
Late-Binding: Enabling Unordered Load-Store Queues

Simha Sethumadhavan x Franziska Roesner x
Joel S. Emery Doug Burger x Stephen W. Keckler xxDepartment of Computer Sciences yVSSAD, Intel

The University of Texas at Austin Hudson, MA
cart@cs.utexas.edu joel.emer@intel.com

ABSTRACT
Conventional load/store queues (LSQs) are an impediment toboth
power-efficient execution in superscalar processors and scaling to
large-window designs. In this paper, we propose techniquesto
improve the area and power efficiency of LSQs by allocating en-
tries when instructions issue (“late binding”), rather than when they
are dispatched. This approach enables lower occupancy and thus
smaller LSQs. Efficient implementations of late-binding LSQs,
however, require the entries in the LSQ to be unordered with re-
spect to age. In this paper, we show how to provide full LSQ
functionality in an unordered design with only small additional
complexity and negligible performance losses. We show thatlate-
binding, unordered LSQs work well for small-window superscalar
processors, but can also be scaled effectively to large, kilo-window
processors by breaking the LSQs into address-interleaved banks.
To handle the increased overflows, we apply classic network flow
control techniques to the processor micronetworks, enabling low-
overhead recovery mechanisms from bank overflows. We evalu-
ate three such mechanisms: instruction replay, skid buffers, and
virtual-channel buffering in the on-chip memory network. We show
that for an 80-instruction window, the LSQ can be reduced to 32 en-
tries. For a 1024-instruction window, the unordered, late-binding
LSQ works well with four banks of 48 entries each. By applying
a Bloom filter as well, this design achieves full hardware memory
disambiguation for a 1,024 instruction window while requiring low
average power per load and store access of 8 and 12 CAM entries,
respectively.

Categories and Subject Descriptors
C [Computer Systems Organization]; C.1 [Processor Architectures]; C.1.1 [Single
Data Stream Architectures]: Subjects: Single-instruction-stream, single-data-stream
processors (SISD)Additional Classification:; C [Computer Systems Organization];
C.2 [Computer-Communication Networks]; C.2.1 [Network Architecture and De-
sign]: Subjects: Packet-switching networks

General Terms
Design, Performance

Keywords
Late-binding, Memory Disambiguation, Network flow control

PREPRINT: To Appear in the International Symposium on Com-
puter Architecture 2007.

Fetch Dispatch Issue Execute Writeback Commit

I H G FE DC B A

H

G

F

E

D

C

B

A D A

F

B

E

E

F

A

B

D

(a) Conventional

 ordered LSQ

(b) Unordered

 LB-LSQ

(c) Banked,

 large-window LB-LSQ

overflows

Superscalar pipeline containing memory instructions A-I

Figure 1: High-Level Depiction of Ordered vs. Unordered LSQs.

1. INTRODUCTION
A long-standing challenge in computer architecture has been

handling memory dependences in a scalable manner without sac-
rificing programmability or parallelism. Dataflow computers in the
1970’s and 80’s supported high concurrency, but required uncon-
ventional programming models (write-once memory semantics) to
prevent incorrect memory behavior. Modern superscalar proces-
sors enforce memory dependences while supporting standardpro-
gramming models using load/store queues (LSQs). These LSQs,
however, are one of the primary structures inhibiting the scaling of
superscalar processors to larger in-flight windows, since they have
typically supported only a few tens of in-flight loads and stores due
to power and complexity limits.

These limits have led an industry-wide shift to chip multiproces-
sors (CMPs). Much current research is focusing on CMPs in which
the individual are processors smaller, lower power, and simpler,
effectively reducing single-thread performance to support more
threads. This trend is reducing the instruction-level parallelism that
can be exploited, placing a higher burden on software and/orpro-
grammers to use a fine-grained chip multiprocessor effectively. An
alternative to CMPs are tiled large-window microarchitectures that
can scale to thousands of in-flight instructions, while potentially
exploiting multiple threads in addition to providing a large win-
dow for single-threaded execution. Memory disambiguationat this
scale, however, has been a key limitation for these types of archi-
tectures. This paper describes an LSQ design that both provides
power and area improvements for conventional superscalar designs
and which provides the ability to scale to thousands of instructions
power efficiently. The two new techniques that provide this scaling
areunordered late binding, in which loads and stores allocate LSQ
entries after they issue, andlightweight overflow control, which en-
ables good performance with unordered LSQs that are dividedinto
multiple small, address-interleaved partitions.

Late binding: Traditional LSQs allocate entries at fetch or dis-
patch time, and deallocate them at commit. Thus, entries in acon-
ventional LSQ physicallyage-ordered, a feature that LSQ designs
exploit to provide the necessary functionality efficiently. When
an LSQ reaches capacity, the microarchitecture typically throttles
fetch until a load or store commits and is removed from the LSQ.
Figure 1 shows a simple six-stage pipeline diagram with ninemem-
ory instructions (loads and stores labeled A through I) in different
stages. As shown in Figure 1a, a conventional eight-entry LSQ is
full after H is dispatched, stalling the fetch of later instructions.

Unordered, late-binding LSQs (ULB-LSQs) can reduce both the
average occupancy time and average number of entries in use.
ULB-LSQs achieve this reduction by allocating entries onlywhen
a load or store issues, instead of when it is fetched, permitting
a smaller, more efficient structure. Figure 1b shows the smaller
ULB-LSQ that must be sufficiently large only to capture the in-
flight loads and stores after they have issued. Figure 2 showsthe
potential savings of late-binding, issue-time allocation. On the Al-
pha 21264 microarchitecture, only 32 or fewer memory instructions
must be buffered in the LSQ for 99% of the execution cycles, even
though the original 21264 design had a combined LQ/SQ capacity
of 64 entries.

To achieve this reduction, however, the entries in an ULB-LSQ
must beunordered; loads and stores are allocated LSQ entries in
their dynamic issue order as opposed to the traditional in-order
fetch sequence. Maintaining age order with issue-time allocation
would require a complex and power-inefficient compacting-FIFO-
like circuit [7]. This paper describes an ULB-LSQ design that re-
quires only small additional complexity while performing compa-
rably to a traditional ordered LSQ.

Low overhead overflow handling: A second advantage above
and beyond the reduced size is that ULB-LSQs lend themselves
naturally to address partitioning, enabling smaller banksthat are
indexed by address. However, smaller banks will experiencemore
overflows. In small-window superscalar processors, flushing the
pipeline on an ULB-LSQ overflow is an acceptable policy, since
the ULB-LSQ can be sized to save area and power over a con-
ventional design while overflowing infrequently. However,ULB-
LSQs can also provide efficient memory disambiguation for large-
window processors, in which thousands of instructions may be in
flight [12, 14, 24], by exploiting the ability to address interleave
LSQ banks. The late binding and unordered organization are both
necessary to support an undersized, address-interleaved LSQ, since
the mapping of loads and stores to LSQ banks cannot be known at
fetch/dispatch time.

In large-window designs, however, the probability of overflows

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Number of memory instructions between Execute and Commit Stage

0
10
20
30
40
50
60
70
80
90

100

P
er

ce
nt

ag
e

of
 to

ta
l e

xe
cu

tio
n

cy
cl

es

95% 99%

Figure 2: Potential for undersizing: In an Alpha 21264, for 99% of
the execution cycles across 18 SPEC2000 benchmarks, only 32or fewer
memory instructions are in flight between execute and commit.

grows, since the global ULB-LSQ is divided into smaller inter-
leaved partitions that are more susceptible to overflows when the
distribution of loads and stores to banks is unbalanced. Figure 1c
shows how load imbalance for an address-interleaved ULB-LSQ
increases the likelihood of overflow. In the example, each offour
address-interleaved partitions holds one entry. Whereas instruction
E could have been held in the centralized ULB-LSQ of Figure 1b,
E conflicts in the banked example with instructionB, which was
mapped to the same partition.

As the banks are shrunk and the number of overflows increases,
the conventional techniques of throttling fetch or flushingthe
pipeline become too expensive. By incorporating techniques to
handle overflows with low overhead, an ULB-LSQ for a large-
window design can consist of small partitions, resulting inlow
energy per load or store, while still supporting high performance
across a large-window processor. We observe that in a distributed,
large-window processor, LSQ banks can be treated as clientson
a micronetwork, with overflows handled using traditional network
flow-control techniques adapted for a distributed processor mi-
croarchitecture. We evaluate three such techniques in thispaper:
instruction replay, skid buffers, andmicronet virtual channels.

This paper shows that ULB-LSQs with appropriate overflow sup-
port work well for both small and large-window processors. For an
Alpha 21264 microarchitecture with an 80-instruction window, a
32-entry ULB-LSQ using flush-on-overflow provides the same per-
formance as a 64-entry split LQ/SQ. For the 1,024-instruction win-
dow TRIPS processor, four banks of 48 entries each–using virtual
channel flow control to handle overflows–provides the same per-
formance as an idealized 1,024-entry LSQ. By adding a Bloom Fil-
ter [22], the banked ULB-LSQ design incurs, for a kilo-instruction
window, an average of only eight and twelve CAM entries searched
per load and store, respectively.

2. PRIOR LSQ INNOVATIONS
Most of the recent LSQ optimization proposals, including pro-

posals for non-associative LQ/SQs, focus primarily on reducing the
dynamic power and latency of LSQs. Typically these schemes also
reduce or eliminate the power-hungry CAMs, but add numerous
predictors and other significant supporting structures outside of the
LSQ, effectively increasing the area of the total memory disam-
biguation logic.

Cain and Lipasti eliminate the associative load queue by having
loads compare their speculative values to the cached valuesat com-
mit time to detect mis-speculations [13]. Roth proposed enhance-
ments to Cain and Lipasti’s scheme, to reduce the number of loads
that have to perform commit time checking [20]. These mecha-
nisms eliminate the CAM from the LQ but require additional bits
in the load queue RAM (64bits) to hold the load values. Roth’s
mechanism requires additional storage of 1KB (SSBF) for support-
ing commit-time filtering.

Sha, Martin and Roth extend Roth’s scheme by using a modified
dependence predictor to match loads with the precise store buffer
slots from which they are likely to receive forwarded data [27].
This solution, coupled with the non-associative load queuescheme
proposed in Roth’s earlier work, can completely eliminate all the
associative structures from the LSQ. However, instead of the as-
sociative CAMs, this solution requires large multi-porteddepen-
dence/delay predictors (approximately 23.5KB, as reported in [4]),
effectively improving dynamic power at the expense of area.

Garg, Rashid and Huang propose another mechanism for elim-
inating associative LQ/SQs [6]. In the first phase of two-phase
processing, loads and stores speculatively obtain their value from
a L0 cache. In the second phase, the memory instructions are

Unoptimized Optimized Unoptimized
Scheme ROB Size Depth Storage Depth CAM RAM Storage Supporting :optimized

(KB) Width Width (KB) Structures Ratio
LQ SQ LQ SQ LQ SQ LQ SQ LQ SQ LQ SQ (KB)

SVW - NLQ 512 128 64 1.00 1 128 64 0 12 92 64 1.44 0.78 1 1.61
SQIP 512 128 64 1.00 1 128 64 0 0 92 64 1.44 0.5 23.5 12.72
Garg et al. 512 64 48 0.50 0.75 64 48 0 0 92 0 0.72 0 16 13.38
NoSQ 128 40 24 0.31 0.375 40 0 0 0 92 0 0.45 0 11 16.65
FnF 512 128 64 1.00 1 128 0 0 0 92 0 1.44 0 23.75 12.59
Stone et al. 1024 N/A N/A 18 N/A
LateBinding-Alpha 80 32 32 0.25 0.5 32 12 92 0.5 0.0625 0.75
LateBinding-TRIPS 1024 1024 16 192 12 92 3 0.25 0.20

Table 1: Area for LSQ and supporting structures for recent related work

re-executed in program order, without any speculation, andac-
cess the regular L1 cache. Any difference in the load values be-
tween the two phases results in corrective action. This mechanism,
while eliminating the CAM, requires a 16KB L0 cache and an age-
ordered queue for holding the values read during the first phase.

Subramaniam and Loh [4] and Sha, Martin, and Roth [28] both
propose methods for completely eliminating the store queue, by by-
passing store values through the register file and LQ, respectively.
Sha, Martin and Roth avoid speculative store buffering by execut-
ing stores in program order, while Subramaniam and Loh do so by
using the ROB or the physical register file. Both proposals use so-
phisticated dependence predictors that are smaller than their earlier
schemes but still require additional area for dependence predictors
and combinational logic for renaming.

Akkary, Rajwar, and Srinivasan propose two-level store buffers,
each of which are centralized, fully associative and age ordered [5].
Stores first enter the L1 store buffer, and when it overflows they are
moved to the L2 store buffer. Both buffers support forwarding and
speculation checking, but stores always commit from the second
level buffer. This scheme reduces power and delay, but stillrequires
a worst-case sized L2 store buffer and is thus area inefficient.

Stone, Woley, and Frank suggest partitioning the LSQ into its
three functions, and distributing and address interleaving all of
them [3]. The three structures are a set associative cache for for-
warding (80-bit wide, 512 sets, 2-way), a non associative FIFO
for commit, and an address-indexed timestamp table (8K entry, 8-
bit wide) for checking speculation. The partitioning removes the
CAMs but has high area overheads.

Torres et al. propose using a distributed, address-partitioned,
forwarding buffer backed up by a centralized, fully associative age-
indexed LSQ [1]. Baugh and Zilles use a small centralized forward-
ing buffer, but address-partitioned unordered structuresfor viola-
tion detection [10]. Both these schemes increase the area required
for memory disambiguation to optimize for latency and power.

Table 1 summarizes the ROB size, the area of the LSQ before
and after the optimizations, the size of the supporting structures re-
quired by these optimizations (but which may be already be present
in the design for performance reasons), and finally the ratioof to-
tal area required for memory disambiguation, before and after the
optimizations. We computed the area of the memory structures,
in bytes of storage, assuming the CAM cell area to be three times
larger than the RAM cell. We also assumed 40-bit addresses and
64-bit data, and that all the unoptimized designs had 12-bitpar-
tial addresses in CAMs and rest of the address bits in the RAMs.
The depth of the queues, however, is different for each of these
structures. The table shows that the proposed schemes add area
overhead between factors of 1.5 to 16.5. When discounting the de-
pendence predictor, the area overheads are between factorsof 1.5
and 13.

In contrast to all of the above schemes, the design proposed in
this paper uses late binding to reduce the area and latency with-
out any additional state outside of the LSQ. Dynamic power reduc-
tion, however, requires additional state in the form of address-based
Bloom filters [22]. These structures take up only few hundreds of
bytes and can even be further reduced by optimizations suggested
by Castro et al. [2].

Other researchers have also applied issue-time binding, explic-
itly or implicitly, to improve the efficiency of microarchitectural
structures. Monreal et al. use late allocation to reduce thenum-
ber of physical registers [19]. The effectiveness of some LSQ op-
timizations like address-based filters [22] or the small associative
forwarding buffers [10, 8, 1] can also be explained in part bylate
allocation.

3. BACKGROUND
Most LSQs designed to date have been age indexed, because age

indexing supports the physical sorting of instructions in the LSQ
based on their age. LSQs must support three functions: commit
of stores, detection of memory ordering violations, and forwarding
of earlier store values to later loads. The physical ordering makes
some of these operations simpler to support, but is not fundamen-
tally required for committing of stores and violation detection, and
only provides speed benefits for store forwarding in rare cases.

In an age-indexed LSQ, the address and value of an in-flight
memory instruction is stored in an LSQ slot obtained by decod-
ing the age of the memory instruction. This organization results in
a LSQ that isphysicallyordered; the relative ages of two instruc-
tions can be determined by examining the physical locationsthey
occupy in the LSQ. For example, it is simple to determine thatin-
struction at slot 5 is older than instruction at slot 8 because slot 5
is physically “before” slot 8. Additionally, this mechanism allows
determining the relative order between all instructions inthe LSQ
that satisfy some criterion (i.e. a matching address). For example,
if slots 25, 28 and 29 are occupied in the LSQ, linearly scanning the
the LSQ from position 29 will reveal the most recent older instruc-
tion first (28) and then then next oldest (25) and so on. In some
cases, circuit implementations exploit the physical ordering to ac-
celerate LSQ operations. To understand the design changes that
an unordered LSQ requires, it is instructive to examine how LSQ
ordering supports the three functions that the LSQ combines.

Commit: The LSQ buffers all stores to avoid potential write-
after-write hazards between stores to the same address thatexecute
out-of-order. Additionally, the stores cannot be written out until
they are non-speculative. Once a store is determined to be non-
speculative, the store address and value are written to the cache
using the age supplied from the ROB/control logic. With ordering,
age-based indexed lookup is sufficient. Without ordering, asearch
is necessary to find the oldest store to commit.

Operation Search Input Output Num Sorting
matches Required

Forwarding � LD age Older STs � 1 Yes
Violation � ST age Younger LDs � 1 No
Commit == ROB age ST to commit 1 No

Table 2: Summary of LSQ operations and ordering require-
ments

Violation Detection: The LSQ must report a violation when it
detects that a load following a store in program order, and tosame
address, executed before the store. To support this operation, the
LSQ buffers all in-flight memory data addresses, and when a store
arrives at the LSQ, checks for any issued loads younger than and
to the same address as the store. If there are any matching loads, a
violation is reported. For this operation, the LSQ need onlydeter-
mine the set of younger load instructions. It does not require sorting
among the multiple matching loads based on their age. In ordered
LSQ circuit implementation, the age of the incoming instruction is
decoded into a bit mask and all bits “before” the decoded bit vector
are set. In the case of store forwarding with multiple matches, the
most recent store and successive older stores can be accomplished
by linearly scanning the bit mask.

Store Forwarding: The LSQ must support forwarding from the
uncommitted buffered stores in the LSQ to in-flight loads that issue
after the stores. When a load arrives at the LSQ, it checks forolder
stores to the same address. If there are matching stores, theLSQ
ensures that the load obtains its value from the most recent match-
ing store preceding the load. To support this functionalitywhen
a load matches multiple stores, the LSQ sorts the matching stores
based on their ages and processes the matching stores until all the
load bytes have been obtained or until there are no matching stores.

The age-indexing policy requires an LSQ that is sized large
enough to hold all in flight memory instructions (2age slots), which
results in a physically ordered LSQ. The ability to sort through
multiple matching instructions is especially useful for forwarding
values from multiple matching stores to a load, but a coarserage
comparison is sufficient for implementing the other LSQ operations
(Table 2). Additionally, the LSQ allocation policy is conservative.
Even though the LSQ slots are occupied only after the instructions
execute they are allocated early, during instruction dispatch. Tra-
ditional age-indexed LSQs are thus both overdesigned in terms of
functionality and overprovisioned in terms of size.

4. AN UNORDERED, LATE-BINDING LSQ
DESIGN

Late-Binding LSQs address the inefficiencies resulting from the
“worst-case” design policies used in traditional LSQs. By allocat-
ing the memory instruction in the LSQ at issue, the sizes of ULB-

SearchAllocation Ordering Commit

de
co

de

co
m

m
it

lo
gi

c

RAM data array

or
de

rin
g

lo
gi

c

CAM

1 write port
1 search, 1 read &

M: Memory instruction window size

M

Figure 3: The Age-Indexed LSQ

LSQs are comparartively reduced. Allocating memory instructions
at issue requires a set of mechanisms different from allocation in
age-indexed LSQs. When a load or store instruction arrives at the
ULB-LSQ the hardware simply allocates an entry from a pool of
free LSQ slots instead of indexing by age. This allocation policy
results in an LSQ that is physicallyunorderedin which the age of
the instruction has no relation to the slot occupied by the instruc-
tion.

To compensate for the lack of ordering, the ULB-LSQs take a
more direct approach to determining the age by explicitly storing
the age information in a separate age CAM. The age CAM is a
special type of CAM that can output greater/lesser/equal results in-
stead of just the equality matches. The LSQ functions that used the
implicit age information in the age-indexed LSQ for implementing
the LSQ operations now use the explicit associative age CAM to
determine younger and older instructions. Figures 3 and 4 illus-
trates and contrasts the structures used in the ULB-LSQ and tradi-
tional LSQ implementations, whereM is the memory instruction
dow size, andU is the ULB-LSQ size.

To support commits, the small age CAM is associatively
searched with the age supplied by the ROB. The address and data
from the exact matching entry are read out from the CAM and
RAM respectively, and sent to the caches. This extra associative
search is avoidable if the baseline architecture holds the ULB-LSQ
slot id allocated to the store in the ROB.

To support violation detection, when a store arrives it searches
the address CAM to identify matching loads, and searches theage
CAM using the greater-than operator to identify younger loads.
The LSQ then performs a logical OR of the results of the two
searches. If any of the resulting bits is one then a violationis
flagged. Detecting violations is simpler in this LSQ compared to
age-indexed LSQs, since no generation of age masks is necessary.

Supporting forwarding is more involved because the ULB-LSQ
does not have the total order readily available. In the case of only
one match, the loss of order does not pose a problem; however
when there are multiple matches, the matches must logicallybe
processed from most recent to the oldest. In the ULB-LSQ, on
multiple store matches, the age of each match is read out fromthe
ULB-LSQ, one per cycle, and decoded into a per-byte bit vector.
Bytes to forward to the load replace bytes from other stores if the
later-found store is more recent in program order. This steprecon-
structs the physical ordering between the matches from the ULB-
LSQ, but may take multiple cycles to do so. Once the ordering is
available, store forwarding proceeds exactly as in an age-indexed
LSQ [23]. Thus, compared to the age-indexed LSQ, which may
already require multiple cycles to forward from multiple stores, the
ULB-LSQ requires additional cycles for creating the decoded bit-
vector. However, as we will show in the next section, these addi-
tional cycles rarely affect performance because multiple store for-
warding is uncommon in many benchmarks.

Allocation OrderingSearch Commit

Free
Slot CAM age

CAM

or
de

rin
g

lo
gi

c

RAM data array

co
m

m
it

lo
gi

c

U

U = Size of LB−LSQ (U << M)
2 search, 1 read
and 1 write portand 1 write port

1 search, 1 read M= Memory instruction window size

Log2(M)

Figure 4: The ULB-LSQ Microarchitecture

4.1 Performance Results
The performance of the ULB-LSQ depends on the number of

entries in the LSQ, which affects the number of LSQ overflows.
Performance will also be affected by the relative cost of each over-
flow and the additional penalty for multi-cycle store forwarding (in
the case of multiple address matches). We modeled the ULB-LSQ
in the sim-alpha [15] simulator and simulated single Simpoint re-
gions of 100M for the 18 SPEC benchmarks compatible with our
experimental infrastructure.

In this set of experiments, ULB-LSQ overflows are handled by
partially flushing the pipeline and re-starting execution from the
oldest unarrived memory instruction at the time of the overflow.
The penalty of an overflow is 15 cycles, which matches the cost
of a branch misprediction. Table 3 summarizes the unorderedLSQ
behavior and statistics. The first two columns show the number of
memory instructions between the commit and execute stages for
95% and 99% of the execution cycles. The next eight columns
show the number of overflows per 1000 memory instructions, and
the performance normalized against the Alpha, for ULB-LSQ sizes
ranging from 16 to 40 entries. The final column shows the percent-
age of dynamic loads that forward from more than one store. From
the table, for 14 of the 18 benchmarks, for 99% of the cycle time,
there are 32 or fewer uncommitted but executed memory instruc-
tions. This explains why a 32 entry ULB-LSQ does not show any
performance degradation.

To isolate the performance impact of slower multiple forward-
ing, we increased the latency of store forwarding in the baseline
simulator without changing the LQ/SQ size. In this experiment, if
a load matches with N (N> 1) older stores, then store forwarding
takes an additional N cycles even if load does not have to get their
data from all N stores. The results showed no performance degra-
dation for any of the benchmarks because loads rarely need toget
data from multiple stores. From Table 3, the number of loads that
have to forward from two or more stores is less than 0.2% on the
average.

Another interesting trend in the Table 3 is that the performance
impact of the number of overflows is different for High vs. Low
IPC benchmarks. For instance, for the 16 entry LSQ, even though
179.art incurs more flushes per 1K instructions than 178.galgel
(651 vs. 463), the performance degradation is higher in the case
of 178.galgel (24% vs. 96%). This data indicates that unlesslow-
overhead overflow mechanisms are invented for machines thatsup-
port high ILP, the performance impact of undersizing the LSQcan
be quite high.

4.2 Power
This section examines the dynamic power consumption of an

ULB-LSQ against the Alpha LQ/SQ organization. The ULB-LSQ
design holds 32 memory operations, while the Alpha has a separate
32-entry LQ and SQ. Although the size of the ULB-LSQ is smaller,
each memory operation has to access the same number of address
CAM entries in both designs because the Alpha has a partitioned
LQ/SQ. Even so, the ULB-LSQ will have higher dynamic power
per access because of the additional accesses to the age CAM.

To measure the increase in power per access, we assumed that
the LSQ power is approximately equal to the power consumed by
the CAM and the RAM. Thus, the power-per-access of the Alpha
LQ or SQ will be purely from the address CAM (Paddr) and the
RAM (Pram), while the power consumed by the ULB-LSQ will
be the power from the address CAM, the age CAM (Page) and the
RAM. Since the ULB-LSQ and Alpha have the same number of
entries, their sizes will be the same. Thus the power increase will
be(Page + Paddr + Pram)=(Paddr + Pram).

We synthesized the design using IBMs 130nm ASIC methodol-
ogy with the frequency set at 450MHz, and verified that the age
CAM will fit in the same cycle time as the address CAM. Even
though the delay of the age CAM was approximately 20% more
than the address CAM, the delay was still not long enough to beon
the critical path. Thus, assuming that the LB-CAMs can be runat
the same clock frequency as the traditional LQ/SQ, the powerin-
crease is simply the ratio of the capacitances. From our synthesis,
the capacitance of the address CAM (32x40b, 1 search, 1 read and
1 write port) was 144.5pF (Paddr) while the capacitance of the age
CAM was 12.86pF (Page). Thus the power overhead is roughly 8%
even after neglecting the power due to the RAM.

However, both the ULB-LSQ and the Alpha LSQ can benefit
from Bloom filters. With a 64 entry, 8-bit counting Bloom Fil-
ter [16], we observed that 88.7% of the age and address searches
can be filtered. Applying this optimization, the additionalpower
required by the unordered design can be reduced to under 1% of
the power consumed by the original Alpha LSQ.

4.3 Implementation Complexity
The ULB-LSQ design differs from a traditional LSQ in the fol-

lowing ways: (1) the entries are managed as a free-list, (2) multiple
store forwarding requires additional control logic to scanthrough
matching entries, and (3) the LSQ must detect and react to over-
flows. These differences are not a significant source of complex-
ity because many existing microarchitectural structures implement
similar functionality. For example, MSHRs and the physicalreg-
ister files are managed as free-lists. The scanning logic hasbeen
implemented in traditional LSQs which do not flush on multiple
matches. Overflow is flagged when there are no free LSQ entries,
and is simple to implement. Furthermore, the ULB-LSQ does not
require any modifications to the load/store pipeline. The LSQ oper-
ations are pipelined in the exact same way as the age-orderedLSQ
implementation in the POWER4 [26].

These results showed that for small-window processors likethe
Alpha 21264, even with simplistic overflow handling mechanisms,
the queue sizes can be reduced by half without affecting perfor-
mance. The smaller queue size directly translates to improvements
in static power, dynamic power, and latency. Most important, the
unordered nature of the ULB-LSQ allows it to be partitioned with-
out introducing additional area overheads as explained next.

5. LARGE-WINDOW PROCESSORS
While high-performance uniprocessor design has fallen outof

favor with industry due to scaling difficulties, many researchers are
examining novel and scalable means for extracting more ILP by us-
ing a larger instruction window. Such designs often employ some
form of partitioning to implement larger microarchitectural logical
structures without sacrificing clock cycle time. In particular, the
architectural trends motivating the design of a partitioned LSQs in-
clude (1) very large instruction windows with hundreds of in-flight
memory instructions, and (2) partitioning of microarchitectures for
scaling to higher execution and local memory bandwidth.

5.1 Partitioning the LSQ
In a partitioned microarchitecture, an LSQ partition is best

matched with a partition of an address-interleaved level-1cache.
Partitioning an age-ordered LSQ is not straightforward as the per-
instruction age identifiers do not indicate dependence relationships
between load and store instructions. Distributing age-interleaved
partitions to address-interleaved caches will effectively result in
significant cross-partition communication among LSQ and cache
banks and between matching loads and stores to the same address.

Benchmark Occupancy Flushes per 1K mem instr Normalized IPC Baseline % of LDs
%program cycles LSQ entries LSQ entries IPC matching 0 or 1
95% 99% 16 24 32 40 16 24 32 40 STs

164.gzip 7 22 6 4 3 1 1.00 1.00 1.00 1.00 1.60 99.95
175.vpr 14 21 10 2 0 0 0.93 1.00 1.00 1.00 0.87 99.72
177.mesa 8 14 8 0 0 0 0.05 1.00 1.00 1.00 1.16 99.8
178.galgel 24 24 463 88 0 0 0.04 0.56 1.00 1.00 2.70 100
179.art 35 43 651 131 33 11 0.76 0.91 1.00 1.00 0.63 99.95
183.equake 3 6 0 0 0 0 1.00 1.00 1.00 1.00 0.96 99.91
188.ammp 11 15 4 0 0 0 1.01 1.00 1.00 1.00 1.31 99.91
189.lucas 11 13 0 0 0 0 1.02 1.00 1.00 1.00 0.76 100
197.parser 10 17 4 0 0 0 1.00 1.00 1.00 1.00 1.17 99.84
252.eon 15 20 28 2 0 0 0.94 1.00 1.00 1.00 1.17 98.58
253.perlbmk 9 13 2 0 0 0 1.00 1.00 1.00 1.00 0.83 98.91
254.gap 6 12 0 0 0 0 1.00 1.00 1.00 1.00 1.11 99.92
256.bzip2 7 9 0 0 0 0 1.00 1.00 1.00 1.00 1.82 99.9
173.applu 22 25 2 1 0 0 0.99 1.00 1.00 1.00 0.62 100
181.mcf 51 51 360 251 171 98 1.01 1.01 1.01 1.01 0.20 99.92
176.gcc 31 32 28 22 2 1 0.99 1.00 1.00 1.00 1.21 99.88
171.swim 15 15 1 0 0 0 1.00 1.00 1.00 1.00 0.88 100
172.mgrid 19 35 23 10 4 2 1.07 1.00 0.99 1.00 0.87 99.98
Average 0.88 0.97 1.00 1.00 1.10 99.79

Table 3: Performance of an ULB-LSQ on an 80-window ROB machine.

Address-interleaved LSQs are a better match for address inter-
leaved partitioned memory systems. However, address interleaving
also means that there is no guarantee that the loads and stores will
be distributed evenly across the partitions. Such an LSQ must func-
tion correctly even when all in-flight memory instructions map to
the same partition. Such imbalance is uncommon, but may arise
when the application is loading from or storing to a sequential ar-
ray of characters. A system could tolerate the imbalance by sizing
each partition for the worst case, but the total LSQ size would be N
times the instruction window size, for N partitions. In the remain-
der of this paper, we explore better solutions that instead undersizes
the LSQ partitions in the same manner as Section 4 and gracefully
tolerates the rare overflow conditions with minimum effect on per-
formance.

Related Work: Research proposals for clustered architec-
tures [30, 9] employ multiple partitions of an age-indexed LSQ,
but instead of reserving a slot in each of the LSQ partitions,they
use memory bank predictors [25] to predict a target bank and re-
serve a slot there. If the bank prediction is low-confidence,slots
are reserved in all banks. While this approach is better thancon-
servatively reserving a slot in each partition, it still wastes space
because of conservative dispatch allocation. The first memory dis-
ambiguation hardware to be address indexed was MultiScalar’s Ad-
dress Resolution Buffer (ARB) [17]. Loads and stores would index
into this structure, where age tags were stored to assist in forward-
ing values and detecting ordering violations. The ARB caused a
high overhead pipeline flush if it overflowed.

5.2 Large-window Processor Model
To examine the viability of the partitioned ULB-LSQ in a large-

window processor, we use the TRIPS processor microarchitecture
as a baseline. The TRIPS processor is a partitioned microarchi-
tecture that enables a window of up to 1024 instructions and up to
256 in flight memory instructions. All major components of the
processor are partitioned and distributed including fetch, issue, and
memory access. The overflow handling mechanisms described in
the rest of this paper are built on top of the TRIPS microarchitec-
ture.

The processor is composed of an array of 16 execution units con-
nected via a routed operand network. Instructions are striped across
4 instruction cache banks which are accessed in parallel to fetch
TRIPS instruction blocks. Instructions are delivered to the execu-
tion units where each instruction waits until its operands arrive. The
primary memory system (level-1 data cache, LSQs, dependence
predictors and miss handling units) is divided into multiple banks
which are also attached to the routed operand network. Cachelines
are interleaved across the banks, which enables up to 4 memory in-
structions per cycle to enter the level-1 cache pipelines. Figure 5.2
shows an abstract view of the TRIPS microarchitecture, highlight-
ing the parts that are relevant to memory instructions. Additional
details about the TRIPS microarchitecture can be found in [21].

The features of a distributed microarchitecture most relevant to
the design of LSQs can be distilled down to a few principles which
are not unique to TRIPS. First is an address-interleaved distributed
cache in which multiple level-1 cache banks independently pre-
serve the proper ordering of load and store instructions to the same
address. Second is the set of distributed execution units which inde-
pendently decides which instructions to issue each cycle. Finally, a
distributed architecture with multiple execution and memory units
must include some form of interconnection network. TRIPS em-
ploys a mesh-routed operand network which can be augmented to
provide multiple virtual channels. Some of the techniques for mit-
igating overflows rely on buffering in-flight memory instructions
within the network buffers. However, other interconnection net-
works can could be enabled to buffer in-flight memory instructions
as well. While we examine partitioned LSQ design in a TRIPS
context, we believe that these concepts apply to other architectures
that share these basic characteristics.

Jaleel et al. point out that blindly scaling the larger window
LSQs can be detrimental to performance due to the increase inthe
number of replay traps [18]. In their study on a scaled Alpha-21264
core, such traps can occur when load instructions violate the con-
sistency model, when load needs to partially obtain the datafrom
the LSQ and the cache, when a load miss cannot be serviced be-
cause of structural hazards and when a load instruction executes
prematurely. TRIPS avoids these traps and does not suffer from the
performance losses described in [18]. In particular, TRIPSavoids

Distributed functional units

LSQ

M
H

UDP

TLBD$

LSQ

M
H

UDP

TLBD$

LSQ

M
H

UDP

TLBD$

LSQ

M
H

UDP

TLBD$

Network
Router

Network
Router

Network
Router

Network
Router

FU

FU

FU

FU

Figure 5: Overview of the distributed memory system in TRIPS: Each
of the memory partitions includes a portion of the address-interleaved
level-1 cache, a portion of the unordered LSQ, a local dependence pre-
dictor, a miss-handling unit, and a copy of the TLB.

load-load traps with weak memory ordering, wrong-size traps by
supporting partial forwarding in LSQ, and load-miss traps by using
larger MSHRs [23]. Like the Alpha, TRIPS also uses a dependence
predictor to reduce the number of load-store replay traps which oc-
cur when a load instruction is executed prematurely.

6. MITIGATING LSQ OVERFLOWS
Ideally, a distributed LSQ should be divided into equal-sized

banks, where the aggregate LSQ entries equals the average num-
ber of loads and stores in flight, but which shows only minor per-
formance losses over a maximally sized LSQ. When a bank over-
flows, however, if the microarchitecture does not flush the pipeline,
it must find someplace to buffer the load. We examine three places
to buffer these instructions: in the execution units, in extensions
to the memory units, or in the network connecting the execution
units to the memory units. The buffering space is much less ex-
pensive than the LSQ space since the buffered locations neednot
be searched for memory conflicts, which mitigates the area and en-
ergy overheads of large LSQs. The penalty associated with these
schemes correspond to different “load loops” and changes asthe
time for load execution changes [11].

These buffering approaches effectively stall processing of cer-
tain memory instructions, which could potentially lead to dead-
lock. However, memory instructions can be formed into groups
based on age, with all of the instructions in a group having similar
ages. In a microarchitecture that is block-oriented like TRIPS, the
memory instruction groups correspond to the instruction blocks.
One block is non-speculative, while multiple blocks can be spec-
ulative. By choosing to prioritize the non-speculative instructions
over the speculative instructions, our solutions can reduce the cir-
cumstances for deadlocks and flushing. One possible design would
reserve LSQ entries for the non-speculative block, but our experi-
ments indicated that this approach did not provide any substantive
performance benefits and resulted in larger than a minimum sized
LSQ.

6.1 Issue Queue Buffering: Memory
Instruction Retry

One common alternative to flushing the pipeline in conventional
processors is to replay individual offending instructions, either by
retracting the instruction back into the issue window, or bylogging
the instruction in a retry buffer. In TRIPS retrying means send-
ing an offending instruction back to the ALU where it was issued
and storing it back into its designated reservation station. Since
the reservation station still holds the instruction and itsoperands,
only a short negative-acknowledgement (NACK) message needs to
be sent back to the execution unit. No additional storage in the
system is required, as the reservation station cannot be reassigned
to another instruction until the prior instruction commits. The is-
sue logic may retry this instruction later according to a number of
possible policies.

Figure 6a shows the basics of this technique applied to LSQ
overflows. When a speculative instruction arrives at a full LSQ,
the memory unit sends the NACK back to that instructions execu-
tion unit. This policy ensures that speculative instructions will not
prevent a non-speculative instruction from reaching the LSQ. If a
non-speculative instruction arrives at a full LSQ, then thepipeline
must be flushed.

A range of policies are possible for determining when to reissue
a NACKed memory instruction. If the instruction reissues too soon
(i.e. immediately upon NACK), it can degrade performance by
clogging the network, possibly requiring multiple NACKs for the
same instruction. Increased network from NACKs can also delay
older non-speculative instructions from reaching the LSQ partition,
as well as general execution and instructions headed to other LSQ
partitions. Alternatively, the reservation stations can hold NACKed
instructions until a fixed amount of time has elapsed. Waiting re-
quires a counter per NACKed instruction, and may be either too
long (incurring unnecessary latency) or too short (increasing net-
work contention).

Instead, our approach triggers re-issue when the non-speculative
block commits, which has the desirable property that LSQ entries
in the overflowed partition are likely to have been freed. This mech-
anism has two minor overheads, however: an additional statebit for
every reservation station, to indicate that the instruction is ready but
waiting for a block to commit before reissuing; and a controlpath
to wake up NACKed instructions when the commit signal for the
non-speculative block arrives.

6.2 Memory Buffering: Skid Buffers
A second overflow-handling technique is to store memory in-

structions waiting to access the LSQ in a skid buffer locatedin the
memory unit. As shown in Figure 6b, the skid buffer is simple pri-
ority queue into which memory instructions can be inserted and ex-
tracted. To avoid deadlock, our skid buffers only hold speculative
memory instructions. If an arriving speculative memory instruc-
tion finds the LSQ full, it is inserted into the skid buffer. Ifthe skid
buffer is also full, the block is flushed. Arriving non-speculative
instructions are not placed in the skid buffer. If they find the LSQ
full, they trigger a flush.

When the non-speculative block commits and the next oldest
block becomes non-speculative, all of its instructions that are lo-
cated in the skid buffer must be extracted first and placed into the
LSQ. If the LSQ fills up during this process, the pipeline mustbe
flushed. Like retry, the key to this approach is to prioritizethe non-
speculative instructions and ensure that the speculative instructions
do not impede progress. Skid buffers can reduce the ALU and net-
work contention associated with NACK and instruction replay, but
may result in more flushes if the skid buffer is small.

ALU LSQ PartitionOPN Router

Nack

ALU LSQ PartitionOPN Router

Flush

VC0VC1
VC1

VC0

(a) NACK and Retry

Flush

(b) Skid Buffer (c) Virtual Channel (VC)

LSQ PartitionOPN Router

Flush

Skid Buffer

Figure 6: LSQ Flow Control Mechanisms.

6.3 Network Buffering: Virtual
Channel-Based Flow Control

A third approach to handle overflows is to use the buffers in the
network that transmits memory instructions from the execution to
the memory units as temporary storage for memory instructions
when the LSQ is full. In this scheme, the operand network is aug-
mented to have two virtual channels (VCs): one for non-speculative
traffic and one for speculative traffic. When a speculative instruc-
tion is issued at an ALU, its operands and memory requests are
transmitted on the lower priority channel. When a speculative
memory instruction reaches a full LSQ and cannot enter, it remains
in the network and asserts backpressure along the speculative vir-
tual channel. Non-speculative instructions use the higherpriority
virtual channel for both operands and memory requests. A non-
speculative memory instruction that finds the LSQ full triggers a
flush to avoid deadlock. Figure 6c shows a diagram of this ap-
proach.

This virtual channel approach has a number of benefits. First,
no new structures are required so logic overhead is only minimally
increased. Additional router buffers are required to implement the
second virtual channel, but our experiments show that two-deep
flit buffers for each virtual channel is sufficient. Second, no ad-
ditional ALU or network contention is induced by NACKs or in-
struction replays. Third, the higher priority virtual channel allows
non-speculative network traffic to bypass speculative traffic. Thus
non-speculative memory instructions are likely to arrive at the LSQ
before speculative memory instructions, which reduces thelikeli-
hood of flushing.

Despite its conceptual elegance, this solution requires a number
changes to the baseline network and execution engine. The baseline
TRIPS implementation includes a number of pertinent features. It
provides a single operand network channel that uses on-off flow
control to exert back-pressure. Each router contains a four-entry
FIFO to implement wormhole routing and the microarchitecture
can flush any in-flight instructions located in any tile or network
router when the block they belong to is flushed. Finally, all of
the core tiles (execution, register file, data cache) of the TRIPS
processor connect to the operand network and will stall issue if
they have a message to inject and the outgoing network FIFO is
full.

Adjusting this network to support VCs requires several augmen-
tations: (1) an additional virtual channel in the operand network to
separate speculative from non-speculative network traffic, includ-
ing the standard buffer capacity and control logic needed byvirtual
channels, (2) virtualization of the pipeline registers, which must
stretch into the execution and register tiles to allow non-speculative
instructions to proceed even if speculative instructions are stalling
up the virtual network, (3) issue logic in these tiles that selects non-

speculative instructions over speculative logic when the virtual net-
work is congested, and (4) a means to promote speculative instruc-
tions from the speculative virtual channel to the non-speculative
channel when its block becomes non-speculative.

The trickiest part of this design is the promotion of specula-
tive network packets to the non-speculative virtual channel when
the previous non-speculative block commits. The TRIPS microar-
chitecture already has a commit signal which is distributedin a
pipelined fashion to all of the execution units, memory units, and
routers. When the commit signal indicates that the non-speculative
block has committed, each router must nullify any remainingpack-
ets in the non-speculative virtual channel and copy any packets be-
longing to the new non-speculative block from the speculative VC
to the non-speculative VC.

6.4 Flow Control Mechanisms Performance
We implemented these flow control mechanisms on a simulator

that closely models the TRIPS prototype processor [21] which has
been validated to be within 11% of the RTL for the TRIPS proto-
type processor. The microarchitectural parameters most relevant to
the experiments are summarized in Table 4.

For each benchmark, we normalize the performance (measured
in cycle counts) to a configuration with maximally sized, 256-entry
LSQ partitions that never overflow. For these experiments, we
used skid buffer sizes that are sized slightly larger than the ex-
pected number of instructions at each partition, (72 - LSQ parti-
tion size). For the virtual channel scheme, we divided the four
operand network buffers in the baseline equally between thetwo
channels. Thus two buffers are provided for the speculativeand
non-speculative virtual channels for the VC scheme. We present
results for 28 EEMBC benchmarks (all except cjpeg and djpeg)
and 12 SPEC CPU 2000 (ammp, applu, art, bzip2, crafty, equake,
gap, gzip, mesa, mgrid, swim and wupwise) benchmarks with
minnespec medium sized reduced inputs. The other benchmarks
are not currently supported in our infrastructure.

For four 48-entry LSQs and thus a total LSQ size of 192 en-
tries (25% undersized), the flush scheme results in average perfor-
mance loss of 6% for EEMBC benchmarks (Figure 7) and 11%
for SPEC benchmarks (Figure 8). The worst-case slowdowns are
much higher: 180% for idct and 206% for mgrid. These results sup-
port the perspective that traditional flow-control mechanisms are
inadequate for distributed load-store queues. The VC mechanism is
the most robust with 2% average performance degradation andless
than 20% performance degradation in the worst case. As expected,
the Skid buffer scheme performs better than the NACK scheme
because it avoids network network congestion from the NACKed
packets, at the cost of extra area.

For six of the SPEC and EEMBC benchmarks, the memory ac-
cesses are unevenly distributed and cause LSQ overflows thatre-

Parameter Configuration

Overview Out-of-order execution with up to 1024 instructions inflight, Up to 256 memory instructions can be simultaneously in flight.
Up to 4 stores can be committed every cycle.

Instruction
Supply

Partitioned 32KB I-cache 1-cycle hit. Local/Gshare Tournament predictor (10K bits, 3 cycle latency) with speculativeupdates;
Local: 512(L1) + 1024(L2), Global: 4096, Choice: 4096, RAS:128, BTB: 2048.

Data Supply 4-bank cache-line interleaved DL1 (8KB/bank, 2-way assoc,writeback, write-around 2-cycle hit) with one read and one write
port per bank to different addresses. Up to 16 outstanding misses per bank to up to four cache lines, 2MB L2, 8 way assoc,
LRU, writeback, write-allocate, average (unloaded) L2 hitlatency is 15 cycles, Average (unloaded) main memory latency is
127 cycles. Best case load-to-use latency is 5 cycles. Storeforwarding latency is variable, minimum penalty is 1 cycle.

Interconnection
Network

The banks are arranged in 5x5 grid connected by mesh network.Each router uses round-robin arbitration. There are four
buffers in each direction per router and 25 routers. The hop latency is 1-cycle.

Simulation Execution-driven simulator validated to be within 11% of RTL design. 28 EEMBC benchmarks, 12 SPEC benchmarks simu-
lated with single simpoints of 100M

Table 4: Relevant aspects of the TRIPS microarchitecture

32 40 48 56 64

Number of LSQ Entries

0.9

1.0

1.1

1.2

S
lo

w
do

w
ns

 w
rt

 m
ax

 L
S

Q

VC
SKID
NACK
FLUSH

EEMBC arith mean (28)

IDCT IFFT BITMNP

Top 3 worst EEMBC Benchmarks

0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
3.6
3.9
4.2
4.5

S
lo

w
do

w
ns

 w
rt

 m
ax

 L
S

Q
FLUSH
NACK
SKID
VC

32

40

48

56
64

32
40

48 56 64
32 40 48 56 64

Figure 7: Left: Average LSQ Performance for the EEMBC benchmark suite. Right: Three worst benchmarks. bitmnp shows a different trend
because there are fewer LSQ conflict violations in bitmnp when the LSQ capacity is decreased.

realLow_1 = &realData_1[l_1];
imagLow_1 = &imagData_1[l_1];
realHi_1 = &realData_1[i_1];
imagHi_1 = &imagData_1[i_1];
:
:

realData_1[l_1] = *realHi_1 - tRealData_1;
imagData_1[l_1] = *imagHi_1 - tImagData_1;
realData_1[i_1] += tRealData_1;
imagData_1[i_1] += tImagData_1;

Figure 9: Code snippet from idct benchmark.

duce performance significantly. For instance, Figure 9 shows a fre-
quently executed code sequence in idct in the EEMBC suite. The
innermost loop contains two reads and two writes to two different
arrays and the code generated by the compiler aligns both arrays
to 256-byte boundaries. Since the arrays are accessed by same in-
dices, all four accesses map to the same bank. This problem isex-
acerbated by the aggressive loop unrolling of the TRIPS compiler.
The accesses could in theory be distributed by aligning the arrays
differently, but aligning data structures to minimize bankconflicts
is a difficult compiler problem.

6.5 Power Efficiency
Three mechanisms are necessary to achieve high power effi-

ciency in large-window processor LSQs: address partitioning, late-
binding and associative search filtering. First, partitioning the LSQ
by addresses naturally divides the number of entries arriving at each
memory partition. Second, late-binding reduces the numberof en-
tries in each partition by reducing occupancy. Finally, Bloom fil-

tering reduces the number of memory instructions performing as-
sociative searches [22].

The Bloom filters for the TRIPS study use 8 32-bit registers, one
for each in-flight block. The filters associated with each block are
cleared when the block commits or is flushed (commonly called
flash clearing). This clearing scheme does not require the coun-
ters often needed for Bloom filters and thus reduces the area of
the filter significantly. As shown in Table 5, nearly 70-80% ofthe
memory instructions (both loads and stores) can be prevented from
performing associative searches in the TRIPS processor by using
Bloom filtering.

Benchmarks Average LSQ Activity Factor
VC SKID NACK

40 48 40 48 40 48

SPEC .21 .21 .27 .30 .30 .31
EEMBC .26 .27 .38 .39 .38 .39

Table 5: Fraction of loads performing associative searches

Using Bloom filters, however, incurs additional some additional
power for reading and updating the filters for every memory in-
struction. Using the 130nm ASIC synthesis methodology described
in the Alpha evaluation section, the capacitance of the 48-entry
TRIPS LSQ was computed to be 322pF. The capacitance of the
Bloom filter was 64pF. With the activity reduction of 80% the ef-
fective capacitance of the combination is 120pF which roughly is
the capacitance of a 12-entry, 40-bit unfiltered CAM.

In this evaluation, we have not included the additional power
expended by the network routers as it is unclear if they will be
signficant. Wang et al. [29] show a 20% increase in power for a

32 40 48 56 64

Number of LSQ Entries

0.8

0.9

1.0

1.1

1.2

1.3
S

lo
w

do
w

ns
 w

rt
 m

ax
 L

S
Q

VC
SKID
NACK
FLUSH

SPEC arith mean (12)

MGRID APPLU SWIM

Top 3 Worst SPEC Benchmarks

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

3.3

S
lo

w
do

w
ns

 w
rt

 m
ax

 L
S

Q

FLUSH
NACK
SKID
VC

64

56

48

40

32

64
56

48
40

32

64 56 48
40

32

Figure 8: Left: Average LSQ Performance for the SPEC benchmark suite.Right: Three worst benchmarks.

four fold increase for implementing virtual channels. The power
increase primarily comes from having four times as many buffers
for implementing the Virtual channels. In our scheme we do not
increase the number of buffers. We simply divide the number of
buffers equally between the virtual channels.

6.6 Area
Among the three overflow handling mechanisms, the NACK

mechanism is the most area efficient if the issue window is designed
to hold instructions until explicit deallocation. On the TRIPS pro-
cessor, the NACK scheme requires cumulative storage of 1024bits
to identify the NACK’ed instructions (one bit for every instruction
in the instruction window) and changes to the issue logic to se-
lect and re-issue the NACK’ed instructions. The VC mechanism
is next best in terms of area efficiency. The area overheads ofthe
VCs are due to the additional storage required for pipeline priority
registers in the execution units to avoid deadlocks and the combi-
national logic in routers to deal with promotion. The VC scheme
does not require any additional router buffers since the speculative
channels divide the number of buffers in the baseline. The skid
buffer scheme require the largest amount of storage, although most
of the structure can be implemented as RAMs. A 24-entry skid
buffer supplementing a 40-entry LSQ, increases the size of each
LSQ partition by 4%. Overall, using our best scheme to support –
the VC mechanism – a 1024 instruction window, as shown in Ta-
ble 1, the area after optimizations is 80% smaller compared to the
fully replicated LSQs at each LSQ partition.

6.7 Complexity
The VC scheme requires the most changes to the baseline as it

requires virtualization of not only the network routers butalso the
execution units that feed the router. For instance, when thelow
priority channel in the network is backed up, the issue logicmust
supply the network with a high priority instruction even though it
may be in the middle of processing a low priority instruction. The
NACK scheme comes second or third depending on the baseline
architecture – if the baseline allows instructions to be held in the
issue queues until commit, implementing NACK is as simple as
setting a bit in a return packet and routing it back to the source in-
stead of the destination. However, if instructions are immediately
deallocated upon execution from the windows, NACK may be con-
siderable more complex. The skid buffer solution is probably the
simplest of all the solutions: it requires some form of priority logic
for selecting the oldest instructions, mechanisms for handling in-
validations in the skid buffer and arbitration for the LSQ between
instructions in the skid buffer and new instructions cominginto the

LSQ partition. Despite the changes required for the schemesde-
scribed here, the mechanisms are feasible and operations required
have been implemented in other parts of the processor.

7. CONCLUSIONS
Detecting load/store data dependences has been challenging ever

since designers began to implement computer systems that execute
more than one instruction per cycle. As processor designershave
scaled ILP and instruction window size, hardware to enforceproper
memory ordering has become large and power hungry. However,
today’s load/store queue (LSQ) designs make inefficient useof
their storage by allocating LSQ entries earlier than necessary.

By performing late binding, allocating LSQ entries only at in-
struction issue, designers can reduce the occupancy and resultant
size of the load/store queues. This reduction requires thatthe
queues be unordered. While the unordered property requiressome
extra overhead, such as saving the CAM index in the ROB or
searching for the load or store age at commit, the design is not in-
trinsically more complex, and can achieve performance equivalent
to an ordered LSQ, but with less area and power.

Many of the recent papers that propose to eliminate the CAMs
do so at the expense of increased state, resulting in increased area
requirements. These designs certainly have some advantages, and
one or more of them may well be the solution that some implemen-
tations eventually use. However, we have shown in this paperthat
unordered, late-binding LSQs can be quite competitive for super-
scalar designs, requiring only a small number of CAM entriesto
be searched on average, while consuming less area than the CAM-
free approaches. It is unclear which approach suffers from worse
complexity, and will likely remain so until each approach isimple-
mented in a microarchitecture.

However, the most promising aspect of the ULB-LSQ approach
is its partitionability, which was the original impetus forthis line
of research. Address-interleaved LSQ banks should be both late-
bound and unordered; the ULB-LSQ design naturally permits the
LSQ to be divided into banks, provided that a mechanism exists to
handle the resultant increase in bank overflows. We observedthat,
for distributed microarchitectures that use routed micronetworks to
communicate control, instructions, and data, that we couldembed
classic network flow-control solutions into the processor micronet-
works to handle these overflows. We evaluate three such overflow
control handling schemes in the context of the TRIPS microarchi-
tecture. The best of these schemes (virtual micronet channels)
enables a scalable, distributed, load/store queue, requiring four
banks of only 48 entries each to support a 1024-instruction window.

When conjoined with a Bloom filter, this design greatly reduces the
number of CAM accesses, resulting in an average of only eightand
twelve CAM accesses per load or store, respectively.

Looking forward, this design supports a microarchitectureun-
der design that can run a single thread across a dynamically speci-
fied collection of individual, light-weight processing cores. When
combined, the LSQ banks in the individual cores become part of
a single logical interleaved memory system, permitting thesystem
to choose between ILP and TLP dynamically using a collectionof
composable, light-weight cores on a CMP.

8. ACKNOWLEDGMENTS
We thank M.S. Govindan for his help with the power mea-

surements and K. Coons, S. Sharif and R. Nagarajan for help in
preparing this document. This research is supported by the De-
fense Advanced Research Projects Agency under contract F33615-
01-C-4106 and by NSF CISE Research Infrastructure grant EIA-
0303609.

9. REFERENCES
[1] E. F. Torres and P. Ibanez and V. Vinals and J. M. Llaberia.

Store Buffer Design in First-Level Multibanked Data
Caches. InISCA, 2005.

[2] F. Castro, L. Pinuel, D. Chaver, M. Prieto, M. Huang, and F.
Tirado . DMDC: Delayed Memory Dependence Checking
through Age-Based Filtering. InMICRO, 2006.

[3] Sam S. Stone and Kevin M. Woley and Matthew I. Frank.
Address-indexed memory disambiguation and store-to-load
forwarding. InMICRO, 2005.

[4] Samantika Subramaniam and Gabriel H. Loh.
Fire-and-Forget: Load/Store Scheduling with No Store
Queue at all. InMICRO, 2006.

[5] H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint
processing and recovery: Towards scalable large instruction
window processors. InProceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture,
pages 423–434, December 2003.

[6] Alok Garg and M. Wasiur Rashid and Michael Huang.
Slackened Memory Dependence Enforcement: Combining
Oppurtunistic Forwarding with Decoupled Verfication. In
ISCA, 2006.

[7] Alper Buyuktosunoglu and David H. Albonesi and Pradip
Bose and Peter W. Cook and Stanley E. Schuster. Tradeoffs
in Power-Efficient Issue Queue Design. InISPLED, 2002.

[8] Amir Roth. High Bandwidth Load Store Unit for Single- and
Multi-Threaded Processors. Technical Report
MS-CIS-04-09, Dept. of Computer and Information
Sciences, University of Pennsylvania, 2004.

[9] R. Balasubramonian.Dynamic Management of
Microarchitecture Resources in Future Microprocessors.
PhD thesis, University of Rochester, 2003.

[10] L. Baugh and C. Zilles. Decomposing the load-store queue
by function for power reduction and scalability. InP=ac2
Conference, IBM Research, 2004.

[11] E. Borch, E. Tune, S. Manne, and J. Emer. Loose loops sink
chips. InProceedings of the 8th International Symposium on
High-Performance Computer Architecture, pages 299–310,
2002 February.

[12] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K.
John, C. Lin, C. R. Moore, J. Burrill, R. G. McDonald,
W. Yoder, and the TRIPS Team. Scaling to the End of Silicon

with EDGE architectures.IEEE Computer, 37(7):44–55,
July 2004.

[13] H. W. Cain and M. H. Lipasti. Memory ordering: A
value-based approach. InISCA, 2004.

[14] A. Cristal, O. Santana, F. Cazorla, M. Galluzzi, T. Ramirez,
M. Pericas, and M.Valero. Kilo-instruction processors:
Overcoming the memory wall.IEEE Micro, 25(3):48–57,
May/June 2005.

[15] R. Desikan, D. Burger, and S. W. Keckler. Measuring
experimental error in microprocessor simulation. In
Proceedings of the 28th Annual International Symposium on
Computer Architecture, pages 266–277, July 2001.

[16] Elham Safi and Andreas Moshovos and Andreas Veneris.
L-CBF: A Low Power, Fast Counting Bloom Filter
Implementation. InISPLED, 2006.

[17] M. Franklin and G. S.Sohi. ARB: a hardware mechanism for
dynamic reordering of memory references.IEEE
Transactions on Computers, 45(5):552–571, 1996.

[18] A. Jaleel and B. Jacob. Using Virtual Load/Store Queues
(VLSQs) to Reduce the Negative Effects of Reordered
Memory Instructions. InHPCA, 2005.

[19] T. Monreal, A. Gonzalez, M. Valero, J. Gonzlez, and
V. Vinals. Delaying Physical Register Allocation Through
Virtual-Physical Registers. InMICRO, 1999.

[20] A. Roth. Store vulnerability window (svw): Re-execution
filtering for enhanced load optimization. InISCA, 2005.

[21] K. Sankaralingam, R. Nagarajan, R. McDonald, R. Desikan,
S. Drolia, M. Govindan, P. Gratz, D. Gulati, H. Hanson,
C. Kim, H. Liu, N. Ranganathan, S. Sethumadhan, S. Sharif,
P. Shivakumar, S. W. Keckler, and D. Burger. Distributed
microarchitectural protocols in the TRIPS prototype
processor. InMICRO, December 2006.

[22] S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore, and
S. W. Keckler. Scalable memory disambiguation for high ilp
processors. In36th International Symposium on
Microarchitecture, pages 399–410, December 2003.

[23] Simha Sethumadhavan and Robert McDonald and
Rajagopalan Desikan and Doug Burger and Stephen W.
Keckler. Design and Implementation of the TRIPS Primary
Memory System. InICCD, 2006.

[24] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and
M. Upton. Continual flow pipelines. InASPLOS, pages
107–119, October 2004.

[25] Stefan Bieschewski and Joan-Manuel Parcerisa and Antonio
Gonzalez. Memory Bank Predictors. InICCD, 2005.

[26] J. M. Tendler, J. S. Dodson, J. J. S. Fields, H. Le, and
B. Sinharoy. POWER4 system microarchitecture.IBM
Journal of Research and Development, 26(1):5–26, January
2001.

[27] Tingting Sha and Milo M. K. Martin and Amir Roth.
Scalable store-load forwarding via store queue index
prediction. InMICRO, 2005.

[28] Tingting Sha, Milo M.K. Martin and Amir Roth. NoSQ:
Store-Load Communication without a Store Queue. In
MICRO, 2006.

[29] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: a
power-performance simulator for interconnection networks.
In MICRO, pages 294–305, 2002 December.

[30] V. V. Zyuban.Inherently Lower-Power High-Performance
Superscalar Architectures. PhD thesis, University of Notre
Dame, March 2000.

