
A-Ports: An Efficient Abstraction for Cycle-Accurate
Performance Models on FPGAs

Michael Pellauer† Muralidaran Vijayaraghavan† Michael Adler‡ Arvind† Joel Emer†‡

†Massachusetts Institute of Technology
Computer Science and A.I. Laboratory

Computation Structures Group
{pellauer, vmurali, emer, arvind}@csail.mit.edu

‡Intel Corporation
VSSAD Group

{michael.adler, joel.emer}@intel.com

ABSTRACT
Recently there has been interest in using FPGAs as a platform for
cycle-accurate performance models. We discuss how the proper-
ties of FPGAs make them a good platform to achieve a perfor-
mance improvement over software models. Some metrics are
developed to gain insight into the strengths and weaknesses of dif-
ferent simulation methodologies. This paper introduces A-Ports, a
distributed, efficient simulation scheme for creating cycle-accu-
rate performance models on FPGAs. Finally, we quantitatively
demonstrate an average performance improvement of 19% using
A-Ports over other FPGA-based simulation schemes.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Systems –
modeling techniques

General Terms
Measurement, Performance, Design

Keywords
FPGA, Performance Models, Simulation, Emulation, Prototyping

1. INTRODUCTION
Cycle-accurate performance models occupy a critical position in
the modern digital system design flow. A performance model is a
simulator which is available early in the design process and can be
used to guide high-level architectural decisions. In order to be suc-
cessful a performance model must be accurate, easy to develop
and modify, and simulate the target system rapidly.

Currently design teams write most such models in software, using
home-brewed C simulators or frameworks such as SystemC [14].
This eases model development, but the simulation speed of soft-
ware models has not been able to keep pace with increasing com-
plexity of modern circuits. Although academic models typically
claim simulation speeds in the 100s of KIPS (Thousands of
Instructions per Second) range, detailed industry models report
simulation speeds in the low KIPS range. Table 1 shows an
overview of simulation speeds of performance models around
Intel.

Parallelizing the software model can result in increased simulation
speed by exposing the moderate degree of parallelism which can
be exploited by contemporary multicore processors. While perfor-
mance-model algorithms contain massive fine-grained paral-
lelism, two factors make exploiting such a level of parallelism dif-
ficult in software. First, within one model clock cycle, the unit of
parallel activity being simulated is equivalent to a small number
of gates – always much smaller than the general purpose core the
software runs on. Second, across model clock cycles there is a
high amount of communication between these parallel regions.
This high amount of communication does not map well to typical
communication methods for multicores, such as shared memory.

Given these properties, FPGAs should be a good platform for effi-
cient execution of performance models. The key insight is that one
simulated model clock cycle does not have to correspond to one
cycle on the FPGA. For example, a model running on a 100 MHz
FPGA could take 10 FPGA cycles to simulate one model cycle
and still achieve a simulation speed of 10 MHz.

Contemporary efforts to explore FPGAs as a platform for perfor-
mance modeling include Penry et al.'s accelerators for the Liberty
simulator [16], Chiou's UT-FAST which uses the FPGA as a tim-
ing model connected to a software functional simulator [7, 8], and
the HAsim project [9, 15] which aims to create a variant of the
Intel Asim simulation environment [10] on an FPGA. The stated
goals of the RAMP platform [1, 19] also include creating accurate
performance models.

In this paper we analyze the efficiency of techniques for creating a
cycle-accurate performance model on an FPGA. We introduce
novel metrics which allow the simulator architect to reason about
space-time tradeoffs, and use these metrics to demonstrate why
existing simulation techniques such as dynamic barrier-synchro-
nization are unsuitable for FPGAs. We present A-Ports, an adap-
tion of techniques from the Asim simulator for performing dis-
tributed cycle-accurate simulation. We demonstrate that A-Ports
maintains the ease-of-use of existing abstractions, while increas-
ing efficiency. We measure a quantitative performance improve-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
FPGA’08, February 24–26, 2008, Monterey, California, USA.
Copyright 2008 ACM 978-1-59593-934-0/08/0002...$5.00.

Simulator Detail Simulator speed
(order of magnitude)

Low-Detail Model 100 KHz

Medium-Detail Model 10 KHz

High-Detail Model 1 KHz

Table 1: Simulation speeds of industrial software performance
models of processors. Increasing levels of detail use more and

more realistic core pipeline models. Only results generated
from higher-detail models are considered accurate enough to

guide architectural design decisions.

ment of 19% using A-Ports in an out-of-order processor model.
We show that the performance benefit of A-Ports comes from the
decoupled nature of the simulation, whereby different modules on
the FPGA can be simultaneously simulating distinct points in
model time. Finally, we present an algorithm whereby the decou-
pled A-Ports simulation can be resynchronized to the same model
cycle for debugging purposes.

In this paper we limit the discussion to performance models of
synchronous digital systems. Asynchronous or analog systems are
not considered. Although the work was inspired by modeling pro-
cessors, none of the techniques presented are specific to micropro-
cessors. Extending the A-Ports technique to simulate multiple
clock domains or globally-asynchronous locally-synchronous
(GALS) models is left to future work.

2. PERFORMANCE MODELS ON FPGAS
2.1 Comparison to Prototypes and Emulators
In this section we distinguish performance models on FPGAs
from more familiar uses such as prototypes and functional emula-
tors. Consider the example of a circuit design team that wishes to
implement an ASIC which contains a 4-ported register file with
two read ports and two write ports. There are many ways FPGAs
can help with this process. Figure 1 shows a taxonomy which
summarizes three different possibilities: prototypes, functional
emulators, and performance models.

Prototypes are generally created from the final or near-final RTL
of the design for verification purposes. They make use of struc-
tures which will appear in the final ASIC, whether or not these
structures result in efficient FPGA configuration (Figure 1E)1. The

1 We acknowledge that prototyping techniques such as partitioning could
be applied to an inefficient configuration. Such techniques admittedly
gray the lines between pure prototypes and performance models. Never-
theless, we believe that “prototyping” is a useful term to refer to direct
configuration of an FPGA into a target circuit and use it to mean such.

advantage of prototypes is complete accuracy: the waveform out-
put of the FPGA is exactly equivalent to the output of the final
design (though the clock periods themselves may differ). The dis-
advantage of prototypes is that, due to the high-level of detail,
they are available only very late in the design process, after most
major architectural decisions have been made.

In contrast, a functional emulator is a system on an FPGA which
generally does not match the waveform of the target machine,
except in very broad terms. Functional emulators are primarily
used to give software developers fast platforms to use in code
development. As a consequence, functional emulators require less
effort to create and can be made available earlier in the design
process. They can also make use of FPGA-optimized structures
such as Xilinx BlockRAM to ensure good performance. However,
they bear little or no resemblance to the final ASIC, and thus can-
not be used to explore microarchitectural design decisions.

A performance model on an FPGA occupies something of a mid-
dle ground: unlike a functional emulator, it gives us the ability to
measure and reason about some aspects of the target system
design. Yet it must be vastly less time-consuming to create and
verify than an RTL prototype. Figure 1D represents such a com-
promise: the structure is behaviorally accurate and results in an
efficient FPGA configuration. Since this circuit takes multiple
FPGA cycles, the model-cycle counter curCC keeps track of the
simulated model clock cycle and is incremented when simulation
of that cycle is complete – in this case every 4th FPGA cycle. The
system architect can observe and change the number of clock
cycles of operations in the target circuit without having to change
the functional definition. As with software performance models,
this model gives no insight into the cycle period nor circuit area of
the final ASIC, nor can the RTL which is used to configure the
FPGA into a performance model be of use to the design team
which is seeking to implement the target circuit. However we do
not consider this to be a major disadvantage as the source code for
performance models written in C or SystemC is similarly useless.

Figure 1: Taxonomy of FPGA uses in the digital system design flow, and their relative costs.

2R/2W
Register

File

rd_addr1

rd_val1

rd_val2

rd_addr2

wr_addr1
wr_val1

wr_addr2
wr_val2

FPGA
Registers

..
.

rd_addr1

rd_addr2

rd_val1

rd_val2wr_val2

wr_val1

wr_addr2

wr_addr1

1R/1W
Block
RAM

rd_addr

rd_val

wr_addr
wr_val

1R/1W
Block
RAM

rd_addr1

rd_val1 +1

rd_val2

rd_addr2

wr_addr1
wr_val1

wr_addr2
wr_val2

curCC

1A) The target circuit contains a register file
with 2 read ports, 2 write ports. External
logic guarantees that two writes to the same
address are never asserted on the same clock
cycle. Read values appear on the same clock
cycle as an address is asserted.

1C) A functional emulator does not have
to maintain the same timing properties as
the target circuit. Thus it can be imple-
mented using Xilinx Block RAM, even
though this RAM only has 2 total ports,
and read values appear on the next
FPGA cycle after an address is asserted.

1D) A performance model may use the same structures
as the functional emulator, with the additional
requirement that it accurately track model time. In this
case the model cycle counter is not incremented until
the two read requests and two write requests are com-
pleted. The reads are performed before the writes to
maintain equivalence with the target circuit.

Design Slices BlockRAM Freq (MHz)

Prototype 9242 0 104

Func. Emulator 63 1 261

Perf. Model 94 1 224

1E) Synthesis results for these designs onto a Virtex
IIPro 30 FPGA using Xilinx ISE 8.2i

1B) A prototype of the circuit on an
FPGA maintains the same temporal
properties as the target circuit. On con-
temporary FPGAs this circuit must be
implemented with individual registers
and muxes, which can be expensive.

2.2 Modeled Clocks and Space-Time Tradeoffs
When faced with a target circuit which is inefficient to implement
directly on an FPGA, designers writing a performance model for
an FPGA have a range of options. They can use circuits which are
fast but expensive, or can trade space for time, shrinking area but
either worsening the clock period or using multiple FPGA cycles
to perform the simulation. Sometimes these tradeoffs can be done
in such a way that the rate-limiting step of the simulator is not
affected. Other times simulator performance may suffer. To this
end, we have developed a series of metrics for reasoning about
FPGA performance models that can aid simulator architects in
making judicious tradeoffs.

The most basic metric is the FPGA-cycles-to-Model-cycles Ratio
(FMR):

FMR=
cyclesFPGA

cyclesmodel

In the example shown in Figure 1D, the model takes 4 FPGA
cycles to simulate one model cycle, for an FMR of 4. More gener-
ally, one can examine the FMR of a single model cycle, a region,
or a run. Similar to microprocessor Cycles Per Instruction (CPI)
one can consider the FMR of a specific instruction or operation
type in order to gain insight into performance bottlenecks. In prac-
tice, FMR is particularly useful when considering the worthiness
of potential refinements to a performance model. The overall
FMR of a particular run can be derived by examining each model
cycle simulated:

FMRoverall=
∑
i=0

numModelCC

cyclesFPGAi 

numModelCC
where cyclesFPGA(i) represents the number of FPGA cycles needed
to simulate model cycle i. Of course, a refinement which improves
FMR would be useless if it degrades the overall clock period too
far. Therefore total simulator speed must take into account the fre-
quency that the FPGA configuration can achieve:

frequencysimulator=
frequencyFPGA

FMRoverall

This gives us simulator speed in Hertz. Another metric which has
proved useful for software performance models is simulated
Instructions Per Second (IPS). This formula takes into account the
CPI of the machine being modeled:

IPS simulator=
frequencysimulator

CPI model

Using IPS simulator designers can compare the speed at which
two models execute benchmark-specific work, even if they repre-
sent two vastly different target designs, such as an in-order
pipeline and an out-of-order superscalar model (Section 5). This
equation adapts naturally to our purposes. Plugging in the above
formula, we can deduce the IPS of an FPGA performance model:

IPS simulator=
frequency FPGA

CPI model×FMRoverall

2.3 Correctness Issues of Simulating Time
As a performance model is a simulation rather than an implemen-
tation, we must be concerned with both the correctness of the
design, and of the simulator. In order to function correctly, a per-
formance model must be free of temporal violations. A temporal
violation occurs when a value from model cycle n+k is acciden-
tally used to calculate a value on model cycle n. On an FPGA, a
temporal violation typically occurs because of a race condition,
whereby a producer writes a value before a consumer has properly
finished computing with the predecessor value.
Another issue is the ability of a simulator to advance the model
clock. If the simulator is unable to advance the clock, we will
refer to this as a temporal deadlock. Note that this is distinct from
a model-level deadlock, which results when the target machine
design is faulty. If the target machine enters a deadlocked state,
then the performance model should correctly model the machine
remaining in that state as model time continues to advance. The
absence of temporal deadlocks is important because it gives the
system architect confidence that a performance model which
deadlocks is due to a fault in the target machine, rather than a fault
in the simulation methodology.

3. EXISTING SIMULATION SCHEMES
Now that we have established some means to reason about FPGAs
as platforms for performance models, let us explore how some
existing simulation methodologies would adapt to FPGAs.
Many of the research efforts in distributed simulation have
focused on parallel discrete event-based simulation using algo-
rithms like those by Chandy and Misra [6] or Bryant's Time Warp
[4]. Event-based simulation is successful when large amounts of
the system are idle or can be excluded from results. In perfor-
mance models of microprocessors such as the Intel Asim simula-
tor [10] activity occurs consistently in almost every module on
every simulated cycle, and thus event-driven approaches lose their
benefit. As such we will exclude such event-based approaches
from our study, though we note that there have been projects
which explore event-driven simulation on FPGAs [11]. Instead we
will focus on techniques suitable for continuous simulation where
there is known to be one or more global clocks.

3.1 Unit-Delay Simulation
One simulation technique that can adapt well to FPGAs is unit-
delay simulation, historically used in projects such as the IBM
Yorktown Simulation Engine [17]. In this simulation all modules
are rate-limited to the slowest parallel element.
Consider the example of the 4-ported register file from Figure 1.
The performance model in Figure 1D uses 4 FPGA cycles to sim-
ulate one model cycle. If this is the slowest module in our model,
then we could simply assign all modules in our system 4 FPGA
cycles to simulate one model cycle, as shown in Figure 2.
 Unit-Delay simulation on FPGAs offers several benefits:

● Modules can be decomposed and designed separately.
● There are no combinational paths between modules.
● No temporal deadlocks are possible.
● All modules follow a consistent “read, calculate, write”

sequence which eases implementation.
● Temporal violations are easily avoided.

By these last two points we mean that all modules demonstrate
consistent behavior. First they read all inputs, then compute for
some number of FPGA cycles, and finally write all outputs. Tem-
poral violations can occur only if a producer module writes a
value prematurely before the end of the model cycle, where it
could be observed by a consumer. All such violations may be
avoided by restricting all producers to to write outputs only on the
final FPGA cycle of a model cycle.
But what do our metrics have to say about the performance of this
technique? As there are no combinational paths between modules,
frequencyFPGA will be determined by the modules themselves,
which we expect would be good. But what about FMR? If the
unit-delay simulator shifts to a new model cycle every n FPGA
cycles then:

FMRunit delay=n

Thus unit-delay simulation is appropriate for low values of n. In
practice, however, the static worst case n is often quite large,
though it applies to events that happen rarely. Moreover, unit-
delay simulation cannot be used when n cannot be bounded – for
example if the FPGA occasionally communicates with a host pro-
cessor via a PCI connection. We conclude that although unit-delay
simulation offers many benefits, it is unsuitable in a large number
of practical situations.

3.2 Dynamic Barrier Synchronization
An alternative is to have all modules coordinate dynamically on
when to move to the next model cycle. An FPGA performance
model using dynamic barrier synchronization is shown in Figure
3. A centralized controller tracks model time, and alerts all mod-
ules when it is time to advance to the next model cycle. The mod-
ules then simulate, and report back when finished. When all mod-
ules have finished, the time counter is incremented, and the mod-
ules are alerted to proceed again. Simulation results may be
observed on model cycle boundaries.
Dynamic barrier synchronization allows individual model cycles
to use differing numbers of FPGA clock cycles, and removes the
restriction that the worst case be bounded statically. The FMR of a
barrier synchronization simulator with modules M is the mean of
the FPGA cycles of the longest-running module for each simu-
lated model cycle:

Note that this FMR is, in the worst case, equal to the FMR of the
unit-delay case (when every model cycle takes exactly the same
amount of time to simulate). In practice the FMR of dynamic bar-
rier synchronization is often significantly better, as the dynamic
worst case is often better than the static worst case.
To summarize, barrier synchronization on FPGAs retains the fol-
lowing benefits from the unit-delay scheme:

● Modules still can be decomposed and designed separately.
● Modules still follow the “read, calculate, write” abstraction.

One disadvantage of barrier synchronization compared to unit-
delay is that modules may need some “shadow” state to hold sta-
ble copies of data, as they now cannot predict when the producer
module will overwrite the data in the communication register.
This means that temporal violations may be possible, by observ-
ing the data that the producer has written for cycle n+1 on model
cycle n. (Temporal violations can be easily avoided if the module
only observes the shadow state, which is initialized in the first
FPGA cycle of every simulated cycle.) Additionally, the barrier
synchronization simulation technique can experience a temporal
deadlock if an individual module never terminates a clock cycle.
In practice, we have found all of these problems are minor, or
have easy solutions. The main problem with barrier synchroniza-
tion comes when one considers frequencyFPGA. The combinational
signals to and from the controller can impose a large burden on
the FPGA place and route tools. To assess this problem we
devised an experiment, the results of which are shown in Figure 4.
As it demonstrates, moving from 25 to 100 modules resulted in a
decrease in clock frequency of 35%. We conclude that the
dynamic barrier synchronization technique offers benefits over the
unit-delay case, but also faces scaling issues which limit it to
small numbers of modules.

3.3 FPGA Simulation Technique Summary
Using the metrics we introduced in Section 2, the strengths and
weaknesses of these schemes can be summarized as:

FMR FrequencyFPGA

Unit-Delay Fixed at worst case Good

Barrier Sync Good Scales poorly

Figure 3: The performance model from Figure 1D placed in a
dynamic barrier synchronization scheme. When each module

asserts done the Controller broadcasts begin, at which
point all modules read their inputs and proceed to the next

model cycle. The cycle-accurate state of the target circuit may
only be observed when the begin signal is asserted.

Controller

curCC

2R/2W
RegFile

Perf
Model

rd_addr1

...

...

rd_addr2

wr_addr1
wr_val1

wr_addr2
wr_val2

rd_val2

rd_val1

d
o
n
e

b
e
g
i
n

Figure 2: The performance model from Figure 1D in the unit-
delay simulation scheme. The inputs and outputs are written
every 4th FPGA cycle. The cycle-accurate state of the target

circuit from Figure 1A may be recreated by observing the state
only on every 4th FPGA cycle.

2R/2W
RegFile

Perf
Model

rd_addr1

rd_addr2

wr_addr1
wr_val1

wr_addr2
wr_val2

rd_val2

rd_val1

shift every 4 FPGA cycles

FMRbarrier=
∑
i=0

numModelCC

max{cyclesFPGA i , m , m∈M }
numModelCC

We conclude that unit-delay simulation is a good choice for mod-
els with small, bounded cycle simulation times, whereas dynamic-
barrier synchronization is a good choice only for models which
decompose into a small number of individual modules.
One approach would be to attempt to improve the clock frequency
of the barrier simulation method, perhaps by pipelining the combi-
national AND-gate, or arranging the modules into a tree in order
to ease the place-and-route requirements. But even if the frequen-
cyFPGA problem could be solved completely, the barrier synchro-
nization approach still limits performance by forcing all modules
to move in lockstep. In the next section we present A-Ports, an
alternative which removes the centralized controller entirely, thus
achieving good frequencyFPGA. In Section 5 we demonstrate that
this scheme can achieve better FMR than dynamic barrier syn-
chronization, with a demonstrated average improvement of 19%
on our out-of-order processor model.

4. DISTRIBUTED PERFORMANCE
 MODELING VIA A-PORTS
4.1 Asim Ports in Software
The Intel software performance model Asim represents time via a
mechanism known as ports. A model in Asim is decomposed into
modules which have no inherent notion of time – conceptually
they may be considered to be infinitely fast. All communication
between modules must go through ports, which are essentially
FIFOs of a message type t with a user-specified latency l and
bandwidth b. The idea of using FIFOs to track simulation time is
examined in Figure 5.
A message placed into a port on model cycle n will emerge on
model cycle n+l. If a module does not write the port on model
cycle n, then a special value NoMessage will emerge on cycle n+l,
indicating no activity on this port. Ports with a latency of 0 are
allowed, but may not be arranged into “combinational loops.” An
observer may determine how many cycles a module has simulated
by counting the number of read/writes to its Ports.

In software the main benefit the Asim port abstraction is that it
eases model development. The implementors of each module do
not need to worry about explicitly representing model time at all,
but simply to read and write in a FIFO manner. No temporal vio-
lations are possible because modules are not allowed to “peek” at
the next values in the ports. Also, the simulator will never dead-
lock as long as each module takes a finite amount of time to simu-
late each model cycle (the same as barrier synchronization in Sec-
tion 3.2).

More recently, there has been interest in using Asim ports for per-
formance reasons: namely to control a highly-parallel software
simulator. Currently, in software Asim parallel simulation is con-
trolled by a centralized clock server which uses barrier synchro-
nization to coordinate between a small number of threads (equal
to the number of host cores the simulator is running on). Barr
demonstrated that this centralized controller could be removed
and simulation controlled by using the ports themselves [2]. Ulti-
mately, though, assigning a thread per module would result in
hundreds of threads which would overwhelm the available paral-
lelism of today's 8-to-16 core servers. In software this was over-
come by limiting the number of parallel threads, which also
undoes much of the benefit compared to barrier synchronization.
In contrast, an FPGA is fully able to take advantage of this level
of parallelism.

4.2 Implementing A-Ports on FPGAs
We name our technique A-Ports, to distinguish it from prior work
on Asim ports, and to emphasize the generality of the approach.
The goal of the A-Ports implementation for FPGAs is to expose
the highest degree of parallelism possible. To that end modules
make a local decision about whether or not to proceed to the next
model cycle by examining their local input and output ports.
When a module does read its inputs to begin a cycle, it may take
any number of FPGA cycles to simulate the model cycle. A mod-
ule concludes by writing all of its output ports (Figure 6). All
ports must be read/written every model cycle.
In software, Asim ports can be implemented with infinite buffer-
ing. On an FPGA buffer sizes must be limited. As shown in Figure
7, we implement an A-Port of message type t as a FIFO of t+1
bit-wide elements, the extra bit indicating NoMessage (in addition
to the standard FIFO valid bits). Because buffer sizes are statically

Figure 5: Modeling a 2-stage pipeline using Asim Ports. One
choice is to decompose the system into two separate modules
and connect it with ports of latency=1. It is often convenient

to combine them and use a latency=2 port. Thus highly
pipelined operations such as multipliers are more easily mod-

eled because the functionality is retained in a single stage.
Retiming the pipeline of the target may be evaluated by

changing the latency of the port without changing the func-
tionality of the modules.

Figure 4: To test the scaling of dynamic barrier synchroniza-
tion we created a simple module with a small amount of com-
binational logic, so that it would not affect the critical path.

This module was then replicated n times in a strict linear hier-
archy, so as not to impose any additional restrictions on the
place-and-route tools. The modules were synthesized for the

Xilinx VirtexIIPro 30 FPGA using Xilinx ISE 8.2i, and demon-
strated a 39% loss of clock speed as a result of the centralized
controller. In addition, we observed that the execution time of
the FPGA place and route tools increased 20-fold over these

same data points.

0
20
40
60
80

100
120
140

25 50 75 100

Number of Modules

Cl
oc

k
Fr

eq
ue

nc
y

(M
Hz

) f g

f g1 1 fg 2

fixed, a simulator deadlock can be introduced if insufficient buffer
space is provided. This deadlock can be avoided based on the fol-
lowing sufficient conditions:

● Each A-Port of latency l must contain at least l+1 buffering.
● Each A-Port of latency l and bandwidth b is initialized to

contain lb copies of NoMessage at simulator startup.
● Modules should be arranged in a connected graph.

To see why, consider that when the simulator starts up every mod-
ule will be able to simulate a cycle, unless they have a zero-
latency input port. The “no combinational loops” requirement
guarantees that any such modules are transitively connected to
modules which have non-zero-latency inputs, and thus are able to
simulate. Furthermore, note that by simulating a model cycle, a
module can never disable other modules from simulating model
cycles, but only enable them (though it may disable itself). There-
fore there will always be one or more modules in the simulator
which are able to proceed to the next model cycle.

4.3 Model Time in the A-Ports Scheme
Note that in the A-Ports scheme the representation of time is
implicit. The modules and A-Ports do not need to keep a local
counter which tracks the current model cycle – in fact a module
does not need to know what cycle it is currently simulating. The
removal of these counters represents a savings of FPGA register
resources in systems with a large number of modules, and con-
tributes to A-Ports' efficiency.
Not only do A-Ports not know what model cycle they are simulat-
ing, but frequently the producer and consumer modules attached

via an A-Port may be simulating different model cycles (Figure 8).
The producer may run into the future, pre-computing values until
the buffer is full. Similarly, a fast consumer may “drain” the A-
Port, allowing it to run into the future with respect to the producer.
We say that simulation via A-Ports is decoupled because a module
can “slip” ahead as long as its input data is available, and there is
sufficient buffering to place its result. Similarly a module can fall
behind if it is producing at a slower rate, or its input data is not
available.
On any given FPGA cycle we say an A-Port of latency l is bal-
anced when the FIFO contains exactly l elements. When an A-
Port contains more than l elements it is heavy, and similarly it is
light when it contains fewer than l elements. Observe:

● When an A-Port is balanced, the modules it connects are
simulating the same model cycle.

● When an A-Port is heavy, the producer module is simulating
into the future compared to the receiving module.

● When an A-Port is light, the situation is reversed.

The amount of time that adjacent modules can “slip” in time is
limited by the buffering available. The consumer module of an l-
latency A-Port can run ahead at most l model clock cycles before
draining the buffer. A producer writing into an A-Port with k extra
buffering can only proceed k cycles ahead before filling the buffer.

Figure 7: The A-Port hardware interface. The A-Port trans-
mits messages of type t with latency l, and k extra buffering
slots. An extra bit specifies Message or NoMessage. The Port
pictured has bandwidth b=1. Increasing bandwidth increases
the minimum buffer requirement, and the designer may elext

to add additional enqueue/dequeue ports in an attempt to
improve simulator throughput. A-Ports with large buffers can

be implemented using FPGA RAM resources.

Figure 6: The protocol for modules to communicate via A-
Ports. These states are only conceptual – a module may read,

simulate, and produce output in the same FPGA cycle.

Figure 8: Modules A and B are shown simulating 4 model
clock cycles a, b, c, and d. a and c require 3 FPGA cycles to
simulate, whereas b and d require only 1. With barrier syn-

chronization it takes 13 FPGA cycles to do the simulation. The
distributed technique improves this to 11, as the A-Port moves
between balanced (bl) and heavy (hv) states. Bold lines indi-

cate A-Port sends and receives.

recv_DATA

recv_EN

light

emptyfull

balanced

...

elems

heavy

send_EN

send_DATA

t + 1

l k+ element FIFO

> l

+1 -1

= l

< l

= l+ k = 0

Figure 9: The protocol for resynchronizing decoupled modules
to the same clock cycle. If all modules follow this protocol than

eventually the system will quiesce.

ready to
simulate

read
inputs

write
outputs

simulate
model
cycle

All input Ports
not empty

Every input Port
read once

Every output Port written once

Done simulating,
and all output

Ports not full

ready to
simulate

read
inputs

write
outputs

simulate
model
cycle

All input Ports not ,and

(an input Port is , or

an output port is)

empty

heavy

light
Every input Port

read once

Every output Port written once

Done simulating,
and all output

Ports not full

Selecting the appropriate buffer sizes can have a significant
impact on simulator performance, as we will show in Section 5.
However, as long as the minimum requirements to prevent dead-
lock presented above are followed, these optimizations can be per-
formed without changing the results of simulation, or inadver-
tently introducing bugs into the simulator.

4.4. Resynchronizing Decoupled Models
Off-FPGA storage mechanisms such as flash memory, PCI buses,
or Ethernet typically have throughputs much lower than on-chip
communication. Thus the process of recording the results of simu-
lation can itself become the simulator performance bottleneck, as
useful work must stall until the buffers drain.
One solution to this problem is to perform sampling. We disable
result recording and allow the simulator to run in “fast mode”
without having to worry about filling up network buffers. Result
recording begins upon a user-specified trigger, such as simulating
a specified number of model cycles or entering a critical section.
But what if the decoupled modules have slipped in time as a result
of the A-Ports? In that case the modules could be simulating dif-
ferent model cycles and the result recording may become con-
fused. As we are using an implicit notion of time with no local
counters, the modules cannot know which exact model cycle they
are simulating.
The solution to this problem is to rebalance the decoupled mod-
ules before enabling the result capture. To resynchronize the sys-
tem, modules enter a mode where they use the following protocol:

• If any output A-Ports are light, or any input A-Ports are
heavy, simulate the next model cycle (assuming all input
A-Ports are not empty).

If all modules follow this protocol (shown in Figure 9), the system
will eventually quiesce. At the point of quiescence every A-Port
will be balanced, and thus every module will be on the same
model clock cycle. To see why, consider that at any given FPGA

cycle there will be a non-empty set of modules which are furthest
ahead in model cycles. These modules will, by definition, have no
light outputs or heavy inputs, and therefore will not move for-
ward. Any incoming ports to this group must be light and any out-
going ports must be heavy. Therefore the modules which are con-
nected to these ports will attempt to simulate the next model
cycle. The only reason they would not be able to proceed would
be if they did not have all of their inputs ready. Yet somewhere in
the system there must be a non-empty set of modules which is far-
thest behind in time, and thus able to simulate the next cycle. If
the graph is connected, any module which can simulate will only
make progress towards increasing the set of modules farthest
ahead in time. Eventually this set will include every module,
every port will be balanced, and the system will not proceed.
When the simulator quiesces, it is straightforward to add a mode
where the simulator can step forward one model cycle at a time.
This stepping mode can be useful for debugging or for real-time
interaction between the user and the simulator.

5. QUANTITATIVE ASSESSMENT
In order to assess the A-Ports scheme we identified two target cir-
cuits. First, a traditional five-stage in-order microprocessor
pipeline, explained in detail in Figure 10. Second, a more realistic
out-of-order superscalar processor, as shown in Figure 11. The
designs were implemented using Bluespec SystemVerilog [3], and
were synthesized for a Xilinx Virtex IIPro platform and assessed
for simulation speed and efficiency. The results, shown in Figure
12, show that the out-of-order processor is clearly a better archi-
tecture. As a processor, it would execute benchmarks substantially
faster (assuming the circuit design team was able to achieve an
equivalent clock speed).
These results represent the insights into the target design that most
users of performance models care about. However, as simulator
architects, we are also interested in comparative simulator perfor-
mance, as shown in Figure 13. These results demonstrate that
when we consider simulator performance the situation is reversed

Figure 10: Modeling a 5-stage in-order pipeline

10A) The target is a traditional five-stage in-
order pipeline. The branch predictor is
updated after branch resolution occurs in the
ALU. Back-to-back dependent operations are
stalled by the scoreboard. As the instruction
set is not the focus of this research we chose
a subset of the MIPS ISA. To maximize the
impact of the processor pipeline itself, the
core is assumed to be paired with one-cycle
“magic” memory rather than a realistic
cache hierarchy.

10B) Our implementation of the model
focused on efficiency of FPGA configura-
tion. To this end we used BlockRAMs for
every large structure in the processor,
including the branch predictor, branch tar-
get buffer, and register file. Doing so intro-
duces additional latency, effectively expand-
ing every module into a small sequential
pipeline.

10C) The modules are connected using
both dynamic barrier synchronization
and A-Ports in order to assess A-Ports
speedup.

IMEM

Branch
Pred

Branch
Target

DMEM
Reg
File

Score
Board

pc

ALU

FET IMem

Branch
Pred

Branch
Target DMem

MEM
Write
BackScore

Board
Reg
File

DEC EXE

FET EXE MEM WBDEC1 1 1 1

1 1

inst

resteer

decinst execres result

wbinfo

FET EXE MEM WBDEC

Controller

curCC

– the five-stage simulator can simulate model clocks more than
twice as fast (14 MHz vs 6 MHz), due to the multiple instructions
which the out-of-order superscalar model executes during every
model cycle. However when we consider simulated Instructions
per Second, as defined in Section 2.2, the situation is more bal-
anced (5.1 vs 4.7 MIPS). This metric correctly compensates for
the difference in target CPI – remaining differences are due to the
overhead of simulating out-of-order execution.
Beyond comparing the modeled processors against each other, we
also compared them to barrier synchronization versions. Figure 13
shows that the 5-stage simulator using A-Ports is an average of
23% faster versus barrier synchronization. For the out-of-order
model, the situation is more complicated. Using the minimum
buffer sizes results in a 4% improvement versus barrier synchro-
nization. However, as we noted in Section 4.3, the A-Ports buffer
size limits the amount adjacent modules can slip in model time.
Figure 13 demonstrates that increasing the amount of buffering
results in a significant performance improvement for the out-of-
order model, allowing it to achieve a simulation rate 19% faster
than barrier synchronization. In contrast, increasing the buffer
sizes does not result in any further improvement for the 5-stage
pipeline. This is because the modules in the 5-stage pipeline are
more evenly balanced, and thus do not slip with respect to each
other as frequently for our benchmarks.

6. RELATED WORK
Early efforts at creating performance models on FPGAs shared the
goal of creating a model early in the design process [18, 20], but
these efforts used the FPGA clock itself as the simulation clock, at
the cost of accuracy. Thus these are more closely aligned with
what we have termed an emulator.
An alternative to reimplementing the entire performance model

onto the FPGA is maintaining a software simulator and accelerat-
ing critical tasks in hardware. Penry et al. [16] explored using the
Power PCs on Xilinx Virtex IIPro FPGAs to accelerate the soft-
ware Liberty Simulation Environment. Logic was configured into
the FPGA fabric that allowed Liberty to track the number of clock
cycles a task took. Thus all model timing was equivalent to FPGA
timings.
The approach of taking many FPGA cycles to simulate one model
cycle was popularized by the RAMP project [1, 19]. RAMP aims
to model systems with hundreds of chips in them by spreading
them across multiple FPGAs, and across multiple boards. Ramp
Description Language [12], or RDL, allows the model-builder to
create “channels” between units. These channels have FIFO
semantics with user-specifiable model time latency and band-
width, similar to the A-Ports presented here. However the focus of
RAMP channels is different, in that they are meant to connect
large units, such as processor cores which may even be on differ-
ent FPGAs. Hence RAMP channels use a credit-based protocol
appropriate for connecting large blocks. In contrast, A-Ports due
not force the designer to use blocks which interact with a credit-
based protocol, as they are meant to connect much smaller blocks
on the level of pipeline stages. We note that a RAMP channel
could be implemented using two A-Ports, one flowing from pro-
ducer to consumer with the data, the other flowing in the reverse
with the credit.
Chiou's UT-FAST is a hybrid hardware-software performance
model which uses a software functional emulator to drive an
FPGA which adds timing information to the instruction stream
[7, 8]. UT-FAST originally used FPGA registers to add timing
information to the instruction stream, with a one-to-one corre-
spondence between FPGA cycles and model cycles. Collaboration
between the HAsim project and UT-FAST resulted in UT-FAST
developing a more generalized connector which was also inspired

Figure 11: Modeling an out-of-order processor.

DEC EXEFET ISS

4 4 2

4

Controller

curCC

DEC EXEFET

decodedinsts

mispred

result

int

kill mem

space

credit

resteer
ISS

4x14x1

4x1

1

2x1

1

1

1

1

1

1

jmp

IMEM

Branch
Pred

Branch
Target

DMEM

ROB

Freelist

JumpQ

4
4

4

4

4

1 1

1 1

2

ALUs

IntegerQInstructionQ

MemQ

Reg
File

pc

DECODE

ROB

Freelist

Reg
File

DMEM

EXEC

IMEM

FETCH

Branch
Pred

Branch
Target

pc

ISSUE

11B) A model is created by decomposing the
functionality into 4 modules. Register files and
tables such as branch predictors are imple-
mented using a combination of Block RAM and
Distributed RAM depending on the require-
ments. Only 1 ALU is implemented. It is
pipelined and shared between all 4 operations.
The effect of these choices is to reduce area but
also to slowdown simulation speed.

11A) The target is a MIPS R10K-like out-of-
order superscalar processor. It is 4-way super-
scalar and uses a re-order buffer (ROB) and
physical register file to track dependencies. It
contains 2 integer ALUs, 1 ALU for memory
ops, and 1 for jumps. Floating Point was not
considered.

11D) Again the modules are connected
using both barrier synchronization and
A-Ports. The superscalar widths are
represented with port bandwidths.

11C) The complex CAM matches in the out
of order engine were simulated using serial
searches. This means that in the worst case
– if the kill from the ROB is in the last slot,
and the 4 instructions to issue are in the
final four slots – this stage takes 32 FPGA
cycles to simulate. However this situation is
unlikely to occur and has never been
observed in practice.

5-stage A-Ports Out of Order A-Ports

FPGA Slices 9220 22,873

Block RAMs 25 25

Clock Speed 96.9 MHz 95.0 MHz

Average FMR 6.90 15.6

Simulation Rate 14 MHz 6 MHz

Average Simulator IPS 5.1 MIPS 4.7 MIPS

Figure 12: Assessing performance of the target processors. We measured our 5-stage pipeline and out-of-order models running
small benchmarks: numeric median and multiplication, quick sort, Towers of Hanoi, and vector-vector addition. While we

acknowledge the limitations of trying to draw conclusions from small benchmarks running on processors not paired with a realistic
memory hierarchy, the results showed the out-of-order processor performing between 2.4 and 5.8 times faster than the 5-stage

pipeline, depending on the amount of instruction-level parallelism available in the benchmark.

Processor Performance

0

20000

40000

60000

80000

100000

120000

140000

160000

median multiply qsort towers vvadd

M
od

el
 C

yc
le

s

5-stage pipe
Out of Order

Out of Order Simulator Speedup
as Buffer Size Increases

0

0.5

1

1.5

2

1 3 5 7 9 11 13 15 17 19

Extra Buffering

S
pe

ed
up

Out-of-Order Speedup

0

1

2

3

4

5

6

7

median multiply qsort towers vvadd average

Sp
ee

du
p

5-Stage Simulator Performance

0

200000

400000

600000

800000

1000000

1200000

1400000

median multiply qsort towers vvadd

FP
G

A
 C

yc
le

s

Barrier Sync
A-Ports

Out-Of-Order Simulator Speedup

0

0.2

0.4

0.6

0.8

1

1.2

1.4

median multiply qsort towers vvadd average

Barrier Sync
A-Ports Default Buffers
A-Ports Optimal Buffers

Out-Of-Order Simulator Performance

0

200000

400000

600000

800000

1000000

1200000

median multiply qsort towers vvadd

FP
G

A
 C

yc
le

s

Barrier Sync
A-Ports Default Buffers
A-Ports Optimal Buffers

5-Stage Simulator Speedup

0

0.2

0.4

0.6

0.8

1

1.2

1.4

median multiply qsort towers vvadd average

Barrier Sync
A-Ports

Figure 13: Assessing the performance of the models, rather than the targets they are simulating. The simulator was synthesized
onto a Virtex II platform using Xilinx ISE 8.2i.Using A-Ports with minimum buffering results in an average improvement of simu-
lation speed of 24% on the 5-stage pipeline and 4% on the Out-of-Order simulator. Increasing the buffering to their optimal sizes
(Section 5) improved this to 19.6%. While the serial searches and reuse of the ALU reduces FMR of the Out-of-Order simulator,

but the simulated IPS of the two simulators is about the same. This is because the OOO model executes so many more instructions
per simulated clock.

by Asim ports, as presented in [7]. Storage within this connector
also represents model-level storage and queues, which means that
there is less of a clear division between simulator implementation
and model timing. The contribution of the A-Ports methodology
presented here is to cleanly decouple model-level timing and sim-
ulation, simplify the synchronization protocol, lower the overhead
by removing registers to explicitly track model time, and present a
means to resynchronize the system to the same model cycle.
There is a parallel between clock simulation using A-Ports and
Carloni's theory of latency-insensitive design [5]. The main differ-
ence is that Carloni's technique is based on small combinational
circuits connected by latency-insensitive wrappers. In contrast, in
the A-Ports scheme modules are larger entities which may have
local state, and thus may take many physical FPGA cycles to per-
form their computation. This allows the designer to tradeoff simu-
lation speed and module resources, as described in Section 2.2. In
this respect A-Ports is close in inspiration to Lee's synchronous
dataflow abstraction [13].

7. DISCUSSION
In this paper we explored FPGAs as a platform for executing
cycle-accurate performance models. Some metrics were devel-
oped to quantitatively evaluate their performance. We used these
metrics to gain insight into the strengths and weaknesses of exist-
ing schemes for synchronous simulation. This paper introduced A-
Ports and explored how the ability of adjacent modules to be
simultaneously simulating different model cycles can lead to a
performance improvement. Finally, we implemented two models
and demonstrated an average improvement in simulation rate of
19% for our out-of-order model given appropriately sized buffers.
In the future we hope to extend the technique to efficiently handle
modeling multiple clock domains. Additionally we hope to use the
multiple physical clock domains on the FPGA to allow adjacent
modules to run in separate FPGA clock domains. The goal of the
HAsim project [9, 15] is to use A-Ports, combined with other
techniques from software performance models [15], to create a
high-detail model of a chip-multiprocessor (CMP) on an FPGA.

ACKNOWLEDGMENTS
The authors would like to acknowledge the help and feedback of
Angshuman Parashar, Nirav Dave, Derek Chiou, and the anony-
mous reviewers.

BIBLIOGRAPHY
[1] Arvind, K. Asanovic, D. Chiou, J. C. Hoe, C. Kozyrakis,

S.L. Lu, M. Oskin, D. Patterson, J. Rabaey, and J.
Wawrzynek. RAMP: Research Accelerator for Multiple Pro-
cessors - A Community Vision for a Shared Experimental
Parallel HW/SW Platform. Technical Report.

[2] K.C. Barr, R. Matas-Navarro, C. Weaver, T. Juan, and J.
Emer. Simulating a Chip Multiprocessor with a Symmetric
Multiprocessor. In Boston Area Archictecture Workshop
(BARC), January 2005.

[3] Bluespec, Inc. Bluespec Language Reference Manual.
[4] R. Bryant. Simulation on a Distributed System. In Proceed-

ings of the First International Conference on Distributed
Systems, July 1979.

[5] L.P. Carloni, K.L. McMillan, and A.L. Sangiovanni-Vincen-
telli. Theory of Latency-Insensitive Design. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems, September 2001.

[6] K. M. Chandy and J. Misra. Asynchronous Parallel Simula-
tion via a Sequence of Parallel Computations. In Communi-
cations of the ACM, pp. 198-206, April 1981.

[7] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. H. Reinhart, D.
E. Johnson and Z. Xu. The FAST Methodology for High-
Speed SoC/Computer Simulation. In Proceedings of Interna-
tional Conference on Computer-Aided Design (ICCAD),
2007.

[8] D. Chiou, D. Sunwoo, J. Kim, N. Patil, W. Reinhart, D. E.
Johnson, J. Keefe and H. Angepat. FPGA-Accelerated Simu-
lation Technologies FAST: Fast, Full-System, Cycle-Accu-
rate Simulators.In Proceedings of MICRO, 2007.

[9] N. Dave, M. Pellauer, J. Emer, and Arvind. Implementing a
Functional/Timing Partitioned Microprocessor Simulator
with an FPGA. In the Proceedings of the Second Workshop
on Architecture Research using FPGA Platforms (WARFP),
February 2006.

[10] J. Emer, P. Ahuja, E. Borch, A. Klauser, C. K. Luk, S.
Manne, S. S. Mukherjee, H. Patil, S. Wallace, N. Binkert, R.
Espasa, and T. Juan. Asim: A Performance Model Frame-
work. Computer, pp. 68-76, February 2002.

[11] D. Dalton, V. Bessler, J. Griffiths, A. McCarthy, A. Vadher,
R. O'Kane, R. Quigley and D. O'Connor. APPLES: A Full
Gate-Timing FPGA-Based Hardware Simulator. Field-Pro-
grammable Logic and Applications, September 2003.

[12] G. Gibeling, A. Schultz, and K. Asanovic. The RAMP Archi-
tecture & Description Language. Technical Report.

[13] E. A. Lee and D. G. Messerschmitt, “Static scheduling of
synchronous data flow programs for digital signal process-
ing,” IEEE Transactions on Computers, January 1987.

[14] OSCI. SystemC Language Reference Manual version 2.1
[15] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and J.

Emer. Quick Performance Models Quickly: Timing-Directed
Simulation on FPGAs. To appear in Proceedings of the IEEE
International Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), April 2008.

[16] D. A. Penry, D. Fay, D. Hodgdon, R. Wells, G. Schelle, D. I.
August and D. Connors. Exploiting Parallelism and Structure
to Accelerate the Simulation of Chip Multi-processors. In
Proceedings of the 12th International Symposium on High-
Performance Computer Architecture (HPCA), February 2006

[17] G. Pfister. The Yorktown Simulation Engine. In Proceedings
of 19th Conference on Design Automation (DAC), 1982.

[18] J. Ray and J.C. Hoe. High-Level Modeling and FPGA Proto-
typing of Microprocessors. In FPGA '03: Proceedings of the
2003 ACM/SIGDA Eleventh International Symposium on
Field Programmable Gate Arrays, pages 100-107, 2003.

[19] J. Wawrzynek, D. Patterson, M. Oskin, S. Lu, C. Kozyrakis,
J. C. Hoe, D. Chiou, and K. Asanovic. RAMP: A Research
Accelerator for Multiple Processors, IEEE Micro Mar/Apr
2007, pp. 46-57.

[20] R. Wunderlich and J. C. Hoe. In-System FPGA Prototyping
of an Itanium Microarchitecture. In Proceedings of Interna-
tional Conference on Computer Design (ICCD), October
2004.

