
probability of a true DUE event given a sin-
gle-bit fault). The false DUE AVF reflects the
probability that an unrecoverable error is
signaled for an un-ACE bit.

The total DUE AVF is the sum of the true
and false DUE AVFs. Our two techniques for
reducing soft error rates target two different
components of overall AVF: true errors that
contribute to SDC and/or the true DUE AVF,
and false errors that contribute to the false
DUE AVF.
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Figure 1. Classification of possible outcomes of a faulty bit in a microproces-
sor. (SDC: silent data corruption; DUE: detected unrecoverable error)



Reducing exposure to radiation
Our first technique reduces AVF by reduc-

ing the exposure of ACE objects to neutron
and alpha radiation. The basic idea is to keep
ACE objects in protected memory and fetch
them to vulnerable storage only when needed.
If the vulnerable storage has no protection, its
error rate will contribute to the processor’s
SDC rate. If the vulnerable storage has error
detection but no recovery, its error rate will
contribute to the processor’s DUE rate.

For example, microprocessors often aggres-
sively fetch instructions from protected mem-
ory, such as main memory protected by
error-correcting codes or a read-only instruc-
tion cache protected by parity (but recover-
able because instructions can be refetched
from main memory on a parity error). How-
ever, pipeline hazards can cause these instruc-
tions to stall in the instruction queue. The
longer such instructions reside in the instruc-
tion queue, the greater the likelihood that a
neutron or alpha particle will strike them.

We propose that processors squash (or
remove) instructions from the instruction
queue after events resulting in pipeline stalls
and refetch the instructions when the pipeline
resumes execution. We specifically examine
squashing after data cache load misses.
(Tullsen and Brown proposed a similar poli-
cy to improve performance in multithreaded
machines.5) Because we examine an in-order
machine, squashing all instructions after a
load miss should have minimal performance
impact. At the same time, it should lower AVF
by reducing instructions’ exposure to neutron
and alpha strikes.

Quantifying performance-reliability
tradeoffs

Traditionally, the fault tolerance commu-
nity has used the term mean time to failure
(MTTF) to reason about error rates in
processors and systems. Although MTTF
provides a metric for error rates, it does not
allow us to reason about the tradeoff between
error rates and a processor’s performance. We
introduce the concept of mean instructions
to failure as one approach to reason about this
tradeoff. MITF tells us how many instruc-
tions a processor commits, on average,
between two errors. MITF is related to
MTTF as follows:

where IPC is the number of instructions per
cycle.

As with SDC and DUE rates, there are cor-
responding SDC and DUE MTTFs and
MITFs. Hence, for example, a processor run-
ning at 2 GHz with an average IPC of 2 and
a DUE MTTF of 10 years would have a DUE
MITF of 1.3 × 1018 instructions.6

A higher MITF implies a greater amount
of work done between errors. Assuming that
increasing MITF is desirable within certain
bounds, we can use MITF to reason about the
tradeoff between performance and reliability.
Because MTTF = 1/(raw error rate × AVF),
we have

Thus, at a fixed frequency and raw error
rate, MITF is proportional to the ratio of IPC
to AVF. More specifically, SDC MITF is pro-
portional to IPC/SDC AVF and DUE MITF
is proportional to IPC/DUE AVF. Mecha-
nisms that reduce both AVF and IPC, such as
the one proposed in the previous section,
might be worthwhile only if they increase
MITF—that is, if they increase the IPC-to-
AVF ratio by reducing AVF relative to the base
case to a greater degree than they reduce IPC.

Although we can use MITF to reason about
performance versus AVF for incremental
changes, we must be cautious not to misap-
ply it. For example, it could be argued that
doubling processor performance while reduc-
ing MTTF by 50 percent is a reasonable trade-
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off because MITF would remain constant.
However, this explanation might not be ade-
quate for customers who see their equipment
fail twice as often.

Reducing false DUE by tracking
Our second approach to reducing the soft

error rate addresses false DUE AVF. False
DUE events arise from detected unrecover-
able errors that would not have affected the
system’s final output in the absence of error
detection. For example, a fault in a wrong-
path instruction in the instruction queue
would not affect any user-visible state. How-
ever, the processor is unlikely to know in the
issue stage whether or not an instruction is on
the correct path, and thus the processor might
be forced to raise a machine check exception
on detecting any instruction queue parity
error. Figure 1 relates false DUE events to
other possible fault outcomes.

Our earlier classification4 identifies three
sources of false errors for the instruction
queue:

• Instructions whose results the microarchi-
tecture will never commit. Examples are
wrong-path instructions and predicated-
false instructions.

• Instruction types that are neutral to errors.
No-ops, prefetches, and branch predic-
tion hint instructions, for example, don’t
affect correctness. Consequently, faults
in bits other than the opcode bits will not
affect a program’s final outcome.

• Dynamically dead instructions. These
instructions generate values that ulti-
mately don’t affect the result. We classi-
fy dynamically dead instructions as
first-level or transitive. First-level dynam-
ically dead (FDD) instructions are those
whose results are not read by any other
instruction. Transitive dynamically dead
(TDD) instructions are those whose
results are used only by FDD instructions
or other TDD instructions.

The key to addressing false DUE events is
to propagate error information from the point
where an error is detected to a later point
where the processor can determine whether
the error will affect the system’s output. We
introduce a new bit for this purpose called the

π bit, or the pi (possibly incorrect) bit.
A π bit is logically associated with each

instruction as it flows down the pipeline. We
initially clear the π bit to indicate the absence
of any error. On detecting an error, a pipeline
stage sets the affected instruction’s π bit
instead of raising a machine check exception.
Subsequently, the instruction issues and flows
down the pipeline. When the instruction
reaches the commit point, we can determine
whether the instruction was on the wrong
path. If so, we ignore the π bit, avoiding a false
DUE event if the bit was set. If not, we have
the option to raise the machine check error at
the instruction’s commit point. A strike on the
π bit itself could result in a false DUE event.

Fujitsu’s recent Sparc processor propagates
parity errors along the pipeline in a similar
fashion.7 However, instead of tracking false
DUE events, Fujitsu’s Sparc uses the parity bit
to restart its pipeline from the instruction that
received the parity error.

We can avoid false DUE events resulting
from dynamically dead instructions in the reg-
ister file by propagating π bits to registers.
Instead of raising an error if an instruction’s π
bit is set, we can transfer the instruction’s π bit
to its destination register. If the instruction is
dead (FDD), no subsequent instruction will
read this register, and the register’s π bit will
not be examined. We thus avoid raising a false
error. If a subsequent instruction reads a reg-
ister with the π bit set, we can signal an error.
This mechanism is similar to previous mech-
anisms for tracking exceptions on speculative-
ly executed instructions, such as Rogers and
Li’s poison bit,8 Mahlke et al.’s speculative
modifier bit,9 and the Itanium architecture’s
NaT (not a thing) bit. The proposed, but even-
tually canceled, Alpha 21464 microarchitec-
ture had a similar mechanism to replay
instructions dependent on a load miss.

We can suppress false errors on some TDD
instructions by propagating the π bit through
instructions instead of raising an error when-
ever a source register’s π bit is set. Specifical-
ly, an instruction reading a register could OR
the π bits of all its source registers with its own
π bit and carry it along the pipeline. This
approach propagates the π bit along depen-
dence chains. We can signal an error when a
set π bit propagates to an instruction that
attempts to write to memory or an I/O device.
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If we further propagate the π bit from
instructions and registers to memory values,
we can track false DUE events in memory
structures, such as store buffers and caches, as
well as additional TDD instructions. For
example, we can attach a π bit to each cache
block and transfer each store instruction’s π bit
to the cache block. Subsequently, when a load
reads the cache block, it transfers the π bit to
its destination register. In this situation, an
error is signaled if data with a set π bit propa-
gates beyond the cache—for example, because
of a cache writeback or an I/O operation.

We don’t expect all hardware structures in
a processor or an entire system to be populat-
ed with π bits. When data or instructions cov-
ered by a π bit affect architectural state in a
structure not covered by a π bit, the system
can no longer track the possible error. At this
point, the implementation should signal an
error if the π bit is set.

Suppressing false errors on neutral instruction types
The system need not raise an error on non-

opcode bits of instructions such as no-ops,
prefetches, or branch prediction hints. How-
ever, to identify such instructions, the hard-
ware must decode the instruction at every
place it wants to avoid a false error. Instead,
we propose using another bit called the anti-
π bit, which is associated with each instruc-
tion when we decode it. We set the anti-π bit
for neutral instruction types and clear it for
others. Then, when the instruction queue gets
a parity error on an entry’s non-opcode bits,
it identifies neutral instructions using the anti-
π bit and does not set the π bit on that instruc-
tion. In other words, the anti-π bit neutralizes
the π bit for those entries. Alternatively, the
instruction queue could set the π bit but carry
both the anti-π bit and the π bit to the retire
unit and follow the appropriate decision there.
The anti-π bit can be generalized to other
activities that do not affect a program’s cor-
rectness. For example, we could attach an anti-
π bit to each memory request generated by a
hardware data prefetcher.

Postcommit error-tracking buffer
One shortcoming of using π-bit propaga-

tion to identify dead instructions is that the
system can no longer determine which
instruction originally caused the error. This

lack of information can complicate some
recovery schemes. We devised an alternate
mechanism, the postcommit error-tracking
(PET) buffer, which also avoids signaling
errors on a subset of FDD instructions and
can precisely determine the offending instruc-
tion that could have encountered a true error.
An n-entry PET buffer contains an entry for
the n most recently retired instructions along
with their π bits. When the PET buffer is full,
the system examines the π bit of the oldest
instruction about to be evicted.

If its π bit is set, the hardware scans the
instructions in the PET buffer to determine
if its result was overwritten by a subsequent
instruction without an intervening read. If so,
the instruction is FDD and the error can be
ignored. However, if the PET buffer cannot
verify that the instruction was an FDD
instruction, it must signal an error. Obvious-
ly, the PET buffer’s coverage of false errors on
FDD instructions depends on the PET
buffer’s size. The PET buffer is similar to but
much simpler than the history buffer
described by Smith and Plezkun.10 The hard-
ware must scan the PET buffer only when a π
bit is set for an instruction being evicted. Such
scans should not affect performance because
errors in an individual system occur infre-
quently (on the order of days).

Evaluation
We evaluated our proposals through

detailed modeling of an Itanium2-like IA64
processor11 scaled to current technology, using
the Asim framework.12 We drove this model
with carefully selected samples of each SPEC
CPU2000 benchmark.

Table 1 shows how the average IPC and
AVFs change when we squash all instructions
in the 64-entry instruction queue after a load
miss in the L1 or L0 caches. (The processor
we use for our evaluation has three levels of
caches: L0, L1, and L2. L0 cache misses have
a latency of 10 cycles, and L1 cache misses
have a latency of about 25 cycles.) When we
squash instructions on load misses in the L1
cache, the IPC decreases by only 1.7 percent,
for a corresponding reduction of 24 percent
in SDC and 18 percent in DUE AVFs. How-
ever, when we squash instructions on L0 miss-
es, the IPC decreases by 10 percent, for a
corresponding reduction of only 35 percent
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in SDC and 23 percent in DUE AVFs.
Squashing on L1 misses appears more prof-
itable because the SDC MITF (proportional
to IPC/SDC AVF) and DUE MITF (pro-
portional to IPC/DUE AVF) go up 37 and
15 percent, respectively. Squashing on L0
misses adds very little MITF gain over squash-
ing on L1 misses alone.

Figure 2 quantifies how our π-bit tech-
niques avoid false errors and thus lower the
instruction queue’s false DUE AVF. Propa-
gating the π bit to the commit point allows
us to avoid false errors on wrong-path and
falsely predicated instructions. On average,
this reduces the instruction queue’s false DUE
AVF by 18 percent. However, as the figure
shows, the impact is greater for integer bench-
marks, which have a higher fraction of such
instructions. In contrast, the anti-π bit has a
larger impact on floating-point benchmarks
than integer benchmarks (60 percent versus
35 percent reduction in false DUE AVF)
because of the larger impact of no-ops and

prefetches. Overall, the anti-π bit reduces the
false DUE AVF by 49 percent.

Figure 2 also shows the effects of a 512-
entry PET buffer. This relatively small PET
buffer works because instructions that over-
write a register without an intervening read
often occur within a few hundred committed
instructions. On average, the 512-entry PET
buffer accounts for about 32 percent of the
FDD instructions, reducing the false DUE
AVF by another 3 percent.

The remaining techniques shown in Figure
2 (π bit on the register file, π bit until store
commit, and π bit until I/O commit) improve
coverage further but don’t allow precise deter-
mination of the corrupted instruction. Adding
the π bit to the register file and declaring an
error on a register read with a set π bit tracks
all FDD instructions, reducing the instruc-
tion queue’s false DUE AVF an additional 11
percent beyond the PET buffer’s reduction. If
we carry the π-bit information through the
pipeline and examine the π bit only when a
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Figure 2. Coverage of the instruction queue’s false DUE AVF using various tracking techniques. 

Table 1. Effect of squashing on IPC and instruction queue’s SDC and DUE AVFs. 

Numbers are averaged across all benchmarks.

Design point IPC SDC AVF (%) DUE AVF (%) IPC/SDC AVF IPC/DUE AVF

No squashing 1.21 29 62 4.1 2.0
Squash on L1 load misses 1.19 22 51 5.6 2.3
Squash on L0 load misses 1.09 19 48 5.7 2.3



store commits its data or a load attempts to
get its data from the store buffer, we can avoid
false errors resulting from TDD instructions
tracked via registers. On average, this exten-
sion reduces the instruction queue’s false DUE
AVF by another 8 percent. Finally, if we carry
the π bit through the entire processor and
memory system, we must signal an error only
when the processor interacts with an I/O
device. This would remove the remaining false
errors by avoiding signaling errors on FDD
and TDD instructions tracked via memory,
further reducing the instruction queue’s false
DUE AVF by 12 percent.

Figure 3 shows the result of combining our
two techniques to reduce the overall SDC
AVF of an unprotected instruction queue and
the DUE AVF of a parity-protected instruc-
tion queue. We combine instruction squash-
ing on an L1 cache miss with the π-bit
implementation that carries the π bit until the
store commit point. The latter technique
applies to the parity-protected queue only, and
does not impact IPC. We get an average
improvement of 26 percent in SDC AVF on
the unprotected queue from squashing alone.
Combining the squashing and π-bit tracking
mechanisms on a parity-protected queue gives
a 57 percent reduction in DUE AVF. In both
cases, squashing results in an average IPC
reduction of 2 percent. 

The techniques we’ve described here com-
plement traditional approaches to fault

detection and fault tolerance.  Reducing the

exposure of ACE objects in vulnerable struc-
tures may allow designers to avoid the cost of
fault detection mechanisms, particularly in
systems with moderate reliability require-
ments.  Avoiding false unrecoverable errors
may allow simpler fault detection mechanisms
to suffice in place of more expensive fault
recovery schemes.  We’ve illustrated these
techniques by applying them to an instruc-
tion queue, but they can also be used to reduce
the AVF of other processor structures such as
the register file. MICRO
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