Late-Binding: Enabling Unordered Load-Store Queues

Simha Sethumadhavan ¢
Joel S. Emert

SDepartment of Computer Sciences
The University of Texas at Austin

cart@cs.utexas.edu

ABSTRACT

Conventional load/store queues (LSQs) are an impedimédritto
power-efficient execution in superscalar processors aalhgcto
large-window designs. In this paper, we propose technigaes
improve the area and power efficiency of LSQs by allocating en
tries when instructions issue (“late binding”), rathenthéhen they
are dispatched. This approach enables lower occupancyhasd t
smaller LSQs. Efficient implementations of late-bindingQsS
however, require the entries in the LSQ to be unordered with r
spect to age. In this paper, we show how to provide full LSQ
functionality in an unordered design with only small adafithl
complexity and negligible performance losses. We showlttiat
binding, unordered LSQs work well for small-window supeitac
processors, but can also be scaled effectively to large-vkihdow
processors by breaking the LSQs into address-interleasalisb
To handle the increased overflows, we apply classic netwovk fl
control techniques to the processor micronetworks, englbtiw-
overhead recovery mechanisms from bank overflows. We evalu-
ate three such mechanisms: instruction replay, skid kajff@nd
virtual-channel buffering in the on-chip memory networke ghow
that for an 80-instruction window, the LSQ can be reduce®ter®
tries. For a 1024-instruction window, the unordered, lziteding
LSQ works well with four banks of 48 entries each. By applying
a Bloom filter as well, this design achieves full hardware rmgm
disambiguation for a 1,024 instruction window while redugrlow

average power per load and store access of 8 and 12 CAM entries

respectively.

Categories and Subject Descriptors

C [Computer Systems Organizatiofy; C.1 [Processor Architectureg; C.1.1 [Single
Data Stream Architectures: Subjects: Single-instruction-stream, single-dataan
processors (SISD)Additional Classification:; Cdmputer Systems Organizatiof;

C.2 [Computer-Communication Networks]; C.2.1 [Network Architecture and De-
sign]: Subjects: Packet-switching networks

General Terms

Design, Performance
Keywords

Late-binding, Memory Disambiguation, Network flow control

PREPRINT: To Appear in the International Symposium on Com-
puter Architecture 2007.

Doug Burger ¢

Franziska Roesner §
Stephen W. Keckler #

'VSSAD, Intel
. Hudson, MA
joel.emer@intel.com

lar pipeline ing memory i Al

Fetch

L

Writeback

|

Commit
B A |

Execute
eo] |

Issue
o] |

Dispatch
Hl

overflows

PR

F

E
BORAE

(c) Banked,
large-window LB-LSQ

>®NnomTax

__m)-nm o

(b) Unordered
LB-LSQ

(a) Conventional
ordered LSQ

Figure 1: High-Level Depiction of Ordered vs. Unordered LSQs.

1. INTRODUCTION

A long-standing challenge in computer architecture hasbee
handling memory dependences in a scalable manner without sa
rificing programmability or parallelism. Dataflow compugeén the
1970's and 80's supported high concurrency, but requirezbm
ventional programming models (write-once memory semante
prevent incorrect memory behavior. Modern superscalacgso
sors enforce memory dependences while supporting stapdasd
gramming models using load/store queues (LSQs). These LSQs
however, are one of the primary structures inhibiting tradisg of
superscalar processors to larger in-flight windows, siheg have
typically supported only a few tens of in-flight loads andretodue
to power and complexity limits.

These limits have led an industry-wide shift to chip mulbiges-
sors (CMPs). Much current research is focusing on CMPs ighvhi
the individual are processors smaller, lower power, ancpEm
effectively reducing single-thread performance to suppoore
threads. This trend is reducing the instruction-level fieliam that
can be exploited, placing a higher burden on software amfer
grammers to use a fine-grained chip multiprocessor efiegtiin
alternative to CMPs are tiled large-window microarchitees that
can scale to thousands of in-flight instructions, while ptgdly
exploiting multiple threads in addition to providing a largvin-
dow for single-threaded execution. Memory disambiguasibtiis
scale, however, has been a key limitation for these typescbi-a
tectures. This paper describes an LSQ design that bothda®vi
power and area improvements for conventional superscetagios
and which provides the ability to scale to thousands of irtsitons
power efficiently. The two new techniques that provide thalisg
areunordered late bindingn which loads and stores allocate LSQ
entries after they issue, afightweight overflow contrglwhich en-
ables good performance with unordered LSQs that are divitded
multiple small, address-interleaved partitions.

Late binding: Traditional LSQs allocate entries at fetch or dis-
patch time, and deallocate them at commit. Thus, entriecona
ventional LSQ physicallypge-ordered a feature that LSQ designs
exploit to provide the necessary functionality efficientiwhen
an LSQ reaches capacity, the microarchitecture typicaligttles
fetch until a load or store commits and is removed from the LSQ
Figure 1 shows a simple six-stage pipeline diagram with nieen-
ory instructions (loads and stores labeled A through I) ffedént
stages. As shown in Figure 1a, a conventional eight-enti® isS
full after H is dispatched, stalling the fetch of later ingttions.

Unordered, late-binding LSQs (ULB-LSQs) can reduce bo¢h th

grows, since the global ULB-LSQ is divided into smaller te
leaved partitions that are more susceptible to overflowsnwihe
distribution of loads and stores to banks is unbalancedurEidgc
shows how load imbalance for an address-interleaved ULB-LS
increases the likelihood of overflow. In the example, eacfoof
address-interleaved partitions holds one entry. Wheresdsuiction
E could have been held in the centralized ULB-LSQ of Figure 1b,
E conflicts in the banked example with instructiBnwhich was
mapped to the same partition.

As the banks are shrunk and the number of overflows increases,
the conventional techniques of throttling fetch or flushitg

average occupancy time and average number of entries in usepipeline become too expensive. By incorporating techrdgue

ULB-LSQs achieve this reduction by allocating entries onhen

a load or store issues, instead of when it is fetched, pengitt
a smaller, more efficient structure. Figure 1b shows the Ilemal
ULB-LSQ that must be sufficiently large only to capture the in
flight loads and stores after they have issued. Figure 2 shiusvs
potential savings of late-binding, issue-time allocati@m the Al-
pha 21264 microarchitecture, only 32 or fewer memory irtdions
must be buffered in the LSQ for 99% of the execution cyclesnev
though the original 21264 design had a combined LQ/SQ chpaci
of 64 entries.

To achieve this reduction, however, the entries in an ULELS
must beunordered loads and stores are allocated LSQ entries in
their dynamic issue order as opposed to the traditionalrdier
fetch sequence. Maintaining age order with issue-timecation
would require a complex and power-inefficient compactitigad-
like circuit [7]. This paper describes an ULB-LSQ designttrea
quires only small additional complexity while performingrapa-
rably to a traditional ordered LSQ.

Low overhead overflow handling: A second advantage above

handle overflows with low overhead, an ULB-LSQ for a large-
window design can consist of small partitions, resultingdw
energy per load or store, while still supporting high perfance
across a large-window processor. We observe that in alulisdd,
large-window processor, LSQ banks can be treated as clients
a micronetwork, with overflows handled using traditionatwark
flow-control techniques adapted for a distributed processi
croarchitecture. We evaluate three such techniques irptper:
instruction replay skid buffersandmicronet virtual channels

This paper shows that ULB-LSQs with appropriate overflowsup
port work well for both small and large-window processorsr &
Alpha 21264 microarchitecture with an 80-instruction wind a
32-entry ULB-LSQ using flush-on-overflow provides the saree p
formance as a 64-entry split LQ/SQ. For the 1,024-instounctvin-
dow TRIPS processor, four banks of 48 entries each—usitigavir
channel flow control to handle overflows—provides the sanme pe
formance as an idealized 1,024-entry LSQ. By adding a Bloihm F
ter [22], the banked ULB-LSQ design incurs, for a kilo-ingtion
window, an average of only eight and twelve CAM entries sesalc

and beyond the reduced size is that ULB-LSQs lend themselvesper load and store, respectively.

naturally to address partitioning, enabling smaller batfieg are
indexed by address. However, smaller banks will experienoe
overflows. In small-window superscalar processors, flughire
pipeline on an ULB-LSQ overflow is an acceptable policy, sinc

the ULB-LSQ can be sized to save area and power over a con-

ventional design while overflowing infrequently. Howeveil, B-
LSQs can also provide efficient memory disambiguation fayda
window processors, in which thousands of instructions maynb
flight [12, 14, 24], by exploiting the ability to address ireave
LSQ banks. The late binding and unordered organization atte b
necessary to support an undersized, address-interle®@¢dince

the mapping of loads and stores to LSQ banks cannot be known at

fetch/dispatch time.
In large-window designs, however, the probability of o

9%

Percentage of total execution cycles

0 4 8712716 20 24 28 32'36 40 44 48 52 56 60 64
Number of memory instructions between Execute and Commit Stage

Figure 2: Potential for undersizing: In an Alpha 21264, for 99% of
the execution cycles across 18 SPEC2000 benchmarks, onlyd@3Zewer
memory instructions are in flight between execute and commit

2. PRIOR LSQ INNOVATIONS

Most of the recent LSQ optimization proposals, including-pr
posals for non-associative LQ/SQs, focus primarily on caaythe
dynamic power and latency of LSQs. Typically these scherses a
reduce or eliminate the power-hungry CAMs, but add numerous
predictors and other significant supporting structuresidatof the
LSQ, effectively increasing the area of the total memonautis
biguation logic.

Cain and Lipasti eliminate the associative load queue bjngav
loads compare their speculative values to the cached vatwesn-
mit time to detect mis-speculations [13]. Roth proposechenk-
ments to Cain and Lipasti's scheme, to reduce the numberdtlo
that have to perform commit time checking [20]. These mecha-
nisms eliminate the CAM from the LQ but require additionakbi
in the load queue RAM (64bits) to hold the load values. Roth’s
mechanism requires additional storage of 1KB (SSBF) fopettp
ing commit-time filtering.

Sha, Martin and Roth extend Roth’s scheme by using a modified
dependence predictor to match loads with the precise stdferb
slots from which they are likely to receive forwarded datd][2
This solution, coupled with the non-associative load qusaieme
proposed in Roth’s earlier work, can completely elimindtetee
associative structures from the LSQ. However, instead efath
sociative CAMs, this solution requires large multi-poreben-
dence/delay predictors (approximately 23.5KB, as repdrté4]),
effectively improving dynamic power at the expense of area.

Garg, Rashid and Huang propose another mechanism for elim-
inating associative LQ/SQs [6]. In the first phase of twoggha
processing, loads and stores speculatively obtain th&ieviaom
a LO cache. In the second phase, the memory instructions are

Unoptimized Optimized Unoptimized

Scheme ROB Size Depth Storage Depth CAM RAM Storage Supporting | :optimized

(KB) Width Width (KB) Structures | Ratio

LQ | SQ | LQ SQ LQ | SQ| LQ | SQ| LQ | SQ | LQ SQ | (KB)

SVW - NLQ 512 128 | 64 [1.00| 1 128|164 | O 12 | 92 | 64 | 1.44] 0.78] 1 1.61
SQIP 512 12864 [100 1 12864 [O 0 92 [64 | 144 05 23.5 12.72
Garg etal. 512 64 48 | 0.50 [0.75 | 64 48 | 0 0 92 | 0 072 0 16 13.38
NoSQ 128 40 24 | 0.31 | 0.375] 40 0 0 0 92 |0 045 0 11 16.65
FnF 512 128 64 [100 1 128 0 0 0 92 [0 14410 23.75 12.59
Stone et al. 1024 N/A N/A 18 N/A
LateBinding-Alpha | 80 32 [32]025]05 32 [12 [92 [0.5 0.0625 0.75
LateBinding-TRIPS| 1024 1024 | 16 192 [12 [92 [3 0.25 0.20

Table 1: Area for LSQ and supporting structures for recent related work

re-executed in program order, without any speculation, acd In contrast to all of the above schemes, the design propased i
cess the regular L1 cache. Any difference in the load valges b this paper uses late binding to reduce the area and latertby wi
tween the two phases results in corrective action. This ar@sh, out any additional state outside of the LSQ. Dynamic poweuce
while eliminating the CAM, requires a 16KB LO cache and an-age tion, however, requires additional state in the form of addrbased
ordered queue for holding the values read during the firssgaha Bloom filters [22]. These structures take up only few hundrefl
Subramaniam and Loh [4] and Sha, Martin, and Roth [28] both bytes and can even be further reduced by optimizations stegje
propose methods for completely eliminating the store quieyiby- by Castro et al. [2].
passing store values through the register file and LQ, réispbc Other researchers have also applied issue-time bindimgicex
Sha, Martin and Roth avoid speculative store buffering tscek itly or implicitly, to improve the efficiency of microarctettural

ing stores in program order, while Subramaniam and Loh dg/so b structures. Monreal et al. use late allocation to reducenthve-
using the ROB or the physical register file. Both proposatsass ber of physical registers [19]. The effectiveness of som& lop-

phisticated dependence predictors that are smaller tledaretrlier timizations like address-based filters [22] or the smalbeisdive
schemes but still require additional area for dependenedigiors forwarding buffers [10, 8, 1] can also be explained in paridig
and combinational logic for renaming. allocation.

Akkary, Rajwar, and Srinivasan propose two-level storddraf
each of which are centralized, fully associative and agerexi[5]. 3. BACKGROUND

Stores first enter the L1 store buffer, and when it overflowey .ﬂre Most LSQs designed to date have been age indexed, because age

moved to the L2 store buffer. Both buffers support forwagaamd indexing supports the physical sorting of instructionstia t SQ

speculation checking, but stores always commit from thers®c pased on their age. LSQs must support three functions: commi

level buffer. This scheme reduces power and delay, butejllires o stores, detection of memory ordering violations, anavinding

a worst-case sized L2 store buffer and is thus area inefficien of earlier store values to later loads. The physical ordenitakes
Stone, Woley, and Frank suggest partitioning the LSQ irdo it some of these operations simpler to support, but is not fmeda

three functions, and distributing and address interlegel of tally required for committing of stores and violation detes, and

them [3]. The three structures are a set associative cactierfo only provides speed benefits for store forwarding in raresas

warding (80-bit wide, 512 sets, 2-way), a non associativeCF| In an age-indexed LSQ, the address and value of an in-flight

for commit, and an address-indexed timestamp table (8K.68tr memory instruction is stored in an LSQ slot obtained by decod

bit wide) for checking speculation. The partitioning rersvthe ing the age of the memory instruction. This organizatiomitesn

CAMs but has high area overheads. _ a LSQ that isphysicallyordered; the relative ages of two instruc-
Torres et al. propose using a distributed, address-mantit, tions can be determined by examining the physical locatibag

forwarding buffer backed up by a centralized, fully assteieage- occupy in the LSQ. For example, it is simple to determine ihat

indexed LSQ[1]. Baugh and Zilles use a small centralizediéod- struction at slot 5 is older than instruction at slot 8 beeaslst 5

ing buffer, but address-partitioned unordered structémesiola- is physically “before” slot 8. Additionally, this mechanisallows

tion detection [10]. Both these schemes increase the ageiree determining the relative order between all instructionthie LSQ

for memory disambiguation to optimize for latency and power that satisfy some criterion (i.e. a matching address). kKample,
Table 1 summarizes the ROB size, the area of the LSQ before it sjots 25 28 and 29 are occupied in the LSQ, linearly sazmtiie

and after the optimizations, the size of the supportingesres re- - the | SQ from position 29 will reveal the most recent oldetrins-

quired by these optimizations (but which may be already begt tion first (28) and then then next oldest (25) and so on. In some

in the design for performance reasons), and finally the atio- cases, circuit implementations exploit the physical dripto ac-

tal area required for memory disambiguation, before aref alfte celerate LSQ operations. To understand the design chahges t

optimizations. We computed the area of the memory strusfure an unordered LSQ requires, it is instructive to examine h&@QL
in bytes of storage, assuming the CAM cell area to be threestim ordering supports the three functions that the LSQ combines
larger than the RAM cell. We also assumed 40-bit addressgs an commit: The LSQ buffers all stores to avoid potential write-

64-bit data, and that all the unoptimized designs had 1dnit after-write hazards between stores to the same addressxtfatte
tial addresses in CAMs and rest of the address bits in the RAMS g t-of-order. Additionally, the stores cannot be writtant antil
The depth of the queues, however, is different for each adethe they are non-speculative. Once a store is determined to be no
structures. The table shows that the proposed schemes ead ar gpeculative, the store address and value are written tozbleec
overhead beth_een factors of 1.5 to 16.5. When discountiagl¢h using the age supplied from the ROB/control logic. With wirig,
pendence predictor, the area overheads are between fatths age-based indexed lookup is sufficient. Without orderinggarch
and 13. is necessary to find the oldest store to commit.

Operation | Search| Input Output Num Sorting
matches| Required
Forwarding | > LD age Older STs >1 Yes
Violation < ST age YoungerLDs | >1 No
Commit == ROB age | STtocommit| 1 No

Table 2: Summary of LSQ operations and ordering require-
ments

Violation Detection: The LSQ must report a violation when it
detects that a load following a store in program order, arghtoe
address, executed before the store. To support this operatie
LSQ buffers all in-flight memory data addresses, and wheora st
arrives at the LSQ, checks for any issued loads younger thdn a
to the same address as the store. If there are any matchitg a
violation is reported. For this operation, the LSQ need aldier-
mine the set of younger load instructions. It does not reggorting
among the multiple matching loads based on their age. Iredde
LSQ circuit implementation, the age of the incoming instiarcis
decoded into a bit mask and all bits “before” the decodedédiitar
are set. In the case of store forwarding with multiple masciiee
most recent store and successive older stores can be adsioeapl
by linearly scanning the bit mask.

Store Forwarding: The LSQ must support forwarding from the
uncommitted buffered stores in the LSQ to in-flight loads thsue
after the stores. When a load arrives at the LSQ, it checkslder
stores to the same address. If there are matching storekSte
ensures that the load obtains its value from the most recatdtm
ing store preceding the load. To support this functionalityen
a load matches multiple stores, the LSQ sorts the matchorgsst
based on their ages and processes the matching storesliuthi@ a
load bytes have been obtained or until there are no matctongss

The age-indexing policy requires an LSQ that is sized large
enough to hold all in flight memory instructior&™* slots), which
results in a physically ordered LSQ. The ability to sort thgh
multiple matching instructions is especially useful forfarding
values from multiple matching stores to a load, but a coaager
comparison is sufficient for implementing the other LSQ agiens
(Table 2). Additionally, the LSQ allocation policy is comgative.
Even though the LSQ slots are occupied only after the instns
execute they are allocated early, during instruction dedpaTra-
ditional age-indexed LSQs are thus both overdesigned imsterf
functionality and overprovisioned in terms of size.

4. AN UNORDERED, LATE-BINDING LSQ
DESIGN

Late-Binding LSQs address the inefficiencies resultingiftbe
“worst-case” design policies used in traditional LSQs. Bgaat-
ing the memory instruction in the LSQ at issue, the sizes oBUL

Allocation Search Ordering
i

0]

3 o

M g |~ CAM =2 RAM data array

° @
k]
2
o

1search, 1 read &
1 write port
M: Memory instruction window size

Figure 3: The Age-Indexed LSQ

LSQs are comparartively reduced. Allocating memory irttams

at issue requires a set of mechanisms different from ailmcan
age-indexed LSQs. When a load or store instruction arrivésea
ULB-LSQ the hardware simply allocates an entry from a pool of
free LSQ slots instead of indexing by age. This allocatiolicgo
results in an LSQ that is physicallynorderedin which the age of
the instruction has no relation to the slot occupied by tis¢rirc-
tion.

To compensate for the lack of ordering, the ULB-LSQs take a
more direct approach to determining the age by explicityisty
the age information in a separate age CAM. The age CAM is a
special type of CAM that can output greater/lesser/equlltgin-
stead of just the equality matches. The LSQ functions thed tise
implicit age information in the age-indexed LSQ for impletting
the LSQ operations now use the explicit associative age CAM t
determine younger and older instructions. Figures 3 antlg-il
trates and contrasts the structures used in the ULB-LSQradd t
tional LSQ implementations, whe® is the memory instruction
dow size, andJ is the ULB-LSQ size.

To support commits, the small age CAM is associatively
searched with the age supplied by the ROB. The address aad dat
from the exact matching entry are read out from the CAM and
RAM respectively, and sent to the caches. This extra adsaria
search is avoidable if the baseline architecture holds tt&-USQ
slot id allocated to the store in the ROB.

To support violation detection, when a store arrives it clees
the address CAM to identify matching loads, and searcheaghe
CAM using the greater-than operator to identify youngeroa
The LSQ then performs a logical OR of the results of the two
searches. If any of the resulting bits is one then a violatton
flagged. Detecting violations is simpler in this LSQ complaie
age-indexed LSQs, since no generation of age masks is aegess

Supporting forwarding is more involved because the ULB-LSQ
does not have the total order readily available. In the casaly
one match, the loss of order does not pose a problem; however
when there are multiple matches, the matches must logitally
processed from most recent to the oldest. In the ULB-LSQ, on
multiple store matches, the age of each match is read outtiiem
ULB-LSQ, one per cycle, and decoded into a per-byte bit wecto
Bytes to forward to the load replace bytes from other stdréeei
later-found store is more recent in program order. This stepn-
structs the physical ordering between the matches from ttg U
LSQ, but may take multiple cycles to do so. Once the ordesng i
available, store forwarding proceeds exactly as in an adexed
LSQ [23]. Thus, compared to the age-indexed LSQ, which may
already require multiple cycles to forward from multiplersts, the
ULB-LSQ requires additional cycles for creating the deabdé-
vector. However, as we will show in the next section, thes#-ad
tional cycles rarely affect performance because multifheesfor-
warding is uncommon in many benchmarks.

Allocation Search Ordering Commit
Y o
[=[O 2
U Freﬁ age —=| @ =
Slot| ™ CAM CAM % RAM data array| g
L]S g
o

o

1 search, 1 read2 search, 1 read
and 1 write portand 1 write port

Log2(M)

M= Memory instruction window size
U = Size of LB-LSQ (U << M)

Figure 4: The ULB-LSQ Microarchitecture

4.1 Performance Results

The performance of the ULB-LSQ depends on the number of
entries in the LSQ, which affects the number of LSQ overflows.
Performance will also be affected by the relative cost oheaer-
flow and the additional penalty for multi-cycle store fordimg (in
the case of multiple address matches). We modeled the ULB-LS
in the sim-alpha [15] simulator and simulated single Simpog-
gions of 100M for the 18 SPEC benchmarks compatible with our
experimental infrastructure.

In this set of experiments, ULB-LSQ overflows are handled by
partially flushing the pipeline and re-starting executiooni the
oldest unarrived memory instruction at the time of the owerfl
The penalty of an overflow is 15 cycles, which matches the cost
of a branch misprediction. Table 3 summarizes the unordes&gl
behavior and statistics. The first two columns show the nurabe
memory instructions between the commit and execute stages f
95% and 99% of the execution cycles. The next eight columns
show the number of overflows per 1000 memory instructiond, an
the performance normalized against the Alpha, for ULB-L&@s
ranging from 16 to 40 entries. The final column shows the perce
age of dynamic loads that forward from more than one storemFr
the table, for 14 of the 18 benchmarks, for 99% of the cyclefim
there are 32 or fewer uncommitted but executed memory istru
tions. This explains why a 32 entry ULB-LSQ does not show any
performance degradation.

To isolate the performance impact of slower multiple fordvar
ing, we increased the latency of store forwarding in the lhese
simulator without changing the LQ/SQ size. In this expeniméd
a load matches with N (M- 1) older stores, then store forwarding
takes an additional N cycles even if load does not have tohgét t
data from all N stores. The results showed no performanceadeg
dation for any of the benchmarks because loads rarely negetto
data from multiple stores. From Table 3, the number of loads t
have to forward from two or more stores is less than 0.2% on the
average.

Another interesting trend in the Table 3 is that the perforoea
impact of the number of overflows is different for High vs. Low
IPC benchmarks. For instance, for the 16 entry LSQ, evengtihou
179.art incurs more flushes per 1K instructions than 178ejal
(651 vs. 463), the performance degradation is higher in &se c
of 178.galgel (24% vs. 96%). This data indicates that uress
overhead overflow mechanisms are invented for machinesttipat
port high ILP, the performance impact of undersizing the L@
be quite high.

4.2 Power

This section examines the dynamic power consumption of an
ULB-LSQ against the Alpha LQ/SQ organization. The ULB-LSQ
design holds 32 memory operations, while the Alpha has aatpa
32-entry LQ and SQ. Although the size of the ULB-LSQ is snralle

We synthesized the design using IBMs 130nm ASIC methodol-
ogy with the frequency set at 450MHz, and verified that the age
CAM will fit in the same cycle time as the address CAM. Even
though the delay of the age CAM was approximately 20% more
than the address CAM, the delay was still not long enough be
the critical path. Thus, assuming that the LB-CAMs can beatun
the same clock frequency as the traditional LQ/SQ, the pamer
crease is simply the ratio of the capacitances. From ouhegig,
the capacitance of the address CAM (32x40b, 1 search, 1 rehd a
1 write port) was 144.5pFR, 44,-) While the capacitance of the age
CAM was 12.86pF P,4.). Thus the power overhead is roughly 8%
even after neglecting the power due to the RAM.

However, both the ULB-LSQ and the Alpha LSQ can benefit
from Bloom filters. With a 64 entry, 8-bit counting Bloom Fil-
ter [16], we observed that 88.7% of the age and address &sarch
can be filtered. Applying this optimization, the additiomaiwer
required by the unordered design can be reduced to under 1% of
the power consumed by the original Alpha LSQ.

4.3 Implementation Complexity

The ULB-LSQ design differs from a traditional LSQ in the fol-
lowing ways: (1) the entries are managed as a free-list, (20ijphe
store forwarding requires additional control logic to sthrough
matching entries, and (3) the LSQ must detect and react 1o ove
flows. These differences are not a significant source of cexapl
ity because many existing microarchitectural structungsément
similar functionality. For example, MSHRs and the physica]-
ister files are managed as free-lists. The scanning logidbeas
implemented in traditional LSQs which do not flush on mutipl
matches. Overflow is flagged when there are no free LSQ entries
and is simple to implement. Furthermore, the ULB-LSQ dods no
require any modifications to the load/store pipeline. Th@®ldper-
ations are pipelined in the exact same way as the age-ord&@d
implementation in the POWER4 [26].

These results showed that for small-window processorslige
Alpha 21264, even with simplistic overflow handling mecisams,
the queue sizes can be reduced by half without affectingoperf
mance. The smaller queue size directly translates to ingpnewnts
in static power, dynamic power, and latency. Most importéme
unordered nature of the ULB-LSQ allows it to be partitiondthw
out introducing additional area overheads as explainet nex

5. LARGE-WINDOW PROCESSORS

While high-performance uniprocessor design has fallenobut
favor with industry due to scaling difficulties, many resgears are
examining novel and scalable means for extracting more b
ing a larger instruction window. Such designs often emplaye
form of partitioning to implement larger microarchiteaulogical
structures without sacrificing clock cycle time. In partan the
architectural trends motivating the design of a partitbh&8Qs in-

each memory operation has to access the same number ofaddresclude (1) very large instruction windows with hundreds oflight

CAM entries in both designs because the Alpha has a pasition

LQ/SQ. Even so, the ULB-LSQ will have higher dynamic power

per access because of the additional accesses to the age CAM.
To measure the increase in power per access, we assumed th

the LSQ power is approximately equal to the power consumed by

the CAM and the RAM. Thus, the power-per-access of the Alpha
LQ or SQ will be purely from the address CAMP{44,) and the
RAM (P,a:m), While the power consumed by the ULB-LSQ wiill
be the power from the address CAM, the age CAR]4.) and the
RAM. Since the ULB-LSQ and Alpha have the same number of
entries, their sizes will be the same. Thus the power ineraal

be (Page + Paddr + Pram)/(Paddr + Pram)-

memory instructions, and (2) partitioning of microarchttees for
scaling to higher execution and local memory bandwidth.

2.1 Partitioning the LSQ

In a partitioned microarchitecture, an LSQ partition is thes
matched with a partition of an address-interleaved levekdhe.
Partitioning an age-ordered LSQ is not straightforwardhaspter-
instruction age identifiers do not indicate dependencéioekships
between load and store instructions. Distributing agerieaved
partitions to address-interleaved caches will effecyivesult in
significant cross-partition communication among LSQ anchea
banks and between matching loads and stores to the samasddre

Benchmark | Occupancy Flushes per 1K mem instf Normalized IPC Baseline | % of LDs
%program cycles| LSQ entries LSQ entries IPC matching 0 or 1
95% [99% 16 [24 [32 |40 16 24 32 40 STs
164.9zip 7 22 6 4 3 1 1.00| 1.00 | 1.00 | 1.00 | 1.60 99.95
175.vpr 14 21 10 [2 0 0 0.93] 1.00| 1.00 | 1.00 | 0.87 99.72
177.mesa 8 14 8 0 0 0 0.05] 1.00| 1.00 | 1.00 | 1.16 99.8
178.galgel 24 24 463188 | O 0 0.04] 0.56| 1.00 | 1.00 | 2.70 100
179.art 35 43 651 | 131 33 | 11 0.76| 0.91| 1.00 | 1.00 | 0.63 99.95
183.equake | 3 6 0 0 0 0 1.00| 1.00 | 1.00 | 1.00 | 0.96 99.91
188.ammp | 11 15 4 0 0 0 1.01] 100[1.00] 1.00| 1.31 99.91
189.lucas 11 13 0 0 0 0 1.02| 1.00 | 1.00 | 1.00 | 0.76 100
197.parser | 10 17 4 0 0 0 1.00| 1.00[1.00| 1.00 | 1.17 99.84
252.eon 15 20 28 | 2 0 0 0.94] 1.00| 1.00| 1.00 | 1.17 98.58
253.perlbmk]| 9 13 2 0 0 0 1.00| 1.00 | 1.00 | 1.00 | 0.83 98.91
254.gap 6 12 0 0 0 0 1.00| 1.00| 1.00| 1.00 | 1.11 99.92
256.bzip2 7 9 0 0 0 0 1.00| 1.00 | 1.00 | 1.00 | 1.82 99.9
173.applu 22 25 2 1 0 0 0.99] 1.00| 1.00 | 1.00 | 0.62 100
181.mcf 51 51 360 | 251 | 171 | 98 1.01] 1.01] 1.01| 1.01 | 0.20 99.92
176.gcc 31 32 28 [22 |2 1 0.99] 1.00] 1.00| 1.00| 1.21 99.88
171.swim 15 15 1 0 0 0 1.00| 1.00 | 1.00 | 1.00 | 0.88 100
172.mgrid 19 35 23 |10 [4 2 1.07] 1.00[099 1.00 | 0.87 99.98
Average 0.88| 0.97| 1.00 | 1.00| 1.10 99.79

Table 3: Performance of an ULB-LSQ on an 80-window ROB machie.

Address-interleaved LSQs are a better match for address int
leaved partitioned memory systems. However, addresseateéng
also means that there is no guarantee that the loads and atidire
be distributed evenly across the partitions. Such an LSQ funs-
tion correctly even when all in-flight memory instructiongjpnto
the same partition. Such imbalance is uncommon, but mag aris
when the application is loading from or storing to a sequrai-
ray of characters. A system could tolerate the imbalanceziygs
each patrtition for the worst case, but the total LSQ size dibel N
times the instruction window size, for N partitions. In tlemain-
der of this paper, we explore better solutions that instearsizes
the LSQ partitions in the same manner as Section 4 and gigcefu
tolerates the rare overflow conditions with minimum effectper-
formance.

Related Work: Research proposals for clustered architec-
tures [30, 9] employ multiple partitions of an age-indexe®Q,
but instead of reserving a slot in each of the LSQ partitidtney
use memory bank predictors [25] to predict a target bank and r
serve a slot there. If the bank prediction is low-confiderstets
are reserved in all banks. While this approach is better toan
servatively reserving a slot in each partition, it still wess space
because of conservative dispatch allocation. The first mgufis-
ambiguation hardware to be address indexed was MultiSs&ldf
dress Resolution Buffer (ARB) [17]. Loads and stores wonttex
into this structure, where age tags were stored to assistuafd-
ing values and detecting ordering violations. The ARB cduse
high overhead pipeline flush if it overflowed.

5.2 Large-window Processor Model

To examine the viability of the partitioned ULB-LSQ in a larg
window processor, we use the TRIPS processor microarthitec
as a baseline. The TRIPS processor is a partitioned midrearc
tecture that enables a window of up to 1024 instructions gntbu
256 in flight memory instructions. All major components oéth
processor are partitioned and distributed including fasgue, and
memory access. The overflow handling mechanisms described i
the rest of this paper are built on top of the TRIPS microdechi
ture.

The processor is composed of an array of 16 execution umnits co
nected via a routed operand network. Instructions aressti@eross
4 instruction cache banks which are accessed in paralladtob f
TRIPS instruction blocks. Instructions are delivered t® éxecu-
tion units where each instruction waits until its operandis@. The
primary memory system (level-1 data cache, LSQs, depeedenc
predictors and miss handling units) is divided into mu&iplnks
which are also attached to the routed operand network. Gimeize
are interleaved across the banks, which enables up to 4 rgemor
structions per cycle to enter the level-1 cache pipelinegurg 5.2
shows an abstract view of the TRIPS microarchitecture, ligt
ing the parts that are relevant to memory instructions. #aolatl
details about the TRIPS microarchitecture can be foundih [2

The features of a distributed microarchitecture most egleto
the design of LSQs can be distilled down to a few principlegctvh
are not unique to TRIPS. First is an address-interleavediulited
cache in which multiple level-1 cache banks independentty p
serve the proper ordering of load and store instructions¢same
address. Second is the set of distributed execution unitdvimde-
pendently decides which instructions to issue each cydhallly, a
distributed architecture with multiple execution and meynanits
must include some form of interconnection network. TRIPS em
ploys a mesh-routed operand network which can be augmemnted t
provide multiple virtual channels. Some of the techniquesiit-
igating overflows rely on buffering in-flight memory insttiens
within the network buffers. However, other interconnectiuet-
works can could be enabled to buffer in-flight memory indinrs
as well. While we examine partitioned LSQ design in a TRIPS
context, we believe that these concepts apply to othertaatbres
that share these basic characteristics.

Jaleel et al. point out that blindly scaling the larger wiwdo
LSQs can be detrimental to performance due to the increabe in
number of replay traps [18]. In their study on a scaled Algha64
core, such traps can occur when load instructions violaetm-
sistency model, when load needs to partially obtain the filata
the LSQ and the cache, when a load miss cannot be serviced be-
cause of structural hazards and when a load instructionuee®c
prematurely. TRIPS avoids these traps and does not sufiiertfie
performance losses described in [18]. In particular, TRAR&ds

Distributed functional units ‘

Network
Router

EI B E
- Mos [s>
|ps | e L=
- Mos [s L=
E3 B E
- Mos W s LS

Network
Router

Network
Router

Network
Router

Figure 5: Overview of the distributed memory system in TRIPS: Each
of the memory partitions includes a portion of the addressHiterleaved
level-1 cache, a portion of the unordered LSQ, a local deperahce pre-
dictor, a miss-handling unit, and a copy of the TLB.

load-load traps with weak memory ordering, wrong-size grbp
supporting partial forwarding in LSQ, and load-miss trapsising
larger MSHRs [23]. Like the Alpha, TRIPS also uses a depetelen
predictor to reduce the number of load-store replay trapstwic-
cur when a load instruction is executed prematurely.

6. MITIGATING LSQ OVERFLOWS

Ideally, a distributed LSQ should be divided into equaksiz
banks, where the aggregate LSQ entries equals the average nu
ber of loads and stores in flight, but which shows only minar pe
formance losses over a maximally sized LSQ. When a bank over-
flows, however, if the microarchitecture does not flush tipelme,
it must find someplace to buffer the load. We examine threesgla
to buffer these instructions: in the execution units, ineestons
to the memory units, or in the network connecting the executi
units to the memory units. The buffering space is much less ex
pensive than the LSQ space since the buffered locations mated
be searched for memory conflicts, which mitigates the ardaan
ergy overheads of large LSQs. The penalty associated wateth
schemes correspond to different “load loops” and changebheas
time for load execution changes [11].

These buffering approaches effectively stall processingeo-
tain memory instructions, which could potentially lead tead-
lock. However, memory instructions can be formed into gsoup
based on age, with all of the instructions in a group havinglar
ages. In a microarchitecture that is block-oriented likd AR the
memory instruction groups correspond to the instructicrckd.
One block is non-speculative, while multiple blocks can pecs
ulative. By choosing to prioritize the non-speculativetinstions
over the speculative instructions, our solutions can redbe cir-
cumstances for deadlocks and flushing. One possible desigldw
reserve LSQ entries for the non-speculative block, but @peg-
ments indicated that this approach did not provide any saktise
performance benefits and resulted in larger than a minimaedsi
LSQ.

6.1 Issue Queue Buffering: Memory

Instruction Retry

One common alternative to flushing the pipeline in convenatio
processors is to replay individual offending instructioeisher by
retracting the instruction back into the issue window, otdgging
the instruction in a retry buffer. In TRIPS retrying meansdse
ing an offending instruction back to the ALU where it was sdu
and storing it back into its designated reservation statiSince
the reservation station still holds the instruction ancbjperands,
only a short negative-acknowledgement (NACK) messagesieed
be sent back to the execution unit. No additional storagénén t
system is required, as the reservation station cannot lssigeed
to another instruction until the prior instruction commifhe is-
sue logic may retry this instruction later according to a bemof
possible policies.

Figure 6a shows the basics of this technique applied to LSQ
overflows. When a speculative instruction arrives at a fi8kl,
the memory unit sends the NACK back to that instructions exec
tion unit. This policy ensures that speculative instrutiovill not
prevent a non-speculative instruction from reaching th@LB$ a
non-speculative instruction arrives at a full LSQ, then pipgeline
must be flushed.

A range of policies are possible for determining when tosiags
a NACKed memory instruction. If the instruction reissues $oon
(i.e. immediately upon NACK), it can degrade performance by
clogging the network, possibly requiring multiple NACKg fine
same instruction. Increased network from NACKs can alsaydel
older non-speculative instructions from reaching the L&Qition,
as well as general execution and instructions headed to b8@
partitions. Alternatively, the reservation stations catfdiNACKed
instructions until a fixed amount of time has elapsed. Wgitie+
quires a counter per NACKed instruction, and may be either to
long (incurring unnecessary latency) or too short (indrepset-
work contention).

Instead, our approach triggers re-issue when the non-kgtiseu
block commits, which has the desirable property that LSQ@&nt
in the overflowed partition are likely to have been freed.sThech-
anism has two minor overheads, however: an additional isisfier
every reservation station, to indicate that the instrucisaeady but
waiting for a block to commit before reissuing; and a conpraih
to wake up NACKed instructions when the commit signal for the
non-speculative block arrives.

6.2 Memory Buffering: Skid Buffers

A second overflow-handling technique is to store memory in-
structions waiting to access the LSQ in a skid buffer locatettie
memory unit. As shown in Figure 6b, the skid buffer is simpiie p
ority queue into which memory instructions can be insertediex-
tracted. To avoid deadlock, our skid buffers only hold sjetere
memory instructions. If an arriving speculative memorytins-
tion finds the LSQ full, it is inserted into the skid buffer.titfe skid
buffer is also full, the block is flushed. Arriving non-spéative
instructions are not placed in the skid buffer. If they find tt5Q
full, they trigger a flush.

When the non-speculative block commits and the next oldest
block becomes non-speculative, all of its instructiond tre lo-
cated in the skid buffer must be extracted first and placeathm
LSQ. If the LSQ fills up during this process, the pipeline mist
flushed. Like retry, the key to this approach is to prioritize non-
speculative instructions and ensure that the speculatstelictions
do not impede progress. Skid buffers can reduce the ALU atid ne
work contention associated with NACK and instruction rgplaut
may result in more flushes if the skid buffer is small.

ALU OPN Router

Flush

LSQ Partition OPN Router

L]

Nack

Skid Buffer

Flush

ALU OPN Router

ty

LSQ Partiti
LSQ Partition Q Partition
Flush

>
>

Y

o

L,

VCo

Il

—>

g

val

=

(a) NACK and Retry

ty

(b) Skid Buffer

ty

(c) Virtual Channel (VQ)

Figure 6: LSQ Flow Control Mechanisms.

6.3 Network Buffering: Virtual
Channel-Based Flow Control

A third approach to handle overflows is to use the buffers én th
network that transmits memory instructions from the executo
the memory units as temporary storage for memory instrostio
when the LSQ is full. In this scheme, the operand network ¢s au
mented to have two virtual channels (VCs): one for non-siative
traffic and one for speculative traffic. When a speculatistrirc-
tion is issued at an ALU, its operands and memory requests ar
transmitted on the lower priority channel. When a spectgati
memory instruction reaches a full LSQ and cannot enterniaias
in the network and asserts backpressure along the speewati
tual channel. Non-speculative instructions use the highierity
virtual channel for both operands and memory requests. A non
speculative memory instruction that finds the LSQ full tegga
flush to avoid deadlock. Figure 6¢ shows a diagram of this ap-
proach.

This virtual channel approach has a number of benefits. ,First
no new structures are required so logic overhead is onlymaithy
increased. Additional router buffers are required to immat the
second virtual channel, but our experiments show that teepd
flit buffers for each virtual channel is sufficient. Second, ad-
ditional ALU or network contention is induced by NACKs or in-
struction replays. Third, the higher priority virtual chreah allows
non-speculative network traffic to bypass speculativditral hus
non-speculative memory instructions are likely to arrivtha LSQ
before speculative memory instructions, which reducedikieg-
hood of flushing.

Despite its conceptual elegance, this solution requirasnaber
changes to the baseline network and execution engine. Hedila
TRIPS implementation includes a number of pertinent festuit
provides a single operand network channel that uses onewif fl
control to exert back-pressure. Each router contains adntry
FIFO to implement wormhole routing and the microarchitegtu
can flush any in-flight instructions located in any tile orvmetk
router when the block they belong to is flushed. Finally, &ll o
the core tiles (execution, register file, data cache) of tRéPB
processor connect to the operand network and will stalleigéu

speculative instructions over speculative logic when ihteial net-
work is congested, and (4) a means to promote speculatitre¢as
tions from the speculative virtual channel to the non-sfaime
channel when its block becomes non-speculative.

The trickiest part of this design is the promotion of specula
tive network packets to the non-speculative virtual chamien
the previous non-speculative block commits. The TRIPS oaicr
chitecture already has a commit signal which is distributed

ePipelined fashion to all of the execution units, memory sinénd

routers. When the commit signal indicates that the nontdptee
block has committed, each router must nullify any remaimiagk-
ets in the non-speculative virtual channel and copy anygtadie-
longing to the new non-speculative block from the specugatiC
to the non-speculative VC.

6.4 Flow Control Mechanisms Performance

We implemented these flow control mechanisms on a simulator
that closely models the TRIPS prototype processor [21] whis
been validated to be within 11% of the RTL for the TRIPS proto-
type processor. The microarchitectural parameters mizsiarmt to
the experiments are summarized in Table 4.

For each benchmark, we normalize the performance (measured
in cycle counts) to a configuration with maximally sized, 25@ry
LSQ partitions that never overflow. For these experiments, w
used skid buffer sizes that are sized slightly larger than ek-
pected number of instructions at each partition, (72 - LS@Qipa
tion size). For the virtual channel scheme, we divided the fo
operand network buffers in the baseline equally betweertviioe
channels. Thus two buffers are provided for the speculative
non-speculative virtual channels for the VC scheme. Wegmtes
results for 28 EEMBC benchmarks (all except cjpeg and djpeg)
and 12 SPEC CPU 2000 (ammp, applu, art, bzip2, crafty, equake
gap, gzip, mesa, mgrid, swim and wupwise) benchmarks with
minnespec medium sized reduced inputs. The other benckmark
are not currently supported in our infrastructure.

For four 48-entry LSQs and thus a total LSQ size of 192 en-
tries (25% undersized), the flush scheme results in averaderp
mance loss of 6% for EEMBC benchmarks (Figure 7) and 11%

they have a message to inject and the outgoing network FIFO is for SPEC benchmarks (Figure 8). The worst-case slowdowns ar

full.

Adjusting this network to support VCs requires several agigim
tations: (1) an additional virtual channel in the operanthvoek to
separate speculative from non-speculative network traffatud-
ing the standard buffer capacity and control logic neededityal
channels, (2) virtualization of the pipeline registers,ichhmust
stretch into the execution and register tiles to allow npeesilative
instructions to proceed even if speculative instructiamsssalling
up the virtual network, (3) issue logic in these tiles thé¢sts non-

much higher: 180% for idct and 206% for mgrid. These resulfs s
port the perspective that traditional flow-control meckars are
inadequate for distributed load-store queues. The VC nméstmas
the most robust with 2% average performance degradatiofeaad
than 20% performance degradation in the worst case. As tghec
the Skid buffer scheme performs better than the NACK scheme
because it avoids network network congestion from the NACKe
packets, at the cost of extra area.

For six of the SPEC and EEMBC benchmarks, the memory ac-
cesses are unevenly distributed and cause LSQ overflowsethat

Parameter

Configuration

50C,

our

Overview Out-of-order execution with up to 1024 instructions inflighlp to 256 memory instructions can be simultaneously irhflig
Up to 4 stores can be committed every cycle.

Instruction Partitioned 32KB I-cache 1-cycle hit. Local/Gshare Touneat predictor (10K bits, 3 cycle latency) with speculatijslates;

Supply Local: 512(L1) + 1024(L2), Global: 4096, Choice: 4096, RA8, BTB: 2048.

Data Supply 4-bank cache-line interleaved DL1 (8KB/bank, 2-way asssiteback, write-around 2-cycle hit) with one read and omitew
port per bank to different addresses. Up to 16 outstandirggesiper bank to up to four cache lines, 2MB L2, 8 way as:
LRU, writeback, write-allocate, average (unloaded) L2l&iéncy is 15 cycles, Average (unloaded) main memory |gténd
127 cycles. Best case load-to-use latency is 5 cycles. ftwarding latency is variable, minimum penalty is 1 cycle.

Interconnection| The banks are arranged in 5x5 grid connected by mesh netwiakh router uses round-robin arbitration. There are f

Network buffers in each direction per router and 25 routers. The htgmty is 1-cycle.

Simulation Execution-driven simulator validated to be within 11% oflRiesign. 28 EEMBC benchmarks, 12 SPEC benchmarks s
lated with single simpoints of 200M

mu-

Table 4: Relevant aspects of

EEMBC arith mean (28)

the TRIPS microarchitecture

2

= | USH
== NACK
— SKID

32 ==VC

sl

64 56 .48 40 35

o o 457
4.2

g 129 o SKID 3 g-g*
£ = NACK E 3]
E = FLUSH g 57]
2 2 2.44
g g 18]
3 3 157
%) n 1.2
0.9

32

40 48 56
Number of LSQ Entries

Figure 7: Left: Average LSQ Performance for the EEMBC benchmark

IDCT IFFT

Top 3 worst EEMBC Benchmarks

BITMNP

suite Right: Three worst benchmarks. bitmnp shows a different trend

because there are fewer LSQ conflict violations in bitmnp whe the LSQ capacity is decreased.

real Low 1 = &real Data_1[I _1];

i mgLow 1 = & nagData_1[| _1];

real H _1 = &realData_1[i _1];
= & magData_1[i _1];

imagH _1

real Data_1[I _1]
imagData_ 1[I _1]
real Data_1[i _1]
imagData_1[i _1]

*real H _1 - tReal Data_1;
*imagH _1 - tlmagData_1;
+= t Real Data_1;
+= tlmagDat a_1;

Figure 9: Code snippet from idct benchmark.

duce performance significantly. For instance, Figure 9 stefve-
quently executed code sequence in idct in the EEMBC suite. Th
innermost loop contains two reads and two writes to two dhiffie
arrays and the code generated by the compiler aligns baalysarr
to 256-byte boundaries. Since the arrays are accessed lgyisam
dices, all four accesses map to the same bank. This probler is
acerbated by the aggressive loop unrolling of the TRIPS demp
The accesses could in theory be distributed by aligning treys
differently, but aligning data structures to minimize bardaflicts

is a difficult compiler problem.

6.5 Power Efficiency

tering reduces the number of memory instructions perfognais-
sociative searches [22].

The Bloom filters for the TRIPS study use 8 32-bit registeng o
for each in-flight block. The filters associated with eactcklare
cleared when the block commits or is flushed (commonly called
flash clearing). This clearing scheme does not require the-co
ters often needed for Bloom filters and thus reduces the drea o
the filter significantly. As shown in Table 5, nearly 70-80%ttoé
memory instructions (both loads and stores) can be predéram
performing associative searches in the TRIPS processosimg u
Bloom filtering.

Benchmarks Average LSQ Activity Factor
VC]| SKID NACK
40 48| 40 48| 40 48
SPEC 21 21| .27 30| .30 .31
EEMBC 26 27| .38 .39| .38 .39

Table 5: Fraction of loads performing associative searches

Using Bloom filters, however, incurs additional some addil
power for reading and updating the filters for every memory in
struction. Using the 130nm ASIC synthesis methodology rilesd
in the Alpha evaluation section, the capacitance of the niBre
TRIPS LSQ was computed to be 322pF. The capacitance of the

Three mechanisms are necessary to achieve high power effi-Bloom filter was 64pF. With the activity reduction of 80% the e

ciency in large-window processor LSQs: address partitigriate-
binding and associative search filtering. First, partitigrthe LSQ
by addresses naturally divides the number of entries agiat each
memory partition. Second, late-binding reduces the nuraben-
tries in each partition by reducing occupancy. Finally, @tofil-

fective capacitance of the combination is 120pF which rough
the capacitance of a 12-entry, 40-bit unfiltered CAM.

In this evaluation, we have not included the additional powe
expended by the network routers as it is unclear if they well b
signficant. Wang et al. [29] show a 20% increase in power for a

SPEC arith mean (12) 331

1.39 3.0
o o

? A 279
% 1.2 %

E E 244
£] £

11 Z 1]
s s

o ER S 1.84
'g 1.0 %

0.9
1.2
0.8 0.9

32

= FLUSH

32

40

56 48

64
64

40 48 56
Number of LSQ Entries

MGRID APPLU

Top 3 Worst SPEC Benchmarks

SWIM

Figure 8: Left: Average LSQ Performance for the SPEC benchmark suite Right: Three worst benchmarks.

four fold increase for implementing virtual channels. Thwvpr
increase primarily comes from having four times as manyévaff
for implementing the Virtual channels. In our scheme we db no
increase the number of buffers. We simply divide the numlfer o
buffers equally between the virtual channels.

6.6 Area

Among the three overflow handling mechanisms, the NACK
mechanism is the most area efficient if the issue window igdes
to hold instructions until explicit deallocation. On the [FS pro-
cessor, the NACK scheme requires cumulative storage of bii@4
to identify the NACK'’ed instructions (one bit for every ingttion
in the instruction window) and changes to the issue logiceto s
lect and re-issue the NACK’ed instructions. The VC mechanis
is next best in terms of area efficiency. The area overheatiseof
VCs are due to the additional storage required for pipeliiaripy
registers in the execution units to avoid deadlocks and tnebé
national logic in routers to deal with promotion. The VC stige
does not require any additional router buffers since thewdpéve
channels divide the number of buffers in the baseline. The sk
buffer scheme require the largest amount of storage, ajthowst
of the structure can be implemented as RAMs. A 24-entry skid
buffer supplementing a 40-entry LSQ, increases the sizeadii e
LSQ partition by 4%. Overall, using our best scheme to suppor
the VC mechanism — a 1024 instruction window, as shown in Ta-
ble 1, the area after optimizations is 80% smaller compavate
fully replicated LSQs at each LSQ partition.

6.7 Complexity

The VC scheme requires the most changes to the baseline as
requires virtualization of not only the network routers bigo the
execution units that feed the router. For instance, wheride
priority channel in the network is backed up, the issue lagicst
supply the network with a high priority instruction even tigh it
may be in the middle of processing a low priority instructidine

LSQ partition. Despite the changes required for the schaires
scribed here, the mechanisms are feasible and operatiqusee
have been implemented in other parts of the processor.

7. CONCLUSIONS

Detecting load/store data dependences has been chatiengin
since designers began to implement computer systems thattex
more than one instruction per cycle. As processor desigrers
scaled ILP and instruction window size, hardware to enfproper
memory ordering has become large and power hungry. However,
today’s load/store queue (LSQ) designs make inefficientafse
their storage by allocating LSQ entries earlier than neogss

By performing late binding, allocating LSQ entries only @t i
struction issue, designers can reduce the occupancy anitares
size of the load/store queues. This reduction requires ttiet
queues be unordered. While the unordered property recgires
extra overhead, such as saving the CAM index in the ROB or
searching for the load or store age at commit, the designtigno
trinsically more complex, and can achieve performancevedgnt
to an ordered LSQ, but with less area and power.

Many of the recent papers that propose to eliminate the CAMs
do so at the expense of increased state, resulting in iredteagea
requirements. These designs certainly have some advanizgs
one or more of them may well be the solution that some implemen
tations eventually use. However, we have shown in this peyaer
unordered, late-binding LSQs can be quite competitive fpes-
scalar designs, requiring only a small number of CAM enttges
be searched on average, while consuming less area than e CA

ifree approaches. It is unclear which approach suffers frarsev
complexity, and will likely remain so until each approactinple-
mented in a microarchitecture.

However, the most promising aspect of the ULB-LSQ approach
is its partitionability, which was the original impetus fthis line
of research. Address-interleaved LSQ banks should be btth |

NACK scheme comes second or third depending on the baselinebound and unordered; the ULB-LSQ design naturally perrhigs t

architecture — if the baseline allows instructions to belhelthe
issue queues until commit, implementing NACK is as simple as
setting a bit in a return packet and routing it back to the ceum-
stead of the destination. However, if instructions are irdiaely
deallocated upon execution from the windows, NACK may be con
siderable more complex. The skid buffer solution is propabé
simplest of all the solutions: it requires some form of ptiologic
for selecting the oldest instructions, mechanisms for liagdn-
validations in the skid buffer and arbitration for the LSQvibeen
instructions in the skid buffer and new instructions cormimtg the

LSQ to be divided into banks, provided that a mechanism &xist
handle the resultant increase in bank overflows. We obsehatd
for distributed microarchitectures that use routed mietatorks to
communicate control, instructions, and data, that we cenitbed
classic network flow-control solutions into the processaronet-
works to handle these overflows. We evaluate three such owerfl
control handling schemes in the context of the TRIPS mictuar
tecture. The best of these schemes (virtual micronet clgnne
enables a scalable, distributed, load/store queue, meguiour
banks of only 48 entries each to support a 1024-instructiodw.

When conjoined with a Bloom filter, this design greatly reghithe
number of CAM accesses, resulting in an average of only eigtit
twelve CAM accesses per load or store, respectively.

Looking forward, this design supports a microarchitectume
der design that can run a single thread across a dynamiqegbyj-s
fied collection of individual, light-weight processing est When
combined, the LSQ banks in the individual cores become gart o
a single logical interleaved memory system, permittingsystem
to choose between ILP and TLP dynamically using a colleabion
composable, light-weight cores on a CMP.

8. ACKNOWLEDGMENTS

We thank M.S. Govindan for his help with the power mea-
surements and K. Coons, S. Sharif and R. Nagarajan for help in
preparing this document. This research is supported by the D
fense Advanced Research Projects Agency under contraétlb33
01-C-4106 and by NSF CISE Research Infrastructure grant EIA
0303609.

9. REFERENCES

[1] E. F. Torres and P. Ibanez and V. Vinals and J. M. Llaberia.
Store Buffer Design in First-Level Multibanked Data
Caches. IHSCA 2005.

[2] F. Castro, L. Pinuel, D. Chaver, M. Prieto, M. Huang, and F
Tirado . DMDC: Delayed Memory Dependence Checking
through Age-Based Filtering. IMICRO, 2006.

[3] Sam S. Stone and Kevin M. Woley and Matthew I. Frank.

Address-indexed memory disambiguation and store-to-load

forwarding. INMICRQO, 2005.

Samantika Subramaniam and Gabriel H. Loh.

Fire-and-Forget: Load/Store Scheduling with No Store

Queue at all. IMICRO, 2006.

H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint

processing and recovery: Towards scalable large insbructi

window processors. IRroceedings of the 36th Annual

IEEE/ACM International Symposium on Microarchitecture

pages 423-434, December 2003.

Alok Garg and M. Wasiur Rashid and Michael Huang.

Slackened Memory Dependence Enforcement: Combining

Oppurtunistic Forwarding with Decoupled Verfication. In

ISCA 2006.

Alper Buyuktosunoglu and David H. Albonesi and Pradip

Bose and Peter W. Cook and Stanley E. Schuster. Tradeoffs

in Power-Efficient Issue Queue Design.I8PLED, 2002.

[8] Amir Roth. High Bandwidth Load Store Unit for Single- and

Multi-Threaded Processors. Technical Report

MS-CIS-04-09, Dept. of Computer and Information

Sciences, University of Pennsylvania, 2004.

R. BalasubramoniarDynamic Management of

Microarchitecture Resources in Future Microprocessors

PhD thesis, University of Rochester, 2003.

L. Baugh and C. Zilles. Decomposing the load-store gueu

by function for power reduction and scalability. Prac?

Conference, IBM Research004.

E. Borch, E. Tune, S. Manne, and J. Emer. Loose loops sink

chips. InProceedings of the 8th International Symposium on

High-Performance Computer Architectumages 299-310,

2002 February.

D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K.

John, C. Lin, C. R. Moore, J. Burrill, R. G. McDonald,

W. Yoder, and the TRIPS Team. Scaling to the End of Silicon

[4]

[5]

(6]

[7]

[9]

[10]

[11]

[12]

with EDGE architecturesEEE Computer37(7):44-55,
July 2004.
[13] H. W. Cain and M. H. Lipasti. Memory ordering: A
value-based approach. IBCA 2004.
[14] A. Cristal, O. Santana, F. Cazorla, M. Galluzzi, T. Reenj
M. Pericas, and M.Valero. Kilo-instruction processors:
Overcoming the memory wallEEE Micro, 25(3):48-57,
May/June 2005.
R. Desikan, D. Burger, and S. W. Keckler. Measuring
experimental error in microprocessor simulation. In
Proceedings of the 28th Annual International Symposium on
Computer Architecturegpages 266—277, July 2001.
Elham Safi and Andreas Moshovos and Andreas Veneris.
L-CBF: A Low Power, Fast Counting Bloom Filter
Implementation. INSPLED 2006.
M. Franklin and G. S.Sohi. ARB: a hardware mechanism for
dynamic reordering of memory referenctsEE
Transactions on Computerd5(5):552-571, 1996.
A. Jaleel and B. Jacob. Using Virtual Load/Store Queues
(VLSQs) to Reduce the Negative Effects of Reordered
Memory Instructions. IHPCA, 2005.
T. Monreal, A. Gonzalez, M. Valero, J. Gonzlez, and
V. Vinals. Delaying Physical Register Allocation Through
Virtual-Physical Registers. IMICRO, 1999.
[20] A. Roth. Store vulnerability window (svw): Re-exeaurti
filtering for enhanced load optimization. ISCA 2005.
K. Sankaralingam, R. Nagarajan, R. McDonald, R. Desika
S. Drolia, M. Govindan, P. Gratz, D. Gulati, H. Hanson,
C. Kim, H. Liu, N. Ranganathan, S. Sethumadhan, S. Sharif,
P. Shivakumar, S. W. Keckler, and D. Burger. Distributed
microarchitectural protocols in the TRIPS prototype
processor. IMICRO, December 2006.
S. Sethumadhavan, R. Desikan, D. Burger, C. R. Mooré, an
S. W. Keckler. Scalable memory disambiguation for high ilp
processors. I86th International Symposium on
Microarchitecture pages 399-410, December 2003.
Simha Sethumadhavan and Robert McDonald and
Rajagopalan Desikan and Doug Burger and Stephen W.
Keckler. Design and Implementation of the TRIPS Primary
Memory System. INCCD, 2006.
S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and
M. Upton. Continual flow pipelines. IASPLOSpages
107-119, October 2004.
[25] Stefan Bieschewski and Joan-Manuel Parcerisa andidmto
Gonzalez. Memory Bank Predictors.I@CD, 2005.
[26] J. M. Tendler, J. S. Dodson, J. J. S. Fields, H. Le, and
B. Sinharoy. POWER4 system microarchitectuBM
Journal of Research and Developme2i(1):5-26, January
2001.
Tingting Sha and Milo M. K. Martin and Amir Roth.
Scalable store-load forwarding via store queue index
prediction. INMICRO, 2005.
Tingting Sha, Milo M.K. Martin and Amir Roth. NoSQ:
Store-Load Communication without a Store Queue. In
MICROQ, 2006.
H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: a
power-performance simulator for interconnection network
In MICRO, pages 294-305, 2002 December.
[30] V. V. Zyuban.Inherently Lower-Power High-Performance
Superscalar Architecture®hD thesis, University of Notre
Dame, March 2000.

[15]

[16]

[17]

[18]

[19]

[21]

[22]

(23]

[24]

[27]

(28]

[29]

