
TRE00040 ACM (Typeset by spi publisher services, Delhi) 1 of 26 September 1, 2009 19:1

16

A-Port Networks: Preserving the Timed 1

Behavior of Synchronous Systems for 2

Modeling on FPGAs 3

MICHAEL PELLAUER and MURALIDARAN VIJAYARAGHAVAN 4

Massachusetts Institute of Technology 5

MICHAEL ADLER 6

Intel Corporation 7

ARVIND 8

Massachusetts Institute of Technology 9

and 10

JOEL EMER 11

Massachusetts Institute of Technology and Intel Corporation 12

Computer architects need to run cycle-accurate performance models of processors orders of mag- 13
nitude faster. We discuss why the speedup on traditional multicores is limited, and why FPGAs 14
represent a good vehicle to achieve a dramatic performance improvement over software models. 15
This article introduces A-Port Networks, a simulation scheme designed to expose the fine-grained 16
parallelism inherent in performance models and efficiently exploit them using FPGAs. 17

Categories and Subject Descriptors: C.4 [Computer-Communication Networks]: Performance 18
of Systems—Modeling techniques 19

General Terms: Measurement, Performance, Design 20

Additional Key Words and Phrases: FPGA, performance models, simulation, emulation 21

ACM Reference Format: 22
Pellauer, M., Vijayaraghavan, M., Adler, M., Arvind, and Emer, J. 2009. A-port networks: Pre- 23
serving the timed behavior of synchronous systems for modeling on FPGAs. ACM Trans. Reconfig. 24
Techn. Syst. 2, 3, Article 16 (September 2009), 26 pages. DOI = 10.1145/1575774.1575775. 25
http://doi.acm.org/10.1145/1575774.1575775. 26

This work was funded by a grant from Intel and by NSF grant CCF-0541164.
Author’s address: M. Pellauer; email: Pellauer@csail.mit.edu.
Collaboration with the RAMP project was made possible by NSF grant CNS0551739. The au-
thors would like to acknowledge the collaboration and valuably feedback of Angshuman Parashar,
Zhihong Yu, Tao Wang, and Guan-Yi Sun.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or direct commer-
cial advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2009 ACM 1936-7406/2009/09-ART16 $10.00 DOI: 10.1145/1575774.1575775.

http://doi.acm.org/10.1145/1575774.1575775.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 2 of 26 September 1, 2009 19:1

16: 2 · M. Pellauer et al.

1. INTRODUCTION 27

The processor design flow begins when the architect is given a set of 28
requirements—for example, a high-performance out-of-order x86 processor, or 29
a low-power in-order ARM processor. The architect then uses intuition and 30
knowledge of existing systems in order to identify an initial target architec- 31
ture. This intuition must be backed up by detailed quantitative studies on 32
representative inputs before the architecture is finalized. This process is iter- 33
ative, as each study leads to tweaking critical architecture parameters. 34

Consider the MIPS R10K-like target processor shown in Figure 1. We use 35
this processor as an ongoing example throughout this paper. This is a 4-way 36
superscalar processor, meaning that it can fetch and decode up to 4 instruc- 37
tions every clock cycle. It uses out-of-order issue logic, meaning that if the 38
head of the instruction stream is stalled the processor can examine younger 39
instructions to find independent operations to issue. It has 4 execution units 40
of varying capabilities, and thus can issue up to 4 instructions per cycle un- 41
der ideal circumstances. To support this the register file has 7 read ports and 42
4 write ports (the Jump Unit only requires one read port). Once this initial 43
architecture is identified the architect would like to study the effect of vari- 44
ous parameters such as branch predictor schemes, ALU pipeline depths, and 45
ROB sizes. 46

Early in the design process these studies are usually not concerned with 47
the amount of circuit area these various choices would require, nor the final 48
clock frequency they could achieve, beyond basic ballpark estimates. Instead 49
the architect is primarily concerned with studying the dynamic performance 50
of the system as measured in clock cycles—thus these simulators are called 51
performance models. Typical duties of performance models include tracking 52
statistics via counters and generating cycle-by-cycle traces of the system oper- 53
ating on critical input segments.1 54

The most successful performance models: 55

—Are accurate enough to give architects confidence in their decisions. 56

—Are easy to design and modify, allowing for exploration of a range of options. 57

—Simulate fast enough to allow a wide range of inputs and dynamic situations 58
to be studied in a reasonable amount of time. 59

Currently design teams write most such models in software, using home- 60
brewed C/C++ simulators or frameworks such as SystemC. This eases model 61
development, but the simulation speed of software models has not been able 62
to keep pace with increasing complexity of modern processors. Although acad- 63
emic models typically claim simulation speeds in the 100s of KIPS (Thousands 64
of Instructions per Second) range, detailed industry models report simulation 65
speeds in the low KIPS range. Table I shows an overview of simulation speeds 66
of performance models around Intel: 67

1We note that it is increasingly common to combine performance models with detailed estimates
of a system’s power consumption and exposure to dynamic soft errors, as these are closely tied to
cycle-by-cycle behavior.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 3 of 26 September 1, 2009 19:1

A-Port Networks · 16: 3

Fig. 1. Example out-of-order superscalar processor target.

Table I. Simulation Speeds

Simulator Detail Simulator Speed
(order of magnitude)

Low-Detail Model 100 KHz
Medium-Detail Model 10 KHz
High-Detail Model 1 KHz

Parallelizing the software model can result in increased simulation speed 68
by exposing the moderate degree of parallelism which can be exploited by con- 69
temporary multicore processors. While performance-model algorithms contain 70
massive fine-grained parallelism, two factors make exploiting such a level of 71
parallelism difficult in software. First, within one model clock cycle, the unit of 72
parallel activity being simulated is equivalent to a small number of gates—yet 73
these gates typically require multiple host instructions to simulate. Second, 74
across model clock cycles there is a high amount of communication between 75
these parallel regions. This high amount of communication does not map well 76
to typical communication methods for multicores, such as shared memory. 77

Given these properties, intuition tells us that FPGAs should represent a 78
better platform for efficient execution of performance models. Contemporary 79
efforts to explore FPGAs as a platform for performance modeling include Penry 80
et al.’s [2006] accelerators for the Liberty simulator, UT-FAST [Chiou et al. 81
2007a; 2007b] which uses the FPGA as a timing model connected to a software 82
functional simulator, and our HAsim project [Pellauer et al. 2008a; 2008b] 83
which aims to create a variant of the Intel Asim simulation environment [Emer 84
et al. 2002] on an FPGA. The goals of the RAMP project also include serving 85
as a platform for the execution of accurate performance models [Arvind et al. 86
2006; Wawrzynek et al. 2007]. 87

The key insight all of these projects share is that one simulated model clock 88
cycle does not have to correspond to one cycle on the FPGA. For example, a 89
model running on a 100 MHz FPGA could take 10 FPGA cycles to simulate 90

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 4 of 26 September 1, 2009 19:1

16: 4 · M. Pellauer et al.

one model cycle and still achieve a simulation speed of 10 MHz. The main 91
challenge then becomes tracking the simulated model clock cycle in a distrib- 92
uted way that exposes sufficient fine-grain parallelism for the FPGA to exploit. 93

In this article we present A-Port Networks, an adaption of techniques from 94
the Asim simulator designed to perform efficient cycle-accurate simulation on 95
highly parallel substrates such as FPGAs. We give a taxonomy of existing 96
distributed simulation techniques and explore their strengths and weaknesses 97
on FPGAs. We give an implementation of A-Ports Networks for FPGAs and 98
discuss why it addresses these weaknesses. We demonstrate a performance 99
improvement of 19% using A-Ports to simulate our processor over dynamic 100
barrier synchronization. 101

We limit the discussion to models of synchronous digital systems— 102
asynchronous or analog systems are not considered. Although we use general- 103
purpose processors as an ongoing example, none of the techniques presented 104
are microprocessor-specific. Extending the A-Ports technique to simulate mul- 105
tiple clock domains or globally asynchronous locally synchronous (GALS) sys- 106
tems is left to future work. 107

2. BACKGROUND: PERFORMANCE MODELS IN ASIM 108

The problem of creating a performance model for a synchronous system can be 109
generalized to the dynamic snapshot problem: 110

—Given a model in state s and input i, what is the relevant state of the model 111
at time t? 112

By relevant state we mean the state elements which the architect observes 113
in order to determine the performance of the system. For example, in the 114
processor in Figure 1 the architect may decide that the internal pipeline re- 115
gisters of the execution units are irrelevant, while the result output by the 116
ALU is relevant. This is similar to the difference between architectural state 117
and microarchitectural state, though in many cases the distinction is not so 118
cut-and-dry. 119

Intel’s Asim [Emer et al. 2002] is a framework for creating performance 120
models. Asim’s main goal is to allow architects to develop performance mod- 121
els quickly by reusing existing pieces. To encourage this, the target system is 122
decomposed into individual modules (branch predictors, caches, etc.) that can 123
be swapped for variations in a plug-and-play manner. In order for this swap- 124
ping to be successful, practice has shown that the modules must have a clear 125
and well-documented interface as well as an explicit and easy-to-change indi- 126
cation of the time the computation takes. To this end, Asim has developed a 127
formalism known as ports, which formalizes the interface and helps separate 128
concerns of timing from functionality. 129

2.1 Asim Ports 130

In Asim, individual modules are arranged into a directed graph connected by 131
ports, communication channels annotated with a user-specified latency l. The 132
modules themselves have no inherent notion of time—we can consider their 133

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 5 of 26 September 1, 2009 19:1

A-Port Networks · 16: 5

Fig. 2. Target processor as a port-based model.

computation to be infinitely fast. Time is represented only in the delay of 134
communication between modules. Ports of latency zero are allowed, but may 135
not be arranged into “combinational loops”—a familiar restriction to hardware 136
designers. Each port has a single writer and reader, and all communication 137
between modules goes between ports. Latencies are statically specified and 138
may not change dynamically. 139

Our target processor is recast as a port-based model in Figure 2. The sys- 140
tem has been partitioned into modules using the pipeline stages as a general 141
guideline. Pipeline registers were replaced ports of latency 1, such as those 142
connecting Fetch and Decode. The instruction- and data-memories are repre- 143
sented as simple static latencies, which is unrealistic but illustrative for the 144
purposes of this paper. The latencies associated with the ALU operations are 145
more complex, and require a greater explanation of port semantics. 146

The interface for sending a message into a port is as follows: 147

Send(<msg_type> data, int current_time); 148

Because a producer may not have sent a message, the interface for 149
receiving is: 150

bool Receive(int current_time, <msg_type>& data_out); 151

The Receive method returns true when the port has a message at that cycle, 152
which is written into the data out parameter. Each module then defines a 153
clock method which represents simulating a single model cycle: 154

clock(int current_time); 155

In general, this method queries the module’s input ports to determine if 156
they contain any messages. The module then performs all necessary compu- 157
tations and local state updates. It may also place messages into its output 158

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 6 of 26 September 1, 2009 19:1

16: 6 · M. Pellauer et al.

Fig. 3. Requirements for the processor’s ALU.

Fig. 4. A potential target ALU.

ports. The port uses its latency l to record that the message will appear on 159
cycle current time+l. 160

Now let us return to our example processor’s Integer Unit. The ALU data- 161
path has the general requirements shown in Figure 3—it must be able to 162
perform simple arithmetic operations, multiplies, and divides. The archi- 163
tect wishes to explore the effect of various pipeline depths on overall system 164
throughput. One potential target is shown in Figure 4, which uses a 2-stage 165
pipeline for the simple operations and a 4-stage pipeline for the multiplier. Be- 166
cause the architect expects that divide operations are rare, she is considering 167
implementing them with a circular shift-and-subtract. (The issue stage must 168
know not to place more than one divide instruction in flight simultaneously.) 169

A port-based model of this ALU is shown in Figure 5. As it demonstrates, 170
performing the calculation of the operations themselves is separated from the 171
timing they require. As the arithmetic and multiply operations are systolic 172
pipelines they are represented by performing the calculation, then placing the 173
result into ports of latency 2 and 4, respectively.2 The circular divider pipeline 174
is represented differently—the output port is latency 1 and is paired with a 175
counter. The integer unit determines that a divide should take the target n 176

2This bears some similarity to circuit designers altering the placement of pipeline registers late in
the design flow. This technique is generally referred to as retiming, because moving combinational
logic past registers can be used to change the delay of the critical path. Interestingly, from a
modeling perspective “retiming” is not a good name, as the intent of this transformation is to
preserve the behavior of the the target system with respect to the model clock.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 7 of 26 September 1, 2009 19:1

A-Port Networks · 16: 7

Fig. 5. Modeling the ALU with ports.

model cycles to calculate the result, and then places the result into the port 177
n−1 cycles later. If the issue stage accidentally issues a new division while the 178
circular pipeline is busy, an assertion fails. 179

Based on this interface our integer unit module can be replicated twice and 180
plugged into the example processor from Figure 2. In general we have found 181
port-based modeling to provide the following benefits: 182

—Encourages reuse by formalizing the module interface and separating timing 183
concerns from functionality. 184

—Enables the architect to easily conduct a certain class of design exploration— 185
playing “what if” games by changing the latencies of ports and observing the 186
effects on system behavior. 187

—Eases model development because each module follows a similar “read, 188
calculate, write” pattern. 189

—Allows a controller to coordinate simulation, as we shall discuss. 190

2.2 Sequential Simulation in Software 191

Sequential simulation in software Asim is coordinated by a centralized con- 192
troller, which tracks the current model clock cycle and decides which module 193
should execute next. The general simulation algorithm is as follows: 194

modelcycle = 0; 195
moduleQ = sort(modules); 196
while (1) 197

foreach m in moduleQ 198
m.clock(modelcycle); 199

modelcycle++; 200

Note that if the model does not contain zero-latency ports, then the sorting 201
step can be avoided. Zero-latency ports represent a causal dependence between 202
the producer and consumer, implying that one must be simulated before the 203
other. The controller determines a simulation order by performing a topological 204
sort of the modules. (Cycles in the module graph can be cut at any nonzero- 205
latency port for the purposes of determining simulation order. Such a port is 206

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 8 of 26 September 1, 2009 19:1

16: 8 · M. Pellauer et al.

guaranteed to exist because of the “no combinational loops” restriction.) As 207
port latencies are static, this sort only needs to be performed on simulator 208
startup. 209

2.3 Parallel Simulation in Software 210

Modules which are not connected by such a causal dependence may be sim- 211
ulated in parallel during each cycle in order to improve simulation rate. In 212
parallel Asim the centralized clock server runs in a thread, and uses barrier 213
synchronization to coordinate between a small number of simulation threads 214
(linearly related to the number of host cores on which the simulator is run- 215
ning). Because of the causal relationship imposed by zero-latency ports, best 216
performance is achieved when the model is partitioned in such a way that 217
closely coupled modules are executed by the same thread. Each thread is given 218
a set of modules to simulate, and stalls on a barrier when complete: 219

modelcycle = 0; 220
threads = partition(sort(modules)); 221
while (1) 222

foreach t in threads 223
t.clockAll(modelcycle); 224

wait_for_barrier(); 225
modelcycle++; 226

Barr et al. [2005] demonstrated that this centralized controller could be re- 227
moved and simulation controlled by using certain “SMP” ports, where the pro- 228
ducer and consumer would be in different threads. Since each module knows 229
the explicit model cycle, a consumer could “peer backward” through incoming 230
ports to determine when it was safe to proceed with simulation. The controller- 231
less simulation for each thread became: 232

modelcycle = 0; 233
while (1) 234

if (in_port.ProducerHasSimulated(modelcycle - in_port.latency)) 235
foreach m in modules 236

m.clock(modelcycle); 237
modelcycle++; 238

As this demonstrates, each thread was still responsible for sequentially sim- 239
ulating a number of modules. This was because assigning a thread per module 240
would result in hundreds of threads which would overwhelm the available par- 241
allelism of today’s 8-to-16 core servers. Unfortunately, limiting the number of 242
parallel threads also undid much of the benefit compared to barrier synchro- 243
nization. In contrast, an FPGA is fully able to take advantage of this level of 244
parallelism. 245

3. EXISTING SIMULATION TECHNIQUES ON FPGAS 246

In this section we discuss various existing simulation techniques with the goal 247
of exposing as much parallelism as possible in Asim-like port-based systems 248

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 9 of 26 September 1, 2009 19:1

A-Port Networks · 16: 9

Fig. 6. Overview of simulation techniques for FPGAs.

on FPGAs. We compare these techniques to each other in Figure 6 and refer to 249
this figure throughout this section. 250

3.1 The Emulation Approach 251

The first approach we consider is to use the FPGA clock to represent the model 252
clock directly. In such a system running the model for t clock cycles would sim- 253
ply require ticking the physical FPGA clock t times. We refer to this approach 254
as direct emulation, Node A in Figure 6. 255

The main problem with the emulation approach is that it requires each mod- 256
ule in the system to complete all of its work in a single FPGA clock cycle. If 257
the target ASIC employs structures that do not map well onto FPGAs (e.g., 258
multiported register files, or content-addressable memories) then the result- 259
ing FPGA clock period is likely to be poor, slowing the rate of simulation. For 260
example, consider the register file of our target processor. As stated above, this 261
register file requires 7 read ports and 4 write ports. Implementing this on an 262
FPGA directly would be very expensive, as shown in Figure 7, design A. 263

A better approach is to disassociate the FPGA clock cycle from the model 264
clock cycle—a simulation rather than an emulation, in our terminology. Thus 265
we may replace the register file with a space-efficient FPGA structure, a syn- 266
chronous BlockRAM with one read port and one write port. Now we use 7 267
FPGA cycles to simulate the behavior of the target register file, as shown in 268
Figure 7, design B, which can represent a significant savings. (We can over- 269
lap the writes with the reads because we have higher-level knowledge that the 270
addresses are guaranteed to be distinct within one model cycle.) 271

3.2 Analyzing Simulation Approaches 272

While separating the model clock from the FPGA clock can save area, its effect 273
on performance is less clear. While it can increase frequency, we must also 274
take into account the number of FPGA cycles required to simulate a model 275
cycle, which we call the FPGA-cycle to Model cycle Ratio (FMR). FMR is similar 276
to the microprocessor performance metric Cycles Per Instruction (CPI) in that 277
one can observe the FMR of a run, a region, or a particular class of instructions 278

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 10 of 26 September 1, 2009 19:1

16: 10 · M. Pellauer et al.

Fig. 7. FPGA resources can be saved by simulating the target register file.

in order to gain insight into simulator performance. The FMR of a simulator 279
combined with its FPGA clock rate gives us simulation rate: 280

frequencysimulator =
frequencyFPG A

FMRoverall
.

The simulation approach is only useful if the gains to frequencyFPG A are 281
not offset by a large FMR. In practice we find that simulator Hz is not the 282
best metric to measure performance models of processors on FPGAs. This is 283
because models often require fewer cycles to simulate pipeline bubbles than 284
heavy activity, and thus these idle cycles lower FMR. A better metric is to 285
evaluate simulators on their simulated Instructions Per Second (IPS). For a 286
software simulator this is calculated as: 287

IPSsimulator =
frequencysimulator

CPImodel
.

Plugging in our above equation gives us the means to calculate the IPS of 288
an FPGA performance model: 289

IPSsimulator =
frequencyFPG A

CPImodel × FMRoverall
.

In addition to improving performance, we must ensure that the simulation 290
approach does not introduce any temporal violations. Such a violation occurs 291
when a value from model cycle n + k is accidentally used to calculate a value 292
on model cycle n. In highly parallel environments such as FPGAs, this typi- 293
cally occurs because of a race condition, whereby a producer writes a value be- 294
fore a consumer has properly finished computing with the predecessor value. 295

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 11 of 26 September 1, 2009 19:1

A-Port Networks · 16: 11

Another issue is the ability of a simulator to advance the model clock. If the 296
simulator is unable to advance the clock, we will refer to this as a temporal 297
deadlock.3 298

The goal of a distributed simulation technique is to maximize simulator IPS 299
while avoiding temporal violations and minimizing the overhead in terms of 300
FPGA resource utilization. Classically, techniques fall into two broad cate- 301
gories: those which track time explicitly (also called “event-driven” simulation) 302
and those that track time implicitly (also called “continuous” simulation). 303

3.3 Simulation with Explicit Timekeeping 304

Distributed simulation techniques that explicitly carry time are variants of the 305
Chandy-Misra-Bryant simulation technique [Chandy and Misra 1981; Bryant 306
1979], Node B in Figure 6. In such schemes all data in the system is associated 307
with a timestamp. Operations on data also increment the timestamp by the 308
appropriate amount. 309

Any FPGA-optimized circuit may be used to perform the operations—the 310
number of FPGA cycles that such a circuit requires to compute will have 311
no impact on the results of simulation, but only the FMR of the simulator. 312
Additionally, this scheme enables playing “what if” games with the simulated 313
timings without substantial code changes. 314

The main benefit of explicit-time schemes is that model cycles with no ac- 315
tivity do not need to be simulated explicitly. For example, on FPGA clock cycle 316
300 we may be simulating model time t, but by adding 1000 to the timestamp 317
we would be simulating time t + 1000 on FPGA cycle 301. This is why such 318
simulation schemes are referred to as “event-driven,” as idle model cycles are 319
passed over until an event occurs. 320

The disadvantage of such techniques is the overhead of explicitly storing, 321
transmitting, and manipulating timestamps. Practice has shown that perfor- 322
mance models—which simulate the core pipelines of synchronous systems—do 323
not generally demonstrate enough idle areas of the system to compensate for 324
this overhead. It is significant to note that the major performance models writ- 325
ten in software use continuous simulation techniques rather than event-driven 326
techniques. 327

3.4 Simulation with Implicit Timekeeping 328

Continuous simulation techniques make use of the fact that the target system 329
is a synchronous system with only a single (or a small number of) distinct 330
clock domains. These techniques are able to make the timekeeping implicit, 331
using the coordination of behavior among the simulated modules to simulate 332
the target clock. 333

One straightforward way to coordinate distributed modules is to assign 334
each module n FPGA cycles to simulate one model cycle. This is unit-delay 335

3Note that this is distinct from a model-level deadlock, which results when the target design
is faulty. If the target enters a deadlocked state, then the performance model should correctly
simulate the machine remaining in that state as model time continues to advance.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 12 of 26 September 1, 2009 19:1

16: 12 · M. Pellauer et al.

Fig. 8. Dynamic barrier synchronization with centralized controller.

simulation (Node C of Figure 6), historically used in projects such as the IBM 336
Yorktown Simulation Engine [Pfister 1982]. This technique retains the benefit 337
that any FPGA-optimized implementation of a circuit may be used, whether or 338
not its cycle-by-cycle behavior matches that of the target circuit. 339

The advantage of the unit-delay scheme is that there is very little overhead. 340
All modules can be implemented as finite-state machines which read their in- 341
puts, calculate for n cycles, and write their outputs. Temporal deadlocks are 342
impossible, and temporal violations can be easily avoided by restricting pro- 343
ducers to write their outputs only on the final FPGA cycle of a model cycle. We 344
can create a snapshot of the system on model cycle t by observing the state of 345
the system on FPGA cycle n × t. 346

Such a simulator would simulate at a rate of frequencyFPG A/n. Thus unit- 347
delay simulation is appropriate when the static worst-case n is small. In prac- 348
tice, however, there are likely to be rare, exceptional events that require a large 349
amount of time to simulate. Moreover, unit-delay simulation cannot be used 350
when n cannot be bounded—for example if the FPGA occasionally communi- 351
cates with a host processor via a PCI connection. We conclude that although 352
unit-delay simulation offers many benefits, it is unsuitable in a large number 353
of practical situations. 354

An alternative is to have the FPGA-to-model cycle ratio determined dynam- 355
ically. This would be a dynamic barrier synchronization (Node D in Figure 6), 356
where all modules coordinate dynamically on when to move to the next model 357
cycle. As is shown in Figure 8, a centralized controller tracks model time, and 358
alerts all modules when it is time to advance to the next model cycle. The mod- 359
ules then simulate, and report back when finished. When all modules have 360
finished, the time counter is incremented, and the modules are alerted to pro- 361
ceed again. We may create snapshots of our system by observing the state 362
only on model cycle boundaries. Temporal deadlock is possible if an individual 363
module does not terminate a model cycle, though this is avoidable in practice. 364

One example of a circuit that can take a dynamic number of FPGA cycles 365
to simulate is a content-addressable memory (CAM). Directly implementing 366

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 13 of 26 September 1, 2009 19:1

A-Port Networks · 16: 13

Fig. 9. Dynamic barrier synchronization’s centralized controller limits scalability.

such a circuit on the FPGA can be prohibitively expensive. One alternative is 367
to use a synchronous BlockRAM and sequentially search the memory. Under 368
the unit-delay scheme we would have to bound n as the worst case—searching 369
the entire RAM, which is a rare occurrence. In general, in dynamic barrier 370
simulation we take the average number of cycles required to simulate a model 371
cycle, while still tolerating rare worst cases when they occur. The result can be 372
a significant decrease in FMR. 373

The main problem with barrier synchronization is the scalability of the cen- 374
tral controller. Combinational signals to and from the controller can impose a 375
large burden on the FPGA place and route tools. To assess this problem we 376
devised an experiment. We created a simple module with a small amount of 377
combinational logic, so that it would not affect the critical path. This module 378
was then replicated n times in a strict linear hierarchy, so as not to impose any 379
additional restrictions on the place-and-route tools. The modules were synthe- 380
sized for the Xilinx VirtexIIPro 30 FPGA using Xilinx ISE 8.2i, and demon- 381
strated a 39% loss of clock speed as a result of the centralized controller, as 382
shown in Figure 9. In addition, we observed that the execution time of the 383
FPGA place-and-route tools increased 20-fold over these same data points, in 384
spite of the fact that the largest target used less than 10% of FPGA slices. We 385
conclude that the dynamic barrier synchronization technique offers benefits 386
over the unit-delay case, but also faces scaling issues which limit it to a small 387
numbers of modules. 388

One approach would be to attempt to improve the clock frequency of the bar- 389
rier simulation method, perhaps by pipelining the combinational AND-gate, or 390
arranging the modules into a tree in order to ease the place-and-route require- 391
ments. But even if the FPGA frequency problem could be solved completely, 392
the barrier synchronization approach still limits performance by forcing all 393
modules to move in lockstep. In the next section we present A-Port Networks, 394
a distributed simulation technique we developed for the fine-grained paral- 395
lelism of FPGAs. A-Port Networks do not require explicit timestamps, static 396
rates, or centralized barriers. We quantitatively demonstrate a performance 397
improvement for simulating our target processor of up to 19% over dynamic 398
barrier synchronization using the A-Ports scheme. 399

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 14 of 26 September 1, 2009 19:1

16: 14 · M. Pellauer et al.

Fig. 10. An A-Port Network is a restricted Kahn process network.

4. A-PORT NETWORKS 400

As explained in Section 2, software Asim performance models use an explicit 401
representation of time and a centralized controller to coordinate simulation. 402
As we noted in Section 3, both of these choices would carry a large overhead on 403
the FPGA. To this end we developed a novel scheme tailored to the particulars 404
of an FPGA. We name our scheme A-Port Networks, to distinguish it from prior 405
work on Asim ports, and to emphasize the generality of the approach. 406

4.1 Distributed Simulation Scheme 407

As shown in Figure 10, a simulation of a port-based model can be viewed as a 408
Kahn process network [Kahn 1974]. The initial placement of tokens is derived 409
from the latencies of the ports themselves. We can exploit the parallelism in 410
this model if we can allow each node, or module, to proceed to the next model 411
cycle when all incoming edges contain data, in the standard dataflow manner. 412

Our simulator is not an arbitrary process network. It is a reflection of a par- 413
ticular synchronous system. Therefore, we must restrict the nodes’ behavior 414
beyond that of general process networks in order to avoid temporal violations. 415
Specifically, each node must always be at an identifiable model cycle k. Fur- 416
thermore, the nodes at model cycle k may only observe the kth element of their 417
incoming message streams, and may only produce the k + 1th element of their 418
outgoing data streams. The key insight of the A-Port Network is that we can 419
accomplish this by making each node behave as follows: 420

—Each time a node processes it must consume exactly one input from each 421
incoming edge, and write exactly one output to each outgoing edge. 422

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 15 of 26 September 1, 2009 19:1

A-Port Networks · 16: 15

This represents a restriction over generalized process networks, where 423
nodes can dynamically choose how many inputs to consume, and how many 424
outputs to write. As a result of this restriction, an observer can deduce what 425
model cycle a node is simulating by counting the number of times it has exe- 426
cuted this simulation loop. Thus the A-Ports scheme (Node E in Figure 6) is 427
an implicit tracking of the model clock. Additionally, no temporal violations 428
are possible as long as nodes do not “peek” at the next values in the message 429
stream. Also, temporal deadlocks are avoided as long as each node takes a 430
finite amount of wall-clock time to simulate each model cycle, and sufficient 431
buffering is present, as we discuss in Section 5. 432

In order to accommodate this restriction we must change the semantics of 433
classical Asim ports. As described in Section 2, in the sequential simulator 434
each module is told the current model cycle by a centralized controller, thus 435
there is no issue if a module does not write one of its output ports. In the 436
distributed A-Port Network, neglecting to write a port is no longer an option. 437
To resolve this we introduce a special value called NoMessage, which indi- 438
cates the lack of data at a particular location in the data stream. (We also use 439
NoMessage as the initial tokens in the system.) Thus the complete distributed 440
simulation loop is as follows: 441

—When all incoming A-Ports are not empty, a module may begin computation. 442
Note that some of its inputs may be NoMessage, and that this is explicitly 443
different from an empty port. 444

—When computation is complete, the module must write all of its outgoing 445
A-Ports. It may write NoMessage or some other value, but must write all of 446
them exactly once. 447

—The messages are consumed from the incoming A-Ports and the loop 448
repeats. 449

The net effect of this simulation loop is to allow every module in the system 450
to produce and consume data at any wall-clock rate, while still maintaining a 451
local notion of a model clock step. To put this another way, an A-Port Network 452
effectively turns a synchronous system into an asynchronous system, while 453
still preserving the timed behavior of the synchronous system with respect to 454
snapshots. In this respect A-Port Networks are similar to the Chandy-Misra- 455
Bryant simulation scheme. The main contribution of A-Port Networks is to do 456
this without explicit timestamps or a central controller, making it amenable to 457
implementation on FPGAs. 458

Because modules simulate at different wall-clock rates, adjacent modules 459
often are simulating different model cycles. A producer may run into the fu- 460
ture, precomputing values as fast as possible. We say an A-Port of latency l is 461
balanced when it contains exactly l elements. When an A-Port contains more 462
than l elements it is heavy, and similarly it is light when it contains fewer than 463
l elements. Observe: 464

—When an A-Port is balanced, the modules it connects are simulating the 465
same model cycle. 466

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 16 of 26 September 1, 2009 19:1

16: 16 · M. Pellauer et al.

Fig. 11. A-Port Network can improve FMR over barrier synchronization.

—When an A-Port is heavy, the producer module is simulating into the future 467
compared to the receiving module. 468

—When an A-Port is light, the situation is reversed. 469

We say that simulation via A-Ports is decoupled because a module can “slip” 470
ahead as long as its input data is available. This can result in a performance 471
improvement over barrier synchronization, as demonstrated in Figure 11. In 472
this example, instructions a and c take more FPGA time to compute compared 473
to b and d. Observe that on FPGA cycle 4 module A is simulating model cycle 474
3, whereas module B is simulating model cycle 2. 475

The amount that adjacent modules can “slip” in time is limited by the buffer- 476
ing available. The consumer module of an l-latency A-Port can run ahead at 477
most l model clock cycles before draining the buffer. A producer writing into 478
an A-Port with k extra buffering can only proceed k cycles ahead before filling 479
the buffer. Selecting the appropriate buffer sizes can have a significant impact 480
on simulator performance, as we will show in Section 5. 481

4.2 Obtaining Consistent Snapshots 482

Obtaining a snapshot of relevant state in the A-Ports scheme is complicated by 483
the fact that the decoupled modules may have slipped in time. As we are using 484
an implicit notion of time, the modules themselves may not know what cycle 485
they are simulating. 486

One possible solution is to observe every module in a distributed fashion, 487
and reconstruct the snapshot from these observations. For instance, an ob- 488
server of the processor Fetch module could record the Fetch state after model 489
cycle t, which would later be combined with the Execute state, etc. The over- 490
head of communicating these distributed observations could become costly, 491
similar to those of dynamic barrier synchronization’s central controller. An 492
alternative is to rebalance the decoupled modules to the same model cycle 493

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 17 of 26 September 1, 2009 19:1

A-Port Networks · 16: 17

Fig. 12. Obtaining a consistent snapshot from a slipped state.

before enabling the result capture. To resynchronize the system, modules 494
enter a mode where they use the following protocol: 495

—If any output A-Ports are light, or any input A-Ports are heavy, simulate the 496
next model cycle (assuming all input A-Ports are not empty). 497

If all modules follow this protocol, the system will eventually quiesce. At the 498
point of quiescence every A-Port will be balanced, and thus every module will 499
be on the same model clock cycle. 500

To see why, consider that at any given FPGA cycle there will be a nonempty 501
set of modules that are furthest ahead in model cycles. These modules will, by 502
definition, have no light outputs or heavy inputs, and therefore will not move 503
forward. Any incoming ports to this group must be light and any outgoing ports 504
must be heavy. Therefore the modules which are connected to these ports will 505
attempt to simulate the next model cycle. The only reason they would not be 506
able to proceed would be if they did not have all of their inputs ready. Yet 507
somewhere in the system there must be a nonempty set of modules that is 508
farthest behind in time, and thus able to simulate the next cycle. Since the 509
graph is connected, any module which can simulate will only make progress 510
towards increasing the set of modules farthest ahead in time. Eventually this 511
set will include every module, every port will be balanced, and the system will 512
not proceed. 513

Figure 12 shows an example of this quiescing. Our example processor model 514
is in a state where the Decode module has recently had the worst FMR, and 515
thus is simulating the oldest model cycle t. Note that the relationship between 516
two modules in model time can be derived by looking at the number of mes- 517
sages in the connecting ports, represented by black circles. 518

Figure 13 shows the progression of the modules. Initially, only Decode will 519
proceed to the next model cycle (t + 1, which it will do because it has heavy 520
inputs and light ouputs, as indicated by hv and lt in the figure). Then Fetch, 521
Decode, and Issue will proceed to cycle t + 2. Every A-Port is now balanced, 522

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 18 of 26 September 1, 2009 19:1

16: 18 · M. Pellauer et al.

Fig. 13. Execution order to quiesce Figure 12.

Fig. 14. A-Port implementation on FPGAs.

except for the ones between IMem and Fetch. If the modules were using the 523
normal protocol then IMem would attempt to proceed into the future, but in 524
this case it has no heavy inputs or light outputs. As a consequence, all the 525
other modules will proceed one more cycle in causal order, as shown. At this 526
point every A-Port in the system will be balanced, so the system will quiesce 527
until it receives a command to resume simulation using the normal protocol. 528
Note that in this state the number of messages in each A-Port matches the 529
initialization conditions, so simulation is guaranteed to be able to resume. 530

As an additional benefit, when the simulator quiesces, it is straightforward 531
to add a mode where the simulator can step forward one model cycle at a time. 532
This stepping mode can be useful for debugging or for real-time interaction 533
between the user and the simulator. 534

5. IMPLEMENTING A-PORT NETWORKS ON FPGAS 535

As shown in Figure 14, we implement an A-Port of message type t as a FIFO of 536
t + 1 bit-wide elements, the extra bit indicating NoMessage (in addition to the 537
standard FIFO valid bits). On an FPGA each A-Port must have finite buffering. 538

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 19 of 26 September 1, 2009 19:1

A-Port Networks · 16: 19

In order to guarantee the absence of temporal deadlock, the following sufficient 539
conditions must be met: 540

—Each A-Port of latency l must contain at least l + 1 buffering. 541

—Each A-Port of latency l is initialized to contain l copies of NoMessage at 542
simulator startup. 543

—Modules should be arranged in a connected graph. 544

To see why this prevents temporal deadlock, consider that when the simu- 545
lator starts up every module will be able to simulate a cycle, unless they have 546
a zero-latency input port. The “no combinational loops” requirement guaran- 547
tees that any such modules are transitively connected to modules which have 548
non-zero-latency inputs, and thus are able to simulate. Furthermore, note that 549
by simulating a model cycle, a module can never disable other modules from 550
simulating model cycles, but only enable them (though it may disable itself). 551
Therefore there will always be one or more modules in the simulator which are 552
able to proceed to the next model cycle. 553

These conditions are closely related to the correctness conditions of Lee’s 554
[1987] static synchronous dataflow graphs, as we discuss in Section 6. The pri- 555
mary difference is that in A-Ports Networks the buffering requirements and 556
initial placement of data is derived from the latencies of the A-Ports them- 557
selves. Thus the properties of the asynchronous implementation are correct 558
because they reflect properties of the target synchronous system, rather than 559
requiring the user to determine buffer sizes or placement of tokens manually. 560

5.1 Quantitative Assessment 561

In order to assess our A-Ports implementation we identified two target proces- 562
sors. First, a traditional five-stage in-order microprocessor pipeline. Second, 563
the more realistic out-of-order superscalar processor, which we have used as 564
an ongoing example. As the instruction set is not the focus of this research 565
we chose a subset of the MIPS ISA. To maximize the impact of the processor 566
pipeline itself, the core is assumed to be paired with one-cycle “magic” memory 567
rather than a realistic cache hierarchy. 568

As shown in Figure 15, the processors were decomposed into modules and 569
connected both using barrier synchronization and A-Port Networks. Our im- 570
plementation of the model focused on efficiency of FPGA configuration. To this 571
end we used BlockRAMs for every large structure in the processor, including 572
the branch predictor, branch target buffer, and register file. In the superscalar 573
processor we implemented only a single ALU and multiplexed it to simulate 574
the four physical pipelines. The effect of these transformations was to reduce 575
implementation effort and increase area efficiency, at the cost of using more 576
FPGA cycles per model cycle. 577

The designs were implemented using Bluespec SystemVerilog, and were 578
synthesized for a Xilinx Virtex II Pro platform and assessed for simulation 579
speed and efficiency. We measured the targets running small benchmarks: nu- 580
meric median and multiplication, quick sort, Towers of Hanoi, and vector- 581
vector addition. While we acknowledge the limitations of trying to draw 582

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 20 of 26 September 1, 2009 19:1

16: 20 · M. Pellauer et al.

Fig. 15. Assessment methodology showing the in-order target.

Fig. 16. Assessing the target processors as a sanity check.

conclusions from small benchmarks running on processors not paired with 583
a realistic memory hierarchy, the results (Figure 16), show the out-of-order 584
processor performing between 2.4 and 5.8 times faster than the 5-stage 585
pipeline, depending on the amount of instruction-level parallelism available in 586
the benchmark. These results match our intuition that the out-of-order proces- 587
sor is a better architecture—it would execute substantially faster (assuming 588
the circuit design team was able to achieve an equivalent clock speed, and that 589
the area overhead was not prohibitive). 590

These results represent the insights into the target design that most users 591
of performance models care about. However, as simulator architects, we are 592

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 21 of 26 September 1, 2009 19:1

A-Port Networks · 16: 21

Fig. 17. Simulator synthesis results for Virtex II Pro 70.

Fig. 18. Assessing the in-order simulators.

also interested in comparative simulator performance. The physical proper- 593
ties of the simulators are given in Figure 17. These results demonstrate that 594
when we consider simulator performance the situation is reversed—the five- 595
stage simulator can simulate model clocks more than twice as fast (14 MHz vs 596
6 MHz), due to the multiplexing of the ALU which the out-of-order superscalar 597
model does during every model cycle. However when we consider simulated 598
Instructions per Second, the situation is more balanced (5.1 vs 4.7 MIPS). This 599
metric correctly compensates for the difference in target CPI—remaining dif- 600
ferences are due to the overhead of simulating out-of-order execution. 601

The results comparing barrier synchronization to A-Ports are shown in 602
Figures 18 and 19. These results show that the in-order simulator using 603
A-Ports is an average of 23% faster versus barrier synchronization. For the out- 604
of-order model, the situation is more complicated. Using the minimum buffer 605
sizes results in a 4% improvement versus barrier synchronization. However, 606
as we noted in Section 4, the A-Ports buffer size limits the amount adjacent 607
modules can slip in model time. Figure 20 demonstrates that increasing the 608
amount of buffering results in a significant performance improvement for the 609
out-of-order model, allowing it to achieve a simulation rate 19% faster than 610
barrier synchronization. In contrast, increasing the buffer sizes does not re- 611
sult in any further improvement for the 5-stage pipeline. This is because the 612
modules in the 5-stage pipeline are more evenly balanced, and thus do not slip 613
with respect to each other as frequently for our benchmarks. 614

Although these assessments were done on relatively simple cores without a 615
memory hierarchy, our hypothesis is that adding detail to these models will not 616

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 22 of 26 September 1, 2009 19:1

16: 22 · M. Pellauer et al.

Fig. 19. Assessing the out-of-order simulators.

Fig. 20. Out-of-order simulator performance improvement as buffering increases.

significantly impact simulation rate. The reason is that a realistic model will 617
use the FPGA to perform the simulation of the cache hierarchy and intercon- 618
nect network in parallel with that of the core. Thus while these structures will 619
certainly require FPGA resources, FPGA cycles per model cycle should remain 620
relatively unchanged. 621

What may require more FPGA cycles to simulate is rare-but-complex target 622
behavior such as exceptions or system call instructions. Taking multiple FPGA 623
cycles to simulate these events can result in a significant saving of FPGA re- 624
sources. (For example, by communicating with an off-FPGA simulator, as in 625
Chung et al. [2008].) However if these events are rare enough then the impact 626
on simlation rate should be minimized. We believe that the computer archi- 627
tect’s principle of “make the common case fast” should be equally applicable to 628
simulations as to the target designs themselves. 629

6. RELATED WORK 630

6.1 Performance Models on FPGAs 631

Early efforts at creating performance models on FPGAs such as Ray and Hoe 632
[2003] and Wunderlich and Hoe [2004] shared the goal of creating a model 633

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 23 of 26 September 1, 2009 19:1

A-Port Networks · 16: 23

early in the design process, but these efforts used the FPGA clock itself as 634
the simulation clock, reducing fidelity in order to ease development time and 635
save FPGA resources. Thus these are more closely aligned with what we have 636
termed a direct emulation approach. 637

An alternative to re-implementing the entire performance model onto the 638
FPGA is maintaining a software simulator and accelerating critical tasks in 639
hardware. Penry et al. [2006] explored using the Power PCs on Xilinx Virtex II 640
Pro FPGAs to accelerate the software Liberty Simulation Environment. Logic 641
was configured into the FPGA fabric that allowed Liberty to track the number 642
of clock cycles a task took. Thus all model timing was equivalent to FPGA 643
timings—an emulation approach, in our terminology. 644

The approach of taking many FPGA cycles to simulate one model cycle was 645
popularized by the RAMP project [Arvind et al. 2006; Wawrzynek et al. 2007]. 646
RAMP aims to model systems with hundreds of chips in them by spreading 647
them across multiple FPGAs, and across multiple boards. Ramp Description 648
Language [Gibeling et al. 2006], or RDL, allows the model-builder to create 649
“channels” between units. These channels have FIFO semantics with user- 650
specifiable model time latency and bandwidth, similar to the A-Ports presented 651
here. However the focus of RAMP channels is different, in that they are meant 652
to connect large units, such as processor cores which may even be on different 653
FPGAs. Hence RAMP channels use a credit-based protocol appropriate for 654
connecting large blocks. In contrast, A-Ports do not force the designer to use 655
blocks which interact with a credit-based protocol, as they are meant to connect 656
much smaller blocks on the level of pipeline stages. We note that a RAMP 657
channel could be implemented using two A-Ports, one flowing from producer to 658
consumer with the data, the other flowing in the reverse with the credit. 659

Chiou’s UT-FAST is a hybrid hardware-software performance model which 660
uses a software functional emulator to drive an FPGA which adds timing in- 661
formation to the instruction stream [Chiou et al. 2007a; 2007b]. UT-FAST 662
originally used FPGA registers to add timing information to the instruction 663
stream, with a one-to-one correspondence between FPGA cycles and model cy- 664
cles. Subsequently, UT-FAST developed a more generalized connector which 665
was also inspired by Asim ports, as presented in Chiou et al. [2007b]. The focus 666
of this connector is slightly different, as it reuses the buffering of the channel 667
itself to represent buffering of the target, which mixes concerns of simulator 668
implementation and model properties. Additionally UT-FAST connectors use 669
a protocol which allows them to be time-multiplexed, so that n conceptually 670
different channels can share the same physical buffer for efficient implemen- 671
tation. Currently there is an ongoing collaboration to reach a convergence 672
between UT-FAST connectors and A-Port Networks. 673

6.2 Process Networks and the NoMessage Value 674

As already noted, an A-Port network is a restricted case of a general Kahn 675
process network [Kahn 1974], where the buffer sizes are fixed and the nodes 676
must consume and produce exactly one input from each edge. With these re- 677
strictions the closest formalism is that of marked directed graphs [Commoner 678

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 24 of 26 September 1, 2009 19:1

16: 24 · M. Pellauer et al.

Fig. 21. In A-Port Networks, the NoMessage value is used in place of not sending a message.

et al. 1971]. As shown in Figure 21, the largest difference between A-Port Net- 679
works and classic process networks or dataflow graphs is handling the absence 680
of data using the NoMessage value. Classically, a node may choose to send a 681
token on one output but not another. In an A-Port Network this would cause 682
the two recipients to disagree about the current model cycle, as the consumer 683
node cannot distinguish between the “previous node is still computing” and the 684
“previous node is done computing and no message is coming.” 685

In this sense the NoMessage value plays a role similar to the null messages 686
of the Chandy-Misra-Bryant explicit timestamp scheme [Chandy and Misra 687
1981]. In this scheme the simulation may deadlock unless individual modules 688
communicate messages with a timestamp of the node’s local current simulated 689
cycle. A-Port networks can be viewed as a degenerate case of this where the 690
fact that a message (or NoMessage) is sent at every time step replaces the 691
timestamp itself. 692

A-Port Networks are also a restricted case of Lee’s static synchronous 693
dataflow [Lee and Messerschmitt 1987]. In such a system nodes statically de- 694
clare how many inputs they will produce and consume, and this number need 695
not necessarily be one per edge. It is believed, though not yet proven, that in- 696
troducing the NoMessage value into an arbitrary static synchronous dataflow 697
graph allows us to transform any synchronous dataflow graph into one where 698
every node only produces and consumes one token on each edge per processing 699
step (though some of those tokens may be NoMessage). If this is true, A-Port 700
Networks represent a complete restriction. 701

The theory of latency-insensitive design developed by Carloni et al. [2001] 702
shares a great deal of motivation with our work, as it aims to convert an origi- 703
nally synchronous system into an asynchronous system. In a properly latency- 704
insensitive system delay-changing relay stations may be added as necessary 705
in order to break long physical wires into smaller segments. The resulting 706
system is latency-equivalent to the original system, a requirement which is 707
weaker than maintaining the snapshot-equivalence we discuss here. Carloni 708
also uses a null-message τ symbol; however, this is used as a stalling event 709
which signals that a given node is not computing. Thus this symbol is not 710
equivalent to our NoMessage, but is more akin to the FPGA cycles on which a 711
module cannot proceed because one or more input A-Ports are empty. Because 712
of this, latency-insensitive theory also requires that when a module is able 713
to compute it must produce its output within one host clock cycle, whereas 714
A-Port Networks allow the module any number of FPGA clock cycles to com- 715
pute before producing a result. 716

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 25 of 26 September 1, 2009 19:1

A-Port Networks · 16: 25

7. DISCUSSION 717

In this article, we explored FPGAs as a platform for executing cycle-accurate 718
performance models. We discussed how performance models are created in 719
software and why contemporary mutlicores are not able to exploit the paral- 720
lelism inherent in these models. We explored the strengths and weaknesses of 721
existing distributed schemes for synchronous simulation in the particular con- 722
text of FPGAs. This article, introduced A-Port Networks and explored how the 723
ability of adjacent modules to be simultaneously simulating different model 724
cycles can lead to a performance improvement. Finally, we implemented two 725
models and demonstrated an average improvement in simulation rate of 19% 726
for our out-of-order model given appropriately sized buffers. 727

In the future, we hope to extend the technique to efficiently handle modeling 728
multiple clock domains. Additionally we hope to use the multiple physical clock 729
domains on the FPGA to allow adjacent modules to run in separate FPGA clock 730
domains. The goal of the HAsim project [Pellauer et al. 2008a; 2008b] is to use 731
A-Ports, combined with other techniques from software performance models 732
[Pellauer et al. 2008b], to create a high-detail model of a chip-multiprocessor 733
(CMP) on an FPGA. 734

ACKNOWLEDGMENTS 735

The authors would like to acknowledge the collaboration and valuable feedback 736
of Angshuman Parashar, Zhihong Yu, Tao Wang, and Guan-Yi Sun. 737

REFERENCES 738

ARVIND, ASANOVIC, K., CHIOU, D., HOE, J. C., KOZYRAKIS, C., LU, S., OSKIN, M., 739
PATTERSO, D., RABAEY, J., AND WAWRYZNEK, J. 2006. Ramp: Research accelerator for mul- 740
tiple processors—a community vision for a shared experimental parallel hw/sw platform. Tech. 741
rep. University of California, Berkeley. 742

BARR, K. C., MATAS-NAVARRO, R., WEAVER, C., JUAN, T., AND EMER, J. 2005. Simulating a chip 743
multiprocessor with a symmetric multiprocessor. In Proceedings of the Boston Area Archictecture 744
Workshop (BARC). 745

BRYANT, R. 1979. Simulation on a distributed system. In Proceedings of the 1st International 746
Conference on Distributed Systems. 747

CARLONI, L., MCMILLAN, K., AND SANGIOVANNI-VINCENTELLI, A. 2001. Theory of latency- 748
insensitive design. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 749

CHANDY, K. M. AND MISRA, J. 1981. Asynchronous parallel simulation via a sequence of parallel 750
computations. Comm. ACM, 198–206. 751

CHIOU, D., SUNWOO, D., KIM, J., PATIL, N. A., REINHART, W. H., JOHNSON, D. E., KEEFE, J., 752
AND ANGEPAT, H. 2007a. FPGA-accelerated simulation technologies FAST: Fast, full-system, 753
cycle-accurate simulators. In Proceedings of the Annual ACM/IEEE International Symposium 754
on Microarchitecture (MICRO’07). 755

CHIOU, D., SUNWOO, D., KIM, J., PATIL, N. A., REINHART, W. H., JOHNSON, D. E., AND 756
XU, Z. 2007b. The fast methodology for high-speed soc/computer simulation. In Proceedings of 757
the International Conference on Computer-Aided Design (ICCAD’07). 758

CHUNG, E., NURVITADHI, E., MAI, J. H. K., AND FALSAFI, B. 2008. Accelerating Architectural- 759
level, Full-System Multiprocessor Simulations using FPGAs. In Proceedings of the 11th Interna- 760
tional Symposium on Field Programmable Gate Arrays (FPGA’08). 761

COMMONER, F., HOLT, A., EVEN, S., AND PNUELI, A. 1971. Marked directed graphs. J. Comput. 762
Syst. Sci. 5. 763

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.



TRE00040 ACM (Typeset by spi publisher services, Delhi) 26 of 26 September 1, 2009 19:1

16: 26 · M. Pellauer et al.

EMER, J., AHUJA, P., BORCH, E., KLAUSER, A., LUK, C. K., MANNE, S., MUKHERJEE, S. S., 764
PATIL, H., WALLACE, S., BINKERT, N., ESPASA, R., AND JUAN, T. 2002. Asim: A performance 765
model framework. Computer, 68–76. 766

GIBELING, G., SCHULTZ, A., AND ASANOVIC, K. 2006. The ramp architecture and description 767
language. Tech. rep. University of California, Berkeley. 768

KAHN, G. 1974. The Semantics of a Simple Language for Parallel Programming. In J. L. Rosenfeld 769
Ed., Information Processing, North Holland, 471–475. 770

LEE, E. A. AND MESSERSCHMITT, D. G. 1987. Static scheduling of synchronous data ow programs 771
for digital signal processing. IEEE Trans. Comput. 772

PELLAUER, M., VIJAYARAGHAVAN, M., ADLER, M., ARVIND, AND EMER, J. 2008a. A-ports: An 773
efficient abstraction for cycle-accurate performance models on FPGAs. In Proceedings of the 774
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS’08). 775

PELLAUER, M., VIJAYARAGHAVAN, M., ADLER, M., ARVIND, AND EMER, J. 2008b. Quick 776
performance models quickly: Closely-coupled timing-directed simulation on FPGAs. In 777
Proceedings of the IEEE International Symposium on Performance Analysis of Systems and 778
Software (ISPASS’08). 779

PENRY, D. A., FAY, D., HODGDON, D., WELLS, R., SCHELLE, G., AUGUST, D. I., AND CONNORS, 780
D. 2006. Exploiting parallelism and structure to accelerate the simulation of chip multi- 781
processors. In Proceedings of the 12th International Symposium on High-Performance Computer 782
Architecture (HPCA’06). 783

PFISTER, G. 1982. The yorktown simulation engine. In Proceedings of the 19th Conference on 784
Design Automation (DAC’82). 785

RAY, J. AND HOE, J. C. 2003. High-level modeling and FPGA prototyping of microprocessors. 786
In Proceedings of the ACM/SIGDA 11th International Symposium on Field Programmable Gate 787
Arrays (FPGA’03). 788

WAWRZYNEK, J., PATTERSON, D., OSKIN, M., LU, S. L., KOZYRAKIS, C., HOE, J. C., CHIOU, D., 789
AND ASANOVIC, K. 2007. Ramp: A research accelerator for multiple processors. In Proceedings 790
of the Annual ACM/IEEE International Symposium on Microarchitecture (MICRO’07). 791

WUNDERLICH, R. E. AND HOE, J. C. 2004. In-System FPGA Prototyping of an Itanium Microar- 792
chitecture. In Proceedings of the IEEE International Conference on Computer Design (ICCD’04). 793

Received June 2008; accepted July 2008 794

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.


