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ABSTRACT
Recently there has been interest in using FPGAs as a platform for
cycle-accurate  performance models. We discuss how the proper-
ties of FPGAs make them a good platform to achieve a perfor-
mance  improvement  over  software  models.  Some  metrics  are
developed to gain insight into the strengths and weaknesses of dif-
ferent simulation methodologies. This paper introduces A-Ports, a
distributed,  efficient  simulation scheme for creating cycle-accu-
rate  performance  models  on  FPGAs.  Finally,  we  quantitatively
demonstrate an average performance improvement of 19% using
A-Ports over other FPGA-based simulation schemes.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Systems –
modeling techniques

General Terms
Measurement, Performance, Design

Keywords
FPGA, Performance Models, Simulation, Emulation, Prototyping

1. INTRODUCTION
Cycle-accurate  performance models occupy a critical position in
the modern digital system design flow. A performance model is a
simulator which is available early in the design process and can be
used to guide high-level architectural decisions. In order to be suc-
cessful a performance model must be accurate, easy to develop
and modify, and simulate the target system rapidly.

Currently design teams write most such models in software, using
home-brewed C simulators or frameworks such as SystemC [14].
This eases model development, but the simulation speed of soft-
ware models has not been able to keep pace with increasing com-
plexity of modern circuits.  Although academic models typically
claim  simulation  speeds  in  the  100s  of  KIPS  (Thousands  of
Instructions  per  Second)  range,  detailed industry  models  report
simulation  speeds  in  the  low  KIPS  range.  Table  1  shows  an
overview  of  simulation  speeds  of  performance  models  around
Intel. 

Parallelizing the software model can result in increased simulation
speed by exposing the moderate degree of parallelism which can
be exploited by contemporary multicore processors. While perfor-
mance-model  algorithms  contain  massive  fine-grained  paral-
lelism, two factors make exploiting such a level of parallelism dif-
ficult in software. First, within one model clock cycle, the unit of
parallel activity being simulated is equivalent to a small number
of gates – always much smaller than the general purpose core the
software runs on.  Second, across model  clock cycles there is  a
high amount  of  communication  between these  parallel  regions.
This high amount of communication does not map well to typical
communication methods for multicores, such as shared memory.

Given these properties, FPGAs should be a good platform for effi-
cient execution of performance models. The key insight is that one
simulated model clock cycle does not have to correspond to one
cycle on the FPGA. For example, a model running on a 100 MHz
FPGA could take 10 FPGA cycles to simulate one  model cycle
and still achieve a simulation speed of 10 MHz. 

Contemporary efforts to explore FPGAs as a platform for perfor-
mance modeling include Penry et al.'s accelerators for the Liberty
simulator [16], Chiou's UT-FAST which uses the FPGA as a tim-
ing model connected to a software functional simulator [7, 8], and
the HAsim project [9, 15] which aims to create a variant of the
Intel Asim simulation environment [10] on an FPGA. The stated
goals of the RAMP platform [1, 19] also include creating accurate
performance models.

In this paper we analyze the efficiency of techniques for creating a
cycle-accurate  performance  model  on  an  FPGA.  We  introduce
novel metrics which allow the simulator architect to reason about
space-time tradeoffs,  and use these metrics to demonstrate why
existing simulation techniques such as dynamic barrier-synchro-
nization are unsuitable for FPGAs. We present A-Ports, an adap-
tion of techniques from the Asim simulator for performing dis-
tributed cycle-accurate simulation.  We demonstrate that A-Ports
maintains the ease-of-use of existing abstractions, while increas-
ing efficiency. We measure a quantitative performance improve-
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Simulator Detail Simulator speed 
(order of magnitude)

Low-Detail Model 100 KHz

Medium-Detail Model 10 KHz

High-Detail Model 1 KHz

Table 1: Simulation speeds of industrial software performance
models of processors. Increasing levels of detail use more and

more realistic core pipeline models. Only results generated
from higher-detail models are considered accurate enough to

guide architectural design decisions.



ment of 19% using A-Ports in an out-of-order processor model.
We show that the performance benefit of A-Ports comes from the
decoupled nature of the simulation, whereby different modules on
the  FPGA can  be  simultaneously  simulating  distinct  points  in
model time. Finally, we present an algorithm whereby the decou-
pled A-Ports simulation can be resynchronized to the same model
cycle for debugging purposes.

In this paper we limit the discussion to performance models of
synchronous digital systems. Asynchronous or analog systems are
not considered. Although the work was inspired by modeling pro-
cessors, none of the techniques presented are specific to micropro-
cessors.  Extending  the  A-Ports  technique  to  simulate  multiple
clock  domains  or  globally-asynchronous  locally-synchronous
(GALS) models is left to future work.

2. PERFORMANCE MODELS ON FPGAS
2.1 Comparison to Prototypes and Emulators
In  this  section  we  distinguish  performance  models  on  FPGAs
from more familiar uses such as prototypes and functional emula-
tors. Consider the example of a circuit design team that wishes to
implement an ASIC which contains a 4-ported register file with
two read ports and two write ports. There are many ways FPGAs
can help  with  this  process.  Figure  1 shows a  taxonomy which
summarizes  three  different  possibilities:  prototypes,  functional
emulators, and performance models.

Prototypes are generally created from the final or near-final RTL
of the design for verification purposes. They make use of struc-
tures which will appear in the final ASIC, whether or not these
structures result in efficient FPGA configuration (Figure 1E)1. The

1 We acknowledge that prototyping techniques such as partitioning could
be applied to an inefficient configuration. Such techniques admittedly
gray the lines between pure prototypes and performance models. Never-
theless, we believe that “prototyping” is a useful term to refer to direct
configuration of an FPGA into a target circuit and use it to mean such.

advantage of prototypes is complete accuracy: the waveform out-
put of the FPGA is exactly equivalent to the output of the final
design (though the clock periods themselves may differ). The dis-
advantage of prototypes is  that,  due to the high-level of  detail,
they are available only very late in the design process, after most
major architectural decisions have been made.

In contrast, a functional emulator is a system on an FPGA which
generally  does  not  match  the  waveform of  the  target  machine,
except  in  very  broad terms.  Functional  emulators  are  primarily
used to  give  software  developers  fast  platforms to  use  in  code
development. As a consequence, functional emulators require less
effort to create and can be made available earlier in the design
process. They can also make use of FPGA-optimized structures
such as Xilinx BlockRAM to ensure good performance. However,
they bear little or no resemblance to the final ASIC, and thus can-
not be used to explore microarchitectural design decisions.

A performance model on an FPGA occupies something of a mid-
dle ground: unlike a functional emulator, it gives us the ability to
measure  and  reason  about  some  aspects  of  the  target  system
design. Yet it must be vastly less time-consuming to create and
verify than an RTL prototype. Figure 1D represents such a com-
promise: the structure is behaviorally accurate and results in an
efficient  FPGA configuration.  Since  this  circuit  takes  multiple
FPGA cycles, the model-cycle counter curCC keeps track of the
simulated model clock cycle and is incremented when simulation
of that cycle is complete – in this case every 4th FPGA cycle. The
system architect  can  observe  and  change  the  number  of  clock
cycles of operations in the target circuit without having to change
the functional definition. As with software performance models,
this model gives no insight into the cycle period nor circuit area of
the final ASIC, nor can the RTL which is used to configure the
FPGA into a  performance  model  be of  use to  the  design team
which is seeking to implement the target circuit. However we do
not consider this to be a major disadvantage as the source code for
performance models written in C or SystemC is similarly useless.

Figure 1: Taxonomy of FPGA uses in the digital system design flow, and their relative costs.
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1A) The target circuit contains a register file
with  2  read  ports,  2  write  ports.  External
logic guarantees that two writes to the same
address are never asserted on the same clock
cycle. Read values appear on the same clock
cycle as an address is asserted.

1C) A functional emulator does not have
to maintain the same timing properties as
the target circuit.  Thus it  can be imple-
mented  using  Xilinx  Block  RAM,  even
though this RAM only has 2 total ports,
and  read  values  appear  on  the  next
FPGA cycle after an address is asserted.

1D) A performance model may use the same structures
as  the  functional  emulator,  with  the  additional
requirement that it accurately track model time. In this
case the model cycle counter is not incremented until
the two read requests and two write requests are com-
pleted. The reads are performed before the writes to
maintain equivalence with the target circuit.

Design Slices BlockRAM Freq (MHz)

Prototype 9242 0 104

Func. Emulator 63 1 261

Perf. Model 94 1 224

1E) Synthesis results for these designs onto a Virtex
IIPro 30 FPGA using Xilinx ISE 8.2i

1B)  A  prototype  of  the  circuit  on  an
FPGA  maintains  the  same  temporal
properties as the target circuit. On con-
temporary  FPGAs  this  circuit  must  be
implemented  with  individual  registers
and muxes, which can be expensive.



2.2 Modeled Clocks and Space-Time Tradeoffs
When faced with a target circuit which is inefficient to implement
directly on an FPGA, designers writing a performance model for
an FPGA have a range of options. They can use circuits which are
fast but expensive, or can trade space for time, shrinking area but
either worsening the clock period or using multiple FPGA cycles
to perform the simulation. Sometimes these tradeoffs can be done
in such a way that the rate-limiting step of the simulator is not
affected. Other times simulator performance may suffer. To this
end, we have developed a series of metrics for reasoning about
FPGA performance models  that  can  aid  simulator  architects  in
making judicious tradeoffs.

The most basic metric is the FPGA-cycles-to-Model-cycles Ratio
(FMR):

FMR=
cyclesFPGA

cyclesmodel

In  the  example  shown in Figure  1D,  the  model  takes 4  FPGA
cycles to simulate one model cycle, for an FMR of 4. More gener-
ally, one can examine the FMR of a single model cycle, a region,
or a run. Similar to microprocessor Cycles Per Instruction (CPI)
one can consider the FMR of a specific instruction or operation
type in order to gain insight into performance bottlenecks. In prac-
tice, FMR is particularly useful when considering the worthiness
of  potential  refinements  to  a  performance  model.  The  overall
FMR of a particular run can be derived by examining each model
cycle simulated:

FMRoverall=
∑
i=0

numModelCC

cyclesFPGAi 

numModelCC
where cyclesFPGA(i) represents the number of FPGA cycles needed
to simulate model cycle i. Of course, a refinement which improves
FMR would be useless if it degrades the overall clock period too
far. Therefore total simulator speed must take into account the fre-
quency that the FPGA configuration can achieve:

frequencysimulator=
frequencyFPGA

FMRoverall

This gives us simulator speed in Hertz. Another metric which has
proved  useful  for  software  performance  models  is  simulated
Instructions Per Second (IPS). This formula takes into account the
CPI of the machine being modeled:

IPS simulator=
frequencysimulator

CPI model

Using IPS simulator designers can compare the speed at which
two models execute benchmark-specific work, even if they repre-
sent  two  vastly  different  target  designs,  such  as  an  in-order
pipeline and an out-of-order superscalar model (Section 5). This
equation adapts naturally to our purposes. Plugging in the above
formula, we can deduce the IPS of an FPGA performance model:

IPS simulator=
frequency FPGA

CPI model×FMRoverall

2.3 Correctness Issues of Simulating Time
As a performance model is a simulation rather than an implemen-
tation,  we  must  be  concerned with  both  the  correctness  of  the
design, and of the simulator. In order to function correctly, a per-
formance model must be free of  temporal violations. A temporal
violation occurs when a value from model cycle  n+k is acciden-
tally used to calculate a value on model cycle n. On an FPGA, a
temporal violation typically occurs because of a race condition,
whereby a producer writes a value before a consumer has properly
finished computing with the predecessor value.
Another issue is the ability of a simulator to advance the model
clock.  If  the simulator is  unable to advance the  clock, we will
refer to this as a temporal deadlock. Note that this is distinct from
a model-level  deadlock, which results  when the target machine
design is faulty. If the target machine enters a deadlocked state,
then the performance model should correctly model the machine
remaining in that state as model time continues to advance. The
absence of temporal deadlocks is important because it gives the
system  architect  confidence  that  a  performance  model  which
deadlocks is due to a fault in the target machine, rather than a fault
in the simulation methodology.

3. EXISTING SIMULATION SCHEMES
Now that we have established some means to reason about FPGAs
as platforms for  performance models,  let  us  explore how some
existing simulation methodologies would adapt to FPGAs.
Many  of  the  research  efforts  in  distributed  simulation  have
focused on parallel  discrete  event-based simulation  using  algo-
rithms like those by Chandy and Misra [6] or Bryant's Time Warp
[4].  Event-based simulation is successful when large amounts of
the system are idle or  can be excluded from results.  In perfor-
mance models of microprocessors such as the Intel Asim simula-
tor  [10] activity occurs consistently  in almost  every module on
every simulated cycle, and thus event-driven approaches lose their
benefit.  As  such we  will  exclude  such  event-based  approaches
from our  study,  though  we  note  that  there  have  been  projects
which explore event-driven simulation on FPGAs [11]. Instead we
will focus on techniques suitable for continuous simulation where
there is known to be one or more global clocks.

3.1 Unit-Delay Simulation
One simulation technique that can adapt well to FPGAs is unit-
delay  simulation,  historically  used in projects  such as the IBM
Yorktown Simulation Engine [17]. In this simulation all modules
are rate-limited to the slowest parallel element.
Consider the example of the 4-ported register file from Figure 1.
The performance model in Figure 1D uses 4 FPGA cycles to sim-
ulate one model cycle. If this is the slowest module in our model,
then we could simply assign all modules in our system 4 FPGA
cycles to simulate one model cycle, as shown in Figure 2.
 Unit-Delay simulation on FPGAs offers several benefits:

● Modules can be decomposed and designed separately.
● There are no combinational paths between modules.
● No temporal deadlocks are possible.
● All  modules  follow  a  consistent  “read,  calculate,  write”

sequence which eases implementation.
● Temporal violations are easily avoided.



By these last two points we mean that all modules demonstrate
consistent behavior. First they read all inputs, then compute for
some number of FPGA cycles, and finally write all outputs. Tem-
poral  violations  can  occur  only  if  a  producer  module  writes  a
value prematurely  before  the  end of  the model  cycle,  where it
could  be  observed by  a  consumer.  All  such  violations  may  be
avoided by restricting all producers to to write outputs only on the
final FPGA cycle of a model cycle.
But what do our metrics have to say about the performance of this
technique? As there are no combinational paths between modules,
frequencyFPGA will  be  determined  by  the  modules  themselves,
which we expect would be good.  But what about FMR? If the
unit-delay simulator shifts to a new model cycle every  n FPGA
cycles then:

FMRunit delay=n

Thus unit-delay simulation is appropriate for low values of  n. In
practice,  however,  the  static  worst  case  n is  often  quite  large,
though  it  applies  to  events  that  happen rarely.  Moreover,  unit-
delay simulation cannot be used when n cannot be bounded – for
example if the FPGA occasionally communicates with a host pro-
cessor via a PCI connection. We conclude that although unit-delay
simulation offers many benefits, it is unsuitable in a large number
of practical situations.

3.2 Dynamic Barrier Synchronization
An alternative is to have all modules coordinate dynamically on
when to move to the next model cycle.  An FPGA performance
model using dynamic barrier synchronization is shown in Figure
3. A centralized controller tracks model time, and alerts all mod-
ules when it is time to advance to the next model cycle. The mod-
ules then simulate, and report back when finished. When all mod-
ules have finished, the time counter is incremented, and the mod-
ules  are  alerted  to  proceed  again.  Simulation  results  may  be
observed on model cycle boundaries.
Dynamic barrier synchronization allows individual model cycles
to use differing numbers of FPGA clock cycles, and removes the
restriction that the worst case be bounded statically. The FMR of a
barrier synchronization simulator with modules M is the mean of
the FPGA cycles of the longest-running module for each simu-
lated model cycle:

Note that this FMR is, in the worst case, equal to the FMR of the
unit-delay case (when every model cycle takes exactly the same
amount of time to simulate). In practice the FMR of dynamic bar-
rier synchronization is often significantly better, as the dynamic
worst case is often better than the static worst case.
To summarize, barrier synchronization on FPGAs retains the fol-
lowing benefits from the unit-delay scheme:

● Modules still can be decomposed and designed separately.
● Modules still follow the “read, calculate, write” abstraction. 

One  disadvantage  of  barrier  synchronization  compared to  unit-
delay is that modules may need some “shadow” state to hold sta-
ble copies of data, as they now cannot predict when the producer
module  will  overwrite  the  data  in  the  communication  register.
This means that temporal violations may be possible, by observ-
ing the data that the producer has written for cycle n+1 on model
cycle n. (Temporal violations can be easily avoided if the module
only observes the shadow state,  which is  initialized in the first
FPGA cycle of every simulated cycle.)  Additionally, the barrier
synchronization simulation technique can experience a temporal
deadlock if an individual module never terminates a clock cycle.
In practice,  we have found all  of these problems are minor,  or
have easy solutions. The main problem with barrier synchroniza-
tion comes when one considers frequencyFPGA. The combinational
signals to and from the controller can impose a large burden on
the  FPGA place  and  route  tools.  To  assess  this  problem  we
devised an experiment, the results of which are shown in Figure 4.
As it demonstrates, moving from 25 to 100 modules resulted in a
decrease  in  clock  frequency  of  35%.   We  conclude  that  the
dynamic barrier synchronization technique offers benefits over the
unit-delay  case,  but  also  faces  scaling  issues  which  limit  it  to
small numbers of modules.

3.3 FPGA Simulation Technique Summary
Using the metrics we introduced in Section 2, the strengths and
weaknesses of these schemes can be summarized as:

FMR FrequencyFPGA

Unit-Delay Fixed at worst case Good

Barrier Sync Good Scales poorly

Figure 3: The performance model from Figure 1D placed in a
dynamic barrier synchronization scheme. When each module

asserts done the Controller broadcasts begin, at which
point all modules read their inputs and proceed to the next

model cycle. The cycle-accurate state of the target circuit may
only be observed when the begin signal is asserted.
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We conclude that unit-delay simulation is a good choice for mod-
els with small, bounded cycle simulation times, whereas dynamic-
barrier synchronization is a good choice only for models which
decompose into a small number of individual modules.
One approach would be to attempt to improve the clock frequency
of the barrier simulation method, perhaps by pipelining the combi-
national AND-gate, or arranging the modules into a tree in order
to ease the place-and-route requirements. But even if the frequen-
cyFPGA problem could be solved completely, the barrier synchro-
nization approach still limits performance by forcing all modules
to move in lockstep. In the next section we present A-Ports, an
alternative which removes the centralized controller entirely, thus
achieving good  frequencyFPGA.  In Section 5 we demonstrate that
this scheme can achieve better  FMR than dynamic barrier syn-
chronization, with a demonstrated average improvement of 19%
on our out-of-order processor model.

4.  DISTRIBUTED PERFORMANCE 
     MODELING VIA A-PORTS
4.1 Asim Ports in Software
The Intel software performance model Asim represents time via a
mechanism known as ports. A model in Asim is decomposed into
modules which have no inherent  notion of time – conceptually
they may be considered to be infinitely fast. All communication
between  modules  must  go  through ports,  which  are  essentially
FIFOs of  a message type  t  with a user-specified latency  l and
bandwidth b. The idea of using FIFOs to track simulation time is
examined in Figure 5.
A message placed into a port on model cycle  n will emerge on
model cycle  n+l.  If a module does not write the port on model
cycle n, then a special value NoMessage will emerge on cycle n+l,
indicating no activity on this port. Ports with a latency of 0 are
allowed, but may not be arranged into “combinational loops.” An
observer may determine how many cycles a module has simulated
by counting the number of read/writes to its Ports.

In software the main benefit the Asim port abstraction is that it
eases model development. The implementors of each module do
not need to worry about explicitly representing model time at all,
but simply to read and write in a FIFO manner. No temporal vio-
lations are possible because modules are not allowed to “peek” at
the next values in the ports. Also, the simulator will never dead-
lock as long as each module takes a finite amount of time to simu-
late each model cycle (the same as barrier synchronization in Sec-
tion 3.2). 

More recently, there has been interest in using Asim ports for per-
formance  reasons:  namely  to  control  a  highly-parallel  software
simulator. Currently, in software Asim parallel simulation is con-
trolled by a centralized clock server which uses barrier synchro-
nization to coordinate between a small number of threads (equal
to  the  number  of host  cores the simulator is running on).  Barr
demonstrated  that  this  centralized  controller  could  be  removed
and simulation controlled by using the ports themselves [2]. Ulti-
mately,  though,  assigning  a  thread per  module  would  result  in
hundreds of threads which would  overwhelm the available paral-
lelism of today's 8-to-16 core servers. In software this was over-
come  by  limiting  the  number  of  parallel  threads,  which  also
undoes much of the benefit compared to barrier synchronization.
In contrast, an FPGA is fully able to take advantage of this level
of parallelism.

4.2 Implementing A-Ports on FPGAs
We name our technique A-Ports, to distinguish it from prior work
on Asim ports, and to emphasize the generality of the approach.
The goal of the A-Ports implementation for FPGAs is to expose
the highest degree of parallelism possible. To that end modules
make a local decision about whether or not to proceed to the next
model  cycle  by  examining  their  local  input  and  output  ports.
When a module does read its inputs to begin a cycle, it may take
any number of FPGA cycles to simulate the model cycle. A mod-
ule  concludes  by  writing all  of  its  output  ports  (Figure  6).  All
ports must be read/written every model cycle.
In software, Asim ports can be implemented with infinite buffer-
ing. On an FPGA buffer sizes must be limited. As shown in Figure
7, we implement an A-Port of message type  t  as a FIFO of  t+1
bit-wide elements, the extra bit indicating NoMessage (in addition
to the standard FIFO valid bits). Because buffer sizes are statically

Figure 5: Modeling a 2-stage pipeline using Asim Ports. One
choice is to decompose the system into two separate modules
and connect it with ports of latency=1. It is often convenient

to combine them and use a latency=2 port. Thus highly
pipelined operations such as multipliers are more easily mod-

eled because the functionality is retained in a single stage.
Retiming the pipeline of the target may be evaluated by

changing the latency of the port without changing the func-
tionality of the modules.

Figure 4: To test the scaling of dynamic barrier synchroniza-
tion we created a simple module with a small amount of com-
binational logic, so that it would not affect the critical path.

This module was then replicated n times in a strict linear hier-
archy, so as not to impose any additional restrictions on the
place-and-route tools. The modules were synthesized for the

Xilinx VirtexIIPro 30 FPGA using Xilinx ISE 8.2i, and demon-
strated a 39% loss of clock speed as a result of the centralized
controller. In addition, we observed that the execution time of
the FPGA place and route tools increased 20-fold over these

same data points.
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fixed, a simulator deadlock can be introduced if insufficient buffer
space is provided. This deadlock can be avoided based on the fol-
lowing sufficient conditions:

● Each A-Port of latency l must contain at least l+1 buffering.
● Each A-Port of latency  l and bandwidth  b is initialized to

contain lb copies of NoMessage at simulator startup.
● Modules should be arranged in a connected graph.

To see why, consider that when the simulator starts up every mod-
ule  will  be  able  to  simulate  a  cycle,  unless  they  have  a  zero-
latency  input  port.  The  “no  combinational  loops”  requirement
guarantees  that  any  such modules  are  transitively  connected  to
modules which have non-zero-latency inputs, and thus are able to
simulate. Furthermore, note that by simulating a model cycle, a
module can never disable other modules from simulating model
cycles, but only enable them (though it may disable itself). There-
fore there will always be one or more modules in the simulator
which are able to proceed to the next model cycle.

4.3 Model Time in the A-Ports Scheme
Note  that  in  the  A-Ports  scheme  the  representation  of  time  is
implicit.  The modules and A-Ports do not need to keep a local
counter which tracks the current model cycle – in fact a module
does not need to know what cycle it is currently simulating. The
removal of these counters represents a savings of FPGA register
resources in systems with a large number of modules, and con-
tributes to A-Ports' efficiency.
Not only do A-Ports not know what model cycle they are simulat-
ing, but frequently the producer and consumer modules attached

via an A-Port may be simulating different model cycles (Figure 8).
The producer may run into the future, pre-computing values until
the buffer is full. Similarly, a fast consumer may “drain” the A-
Port, allowing it to run into the future with respect to the producer.
We say that simulation via A-Ports is decoupled because a module
can “slip” ahead as long as its input data is available, and there is
sufficient buffering to place its result. Similarly a module can fall
behind if it is producing at a slower rate, or its input data is not
available.
On any given FPGA cycle we say an A-Port of latency  l is  bal-
anced when the FIFO contains exactly  l elements. When an A-
Port contains more than l elements it is heavy, and similarly it is
light when it contains fewer than l elements. Observe: 

● When an A-Port  is  balanced,  the  modules it  connects  are
simulating the same model cycle.

● When an A-Port is heavy, the producer module is simulating
into the future compared to the receiving module.

● When an A-Port is light, the situation is reversed.

The amount of time that adjacent modules can “slip” in time is
limited by the buffering available. The consumer module of an l-
latency A-Port can run ahead at most l model clock cycles before
draining the buffer. A producer writing into an A-Port with k extra
buffering can only proceed k cycles ahead before filling the buffer.

Figure 7: The A-Port hardware interface. The A-Port trans-
mits messages of type t with latency l, and k extra buffering
slots. An extra bit specifies Message or NoMessage. The Port
pictured has bandwidth b=1. Increasing bandwidth increases
the minimum buffer requirement, and the designer may elext

to add additional enqueue/dequeue ports in an attempt to
improve simulator throughput. A-Ports with large buffers can

be implemented using FPGA RAM resources.

Figure 6: The protocol for modules to communicate via A-
Ports. These states are only conceptual – a module may read,

simulate, and produce output in the same FPGA cycle.

Figure 8: Modules A and B are shown simulating 4 model
clock cycles a, b, c, and d. a and c require 3 FPGA cycles to
simulate, whereas b and d require only 1. With barrier syn-

chronization it takes 13 FPGA cycles to do the simulation. The
distributed technique improves this to 11, as the A-Port moves
between balanced (bl) and heavy (hv) states. Bold lines indi-

cate A-Port sends and receives.
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Selecting  the  appropriate  buffer  sizes  can  have  a  significant
impact on simulator performance, as we will show in Section 5.
However, as long as the minimum requirements to prevent dead-
lock presented above are followed, these optimizations can be per-
formed without  changing the  results  of  simulation,  or  inadver-
tently introducing bugs into the simulator.

4.4. Resynchronizing Decoupled Models
Off-FPGA storage mechanisms such as flash memory, PCI buses,
or Ethernet typically have throughputs much lower than on-chip
communication. Thus the process of recording the results of simu-
lation can itself become the simulator performance bottleneck, as
useful work must stall until the buffers drain.
One solution to this problem is to perform sampling. We disable
result  recording and allow the  simulator  to  run in  “fast  mode”
without having to worry about filling up network buffers. Result
recording begins upon a user-specified trigger, such as simulating
a specified number of model cycles or entering a critical section.
But what if the decoupled modules have slipped in time as a result
of the A-Ports? In that case the modules could be simulating dif-
ferent model  cycles  and the result  recording may become con-
fused. As we are using an implicit notion of time with no local
counters, the modules cannot know which exact model cycle they
are simulating.
The solution to this problem is to rebalance the decoupled mod-
ules before enabling the result capture. To resynchronize the sys-
tem, modules enter a mode where they use the following protocol:

• If any output A-Ports are  light, or any input A-Ports are
heavy, simulate the next model cycle (assuming all input
A-Ports are not empty).

If all modules follow this protocol (shown in Figure 9), the system
will eventually quiesce. At the point of quiescence every A-Port
will  be  balanced,  and  thus  every  module  will  be  on  the  same
model clock cycle. To see why, consider that at any given FPGA

cycle there will be a non-empty set of modules which are furthest
ahead in model cycles. These modules will, by definition, have no
light  outputs or  heavy inputs,  and therefore will  not  move for-
ward. Any incoming ports to this group must be light and any out-
going ports must be heavy. Therefore the modules which are con-
nected  to  these  ports  will  attempt  to  simulate  the  next  model
cycle. The only reason they would not be able to proceed would
be if they did not have all of their inputs ready. Yet somewhere in
the system there must be a non-empty set of modules which is far-
thest behind in time, and thus able to simulate the next cycle. If
the graph is connected, any module which can simulate will only
make  progress  towards  increasing  the  set  of  modules  farthest
ahead  in  time.  Eventually  this  set  will  include  every  module,
every port will be balanced, and the system will not proceed.
When the simulator quiesces, it is straightforward to add a mode
where the simulator can step forward one model cycle at a time.
This stepping mode can be useful for debugging or for real-time
interaction between the user and the simulator.

5. QUANTITATIVE ASSESSMENT
In order to assess the A-Ports scheme we identified two target cir-
cuits.  First,  a  traditional  five-stage  in-order  microprocessor
pipeline, explained in detail in Figure 10. Second, a more realistic
out-of-order  superscalar  processor,  as  shown in Figure  11.  The
designs were implemented using Bluespec SystemVerilog [3], and
were synthesized for a Xilinx Virtex IIPro platform and assessed
for simulation speed and efficiency. The results, shown in Figure
12, show that the out-of-order processor is clearly a better archi-
tecture. As a processor, it would execute benchmarks substantially
faster (assuming the circuit design team was able to achieve an
equivalent clock speed).
These results represent the insights into the target design that most
users of performance models care about. However, as simulator
architects, we are also interested in comparative simulator perfor-
mance,  as  shown  in  Figure  13.  These  results  demonstrate  that
when we consider simulator performance the situation is reversed

Figure 10: Modeling a 5-stage in-order pipeline

10A) The target is a traditional five-stage in-
order  pipeline.  The  branch  predictor  is
updated after branch resolution occurs in the
ALU. Back-to-back dependent operations are
stalled by the scoreboard. As the instruction
set is not the focus of this research we chose
a subset  of the MIPS ISA. To maximize the
impact  of  the  processor  pipeline  itself,  the
core is assumed to be paired with one-cycle
“magic”  memory  rather  than  a  realistic
cache hierarchy.

10B)  Our  implementation  of  the  model
focused  on  efficiency  of  FPGA  configura-
tion.  To  this  end  we  used  BlockRAMs  for
every  large  structure  in  the  processor,
including the branch predictor, branch tar-
get buffer, and register file. Doing so intro-
duces additional latency, effectively expand-
ing  every  module  into  a  small  sequential
pipeline.

10C) The modules are connected using
both  dynamic  barrier  synchronization
and A-Ports in order to assess A-Ports
speedup.
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– the five-stage simulator can simulate model clocks more than
twice as fast (14 MHz vs 6 MHz), due to the multiple instructions
which the out-of-order superscalar model executes during every
model cycle. However when we consider simulated Instructions
per Second, as defined in Section 2.2, the situation is more bal-
anced (5.1 vs 4.7 MIPS). This metric correctly compensates for
the difference in target CPI – remaining differences are due to the
overhead of simulating out-of-order execution.
Beyond comparing the modeled processors against each other, we
also compared them to barrier synchronization versions. Figure 13
shows that the 5-stage simulator using A-Ports is an average of
23% faster  versus  barrier  synchronization.  For  the  out-of-order
model,  the  situation  is  more  complicated.  Using  the  minimum
buffer sizes results in a 4% improvement versus barrier synchro-
nization. However, as we noted in Section 4.3, the A-Ports buffer
size limits the amount adjacent modules can slip in model time.
Figure 13 demonstrates that  increasing the amount of buffering
results in a significant performance improvement for the out-of-
order model, allowing it to achieve a simulation rate 19% faster
than  barrier  synchronization.  In  contrast,  increasing  the  buffer
sizes does not result in any further improvement for the 5-stage
pipeline. This is because the modules in the 5-stage pipeline are
more evenly balanced, and thus do not slip with respect to each
other as frequently for our benchmarks.

6. RELATED WORK
Early efforts at creating performance models on FPGAs shared the
goal of creating a model early in the design process [18, 20], but
these efforts used the FPGA clock itself as the simulation clock, at
the  cost  of  accuracy.  Thus these are  more closely aligned with
what we have termed an emulator.
An alternative to  reimplementing the  entire  performance model

onto the FPGA is maintaining a software simulator and accelerat-
ing critical tasks in hardware. Penry et al. [16] explored using the
Power PCs on Xilinx Virtex IIPro FPGAs to accelerate the soft-
ware Liberty Simulation Environment. Logic was configured into
the FPGA fabric that allowed Liberty to track the number of clock
cycles a task took. Thus all model timing was equivalent to FPGA
timings.
The approach of taking many FPGA cycles to simulate one model
cycle was popularized by the RAMP project [1, 19]. RAMP aims
to model systems with hundreds of chips in them by spreading
them across multiple FPGAs, and across multiple boards. Ramp
Description Language [12], or RDL, allows the model-builder to
create  “channels”  between  units.  These  channels  have  FIFO
semantics  with  user-specifiable  model  time  latency  and  band-
width, similar to the A-Ports presented here. However the focus of
RAMP channels  is  different,  in  that  they  are  meant  to  connect
large units, such as processor cores which may even be on differ-
ent FPGAs.  Hence RAMP channels use a credit-based protocol
appropriate for connecting large blocks. In contrast, A-Ports due
not force the designer to use blocks which interact with a credit-
based protocol, as they are meant to connect much smaller blocks
on the level  of  pipeline  stages.  We note that  a RAMP channel
could be implemented using two A-Ports, one flowing from pro-
ducer to consumer with the data, the other flowing in the reverse
with the credit.
Chiou's  UT-FAST  is  a  hybrid  hardware-software  performance
model  which  uses  a  software  functional  emulator  to  drive  an
FPGA which adds timing information to  the instruction stream
[7,  8].  UT-FAST originally  used FPGA registers  to  add timing
information  to  the  instruction  stream,  with  a  one-to-one  corre-
spondence between FPGA cycles and model cycles. Collaboration
between the HAsim project and UT-FAST resulted in UT-FAST
developing a more generalized connector which was also inspired

Figure 11: Modeling an out-of-order processor. 
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11B) A  model  is  created  by  decomposing  the
functionality into 4 modules. Register files and
tables  such  as  branch  predictors  are  imple-
mented using a combination of Block RAM and
Distributed  RAM  depending  on  the  require-
ments.  Only  1  ALU  is  implemented.  It  is
pipelined and shared between all 4 operations.
The effect of these choices is to reduce area but
also to slowdown simulation speed. 

11A)  The  target  is  a  MIPS  R10K-like  out-of-
order superscalar processor. It is 4-way super-
scalar  and  uses  a  re-order  buffer  (ROB)  and
physical  register  file  to  track dependencies.  It
contains  2  integer  ALUs,  1  ALU  for  memory
ops,  and 1 for jumps.  Floating Point was not
considered.

11D) Again the modules are connected
using both barrier synchronization and
A-Ports.  The  superscalar  widths  are
represented with port bandwidths. 

11C) The complex CAM matches in the out
of order engine were simulated using serial
searches. This means that in the worst case
– if the kill from the ROB is in the last slot,
and the 4  instructions  to  issue  are in  the
final four slots – this stage takes 32 FPGA
cycles to simulate. However this situation is
unlikely  to  occur  and  has  never  been
observed in practice.



5-stage A-Ports Out of Order A-Ports

FPGA Slices 9220 22,873

Block RAMs 25 25

Clock Speed 96.9 MHz 95.0 MHz

Average FMR 6.90 15.6

Simulation Rate 14 MHz 6 MHz

Average Simulator IPS 5.1 MIPS 4.7 MIPS

Figure 12: Assessing performance of the target processors. We measured our 5-stage pipeline and out-of-order models running
small benchmarks: numeric median and multiplication, quick sort, Towers of Hanoi, and vector-vector addition. While we

acknowledge the limitations of trying to draw conclusions from small benchmarks running on processors not paired with a realistic
memory hierarchy, the results showed the out-of-order processor performing between 2.4 and 5.8 times faster than the 5-stage

pipeline, depending on the amount of instruction-level parallelism available in the benchmark.
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Figure 13: Assessing the performance of the models, rather than the targets they are simulating. The simulator was synthesized
onto a Virtex II platform using Xilinx ISE 8.2i.Using A-Ports with minimum buffering results in an average improvement of simu-
lation speed of 24% on the 5-stage pipeline and 4% on the Out-of-Order simulator. Increasing the buffering to their optimal sizes
(Section 5) improved this to 19.6%. While the serial searches and reuse of the ALU reduces FMR of the Out-of-Order simulator,

but the simulated IPS of the two simulators is about the same. This is because the OOO model executes so many more instructions
per simulated clock.



by Asim ports, as presented in [7]. Storage within this connector
also represents model-level storage and queues, which means that
there is less of a clear division between simulator implementation
and model timing. The contribution of the A-Ports methodology
presented here is to cleanly decouple model-level timing and sim-
ulation, simplify the synchronization protocol, lower the overhead
by removing registers to explicitly track model time, and present a
means to resynchronize the system to the same model cycle.
There is  a parallel  between clock simulation using A-Ports and
Carloni's theory of latency-insensitive design [5]. The main differ-
ence is that Carloni's technique is based on small combinational
circuits connected by latency-insensitive wrappers. In contrast, in
the A-Ports scheme modules are larger entities which may have
local state, and thus may take many physical FPGA cycles to per-
form their computation. This allows the designer to tradeoff simu-
lation speed and module resources, as described in Section 2.2. In
this respect A-Ports is close in inspiration to Lee's synchronous
dataflow abstraction [13].

7. DISCUSSION
In  this  paper  we explored  FPGAs as  a  platform for  executing
cycle-accurate  performance  models.  Some  metrics  were  devel-
oped to quantitatively evaluate their performance. We used these
metrics to gain insight into the strengths and weaknesses of exist-
ing schemes for synchronous simulation. This paper introduced A-
Ports  and  explored  how the  ability  of  adjacent  modules  to  be
simultaneously  simulating  different  model  cycles  can lead  to  a
performance improvement. Finally, we implemented two models
and demonstrated an average improvement in simulation rate of
19% for our out-of-order model given appropriately sized buffers.
In the future we hope to extend the technique to efficiently handle
modeling multiple clock domains. Additionally we hope to use the
multiple physical clock domains on the FPGA to allow adjacent
modules to run in separate FPGA clock domains. The goal of the
HAsim project  [9,  15]  is  to  use  A-Ports,  combined with  other
techniques from software performance models [15],  to  create  a
high-detail model of a chip-multiprocessor (CMP) on an FPGA.
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