
ABSTRACT

Hardware-design languages typically impose a rigid communica-
tion hierarchy that follows module instantiation. This leads to an
undesirable side-effect where changes to a child’s interface result in
changes to the parents. Soft connections address this problem by
allowing the user to specify connection endpoints that are automati-
cally connected at compilation time, rather than by the user.
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1. INTRODUCTION

Modularity is a critical feature of high-level hardware description
languages (HDLs). Ideally designers should be able to swap alterna-
tive modules in a “plug-and-play” manner. Such swapping enables
code reuse and design-space exploration, and thus enhances
designer productivity.

It is becoming increasingly popular to insert an FPGA into a gen-
eral-purpose computer using a fast link such as PCIe [8] or Intel
Front-Side Bus [7]. In such a setup the FPGA, configured by a stan-
dard HDL toolchain, acts as an accelerator to the CPU, running
standard software. This usage model is gaining traction in the
microprocessor performance modeling community, being used by
projects such as Protoflex [6], UT-FAST [4], [5] and our HAsim
simulator [2], [9] as part of the umbrella RAMP project [11]. In such
an environment FPGA reconfigurations are frequent, so modular
refinement and reuse become especially important.

In structural HDLs it can be difficult to swap one module for an
alternative in isolation. This is because communication between
modules can only follow the instantiation hierarchy. A module can
only pass wires to its parent and children. Cross-hierarchical com-
munication goes through the least-common ancestor and every
other intervening node. If a new module requires communication
with anything other than its direct parent, then we must change the
parent module, the parent’s parent, and so on.1

Consider the situation shown in Figure 1. The designer knows that
the Branch Predictor on the FPGA has a bug. He wants to swap it for
a variant that outputs additional debugging information, that is sent
to the host processor using PCIe. In order to do so he must add those
wires to the Fetch, Front End, and top-level Simulator modules,
then down to the Debug block.

The situation quickly deteriorates as we add more module alterna-
tives to the system. In Figure 2 we have three alternative Fetch units
and two Front Ends that the designer is exploring. Each setup uses
the branch predictor, and each manifests the bug in different ways.
The designer must now produce alternative implementations of
these, one of which does not pass debugging wires up, and one
which does. In the worst case the number of modules needed grows
multiplicatively with the number of alternatives.

In this paper we attack this problem by “softening” the rigid com-
munication hierarchy—thus we name our technique Soft
Connections. This scheme restores modularity by allowing the
designer to specify a logical topology of communication which is
separated from its physical implementation. The endpoints are not
connected by the user, but rather done automatically using static
elaboration. Using Soft Connections restores modularity, allowing
individual modules to be swapped in isolation, independent of the
instantiation hierarchy.
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1
We do not consider Verilog Out-of-Module References (OOMR) to be a

satisfactory solution as they break modular abstraction. Languages such as
SystemVerilog raise the level of abstraction so that the user works with typed
interfaces instead of wires, but the basic problem remains.
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Figure 1. Introducing cross-hierarchical communication.
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This paper deals with whole-design compilation. Discussion of sep-
arately-compiled blocks is omitted for space concerns, but is
presented in [1]. Although this paper uses the simulation of micro-
processors using FPGAs as an ongoing example, the technique is
general and could be used for ASIC design.

2. BACKGROUND: STATIC ELABORATION

Implementing Soft Connections in an existing structural HDL such
as Verilog would require either modifying the language or using
external scripts to transform the source code. Instead, we implement
our Soft Connections scheme in Bluespec SystemVerilog [3], an
existing hardware description language.

Bluespec provides a powerful static elaboration phase which
allows users to transform their design arbitrarily without giving up
the static safety a hardware-aware language provides. During elabo-
ration statically known values are aggressively propagated in order
to resolve polymorphism and “unroll” static loops and function
calls. For example, the designer may describe an n-bit ripple-carry
adder as follows:

function bit[n:0] addRC(bit[n:0] x, bit[n:0] y);
bit[n:0] res = 0;
bit c = 0;
for (int k = n; k >= 0; k) begin

res[k] = x[k] ˆ y[k] ˆ c;
c = (x[k] & y[k]) | (x[k] & c) | (y[k] & c);

end
return res;

endfunction

The designer may then call this addRC function multiple times
using different types. The HDL compiler will execute the function
and its loop, using statically known values of n and k. If x and y are
known statically than the function itself may result in no hardware,
but rather a new static constant. However if x and y are dynamic
inputs to the hardware block then the result is a netlist of AND- and
XOR-gates. If for some reason n was dynamic, the result would be
an error as the loop could not be turned into bounded hardware.

HDLs such as Verilog feature elaboration primarily through the use
of generate blocks, which allow the user to create static con-
trol-flow structures such as loops and if-statements. Bluespec
expands this into a Turing-complete software interpreter. This
allows the user to work with high-level datatypes such as
linked-lists or unbounded integers. These types do not have a hard-
ware representation, but the designer can use them to influence the
hardware that the compiler generates. For example, here is a
Bluespec module that takes as input a list of integers. For each one
it instantiates a 32-bit FIFO of that depth (note that <- is the module
instantiation operator in Bluespec):

module mkFIFOList#(List#(Integer) depths);
let result_list = nil;
while (depths != nil) begin

Integer d = head(depths);
FIFO#(bit[31:0]) q <- mkSizedFIFO(d);
result_list = append(result_list, q);
depths = pop(depths);

end
return result_list;

endmodule

This use of static elaboration could be thought of as “embedding a
small software program in our hardware description source that the
compiler runs to generate hardware.” Soft Connections represent a
novel use of static elaboration, and help to demonstrate how a more
powerful notion of elaboration can benefit hardware designers.

3. SOFT CONNECTIONS
3.1. Point-To-Point Connections

Soft Connections are a library of communication primitives that the
designer uses to describe a logical topology of communication. The
basic Soft Connection is a point-to-point First-In-First-Out channel.
This channel is used as if it were a familiar guarded FIFO (Figure 3).

Where Soft Connections differ is the instantiation. Instead of
instantiating a single channel module and passing it to both of the
users, the communicating modules instantiate the endpoints sepa-
rately, naming the channel with a unique identifier. For example:

let linkToDebug <- mkConnectionSend(“debug”);

Elsewhere, the receiving module instantiates the dual endpoint:

let linkFromSender <- mkConnectionRecv(“debug”);

The channel itself is instantiated during elaboration (Figure 4).

As Soft Connections often represent communication between dis-
tant modules, we have chosen to implement them using a guarded
buffer. Flow-control is handled via Bluespec’s standard guarded
interface scheme [10], so that the producer’s action may not be
taken if the buffer is full, nor the consumer’s if it is empty.

If our algorithm finds no matching endpoint with the same name,
the result is a compilation error. If an error is not desired either end-
point may be specified as optional:

let linkFromSender <- mkConnRecvOptional(“debug”);

An optional receiver with no corresponding sender will never
receive data. Data can be enqueued to an optional sender with no
corresponding receiver but that data will simply disappear. Either
are like a wire unterminated on one side - they will have no effect on
synthesis results.

method Action train(BPredInfo inf);
if (inf.branchTaken != table.lookup(inf.pc))
link_to_debug.send(debugMsgMispredict(inf.pc));
table.update(inf.pc, inf.branchTaken);

endmethod

rule debugToPCIe;
let msg = link_from_sender.receive();
pcie.transmit(pcieRequest(msg));
link_from_sender.deq();

endrule

Figure 3. This branch predictor sends debug information when
it is trained with a misprediction. Separately, the Debug module

transmits the debug information to software using PCIe.
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3.2. One-to-Many and Many-to-One

A one-to-many send is a broadcast that transmits the same data to all
listeners (Figure 5). A many-to-one receive is a channel multiplexed
by an arbitrator, that also tags the data with a bit field indicating
which sender the data comes from (Figure 6). These tags are
assigned by our algorithm.

One-to-many connections are useful for relaying control messages
from software to many hardware modules—for instance to start,
pause, or reset operation. Many-to-one receives are useful for
aggregating data such as assertions or debugging information for
transmission to software.

3.3 Clients and Servers

The uni-directional channels presented above represent the primi-
tive Soft Connections on which our elaboration algorithm operates.
We then use these as building blocks to create useful abstractions for
bi-directional communication. The first abstraction is that of a
request/response paradigm (Figure 7). The client makes requests
and gets responses. The server receives requests and makes
responses.

This arrangement is often used to connect functional units to their
users. This idea can be combined with one-to-many and
many-to-one connections to make multi-user clients and servers. A
server with a many-to-one connection can receive requests from
multiple clients, and uses many point-to-point connections which
deliver responses (Figure 8). The dual of this is a client that is con-
nected to many servers. It broadcasts requests to all of them, then
receives the responses in serial. This is a one-to-many send for the
requests, and a many-to-one receive for the responses (Figure 9).

3.4. Example: Simulation Controller

The simulation controller presented in Figure 10 represents an
example of how Soft Connections can improve designer productiv-
ity. The controller is a module that sits on the FPGA and
communicates with software on the CPU, mediating interaction
with the PCIe link. The controller instantiates six sub-controllers:

• Commands (Client) : This receives commands from software
such as “start” or “pause” and broadcasts them to listening mod-
ules. These modules respond when simulation is finished. Thus
this module is a client of many distributed servers.

• Params (Client): This receives dynamic parameters set on the
command line when the user initiates the software. These pa-
rameters are sent to the appropriate listeners. Thus, for example,
the cache can be disabled without re-synthesizing the design.

• Events (Client): These represent a detailed trace of results from
the simulator. Software enables or disable event-dumping dy-
namically, and these requests are passed on to the modules.

• Stats (Client): Periodically the host software can request a
dump of statistics. This request is relayed to all listeners, who
respond with their current values, which are relayed to the host.

• Assertions (Listener): When an assertion fails in a hardware
module, it sends a message to this controller, which relays it to
software that prints out a message and ends the simulation
gracefully.

• Debug (Listener): This module listens for debugging messages
and relays them to the host software where they are logged.

Using Soft Connections for the communication from these control-
lers to the simulator modules results in several benefits. First, the
designer can fluidly swap modules without rewiring their connec-
tion to the controllers. This encourages users to create many
variations of their module, without worrying that (for example) a
direct-mapped write-through cache contains a smaller set of statis-
tics than an associative write-back cache. Finally, it raises the level
of abstraction for the user, who just records stats and assertion fail-
ures , without worrying about how this information is
communicated to software.

4. PHYSICAL INTERCONNECT SHARING

Soft connections make life easier for the designer by making mod-
ule communication implicit. The disadvantage of this is that the
designer can lose intuition about the implementation cost of their
communication network. For example, we have found that the
assertions facility is useful for the FPGA in practice. Thus it
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becomes frequently used. A typical configuration of our simulator
has 42 dynamic assertions, most of them sanity checks relating to
correct instruction execution. Implementing these as 42 FIFOs arbi-
trating directly with the controller is expensive, and places a large
burden on the place-and-route tools due to the fan-in. Assertion fail-
ures are (hopefully) a rare occurrence, so it makes sense to
aggregate them using a multiplexed physical interconnect such as a
tree. Such a scheme increases the latency a message takes to reach
the endpoint, but can result in more efficient hardware.

Other rarely-used connections such as statistics can also be mapped
onto the same interconnect. Thus the user can separate a Soft Con-
nection’s physical representation (exclusive channel or shared
interconnect) from its logical representation (point-to-point,
one-to-many, etc).

The user creates a shared connection by first instantiating a network
station. This station is then passed in to the constructor of the Soft
Connection:

let fetchStation <- mkStationTree(“fetch”);
let linkAssert <- mkConnSendShared(fetch_station,

“asserts”);

Figure 11 shows an example mapping many Soft Connections onto
the same shared interconnect. Whether a Soft Connection is imple-
mented as an exclusive or shared interconnect is transparent to the
modules which use the endpoints—they use the connection’s opera-
tions (send, receive, broadcast, etc) as normal. The only difference
from the user’s point of view is that the latency of communication
between sender and receiver has increased, as the messages are in
fact being passed over an interconnect which is shared with other
endpoints. Our elaboration algorithm connects the stations together
into a physical network, and creates a routing table to dynamically
guide messages to the appropriate destination. The addressing and
routing of messages is handled by the stations themselves.

Currently our algorithm connects the stations into a branching tree
topology that follows the module instantiation hierarchy. (Layers in
the hierarchy with no stations are optimized away.) This topology
was chosen because it maximizes spatial locality by keeping the sta-
tions near their endpoints, and because it results in a single static
route between two given endpoints, which minimizes station rout-
ing logic. In the future, support is planned for other physical
network topologies such as rings, two-way rings, or grids.

5. CONNECTION ALGORITHM

When a module instantiates a Soft Connection endpoint it is implic-
itly transforming the interface it presents to the outside world. For a
module with interface i its new interface i’ is a tuple of i plus linked
lists that describe what Soft Connection endpoints the module has
instantiated:

i’ = (i, {sends}, {recvs})

The module’s parent (and the parent’s parent) see only the original
interface i. This, along with collecting all the lists from all of the
modules, is accomplished using a standard Bluespec library called
ModuleCollect.

Algorithm 1 describes our process for connecting Soft Connection
endpoints directly. For space reasons we omit many-to-one connec-
tions, which work similarly. Connections that are unmatched (and
not optional) result in a compilation error via Bluespec’s built-in
error function, which halts elaboration.

The algorithm for instantiating Soft Connections sharing a physical
interconnect is most naturally described as a recursive module—it
may call itself during elaboration, resulting in a tree-topology of sta-
tions connected to each other:

Algorithm 1. Connecting Soft Connection endpoints directly.

1: (sends, recvs) = … // Get collected info
2: for each s in sends do
3: rs = matchByName(s, recvs)
4: if rs ={} and not optional(s) then
5: error(“Unmatched Send ” + s)
6: else if rs = {r} then
7: connect(s, r) // Instantiate buffering
8: else
9: connectBroadcast(s, rs) // as in Figure 5

10: recvs = recvs – rs
11: for each r in recvs do
12: error(“Unmatched Recv” + r)
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module mkStationTree#(STATION_INFO info)(STATION);
List#(STATION) child_stations = nil;
for (int x = 0; x < length(info.children); x++)
begin
let cur_child = info.children[x];
// Recurse down the tree.
let c <- mkStationTree(cur_child);
child_stations = append(child_stations, c);

end
let table <- mkRoutingTable(child_stations,

info.recvs, info.sends);
let s <- connectStation(table, child_stations,

info.recvs, info.sends);
return s;

endmodule

The routing table is constructed mechanically using Algorithm 2.
We have omitted the details of routing one-to-many sends for space
concerns. They have the potential to be sent to multiple receivers
and children. Additionally, they are always routed up to the parent
(which drops the message if none of its other children are receivers).
Endpoints that are unmatched at the root station result in an error, as
in the unshared case.

6. ASSESSMENT
6.1. Impact on Productivity

In this section we examine a real-world example in order to give
some insight into how Soft Connections can improve the process of
engineering an FPGA-based accelerator. For the example we have
chosen an FPGA-based model of a 5-stage microprocessor pipeline
that runs the Alpha instruction set using the HAsim simulator [2].

As shown in Figure 11, the FPGA is configured into a simulator of
this target machine. This simulator bears little resemblance to the
5-stage pipeline itself, but accurately computes the performance of
the target. This is because the timing properties of the physical
implementation—such as the FPGA BlockRAM or the speed of
memory through the PCIe—are different from the speeds in the
machine we wish to study. Thus we add logic to translate FPGA
cycles into model cycles in the target. The simulator is divided into
three major partitions: model timing, model functionality, and the
simulation controller. The full technique for creating such a simula-
tor is presented in [2].

We synthesized our simulator for a Virtex5 110t part on a PCIe
board manufactured by HiTechGlobal [8] using Xilinx ISE 10.1:

Slice LUTs 47214/69120 (68%)

BlockRAM 121/148 (81%)

Critical Path 15.313 ns

Frequency 65 MHZ

It may seem surprising that modeling a simple architecture would
use so many FPGA resources. This is because the simulator uses a
large number of FPGA resources as on-chip cache. As we have
divorced FPGA time from model time, our simulator can devote an
arbitrary amount of on-chip memory to cache, even if the target has
a smaller cache. This extra cache speeds up simulation, but has no
effect on the behavior of the target machine. (In some sense, any
unused slice is a wasted resource for an accelerator FPGA.)

Figure 12 gives an overview of how our design uses Soft Connec-
tions. We have attempted to quantify the productivity these provide
by defining a metric called span. For each connection c between two
modules:

span(c) = the number of module instantiation boundaries
between the send and receive endpoints.

Span measures the potential work the Soft Connection is saving the
designer. Namely, the number of modules that the designer would
have to change if she was not using Soft Connections and swapped
in a module with a different interface. We acknowledge the limita-
tions of measuring the amount of work that our technique
potentially can save, but believe that this metric gives valuable
insight into the degree that communication between distant end-
points can exist in a hardware design.

Figure 13 shows a histogram of the span of every connection in our
simulator—i.e., our simulator contains 74 connections with a span
of 7. Spans of 0 represent optional connections which are not being
used. We found that the average Soft Connection in our simulator
crosses 5.27 module instantiations, and that 50% of them cross 7 or
more. This demonstrates that cross-hierarchical communication can
be prevalent in real-world situations.

6.2. The Effect of Shared Interconnects

Much of the cross-hierarchical communication—and all of the
many-to-one/one-to-many connections—involve communicating
data to or from the Simulation Controller (Section 3.4). The cost of
multiplexing between these signals can be high, and can result in a
burden on the place and route tools. In order to explore this we
implemented an alternative version of our simulator where all con-
nections to the controller shared the same interconnect tree.

Overall 100/217 connections were mapped onto this tree, represent-
ing the statistics, assertions, commands, parameters, and events
facilities. The tree had 14 stations arranged into a depth of 4, with
the controller as the root node. All told, this tree spanned 20 module
instantiations. We found this version consumes an additional 3076
slice LUTs (4% of total available) because of its extra buffering and
routing tables. RAM utilization and clock speed are not affected, as
the critical path is elsewhere.

Multiplexing these connections onto the same tree can increase the
latency of communication. To measure the impact of this on

Algorithm 2. Constructing a station’s routing table

1: let (childs, sends, recvs) = ... // Parameters
2: // Routing decisions for traffic from local sends.
3: for each s in sends do
4: if matchByName(s, childs) = {c} then
5: // A child (or its descendant) has the recv.
6: sendRoute[s] := toChild c
7: else // The endpoint is not in this subtree.
8: sendRoute[s] := toParent
9: // Routing decisions for traffic from children.

10: for each c in childs do
11: // Find all sends this child is routing up to us.
12: for each s in sendsRoutedToParent(c) do
13: if matchInStation(s, childs) = {c2} then
14: // This station is the least-common ancestor.
15: childRoute[c][s] := toChild c2

16: else if matchByName(s, recvs) = {r} then
17: // The endpoint is local to this station.
18: childRoute[c][s] := toRecv r
19: else // The endpoint is not in this subtree.
20: childRoute[c][s] := toParent



dynamic performance we ran three SPEC benchmarks on each
model. The results, shown in Figure 14 demonstrate that over a run
which spans billions of model cycles there was no measurable
impact on performance—the differences in total FPGA cycles fall
within expected run-to-run variation.

7. DISCUSSION

Soft Connections are currently implemented as direct point-to-point
connections, or as a shared tree topology. In the future we plan to
explore adding support for new physical communication topologies
such as rings or grids. We expect grid networks to present a particu-
lar challenge as the stations need awareness of the dynamic traffic
conditions in order to route messages efficiently. We believe that
insights from networks-on-chip—which are traditionally used to
connect distinct hardware cores together—may also apply to dis-
tributing the connections within the cores themselves.

As FPGA accelerators become more common the barrier to entry
becomes a large concern. Traditional tools can force the designer to
spend too much effort thinking about on-chip communication and
not enough time thinking about the actual logic. Soft Connections
are a way to automatically generate a physical implementation of
communication from its logical specification. This provides a richer
module interface and makes the communication hierarchy less
rigid. We believe that these kind of ease-of-use efforts will be criti-
cal for FPGAs to gain acceptance as computation accelerators in
general-purpose computers.
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Figure 13. Histogram of Soft Connection span.

Category Number

Intra-Timing 33

Intra-Functional 19

Intra-Controller 20

Timing-Functional 24

Timing-Controller 42

Functional-Controller 76
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Total 217

Figure 12. Number and use of Soft Connections in the HAsim
inorder pipeline model.

Benchmark Model Cycles FPGA Cycles: Baseline FPGA Cycles: Shared Change

test 164 gzip 7,612,202,736 120,866,746,639 120,848,407,550 -.0002%

test 176 gcc 4,412,926,919 97,284,304,169 96,331,305,044 -.001%

test 181 mcf 515,321,465 13,393,128,486 13,375,809,359 -.001%

Figure 14. Running SPEC benchmarks on the shared interconnect version.
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Figure 11. Using the HAsim simulator to model an inorder microprocessor pipeline. The FPGA is not configured into the target pipe-
line itself, but into three partitions which interoperate to model the pipeline at the fastest rate possible. Only the timing partition must
be changed to represent the specifics of the target pipeline. The controller and functional partition can be reused across targets [2].


