
Abstract – In this paper we explore microprocessor perfor-
mance models implemented on FPGAs. While FPGAs can
help with simulation speed, the increased implementation
complexity can degrade model development time. We assess
whether a simulator split into closely-coupled timing and
functional partitions can address this by easing the develop-
ment of timing models while retaining fine-grained parallel-
ism. We give the semantics of our simulator partitioning,
and discuss the architecture of its implementation on an
FPGA. We describe how three timing models of vastly dif-
ferent target processors can use the same functional parti-
tion, and assess their performance.

Index Terms – Simulation, Performance Modeling, FPGAs

I. INTRODUCTION

Microprocessor architects rely on cycle-accurate perfor-
mance models to make decisions about next-generation
systems. These simulators must be available early in the design
process so that they can guide major design decisions before the
costly step of Register-Transfer Level (RTL) hardware descrip-
tion. In order to be successful, a performance model must meet
two criteria:

• Be accurate enough to use as a basis for major design deci-
sions and feasibility studies.

• Total time of modeling (model development time and total
model benchmark execution time) must be short enough to
keep the architects at the head of the design cycle.

Recently, performance models have begun to fall behind in
the area of total model benchmark execution time. Industry
models with high levels of detail typically report simulation
speeds in the 1 to 100s KIPS (Thousands of Simulated Instruc-
tions Per Second) range [4].

Although parallelizing the simulator can help improve per-
formance, architects expect that the increasing popularity of
multicore architectures will actually widen the gap between
simulator speed and target speed. This is because of a variety of
factors. First, simulating four cores is fundamentally four times
the work of simulating one core, but running the simulator on a
four-core machine does not in practice result in a 4x speedup
due to communication overheads. Second, next-generation
multicores typically increase the number of cores, so that archi-
tects may find themselves simulating six- or eight-core target
machines on a four-core host. Third, the on-chip core intercon-
nect network (the so-called uncore) grows in complexity as the

number of cores increase and it becomes necessary to simulate
more-complicated communication topologies. Fourth, the
age-old problem of increasing cache sizes of next-generation
cores is expected to continue, meaning longer-running
benchmarks become necessary to fully exercise the machine.

Some kind of sea-change is necessary if performance mod-
els are going to maintain a high-enough level of speed or
accuracy to stay relevant. Currently there is interest in the per-
formance modeling community in exploring FPGAs as an
execution platform for performance models. Contemporary
efforts include Penry et al.’s accelerator for the Liberty simula-
tor [17], Chiou’s UT-FAST hardware-software hybrid
simulator [3, 4], and HAsim—our ongoing effort to create an
FPGA variant of the Asim simulation environment [6, 7, 16].
Performance models are also a target application of the RAMP
FPGA platform [1, 9, 20]. The reasoning behind these projects
is that performance models have been shown to have a degree of
parallelism in the hundreds [19], yet these parallel tasks are typi-
cally quite small. The hope is that FPGAs will be better able to
exploit this extremely fine-grained level of parallelism.

Although FPGAs can improve simulator execution speed,
the process of designing a performance model for an FPGA is
more complex than designing a simulator in software. FPGAs
are configured with hardware description languages, and are not
integrated into most modern debugging environments. There is
a danger that performance modeling on FPGAs will fail not
because of execution time, but because of increased model
development time.

In this paper we explore whether this issue can be addressed
through the use of timing-directed simulation. In this scheme
the simulator is divided into separate functional and timing par-
titions which interact in order to form a complete simulation.
The goal is that a single functional partition can be created, veri-
fied, and optimized for FPGAs, and then reused across several
timing models. In contrast with earlier hardware/software
hybrid efforts [17, 3, 4] HAsim places both partitions on the
FPGA in order to minimize communication latency and take
advantage of the closely-coupled simulation scheme presented
here.

The main contribution of this paper is to describe an efficient
architecture for such a simulator on an FPGA. We give the
semantics for our functional partition, and argue that it is suffi-
cient to model any microprocessor pipeline. We demonstrate
the creation of three timing models, and use benchmarks to ana-
lyze interesting properties of the system.
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II. PERFORMANCE MODELS ON FPGAS

A. The Promise of FPGAs

Field-Programmable Gate Arrays (FPGAs) are a mature
platform for reconfigurable computing. Recent advances in
FPGA architectures have greatly increased the attractiveness of
the platform. Figure 1 shows the increase in capacity for the last
three generations of Xilinx FPGAs. In academia, many active
research projects give hope that FPGAs will continue to
improve in the immediate future [8].

Yet despite these advances in capacity, FPGA clock rates
typically range between 50 and 300 MHZ. How can a perfor-
mance model running on an FPGA clocked at these speeds beat
a software simulator running on 3GHz multicore host proces-
sors? The answer is fine-grained parallelism. Results from
several technology generations ago established the typical
amount of concurrency available in distributed logic simulation
to be in the hundreds [19], and we expect that this number has
increased since this research was published. This level of paral-
lelism overwhelms today’s multicore computers. Additionally,
each of these parallel tasks is quite small, representing only the
simulation of a few gates: much smaller than the gen-
eral-purpose host they run on. Finally, there is a high degree of
communication between these parallel tasks as results propa-
gate throughout the system. For software simulators running on
multicore hosts these communications are sequentialized
through the bottleneck of main memory. Given these properties
FPGAs, which feature numerous small lookup tables connected
by a fast interconnect, should be a better platform for exploiting
this fine-grained level of parallelism.

Traditionally, FPGAs have enjoyed success in the industrial
digital design flow as a platform to verify circuit prototypes. As
shown in Figure 2, FPGAs enter the picture late in the design
flow, after the complete or near-complete RTL for a circuit is
available. This RTL is used to configure the FPGA directly. As
a consequence, if the circuit contains any structures that do not
synthesize into a small number of FPGA lookup tables, then the
resulting FPGA configuration will likely take a large number of
resources and not achieve a good clock rate. Regardless, the

result (or waveform) observed from the FPGA will still be
cycle-accurate, albeit running at a slower clock rate.

Early efforts at performance modeling on FPGAs such as
those by Ray [18] and Wunderlich [21] distinguished them-
selves from prototyping more in intent than technique. Their
goal was to make a model much earlier in the design process
where it could guide architectural decisions, however their
approach was more like prototyping in that the FPGA clock-rate
could be slow if the target circuit was not amenable to
lookup-table configuration.

More recent efforts have taken a different approach: config-
uring the FPGA into a simulator rather than a prototype, as
shown in Figure 3. By this we mean that the RTL used to config-
ure the FPGA is not a description of the target circuit. Instead it
is a description of the timing and behavior of the target circuit.
This simulator may take any number of FPGA clock cycles to
simulate one model clock cycle. Hence the result of simulation
may no longer be obtained by directly observing the FPGA
waveform, but must be reconstructed in some simulator-specific
way [16].

The advantage of this approach is that the simulator RTL can
make use of FPGA-optimized structures exclusively, and thus
can be expected to use a small number of resources and achieve
a good clock rate. The disadvantage of this approach is that this
clock rate by itself no longer gives an indication of simulation
rate: if the simulator takes too many FPGA clock cycles to com-
pute a model cycle, then simulator performance will suffer.
Another potential criticism of this approach is that the simulator
RTL is not useful when the design team must actually imple-
ment the target circuit. However we do not consider this to be a
major disadvantage as the source code for contemporary perfor-
mance models written in C is similarly useless.

In order to calculate the simulation rate of an FPGA perfor-
mance model we must take into account the number of FPGA
cycles required to simulate a model cycle, known as the
FPGA-cycle to Model-cycle Ratio (FMR) [16]. FMR is similar
to the microprocessor performance metric Cycles Per Instruc-
tion (CPI) in that one can observe the FMR of a run, a region, or
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Figure 2: FPGAs are traditionally used late in the design flow as a platform to
verify prototypes. The RTL of the target design is used to configure the FPGA,
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Figure 3: A performance model on an FPGA is constructed early in the design
process. The FPGA is configured into a simulator, which may bear little or no
resemblance to the final system. This simulator can use FPGA-efficient struc-

tures exclusively.
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Figure 1: Increase in the number of resources for recent Xilinx FPGAs. Source:
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a particular class of instructions in order to gain insight into sim-
ulator performance. The FMR of a simulator combined with its
FPGA clock rate gives us simulation rate:

frequency
frequency

FMR
simulator

fpga

overall

=

Often it is useful to evaluate simulators based on their simu-
lated Instructions Per Second (IPS). For a software simulator
this is calculated as:

IPS
frequency

CPI
simulator

simulator

model

=

Plugging in our above equation gives us the means to calcu-
late the IPS of an FPGA performance model:

IPS
frequency

CPI FMR
simulator

fpga

model overall

=
×

B. Potential Drawbacks of the FPGA Approach

Although FPGAs show great potential for increasing the
simulation rate of microprocessor performance models, the
largest potential drawback is the increase in model development
time. FPGAs are configured using hardware description lan-
guages such as VHDL or Verilog. The resulting RTL is passed
through industrial synthesis and place-and-route tools which
can have execution times in the hours. If the resulting configura-
tion is faulty, it can be difficult to ascertain the cause of the
error, particularly if the bug interferes with the FPGA’s
input-output capabilities.

In software development these problems have been
addressed via two main mechanisms: code reuse and abstrac-
tion. Common functions are factored into operating systems or
libraries, which are verified and trusted. Projects are written in
machine-independent higher-level languages such as C and the
source code is integrated into future projects via standardized
interfacing semantics and calling conventions.

Ultimately, we believe that the problems of FPGA develop-
ment will be solved via a similar set of solutions. The emergence
of high-level synthesis languages such as Bluespec [2] and
HandelC [14] help raise the level of abstraction of hardware
development . Similar ly , ongoing effor ts to develop
“middleware” for FPGAs [10, 15] will help lower the barrier of
entry.

For performance models on FPGAs, the ability to reuse code
will become a critical factor in reducing model development
time. Rather than relying on ad-hoc code reuse, we propose to
use a technique that has worked successfully in software perfor-
mance models: timing-directed simulation.

III. TIMING-DIRECTED SIMULATION

A. Technique Overview

Performance models which are constructed in an ad-hoc
manner often have limited potential for code reuse. One reason
for this is the difficulty of separating source code dealing with
timing (how long operations take) from functionality (what
operations do). In microprocessors, exploring a future genera-
tion is often mostly about exploring when things happen (branch

predictors, cache strategies, pipeline depths), and only a limited
amount of genuinely new functionality.

One way to address this is to divide the simulator into func-
tional and timing partitions, as shown in Figure 4. The
functional partition is responsible for correct ISA-level execu-
tion. The timing partition (or timing model) is responsible for
driving the functional partition in such a way as to simulate a
particular microarchitecture. Example responsibilities of the
functional partition include decoding instructions, updating
simulator memory, or guaranteeing that floating point opera-
tions conform to standards. Example responsibilities of the
timing partition include deciding what instruction to issue next,
tracking branch mispredictions, and recording that float-
ing-point multiply instructions take 5 clock cycles to execute.

The goal of this partitioning is to speed development time.
The functional partition might be complex to implement, opti-
mize, and verify, but once it is complete it can be reused across
many different timing models. The timing models themselves
are significantly simpler to implement than simulators written
from scratch: they do not need to worry about ISA functional
correctness, but only track microarchitecture-specific timing
details. Often structures can be excluded from the timing model
partially or completely, as their behavior is handled by the func-
tional partition. A common example of this is a timing model of
a cache that needs to track tags and status bits but does not need
to store the instructions or data – the goal being to decide
whether a particular load hits or misses, but not actually track
the data associated with it.

Most importantly, a large amount of code reuse is available
between timing model generations, as only those portions of the
microarchitecture that change from one generation to the next
need to be reimplemented. Practice with the Asim simulator
environment [7] has shown models can be decomposed in such a
way as to reuse branch predictors, cache hierarchies, or commu-
nication networks with no changes whatsoever. Given these
properties the HAsim project explores implementing a parti-
tioned simulator on an FPGA.

Within partitioned simulation, there are many potential
ways for these functional/timing partitions to interact. Mauer,
Hill and Wood [13] categorized such simulators as func-
tional-first (traditionally called trace-driven), timing-directed,
and timing-first, as shown in Figure 5. In the functional-first
scheme a functional model is used to generate an execution trace
that is fed into a timing model, which adds microproces-
sor-specific timing information to the trace. A timing-directed
simulator, in contrast, is an execution-driven simulator where
the timing model invokes operations on the functional model at
the right time. In the timing-first style timing is first calculated,
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Figure 4: A partitioned simulator divides responsibilities, reusing the same func-
tional partition across many different timing models.



and then a functional model invoked to verify the results. Con-
temporary partitioned software simulators include Asim [7] and
MASE [11].

Chiou’s UT-FAST [3, 4] is a hybrid simulator where the
functional model runs in software and produces a trace which is
fed into a timing model on an FPGA. In this respect it resembles
a trace-driven simulator, however capability is added so that the
timing model can roll back the trace-generator if it goes down a
different path from that of the simulated machine, ensuring
proper simulation results. Given the long communication laten-
cies between the software and the FPGA, the trace-generator
uses speculation to continue to execute instructions in the
absence of timing model input, such as at a branch in control
flow. Capability is added to the trace generator to roll back to a
previous point in the execution stream when the timing model
detects a mis-speculation, ensuring accuracy of results. We term
the UT-FAST approach to be a loosely-coupled timing-directed
approach, because it aims to minimize the communication
between the two partitions. This has been demonstrated to work
well for simulating single-core systems [4], where speculative
points occur only at branches. Extending this scheme to simu-
late multicores, where timing interactions in the cache
coherence and the memory model are more common, is ongoing
work.

HAsim uses an alternative approach which we term a
tightly-coupled timing-directed scheme. In this scheme commu-
nication between the partitions is frequent, and thus both the
functional and timing partitions are placed on the FPGA. The
reasoning behind this decision is as follows:

• The fine-grained parallelism of the FPGA can benefit both
the timing and functional partitions, which both have high
degrees of parallelism.

• Because updates of functional state occur within a few
FPGA cycles of the timing partition’s requests, the func-
tional partition does not need to speculate on future timing
partition requests, which simplifies the architecture. (Note
that this is different than simulating speculative processors,
which we do support and describe below.)

• Rare events which are difficult to place on the FPGA, such
as system call instructions, can be farmed out to software re-
gardless of whether they occur in the functional or timing
partition, similar to Chung’s migration scheme [5].

In the following sections we give the semantics of our particular
timing-directed scheme, give an architecture to implement it on
an FPGA, and evaluate the efficiency of our scheme.

B. Semantics of the HAsim Functional Partition

At a high level, the job of the functional partition is straight-
forward: given a machine in a certain state and an instruction,
calculate the new state of the machine after executing the
instruction. This coarse granularity is sufficient for modeling
simple in-order pipelines, but is not a high-enough level of
detail to capture the behavior of today’s microprocessors which
include features like out-of-order execution and speculative
execution.

In order to be able to precisely capture control speculation,
data speculation, and the timings of interactions between
threads, we identified seven operations for our functional parti-
tion, shown in Figure 6. These operations roughly correspond to
stages in a traditional microprocessor pipeline, with additional
support for controlling the precise timing of store operations in
order to simulate thread communication. A description of the
effects of these operations are given in Figure 7.

The order in which the timing partition invokes these opera-
tions determines the state of the machine at any given moment.
Figure 8 demonstrates how the same functional partition can be
three reused across three different timing models to simulate
different microarchitectures.

For a single in-flight instruction, the operations are typically
invoked in the order they are given in Figure 7 (operations
which do not apply may by skipped). This corresponds to
instructions flowing through pipeline stages in a real computer:
the instruction is fetched (getInstruction) before it is
decoded (getDependencies), takes place before register
read (getOperands), and so on. The order in which the tim-
ing model invokes these operations on separate in-flight
instructions determines the state of the machine. We can con-
ceive of a timing model which fetches ten instructions before
decoding one, for example.

As the functional partition executes each operation, it
changes the architectural state of the simulator, and thus the
result of subsequent operations. For example, executing
getResult() on an instruction which writes register R5 will
mean that a subsequent getOperands() call will see that
value of R5. If an instruction is executed in some way which is
not consistent with program order, the abort() operation
undoes its effects and allows it to be retried. All operations are
speculative and may be aborted until the commit() operation
is called, at which point they become permanent.

The distinction between local writes and global writes
allows for accurate control of inter-thread communication. The
fact that the timing model uses these operations to control the
exact timing, in modeled time, of the visibility of data allows for
precise control of the timing of inter-thread communication.
This is a key attribute of a closely-coupled functional partition.

Using these constructs a timing partition can accurately
model advanced processor features such as out-of-order issue,
or speculative execution, as shown in Figure 9. Data speculation
can be supported by having the timing model provide results of
the operations themselves (telling the functional partition that
the result of getOperands should be zero, for instance),
though this is not yet supported.

Timing and Function

Function

Function

Function

TimingFunctional-First

Timing-Directed

Timing-First

Integrated

Timing

Timing

Arrows indicate inter-simulator interactions per simulated instruction.

Figure 5: Mauer, Hill, and Wood’s categorization of partitioned simulators
based on their interaction. Source: [13]



Operation Parameters Return Value Effect

getInstruction Addr Inst Fetch the instruction at this address and place it in flight.

getDependencies Inst Deps Get the dependencies of this instruction relative to other in-flight instructions.

getOperands Inst Srcs Read the register file and prepare the instruction for execution.

getResults Inst Result
Execute the instruction and return the result, including branch information.
For loads and stores, do effective address calculation.

doLoads Inst Value Perform and memory reads associated with the instruction.

doSpeculativeStores Inst - Make any memory writes visible to local loads.

commit Inst - Commit the instruction’s local changes and remove it from being in-flight.

abort Inst - Abort the instruction’s local changes and remove it from being in-flight.

commitStores Inst - Make any memory writes globally visible.

Figure 7: Summary of functional partition operations.

Figure 8: 3 different timing models operating on the same instruction stream. Each simulator must do the same fundamental amount of work. The only change is how
this work relates to model time.
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in-order pipeline. This machine
stalls on a read-after-write haz-
ard, as between instructions 1
and 2. Thus this small program
takes 8 model cycles to execute,
assuming a perfect memory hi-
erarchy and a one-cycle ALU.

8B) A timing model of the same
machine as 9B, but now model-
ing a bypass path which re-
moves read-after-write hazards.
The performance model gives
no indication of the hardware
cost of this path, but only perfor-

mance improvement.

8C) A 2-way superscalar model
performs multiple operations on
the functional partition before
advancing the model clock cy-
cle. Note that the functional par-
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it is now being used to model a
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Figure 6: Overview of our timing-driven simulator semantics. The functional partition provides several operations which the timing model uses to produce a cy-
cle-accurate simulation.



It should be noted that the lack of ordering restrictions is
loose compared to the requirements of most modern processors.
Using these operations one could construct timing models
which commit instructions out of program order, or fetch
instructions non-sequentially. We specifically chose this level
of granularity because it allows timing partitions the flexibility
to model all types of speculation. In most cases it makes sense
for the functional partition to check that committed instructions
follow program order, raising a simulator exception if depend-
encies are violated.

IV. FPGA IMPLEMENTATION

A. Architecture Overview

We implemented our simulator using the Bluespec
SystemVerilog [2] high-level synthesis language. Our FPGA
implementation concentrates on making good use of
port-limited BlockRAMs while maintaining a high-degree of
parallelism. As shown in Figure 10, we use BlockRAMs to track
the register state and memory state of the machine, as well as
information about in-flight instructions. In-flight instructions
are tracked using tokens, pointers which allow the timing parti-
tion to refer to specific instructions without passing large
amounts of data back and forth.

The number of bits used to represent the token determines
the number of instructions which may be in-flight simulta-
neously. This size is set by a static compile-time parameter,
allowing it to be increased if a particular value proves insuffi-
cient (though doing so will increase the size of all the tables). It
is often necessary to compare two in-flight instructions to see
which is older (for example, see the store buffer below). For
efficiency we wish to do this comparison using the tokens of the
instructions. In order for this comparison to function properly
we must add the restriction that in-flight instructions are retired
(or aborted) in token order. This represents a restriction over the
general semantics of our functional partition, but is consistent
with the semantics of the architectures we are modeling.

The functional partition operations described previously in
Section 3 are implemented as pipelines which read and write the

token tables. For example, the getInstruction operation
writes the address and instruction tables, which are later read by
the getResult operation. An extra operation, getToken,
was added to allocate a new in-flight instruction. Furthermore,
the getOperands and getResult operations were merged
for efficiency – none of the models we explored here utilized
these separately, and by merging them we were able to eliminate
intermediate state. A detailed look at the implementation of the
operations is given in Figure 11.

To implement rollbacks the register state was implemented
as a physical register file with a maptable and a freelist, as would
be found in many out-of-order processors. Rollbacks of stores
are supported via a store buffer in the Memory State. In order to
perform rollbacks quickly, snapshots of the maptable are made
for every branch instruction. This allows the timing model to
rewind the state of the machine to a previous branch in 2 FPGA
cycles if there is a snapshot. Rewinds to non-snapshotted tokens
are much slower as they are done by rewinding to the youngest
previous snapshot and sequentially walking the in-flight tokens
to recreate the maptable.

V. EVALUATION

A. Timing Model Creation

In order to evaluate our functional partition we identified
three target circuits, shown in Figure 12: An unpipelined pro-
cessor (12A), a 5-stage in-order pipeline (12B), and a MIPS
R10K-like 4-way superscalar out-of-order machine (12C). In
order to emphasize the differences in the processor pipelines
themselves the systems were assumed to be paired with a sin-
gle-cycle “magic” memory rather than a realistic cache
hierarchy. Because ISA research is not the focus of this project,
we implemented a subset of the MIPS instruction set. For a
detailed discussion of creating efficient timing models for
FPGAs see [16].

As we noted earlier, the timing-directed simulation scheme
means that the timing model does not need to implement all
structures, as some of their functionality is handled by the func-
tional partition. Figure 13A shows a summary of the various
structures in the target systems, and the degree to which they
were present in the performance models, including a summary
of the number of lines of code required to implement each parti-
tion (Figures 13B and 13C).
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Figure 10: Overview of our functional partition FPGA architecture. BlockRAM
tables track information about each in-flight instruction. The register state in-
cludes a physical register file, maptable, freelist, and snapshot/rollback mecha-
nism to handle aborts. The memory state includes an on-FPGA cache and a store

buffer which determines the youngest store to a particular address.
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Figure 9: Timing model demonstrating out-of-order issue and speculative exe-
cution. Here the branch is stalled on a dependence, and the timing model pre-
dicts branch not-taken and issues past it. Upon branch resolution the abort

mechanism is used to rollback speculative operations.



Another motivation for the timing-directed scheme was to
encourage reuse. Figure 13D summarizes the code reuse which
was possible between the five-stage and out-of-order timing
models. First off, the entire functional partition was reused with
no changes. Within the timing partition, the greatest possibility
for reuse came in the branch predictor, which was reused verba-
tim. This matches our intuition, as the behavior of a branch
predictor is mostly separate from the surrounding pipeline. Par-
tial reuse was possible in the fetch, execute, and data memory
modules, which were essentially taken from the 5-stage pipeline
and extended to more general, superscalar versions. No such
reuse was possible in the decode stage or issue stages, where the
out-of-order machine’s ROB was different enough from the
5-stage pipeline’s simple scoreboard to necessitate full
reimplementation.

B. Performance Assessment

In order to assess our timing-directed simulation scheme we
ran five simple benchmarks: numeric median and multiplica-
tion, quick sort, Towers of Hanoi, and vector-vector addition.
While we recognize the limitation of trying to assess machines

without a realistic memory hierarchy running toy benchmarks,
these programs were nevertheless sufficient to demonstrate sev-
eral interesting features of our simulator. The results of this
assessment are given in Figure 14.

First let us examine the simulation results about the target
designs. The performance of the unpipelined processor is unsur-
prising: it always takes one model cycle to execute every
instruction, giving it a CPI of 1. The 5-stage pipeline target
achieves an average CPI of 2.7 on our benchmarks. The
out-of-order model is 1.5 to 3.6 times faster than the 5-stage,
depending on the amount of instruction-level parallelism avail-
able. Ultimately these CPIs would be offset by physical factors.
Presumably the pipelined processor would ultimately achieve a
much higher clock rate than the unpipelined machine. Similarly
the performance benefit of the out-of-order machine will ulti-
mately cost increased circuit area. Performance models
(whether implemented in an FPGA or in software) do not give
insight into these physical aspects. System architects must
assess which performance point is most likely to meet the needs
of a particular project.

Figure 11: The functional partition operations are implemented as pipelines which read and write the BlockRAM tables, as well as interacting with system memory.
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11A) The getToken operation creates a new in-flight instruction and returns
the associated token. The getInstruction operation fetches the given ad-

dress from memory, records it, and returns it.
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11B) The getDependencies operation allocates a physical register for the
destination, and looks up which physical registers will contain the operands.
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11C) The getOperands and getResult operations are merged into one
pipeline for efficiency. This pipeline reads the physical register file, as well as
looking up the instruction itself to retrieve opcodes and immediate operands.
The instruction address is retrieved for relative branches. Memory operations

pre-calculate their effective addresses at this step.
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11D) Loads read the value from memory, write it to the register file, and return
it. Stores read the register file and make the value appear to local loads. The
commit operation frees the previous physical register which was mapped to a
particular architectural register and deallocates the token. Not pictured: the

commitStores operation commits the store in the memory state.



Now let us examine the performance of the simulators them-
selves. Here the story is quite different: the unpipelined model
achieves the slowest simulation rate, whereas the 5-stage is the
fastest, with the out-of-order in the middle.

It is not surprising that the unpipelined simulator is slow: the
timing model executes every one of the seven functional parti-
tion operations for an instruction before even beginning to fetch
the next one. Overall this results in 41 FPGA cycles to simulate
one model cycle. Timing-directed simulation is not a good
match for this target because the model is not able to take advan-
tage of the parallelism available in the functional partition.

The simulator of the 5-stage pipeline, on the other hand, is
strictly faster than the simulator of the unpipelined processor,
requiring an average of 7.4 FPGA cycles to simulate one model
cycle. This is because of two factors: first, the pipelined nature
means that the model executes functional partition operations in
parallel. Second, the fact that the target circuit stalls the pipeline
for back-to-back dependent instructions actually increases sim-
ulation rate. Pipeline bubbles are fast to simulate as they do not
necessitate invocations of the functional partition.

The superscalar out-of-order simulator is the most difficult
to evaluate. Its FPGA-cycle-to-Model-cycle Ratio (FMR) is sig-

nificantly slower than the 5-stage pipeline (15.6 versus 7.4). In
this case, the limiting step of this simulator comes from the tim-
ing model itself. While the target machine would implement the
out-of-order issue logic using combinational CAMs, these
structures are extremely expensive to implement on FPGAs. In
order to save resources this logic was simulated using sequential
searches of FPGA RAM resources. In the worst case (when the
4 instructions to issue are found consecutively at the bottom of
the table) the issue stage could take 32 FPGA cycles to decide
which instructions to issue next – though this case never
occurred in our benchmarks.

While these tradeoffs slow the rate of simulating clock
cycles, the situation is different when we consider the rate of
simulating instructions. By this metric the out-of-order simula-
tor is nearly as fast as the 5-stage (5.1 versus 4.7 MIPS). This is
because the superscalar nature of the target means that each tim-
ing stage executes multiple functional partition operations per
clock cycle. Overall both simulators are equally good at keeping
the functional partition busy, and while the out-of-order model
takes longer to simulate a single cycle, the performance
improvement of the model means that it will need to simulate
significantly fewer such cycles to run a benchmark into comple-
tion.

Figure 12: Target processors and their simulator implementation.
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12B) 5-stage processor target. As with the unpipelined model, the IMEM,
DMEM, ALU, and Register File are not present. The branch predictor struc-
ture is implemented entirely in the timing model, as it relates to nothing in the
functional partition. On mispredicts a rewind() is issued to represent a

pipeline flush, and simulated no-ops are passed through the pipeline.
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12A) Unpipelined processor target. The implementation executes each func-
tional partition operation before incrementing model time, thus simulating an
unpipelined processor. The ALU, IMEM, and DMEM, are not present, as they
are simulated entirely via functional partition operations. The register file is

also not present, as the functional partition’s register state is sufficient.
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12C) Out-of-order, 4-way superscalar target. Again the IMEM, DMEM, and Register File are not present. The branch predictors are reused from the 5-stage model.
The superscalar behavior is simulated by making multiple calls to the functional partition before advancing model time. The simulated ROB is substantially simpler
than a real ROB, as it does not need to implement the dependency tracking logic. Instead it uses the result of the getDeps() operation and then uses a sequential

search to determine which instructions should be issued next. The ALUs are not present, as they are represented by multiple calls to thegetResult() operation.



Unpipelined/
Functional Partition

5-stage Out of Order

FPGA Slices 6599 (20%) 9220 (28%) 22,873 (69%)

Block RAMs 18 (5%) 25 (7%) 25 (7%)

Clock Speed 98.8 MHZ 96.9 MHZ 95.0 MHZ

Unpipelined 5-stage Out of Order

Average FPGA-cycle-
to-Model-cycle Ratio

41.1 7.49 15.6

Simulation Rate 2.4 MHZ 14 MHZ 6 MHZ

Average Simulator IPS 2.4 MIPS 5.1 MIPS 4.7 MIPS

Figure 14: Evaluating the performance of the target circuits, and of the simulators of the targets.

14C) Synthesis results for a Virtex 2Pro 70 FPGA platform. Results were ob-
tained using Xilinx ISE 8.2i. The unpipelined timing model requires so few

resources that its results can be considered equivalent to that of the func-
tional partition alone.
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Out-of-Order No Yes Yes Partial No Partial No No No No

Datatypes Token Tables Scoreboard ALU Register State Memory State Store Buffer
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Unpipelined 405

5-Stage 156 190 148 138 93

Out-of-Order 79 953 157 N/A 30

Functional Partition Fetch Branch Predictor Decode Issue Execute Memory Ops Writeback

Full Some Full None None Some Some Some

Figure 13: Assessment of the benefit of partitioning to model development time.

14C) Impact of FMR on simulation speed. The out-of-order model requires a
long time to simulate clock cycles, but simulates instructions nearly as fast as
the 5-stage pipeline, as the better target CPI means more instructions are be-

ing executed every cycle.

13A) Almost all large processor structures are implemented within the functional partition. The timing model is responsible for controlling simulation, and thus im-
plements the program counter and branch prediction. The functional partition operations eliminate the need for structures such as the register file and ALU. The de-
pendencies tracking significantly eases the implementation burden of the issue logic, with the timing model generally tracking details like the number of model

13B) Lines of Bluespec code to implement the functional partition.

13C) Lines of Bluespec code to implement the various timing models. The out-of-order model Decode stage interacts with the branch predictor, which simplifies the
Fetch stage despite its being 4-way superscalar. Similarly the complex ROB simplifies the out-of-order writeback. Memory ops are folded into the execute module.

13D) Code reuse between the 5-stage pipeline and the out-of-order model. The entire functional partition was reused with no changes. Most pipeline stages were
adapted from being single issue to being superscalar. However the complexity of the out-of-order issue logic meant that the Decode/Issue modules had to be imple-

mented from scratch. The branch predictor was directly reusable with no adaptation. We expect a realistic cache hierarchy to be similarly portable.
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14A) Target processor performance matches our intuition. The 5-stage pipe-
line stalls enough that it loses performance. The out-of-order processor’s per-
formance is dependent on the amount of instruction-level parallelism
available, and thus does best on the vector-vector add benchmark. Physical fac-
tors would offset these numbers – we expect the clock rate of the unpipelined

processor to be slow, and the area of the out-of-order model to be high.
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14B) The performance of the simulators themselves is more interesting. De-
spite the fact that 5-stage pipeline is a slower target, its simulator actually
faster overall than those of the other models. The out-of-order simulator’s
performance is extremely benchmark dependent. The unpipelined model’s
lack of parallelism means it cannot exploit the functional partition effectively.



VI. DISCUSSION

In this paper we explored the idea of using timing-directed
simulation on FPGAs. Our motivation was to gain a significant
increase in model performance while offsetting the increase in
development time which comes from using hardware descrip-
tion languages. We implemented three timing models and
demonstrated that our partitioning strategy reduced the amount
of structures which needed to be implemented, and encouraged
code reuse across different timing models. Although the three
timing models represented vastly different target systems, we
demonstrated that they all could successfully interact with the
same functional partition and achieve good rates of simulation.

In the future we hope to implement a complete system simu-
lator with support for multicore models on an FPGA.
Additionally we plan to integrate our FPGA simulator with a
software component running on a host processor. This software
will be used to handle rare but difficult-to-simulate events such
as system calls and simulated DMA transfers. While communi-
cation with the host processor will undoubtedly be slower than
communication on-chip, related results have shown that if the
transferred events are rare enough, then the impact on overall
execution rate is small [5].
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