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THE COMMONLY USED LRU REPLACEMENT POLICY CAUSES THRASHING FOR MEMORY-

INTENSIVE WORKLOADS. A SIMPLE MECHANISM THAT DYNAMICALLY CHANGES THE

INSERTION POLICY USED BY LRU REPLACEMENT REDUCES CACHE MISSES BY 21 PERCENT

AND REQUIRES A TOTAL STORAGE OVERHEAD OF LESS THAN 2 BYTES.

......One of the major limiters of
computer system performance has been
the access to main memory, which is
typically two orders of magnitude slower
than the processor. To bridge this gap,
modern processors already devote more
than half the on-chip transistors to the
last-level cache (in our studies, the L2
cache). These designs typically use the
least-recently-used (LRU) replacement pol-
icy, or its approximations, for managing all
levels of the cache hierarchy. Because
smaller levels of the cache hierarchy filter
out temporal locality, the access stream of
the last-level cache has very little temporal
locality. As a result, the LRU policy causes a
significant percentage of cache lines in the
last-level cache to remain unused after cache
insertion. We refer to cache lines that are
not reused between insertion and eviction as
zero-reuse lines. Figure 1 shows that for the
baseline 1-Mbyte, 16-way, LRU-managed
L2 cache, more than half the lines installed
in the cache are never reused before being
evicted. Thus, the LRU policy results in
inefficient use of L2 cache space because
most of the inserted lines occupy cache
space without contributing to cache hits.

Zero-reuse lines occur because of two
reasons: First, the line has no temporal
locality, which means that the line is
never re-referenced. It is not beneficial to
insert such lines in the cache. Second, the
line is re-referenced at a distance greater
than the cache size, so the LRU policy
evicts the line before it is reused. For
example, if a workload frequently reuses a
working set of 2 Mbytes, and the available
cache size is 1 Mbyte, the LRU policy will
evict all the inserted lines before they are
reused, causing zero reuse for almost all
the lines. Figure 2 shows misses per
thousand instructions (MPKI) for two
memory-intensive benchmarks (art and
mcf) when the cache size is varied under
the LRU policy. Art frequently uses a 1.3-
Mbyte data structure, and mcf frequently
uses a 3.5-Mbyte data structure. For the
baseline 1-Mbyte cache, the LRU replace-
ment policy causes thrashing for these
workloads and the cache lines are evicted
before being reused. Zero-reuse lines
account for more than 90 percent of the
installed cache lines for these two work-
loads, indicating inefficient use of cache
space.
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For such memory-intensive workloads,
cache performance can be improved
significantly if the cache retains some
fraction of the working set, so that at
least that fraction can provide cache hits.
Decades of research in cache replacement
have produced alternatives to LRU, but
most previous proposals either required
too much hardware, incurred significant
cache structure changes, or performed
poorly for LRU-friendly workloads (see
the ‘‘Related Work’’ sidebar for details).
To improve the replacement policy with-
out these drawbacks, we first separate the

replacement policy into two parts: victim
selection and insertion. The victim selection
policy decides which line to evict to
provide storage for an incoming line.
The insertion policy decides where in the
replacement list the incoming line is
placed—traditional LRU policy always
inserts the incoming line in the most
recently used (MRU) position. In this
article, we propose simple changes to the
insertion policy that can significantly
improve cache performance for memory-
intensive workloads while requiring negli-
gible hardware overhead.

Figure 2. Misses per thousand instructions versus cache size for art (a) and mcf (b).

Figure 1. Zero-reuse lines for a 1-Mbyte, 16-way L2 cache.
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Static insertion policies
Our first proposal for improving LRU

replacement is the LRU insertion policy
(LIP), which places all incoming lines in
the LRU position. The policy promotes
lines from the LRU position to the MRU
position only if they are used while in the
LRU position. LIP prevents thrashing for
workloads whose working set is greater than
the cache size and obtains a near-optimal hit
rate for workloads with a cyclic access
pattern.

LIP can retain lines in the non-LRU
position of the recency stack even if they
cease to be re-referenced. Because LIP does
not have an aging mechanism, it might not
respond to changes in the given applica-
tion’s working set. Thus, we also propose
the bimodal insertion policy (BIP), which is
similar to LIP, except that it infrequently
(with a low probability, E) places some
incoming lines in the MRU position. We
implement BIP with one global 5-bit
counter (BIPCTR) that is incremented on
each cache miss. When BIPCTR is zero, the
incoming line is inserted in the MRU
position; otherwise it is inserted in the
LRU position. BIP retains the thrashing
protection of LIP but also adapts to changes
in the working set, as we will show next.

Analysis with cyclic reference model
To analyze workloads that cause thrash-

ing with the LRU policy, we use a
theoretical model of cyclic references.1 Let
ai denote the address of a cache line. Let (a1

… aT) denote a sequence of references a1,
a2, …, aT. A sequence that repeats N times
is represented as (a1 … aT)N.

Let there be an access pattern in which
(a1 … aT)N is followed by (b1 … bT)N. We
analyze this pattern’s behavior for a fully
associative cache that contains space for
storing K(K , T) lines. We assume that
parameter E in BIP is small and that both
sequences in the access pattern repeat many
times (N & T and N & K/E). Table 1
compares the hit rates of LRU, OPT,2 LIP,
and BIP for this access pattern. OPT is an
oracle-based replacement scheme that pro-
vides an upper-bound for the hit-rate by
replacing the line that is accessed furthest in
the future.

.....................................................................................................................................................................

Related Work

Cache replacement studies have received much attention from both industry and academia.

For workloads that cause thrashing with the LRU policy, both random-based and frequency-

based replacement schemes have fewer misses than LRU. However, these schemes

significantly increase misses for LRU-friendly workloads. Recent studies have investigated

hybrid replacement schemes that dynamically select from two or more competing replacement

policies. Examples of hybrid replacement schemes include sampling-based adaptive

replacement (SBAR)1 and adaptive cache (AC).2 The problem with hybrid replacement is that

it requires tracking separate replacement information for each of the competing policies. For

example, if the two policies are LRU and LFU (least frequently used), each tag entry in the

baseline cache must be appended with frequency counters ($5 bits each), which must be

updated on each access. Also, the hybrid schemes require extra structures for dynamic

selection (2 Kbytes for SBAR and 34 Kbytes for AC) which consumes hardware and power.

Table A compares SBAR-based hybrid replacement schemes with the dynamic insertion

policy (DIP) proposed in this article and the best-offline replacement (Belady’s OPT)3. Each

hybrid scheme has two component policies, LRU and one of the following replacement policies:

MRU-repl replaces the MRU line; NMRU-mid 4 replaces a line randomly from the less recent

half of the recency stack; Rand is random replacement; RLRU-skew (RMRU-skew) 4 is a skewed

random policy that uses a linearly increasing (decreasing) replacement probability for recency

positions ranging from MRU to LRU; and LFU is the least-frequently-used policy implemented

with 5-bit saturating counters.2 DIP outperforms the best-performing hybrid replacement while

obviating the design changes, hardware and power overheads, and complexity of hybrid

replacement. In fact, DIP bridges two-thirds of the gap between LRU and OPT for memory-

intensive applications while requiring less than 2 bytes of extra storage.
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Table A. Replacement policy comparison: Hybrids vs. DIP.

Replacement policy

MPKI reduction

over LRU (%)

Hardware overhead

(bytes)

Hybrids

LRU + MRU-repl 8.8 2 K

LRU + NMRU-mid 5.1 2 K

LRU + Rand 8.9 2 K

LRU + RLRU-skew 6.6 2 K

LRU + RMRU-skew 11.3 2 K

LRU + LFU 14.7 12 K

DIP 21.3 2

Belady’s OPT 32.2 N/A
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Because the cache size is less than T, LRU
causes thrashing and results in zero hits for
both sequences. The optimal policy (OPT)
retains (K 2 1) lines out of the T lines of
the cyclic reference to provide a hit rate of
(K 2 1)/(T 2 1) for both sequences.1 LIP’s
hit rate is similar to OPT’s for the first
sequence. However, LIP never allows any
element of the second sequence to enter the
cache’s non-LRU position, so it achieves
zero hits for the second sequence.

In each iteration, BIP inserts approxi-
mately E(T 2 K) lines in the MRU
position, which means a hit rate of (K 2

1 2 E[T 2 K])/T. Because the value of E is
small, BIP obtains a hit rate of approxi-
mately (K 2 1)/T, which is similar to LIP’s
hit rate for the first sequence. However, BIP
probabilistically allows the lines of any
sequence to enter the MRU position.

Therefore, when the sequence changes from
the first to the second, all the lines in the
cache belong to the second sequence after
K/E misses. For large N, the transition time
from the first sequence to the second
sequence is small, and the hit rate of BIP
is approximately equal to (K 2 1)/T. Thus,
for small values of E, BIP can respond to
changes in the working set and retain LIP’s
thrashing protection.

Results
We evaluate the proposed insertion

policies on a 1-Mbyte, 16-way L2 cache.
The L1 caches are 16-Kbyte, 2-way. All
caches in the baseline use LRU replacement
and have a 64-byte line size. Figure 3 shows
the reduction in L2 MPKI achieved by the
two insertion policies, LIP and BIP, over
the baseline LRU replacement policy. For
BIP, we show results when every 32nd miss
is inserted in the MRU position (E 5 1/32).
(We present sensitivity results for BIP
elsewhere.3)

The thrashing protection of LIP and BIP
reduces MPKI by 10 percent or more for 9
of the 16 benchmarks. For benchmarks
equake, parser, bzip2, and swim, however,
both LIP and BIP increase the MPKI
considerably. This occurs because these
workloads have an LRU-friendly access

Table 1. Hit rates for LRU, OPT, LIP, and BIP.

Policy Hit rate for (a1 … aT)N Hit rate for (b1 … bT)N

LRU 0 0

OPT (K 2 1)/(T 2 1) (K 2 1)/(T 2 1)

LIP (K 2 1)/T 0

BIP <(K 2 1)/T <(K 2 1)/T

Figure 3. Comparison of static insertion policies.
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pattern. Additionally, the MPKI increase
can occur when the knee of the MPKI curve
is less than the cache size and there is no
significant benefit from increasing the cache
size. For example, swim has two working
sets: one 512 Kbytes and the other more
than 64 Mbytes. The LRU policy is very
close to OPT in such cases, so changing the
insertion policy increases the MPKI consid-
erably. For the insertion policy to be useful
for a wide variety of workloads, we need a
mechanism that can dynamically select
between the traditional LRU policy and
BIP, depending on which incurs fewer
misses.

Dynamic insertion policy
We propose the dynamic insertion policy

(DIP), which dynamically estimates the
number of misses incurred by the two
competing insertion policies and selects the
one that incurs the fewest misses. A
straightforward method of implementing
DIP is to implement both LRU and BIP in
two extra tag directories (data lines are not
necessary for estimating the misses incurred
by an insertion policy) and keep track of the
number of misses incurred by the two
policies. The cache’s main tag directory can
then use the policy that incurs the fewest
misses. However, this implementation incurs
prohibitive area and power overheads. For the
proposed mechanism to be useful, it must
incur very low overhead and minimal changes
to the existing cache design. Thus, we next
describe a cost-effective runtime mechanism
to implement DIP.

Implementing DIP via set dueling
Since L2 caches typically have a large

number (thousands) of sets, the extra tag
directories can be avoided by sampling a few
sets of the cache to estimate the performance
of competing policies. We propose a mecha-
nism called set dueling, which predicts the best
policy by monitoring the two policies on a few
dedicated sets. Figure 4 shows DIP imple-
mented using set dueling for a cache that has
16 sets. Sets 0, 5, 10, and 15 always use the
LRU policy, whereas, sets 3, 6, 9, and 12
always use BIP. A saturating counter (PSEL)
tracks which of the two policies incurs fewer

misses and selects that policy for the remaining
follower sets. (In another publication, we
derive analytical bounds and show that as
few as 32 to 64 dedicated sets are sufficient for
set dueling to select the best policy.3)

Results
Figure 5 shows the reduction in MPKI

achieved by BIP, DIP-Global (two extra tag
directories, 64 Kbytes each), and DIP-SD
(set dueling with 32 dedicated sets). The
arithmetic mean bar presents the reduction
in arithmetic mean MPKI over all 16
benchmarks. DIP retains the MPKI reduc-
tion of BIP but eliminates the significant
MPKI degradation of BIP on benchmarks
equake, parser, mgrid, and swim. DIP-SD
obtains an MPKI reduction similar to DIP-
Global while avoiding the huge hardware
overhead. On average, DIP reduces MPKI
by 21 percent compared to LRU. DIP
improves the instructions per cycle (IPC) of
a 4-wide issue machine with 270-cycle
memory latency by 9.3 percent.

Adaptation of DIP to runtime behavior
DIP can adapt to different applications as

well as different phases of the same
application. DIP uses the PSEL counter to
select component policies. For a 10-bit

Figure 4. Implementing DIP using set dueling.
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PSEL counter, a value of 512 or more
indicates that DIP uses BIP; otherwise DIP
uses LRU. Figure 6 shows the value of the 10-
bit PSEL counter over the course of execution
for the benchmarks mcf, health, swim, and
ammp. We sample the PSEL counter’s value
once every million instructions.

For mcf, the DIP mechanism almost
always uses BIP. For the health benchmark,
the working set during the initial part of
program execution fits in the baseline cache,
and either policy works well.3 However, as
the data set increases during program
execution, it exceeds the baseline cache’s size,
and LRU causes thrashing. Because BIP
would have fewer misses than LRU, the
PSEL value nears positive saturation, and
DIP selects BIP. For the LRU-friendly swim
benchmark, the PSEL value is almost always
near negative saturation, so DIP selects LRU.
Ammp has two phases of execution: In the
first phase, LRU is better, and in the second.
BIP is better. Because DIP selects the policy
best suited to each phase, it has better MPKI
than either of the component policies alone.

Implementation overhead
The proposed insertion policies (LIP,

BIP, and DIP) require negligible hardware

overhead and design changes. LIP inserts all
incoming lines in the LRU position, which
can easily be implemented by not perform-
ing the update to the MRU position that
occurs on cache insertion. BIP is similar to
LIP, except that it infrequently inserts an
incoming line in the MRU position. To
control the rate of MRU insertion in BIP,
the 5-bit counter BIPCTR is incremented
on every cache miss. BIP inserts the
incoming line in the MRU position only
if the BIPCTR is zero. Thus, BIP incurs a
storage overhead of 5 bits. DIP requires
storage for the 10-bit saturating counter
PSEL.

Figure 7 shows the design changes in-
curred in implementing DIP. The imple-
mentation requires a total storage overhead
of 15 bits (5-bit BIPCTR + 10-bit PSEL)
and negligible logic overhead. A particularly
attractive aspect of DIP is that it does not
require extra bits in the tag-store entry, thus
avoiding changes to the existing structure of
the cache. The absence of extra structures
also means that DIP does not incur power
and complexity overheads. Because DIP
adds no logic to the cache access path, the
cache’s access time remains unaffected.
Furthermore, because the proposed inser-

Figure 5. Comparison of static and dynamic insertion policies.
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tion policies do not rely on true LRU, they
are amenable to the LRU approximations
widely used in current on-chip caches.

S imple changes to the insertion policy
used by LRU replacement can signifi-

cantly improve cache performance of mem-
ory-intensive workloads. The LRU inser-
tion policy (LIP) protects the cache against
thrashing and yields close to optimal hit
rates for applications with a cyclic reference
pattern. The bimodal insertion policy (BIP)
enhances LIP by allowing for aging and
adapting to changes in an application’s
working set. Finally, the dynamic insertion
policy (DIP) dynamically chooses between
BIP and traditional LRU replacement
depending on which policy incurs fewest
misses for the given workload. We also

Figure 6. PSEL value during benchmark execution.

Figure 7. Hardware changes for implementing DIP.
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proposed set dueling as a means to
implement cost-effective dynamic selection
between competing policies. This article
evaluated the insertion policies for private
caches. However, the proposed insertion
policies can easily be extended to shared
caches. Set dueling can be used as a basic
building block for several other cache
optimizations including dynamically tuned
prefetchers and adaptive cache compres-
sion. MICRO
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