
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s  i n s t i t u t e  o f  t e c h n o l o g y,  c a m b r i d g e ,  m a  0 213 9  u s a  —  w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2010-054 November 23, 2010

LEAP Scratchpads: Automatic Memory 
and Cache Management for 
Reconfigurable Logic [Extended Version]
Michael Adler, Kermin E. Fleming, Angshuman 
Parashar, Michael Pellauer, and Joel Emer



LEAP Scratchpads: Automatic Memory and Cache
Management for Reconfigurable Logic [Extended Version] ‡

Michael Adler† Kermin E. Fleming¶ Angshuman Parashar† Michael Pellauer¶ Joel Emer†¶
†Intel Corporation

VSSAD Group
{michael.adler, angshuman.parashar,

joel.emer}@intel.com

¶Massachusetts Institute of Technology
Computer Science and A.I. Laboratory

Computation Structures Group
{kfleming, pellauer, emer}@csail.mit.edu

ABSTRACT
Developers accelerating applications on FPGAs or other re-
configurable logic have nothing but raw memory devices
in their standard toolkits. Each project typically includes
tedious development of single-use memory management. Soft-
ware developers expect a programming environment to in-
clude automatic memory management. Virtual memory pro-
vides the illusion of very large arrays and processor caches
reduce access latency without explicit programmer instruc-
tions.

LEAP scratchpads for reconfigurable logic dynamically
allocate and manage multiple, independent, memory arrays
in a large backing store. Scratchpad accesses are cached au-
tomatically in multiple levels, ranging from shared on-board,
RAM-based, set-associative caches to private caches stored
in FPGA RAM blocks. In the LEAP framework, scratch-
pads share the same interface as on-die RAM blocks and
are plug-in replacements. Additional libraries support heap
management within a storage set. Like software developers,
accelerator authors using scratchpads may focus more on
core algorithms and less on memory management.

Two uses of FPGA scratchpads are analyzed: buffer man-
agement in an H.264 decoder and memory management
within a processor microarchitecture timing model.

Categories and Subject Descriptors
C.5.m [Computer System Implementation]: Miscella-
neous

General Terms
Algorithms, Performance

Keywords
FPGA, memory management, caches

‡This is an extended version of a paper presented at FPGA 2011: Proceed-
ings of the 19th Annual ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (ISFPGA).

1. INTRODUCTION
FPGAs are increasingly employed as coprocessors along-

side general purpose CPUs. The combination of large memory
and ease of programming a general purpose machine along
with the abundant parallelism and low communication latency
in an FPGA make the pair attractive for hybrid algorithms
that split computation across both engines.

Memory management in software development is supported
by a rich set of OS and library features. Describing overlays
[6, 16], a method of swapping regions of code or data to fit in
limited physical memory, elicits pitying chuckles from even
well-educated computer scientists who began their careers
after virtual memory became pervasive. Software design-
ers targeting general purpose hardware long ago accepted
that the gain in programmer efficiency from using compilers,
support libraries and operating systems outweighs possible
performance gains of hand-coding raw instructions.

The memory subsystem in general purpose hardware offers
a hierarchy of storage, ranging from fast but small caches
embedded in the processor to large external RAM arrays on
memory buses, and to swap files on disks. Management of
cache state is controlled by fixed hardware algorithms chosen
for their overall performance. Explicit, hand-tuned cache
management instructions are typically added only to the
most performance-sensitive programs. Tremendous effort has
been spent building compilers capable of automatic cache-
management, e.g. [12, 13]. As general purpose processors
add more parallel processing, language designers continue to
add abstract memory management to design tools in order
to split algorithmic design from the grunt work of memory
management [3].

The gap between the programming environment on the
general purpose half and the reconfigurable half of a hybrid
machine is stark. Most FPGA developers still code in low
level languages equivalent to assembly language on general
purpose machines. Those optimizing a set of loop kernels
may use C or Java-like languages [8, 10, 11, 14] and a handful
are beginning to use languages such as Bluespec [2, 19] that
support language-based static elaboration and polymorphic
module definitions.

The state of memory management on reconfigurable logic is
similarly primitive. FPGA synthesis tools support relatively
easy management of on-die memory arrays. The interface to
on-die RAM blocks is simple: a method for writing a value to
an address and a two-phase pair of read request and response
methods. This interface may be made timing insensitive by
predicating the methods with ready and enable flags and



buffering state on pipeline stalls [5].

1.1 Scratchpad memory hierarchies
What if an algorithm needs more memory than is available

on-die? At best, designers are offered low-level device drivers
for embedded memory controllers, PCIe DMA controllers or
some other bus. Building an FPGA-side memory hierarchy is
treated as an application-specific problem. Even methods for
mapping memory management as basic as malloc and free to
on-die RAM for C-like synthesis languages are a very recent
innovation [22]. On general purpose hardware the memory
hierarchy is invisible to an application, except for timing.
A similar memory abstraction, identical to the interface to
on-die RAM blocks but implementing a full storage hierarchy,
is equally useful for a range of FPGA-based applications.

Our project began as an effort to accelerate processor
microarchitecture timing models using FPGAs. We quickly
realized that some effort writing a general programming
framework would make our task more tractable. The resulting
platform is in active use for timing models and has been
adopted for other algorithmic accelerators, such as an H.264
decoder. Both of these applications are considered in this
paper.

We have written LEAP (Logic-based Environment for Ap-
plication Programming) [17], a platform for application de-
velopment on reconfigurable logic. LEAP runs on any set of
reconfigurable logic connected to general purpose machines.
Like an operating system, LEAP is layered on top of device-
specific drivers. It presents a consistent virtual platform
on any hardware. Application writers may then target the
virtual platform, rendering their code portable across com-
munication fabrics. LEAP presents the same interface over
connections as diverse as FPGAs plugged directly into Intel
Front Side Bus sockets and FPGAs connected to a host over
a JTAG cable. The virtual platform provides a rich set of
services, including streaming I/O devices, application control
primitives, and an asynchronous hybrid procedural interface
similar to remote procedure calls [18]. The platform also
provides automatic instantiation of processor-like memory hi-
erarchies, ranging from private caches, through shared caches
and down to host memory. In this paper we focus on the
automatically constructed memory stack.

LEAP defines a single, timing insensitive, interface to
scratchpad memory hierarchies. The same write, read re-
quest and read response interface methods are used for any
memory implementation defined by the platform, along with
the predicates governing whether the methods may be in-
voked in a given FPGA cycle. The simplest memory device
allocates an on-die RAM block. However, LEAP memory
stacks sharing the same interface can be configured for a
variety of hierarchies. The most complicated has three levels:
a large storage region such as virtual memory in a host sys-
tem, a medium sized intermediate latency memory such as
SDRAM controlled by an FPGA, and fast, small memories
such as on-FPGA RAM blocks. Converting a client from us-
ing on-die memory to a complex memory hierarchy is simply
a matter of instantiating a different memory module with
identical connections.

For a given set of hardware, low-level device drivers must
be provided for each level in a physical hierarchy. Virtual
devices and services are layered on top of these physical de-
vice drivers, thus providing a consistent programming model
independent of the underlying physical devices. Our goal is

to make programming an FPGA more like software develop-
ment on general purpose hardware. Programmers target an
abstract set of virtual services similar to general purpose ker-
nel and user-space libraries. Like general purpose hardware,
programmers may get an algorithm working with generic
code and then, optionally, tune their application for specific
hardware latencies and sizes.

1.2 Related work
Many researchers have considered the problem of cache

hierarchies in reconfigurable logic and embedded systems.
Automatic generators build a variety of cache types and sizes,
treating caches as building blocks [25]. Panda et al. pre-
sented an algoritm for computing application-specific cache
hierarchies designed to minimize off-chip references [15].

CoRAM, a current research effort, is an investigation of
application interfaces to memory hierarchies within reconfig-
urable logic [4]. CoRAM defines both a memory API and a
control thread model for managing traffic between on-die and
off-die memory. The CoRAM model could be implemented
within the LEAP framework. LEAP scratchpads are a struc-
tured, hierarchical cache topology connected to applications
through a relatively simple interface. In LEAP, the specific
hierarchy instantiated is configurable from building blocks
of both direct mapped and set associative caches. Clients
may either accept the default private caches or may plug in
their own, taking advantage of the sorts of access pattern
optimizations considered in [15]. A CoRAM implementation
within LEAP would replace the default, private, on-die cache
with a CoRAM memory and control thread.

Other projects, such as hthreads [1], have also built hybrid
computation frameworks. Hthreads offers a hybrid pthreads-
style thread management environment layered on coherent
memory. The automatic instantiation of cached memory hier-
archies we describe for LEAP scratchpads could be inserted
into an hthreads stack as well.

2. SCRATCHPAD ARCHITECTURE

2.1 FPGA On-Die RAM Blocks
On-die FPGA RAM blocks can be configured quite flexibly.

Xilinx RAM blocks are organized as 18Kb or 36Kb blocks
in data widths of 1, 2, 4, 9, 18 or 36 bits [24]. Altera RAM
blocks have similar widths. Synthesis tools automatically
provide the illusion of arbitrary size and width by grouping
multiple blocks into a single logical block and mapping into
the closest available bit width. A large Xilinx Virtex 6 FPGA
has about 32Mb of RAM.

Access to RAM blocks is simple: a single cycle write oper-
ation and a two phase read request / read response protocol.
Even a näıve implementation can be dual ported, permitting
simultaneous reads and writes. RAM blocks are fast, flexible
and easy to access as private storage within a module. Unfor-
tunately, they are finite. What are we to do for algorithms
with memory footprints too large for on-FPGA RAM?

2.2 On-Board RAM
Many FPGA platforms have on-board RAM and have

memory controllers available as logic blocks. Compared to an
FPGA’s internal RAM blocks, on-board memory is plentiful:
typically measured in megabytes or gigabytes. Unlike FPGA
RAM blocks, on-board memory is a monolithic resource. At
most only a few banks are available, managed by individual



Client ClientClient

RAM
Block

A
pp

lic
at

io
n

P
la

tfo
rm Scratchpad

Controller
Local

Memory

RAM
Block

Client ClientClient

Scratchpad
Interface

A
pp

lic
at

io
n

Platform
Connector

a) Private RAM blocks

b) Scratchpads with a ring interconnect

Request Ring

Response Ring

Scratchpad
Interface

ClientClient

RAM
Block

Memory Interface

Memory Interface

Client

Scratchpad
Interface

Figure 1: Transforming private RAM blocks to
scratchpads. The memory interface between clients
and storage is unchanged following the transforma-
tion. Only timing is different.

controllers. In order to share on-board RAM among multi-
ple clients the memory must be partitioned and managed
by a central controller. We call this service the scratchpad
controller. The controller is responsible for partitioning a
large memory into individual scratchpads, corresponding to
private memories requested by clients. The controller then
routes requests from scratchpads to their unique memory
segments. This is implemented using an indirection table,
mapping scratchpads to memory base offsets.

Except for latency, moving storage to a different level in the
memory hierarchy is invisible to software written for general
purpose hardware. The change could range from missing in
an L1 cache to suffering a page fault and swapping data in
from a disk. While not an absolute requirement for FPGA-
based scratchpads, having the ability to express memory I/O
operations independent of their underlying implementation
and latency is equally convenient on reconfigurable logic. In
our implementation, the difference between a client using
a private on-die RAM block and a scratchpad in a shared
memory is only a single source line (see Section 2.7). The
client using a RAM block invokes a module that instantiates
on-die memory. To use a scratchpad instead, the client re-
places this instantiation with a module that connects itself
to the scratchpad controller.

Each client requesting a scratchpad memory instantiates
a scratchpad interface. This interface is private to a single
client, transforming client-side references to requests in the

scratchpad controller. The scratchpad controller is a shared
resource. Connecting multiple clients to the controller re-
quires an interconnect and arbitration. For a small number of
scratchpads, a set of point-to-point connections from scratch-
pad interfaces to the controller along with a round-robin
arbiter works perfectly well. As the number of clients grows,
the burden on FPGA routing becomes too great and a more
sophisticated network is required. We have built a pair of
token rings, using self-assembling rings described in [19]. The
transformation from private RAM blocks to scratchpad mem-
ories is illustrated in Figure 1. Deadlocks are avoided by
assigning requests to one ring and responses to the other. A
pair of rings was chosen instead of a single ring with virtual
request and response channels both to increase network band-
width and because the FPGA overheads of channel buffering
and multiplexing are similar to the simpler, multi-ring, so-
lution. One ring stop is responsible for forwarding messages
between the rings and the scratchpad controller.

2.2.1 Identifying scratchpads
The scratchpad controller must have a way of identifying

individual scratchpads. Each scratchpad interface must be
assigned a unique identifier that we call a scratchpad ID. Each
instantiation of a scratchpad interface module takes a compile-
time constant argument specifying a unique scratchpad ID.
Every request from an interface module to the scratchpad
controller is tagged with an ID.

Reconfigurable logic and table sizes are minimized if the
scratchpad ID space is dense. LEAP provides a namespace
management tool for generating unique identifiers. This dic-
tionary tool was originally conceived for mapping integer
identifiers to strings in order to trigger printing of messages
on a host from an FPGA without having to specify hardware
logic for passing variable length strings. We have extended it
to solve the general problem of managing identifier spaces,
including syntax for managing numerically dense subspaces.

Using LEAP dictionaries and conventions, an implementor
allocating scratchpad IDs would specify:

def VDEV.SCRATCH.FBUF_Y "Frame buffer Y";

def VDEV.SCRATCH.FBUF_U "Frame buffer U";

def VDEV.SCRATCH.FBUF_V "Frame buffer V";

in order to allocate a group of scratchpads named FBUF Y,
FBUF U and FBUF V. The dotted notation represents nu-
merically dense subregions.

2.2.2 Initialization and addressing
An initialization step is required in order to subdivide on-

board memory into individual scratchpads. At start-up, each
scratchpad interface computes the size of its scratchpad array.
The interfaces then send allocation requests to the scratchpad
controller. The controller receives allocation requests and
builds a partition table, mapping individual scratchpads to
unique regions of memory. An error is signaled if the size
of all allocation requests exceeds available memory. Each
scratchpad interface operates in its own private, zero-based
address space. Within the common controller, addresses are
computed as the sum of the private address and a scratchpad’s
on-board memory offset from the partition table.

The mapping from private scratchpad array indices to
on-board memory addresses is fully contained within the
scratchpad controller. Although our current controller imple-
mentation maps all scratchpads dynamically at start-up and



has no protocol for releasing regions, it would be relatively
easy to extend the private protocol between scratchpad in-
terfaces and the controller to permit dynamic release and
reallocation of memory. Only the partition table must be
updated. An ambitious implementation could even rebase
region mappings in order to combine fragmented free memory
blocks into larger chunks.

2.3 Marshaling
Astute readers will have noticed a problem in our transfor-

mation of RAM block clients to scratchpad clients. Synthesis
tools permit FPGA RAM allocation in any bit width. While
the underlying hardware does not support arbitrary width, it
is sufficiently flexible that memory is allocated relatively effi-
ciently. In contrast, on-board memory is presented in chunks
of words and lines, with some hardware adding write masks
to support byte-sized writes.

An easy, but unacceptably inefficient solution would be
fixed mapping of RAM block addresses to word-sized on-
board memory chunks. The fixed mapping would not support
data widths larger than a memory word. It would also waste
nearly the entire word for small data widths, turning a dense
1024 x 1-bit RAM block into a 64KB chunk, assuming a 64
bit word!

To solve this mapping problem, the scratchpad interface
interposes a marshaling layer between the client and requests
to the platform interface. When objects are smaller than the
memory word size, multiple objects are grouped into a single
memory word. When objects are larger than the memory
word size, the marshaling layer spreads objects across multiple
words. In the first case the marshaler is forced to request read-
modify-write operations in order to update an entry. In the
second case the marshaler must emit multiple read or write
requests in order to reference all memory words corresponding
to a scratchpad location. From the client’s perspective, the
word size remains the size originally requested.

The LEAP platform provides a marshaling library module.
Compile-time parameters declare the memory word size along
with the desired scratchpad width and number of elements.
The marshaler computes the dimensions of an on-board-
memory-sized container for holding the equivalent data and
determines whether read-modify-write or group reads and
writes are required. It also exports read and write methods
that act on the requested array’s data type. The methods
automatically trigger either read-modify-write or group reads
and writes when needed.

2.4 Private Caches
With the addition of marshaling we now have an architec-

tural description for replacing RAM blocks with on-board
memory scratchpads that is fully functional. Unfortunately,
it will perform terribly. RAM block references that were for-
merly single cycle references and parallel for each block have
been converted into a shared, high contention, higher latency
resource. A cache is needed, both to provide lower latency
and to reduce the number of requests that reach on-board
memory. LEAP provides low latency, direct mapped, caches,
though developers may specify their own cache implementa-
tions optimized for particular access patterns.

The position of the cache, above or below the marshaler, is
a compromise. Choosing to insert the cache between the client
and the marshaler would eliminate many read-modify-write
operations in the marshaler. However, read-modify-write

A
pp

lic
at

io
n

Client ClientClient

Scratchpad
Interface

Platform
Connector

Marshaler

Private
Cache

Private
Cache

Marshaler

Request Ring

Response Ring

Scratchpad
Interface

Client

Private
Cache

Marshaler

Scratchpad
Interface

Memory Interface

Figure 2: Client-facing model hierarchy, including
marshaling from client data to on-board memory
word-sized accesses, private L1 caching and a token
ring networking scratchpad interfaces. The platform
interface at the bottom of the stack forwards mes-
sages between the ring network and the scratchpad
manager (not shown).

operations are required because the data width above the
marshaler is small. Consider a scratchpad of boolean values.
Caching above the marshaler would require tag sizes to cover
the address space but would have only one bit data buckets.
This ratio of meta-data to actual cache data is unacceptable.

In our implementation, both the private cache and the
marshaler present the same interface to the client. The rel-
ative order of the marshaler and a cache is invisible to the
scratchpad client. A compile-time heuristic could choose a lo-
cally optimal topology based on a scratchpad’s size and data
type, placing the cache either above or below the marshaler.
In our current implementation the cache is always inserted
below the marshaler. The full hierarchy is shown in Figure 2.

2.5 Host Memory
The hierarchy has now expanded available FPGA-side

memory from the capacity of on-die RAM blocks to the
capacity of on-board RAM. This solution is fully functional
on both stand-alone FPGAs and on FPGAs connected to a
host computer. For scratchpad memories, on-die RAM block
usage is reduced to fixed sized caches. Now we face the same
question asked at the end of Section 2.1: What are we to do
for algorithms with memory footprints too large for on-board
RAM?

If the FPGA is connected via a high speed bus to a host
computer, the solution is the same as when we ran out of
on-die memory: push the backing storage one level down in
the hierarchy, using host memory as the home for scratchpad
data. The method is essentially identical to the method for
the on-board memory scratchpad controller in Section 2.2.2.
An indirection table must map scratchpad memories to host



S
cr

at
ch

pa
d 

C
lie

nt
s

Client ClientClient

Scratchpad
Interface

Platform
Connector

Marshaler

Private
Cache

Private
Cache

Marshaler

P
la

tfo
rm

Scratchpad
Controller

Central
Cache

H
os

t

Scratchpad
Memory

Local
Memory

Client Client... Client

Central
Cache Ifc

Platform
Connector

Marshaler

Private
Cache

Private
Cache

Marshaler

Client
Fill / Spill

Client
Fill / Spill

C
en

tra
l C

ac
he

C
lie

nt
s

Request Ring Request Ring

Response Ring Response Ring

Scratchpad
Interface

Central
Cache Ifc

Client

Private
Cache

Marshaler

Scratchpad
Interface

Memory Interface

Figure 3: Full client-facing model hierarchy. Scratchpad clients (top-left) marshal requests to memory-sized
chunks and are filtered by private caches. The scratchpad controller handles central cache spill and fill requests,
transforming them into operations on the host scratchpad memory. Central cache clients (top-right) must
provide their own spill and fill drivers, which likely connect to drivers on the host. The central cache protocol
tags each request and cached line with a specific client, enabling proper routing of responses and spill or fill
requests.

addresses. Instead of reading and writing data from on-board
memory, the scratchpad controller reads and writes host
memory using either direct memory access or a protocol over
an I/O channel.

2.6 Central Cache
Moving the backing storage from on-board RAM to host

memory offers more space at the expense of access time.
Configuring the now unused on-board RAM as a last-level
cache can reduce this penalty. Because only one central cache
controller is instantiated we can afford a more complicated
controller. The platform’s central cache controller is set asso-
ciative with LRU replacement.

Clients connecting to the central cache identify themselves
using a dictionary-based mechanism similar to the scratchpad
ID allocation scheme described in Section 2.2.1. Like the
scratchpad controller, the central cache constructs a unique
address space for each client by concatenating client IDs and
address requests from clients. This internal address space
enables the central cache to associate entries with specific
clients.

Clients connecting to the central cache must provide func-
tions for spilling and filling memory lines. Pushing the details
of spills and fills out of the central cache allows a variety of
clients to connect, all sharing the same on-board RAM, each
with unique methods of reading and writing their backing
storage. The LRU central cache policy automatically opti-

mizes the footprint of each client in the central cache based
on the global access pattern of all clients.

Figure 3 shows the full caching hierarchy. The scratchpad
controller, shown at the left in the platform, is one client of
the central cache. Misses from all L1 scratchpad clients are
passed by the scratchpad controller to the central cache. The
scratchpad controller provides spill and fill functions to the
central cache that write and read lines from the scratchpad
memory stored on the host. Other clients of the central cache
are shown in the top right of the figure. In this example
configuration, each client instantiates a private L1 cache and
provides its own spill and fill methods that communicate with
the host. While not currently implemented in the platform,
the spill and fill methods could be extended with coherence
messages. Along with coherence messages, the central cache
tag structure could be enhanced to represent line ownership.
Hybrid algorithms sharing data between the FPGA and
the host could then communicate and force synchronization
between FPGA-side caches and host memory.

2.7 Language
LEAP is written in Bluespec SystemVerilog [2]. While the

platform framework is language independent, some Bluespec
features simplified our implementation. The language offers
powerful static elaboration and type algebra, enabling predi-
cate functions that govern whether operations that invoke
predicated methods will fire within an FPGA cycle. As long



as the user adopts a latency insensitive programming style,
predicates defined within our implementation of scratchpad
read request and response methods make it simple to replace
a RAM block with a scratchpad by changing only a single
line of source code. The method interfaces for RAM blocks
and scratchpads are identical. Externally, they differ only in
their timing and, consequently, their public methods’ predi-
cates. All LEAP RAM block and scratchpad classes share
the following interface:

1 interface MEMORY_IFC#(type t_ADDR,

2 type t_DATA);

3 method Action readReq(t_ADDR addr);

4 method ActionValue#(t_DATA) readRsp();

5

6 method Action write(t_ADDR addr,

7 t_DATA val);

8 endinterface

The definition above declares the interface to the class
MEMORY IFC. The class uses two abstract type names,
t ADDR and t DATA, that will be bound to explicit types
when instantiated. Three methods are defined: readReq re-
quests a memory read, readRsp receives the read response
and write updates the value at a location. Consider a trivial
pipeline that reads a RAM block:

1 typedef Bit#(8) ADDR_T;

2 typedef Bit#(4) DATA_T;

3

4 // Allocate 256 4-bit elements

5 MEMORY_IFC#(ADDR_T, DATA_T) mem

6 <- mkBRAM();

7

8 FIFO#(ADDR_T) inQ <- mkFIFO();

9 FIFO#(DATA_T) outQ <- mkFIFO();

10

11 rule recvInReq;

12 let addr = inQ.first();

13 inQ.deq();

14 mem.readReq(addr);

15 endrule

16

17 rule sendOutRsp;

18 let val <- mem.readRsp();

19 outQ.enq(val);

20 endrule

This pipeline defines a 256 entry RAM block of four bit
objects on line 5. An input FIFO is defined on line 8 and an
output FIFO on line 9. recvInReq consumes incoming requests
on inQ and initiates a memory read request. sendOutRsp
consumes the memory value response and forwards it to outQ,
the output FIFO.

Rules in Bluespec are like always blocks in Verilog : they
fire as a group in a single cycle, predicated by a boolean
expression. Unlike Verilog, the predicate may be a function
of the methods invoked inside the rule. The recvInReq rule
works because the FIFO first method allows an enclosing
rule to fire only when the FIFO is not empty and the memory
readReq method may fire only when the request queue is not
full. Similarly, the outbound FIFO permits its enq method to
fire only when the FIFO is not full and the memory readRsp
method requires that a response be available.

Transforming the pipeline to use scratchpads requires only
a change to the instantiation of mem:

4 // Allocate 256 4-bit elements

5 MEMORY_IFC#(ADDR_T, DATA_T) mem

6 <- mkScratchpad(VDEV.SCRATCH.FBUF_Y,

7 SCRATCHPAD_CACHED);

In this case, mem is instantiated as a scratchpad with a pri-
vate L1 cache, stored in on-die RAM blocks, and a shared L2,
stored in on-board RAM. The rules that invoke the readReq
and readRsp methods are unchanged because the predicates
that enable them are encoded in the mkScratchpad imple-
mentation. Like software on general purpose hardware, the
timing may change when moving from one memory hierar-
chy to another without requiring a changes to source code.
Developers may choose to optimize for a particular memory
timing, but changes are not required for accuracy.

3. USING SCRATCHPADS
Scratchpads are intended to be useful for a wide variety

of client algorithms and access patterns. LEAP provides a
number of configuration options. Clients may request auto-
matic instantiation of private caches or may, instead, connect
directly with the central cache. Streaming clients, where
caching would not improve performance, may bypass the
central cache and communicate directly with host memory.

Our work with FPGAs began with the goal of building
high-performance processor timing models. In the process,
we recognized the potential from generalizing the platform
interface. As a test of scratchpad performance, we analyzed a
pair of distinct algorithms: an H.264 decoder and a multi-core
processor timing model. We implemented both applications
for a Virtex-5 LX330 on a Nallatech Intel Xeon FSB Acceler-
ated Computing Platform. This module has 8MB of on-board
DDR SDRAM and is plugged into a CPU socket on a host
computer. The central cache is stored in the 8MB on-board
RAM.

3.1 H.264 Decoding
Some implementation of H.264 [9, 21] is deployed on nearly

every new device capable of displaying a video, including
smart phones, graphics cards, and, of course, televisions. The
computational requirements of decoding H.264 video vary
depending on video resolution, frame rate, and level of com-
pression used. At the low end, mobile phone applications
favor videos encoded in low resolution formats at low frame
rates, as small as QCIF (176× 144) at 15 frames per second.
At the high end of the spectrum, Blu-ray discs are encoded at
1080p (1920× 1080) at 24 frames per second. At the low end,
decoding may be handled by software. However, decoding
HD streams typically requires specialized hardware as even
the most recent processors strain under the burden of 1080p.

H.264 reconstructs video at the granularity of 16×16 pixel
macroblocks, which may be further subdivided in some decod-
ing steps. Although H.264 employs several other compression
techniques, the highest levels of compression are derived from
pixel prediction and correction. This technique involves the
decoder predicting future pixels based on pixels it has already
decoded. Because the decoder is deterministic, the encoder
knows the behavior of the decoder at encoding time, and can
include corrections if the decoder prediction will be incor-
rect. These corrective factors tend to have small magnitude
relative to a whole pixel, yielding a high compression ratio.



Stream QCIF 720p

Input 0.01 2.75
Output 0.50 26.5
Interprediction 1.00 67.0

Figure 4: H.264 Bandwidth Requirements For Sam-
ple Streams (MB/s)

H.264 can source pixels for prediction in two ways: In-
traprediction predicts macroblocks in a frame from other
previously decoded, spatially local, macroblocks in the same
frame. Interprediction predicts macroblocks from motion-
indexed pixels in previously decoded frames. Intraprediction
takes advantage of spatial locality within a frame – colors
and textures are similar across a frame. Interprediction takes
advantage of temporal locality across a frames – adjacent
frames tend to depict similar images. In the context of mem-
ory management, this second kind of prediction is of the
greatest interest, since it necessarily involves retrieving data
from previously computed, stored frames.

3.1.1 Memory Requirements
H.264 has three distinct memory streams: input, output,

and interprediction. As shown in Figure 4, the interprediction
stream dominates memory bandwidth usage. This dominance
arises from the method by which blocks are interpredicted in
H.264. Previous standards permitted only whole pixel motion
vectors: interprediction of a macro block only involved copy-
ing some other macroblock and then applying a corrective
factor to it. The bandwidth requirements of this style of
interprediction must be strictly less than the output band-
width, since not all blocks are interpredicted. However, H.264
permits sub-pixel motion vectors. To provide better image
reconstruction in this case, H.264 applies blurring filters to
pixels from as many as five different adjacent macroblocks
to produce a single predicted pixel. In the worst case pixel
dependency, thirty-six pixels must be accessed to compute
a single output pixel. Interprediction requires high memory
bandwidth, and, unlike the input and output streams, its
access pattern is dynamic. Whole, half, and quarter pixel
motion vectors may be present at any point in the frame.

3.1.2 Design Exploration
Fortunately, H.264 exhibits a number of properties that can

be exploited to develop an efficient memory system. First, the
memory streams for the intensity (luminance) and coloration
(chrominance) fields are independent. Second, motion vectors
tend to be spatially homogeneous, yielding a high degree
of regional locality in pixel accesses. Third, interprediction
feedback occurs at the granularity of a frame, thus simplifying
management of coherence across multiple caches.

These properties result in an interesting design exploration
space for memory hierarchies in H.264, both because H.264
is present on platforms with diverse performance and power
characteristics and because of its significant memory require-
ments. A number of architectures are feasible, depending on
the desired resolution, throughput, area, and power require-
ments of a design. For example, a cheap but power-hungry
decoder might use a minimally sized cache, while a more
expensive, but power efficient decoder might use multiple
large caches to cut down on off-chip memory accesses. It
is beyond the scope of our present study to find optimal
solutions to these problems. Rather, we demonstrate, by pro-

ducing a number of disparate designs, that the scratchpad
abstraction is an effective means of exploring the memory
hierarchy design space without substantial coding overhead.

For our memory hierarchy explorations, we use an existing
H.264 implementation [7]. This codec originally targeted an
ASIC implementation, but performance increases in FPGAs
permit us to reuse the codec without significant modifications.
The original design assumed a request-response memory hier-
archy similar to scratchpads, but only implemented a simple
SRAM-based L1 cache even though it partitioned its memory
requests into three separate streams: one for the luminance
field and for each of the two chrominance fields. As a result,
the original hierarchy suffered from performance issues in the
presence of slower backing storage, like DRAM, and could
only achieve sufficient memory for HD decoding if the frame
buffer was stored in a high-bandwidth, low-latency SRAM.

Because the original algorithm connects to a standard,
timing-independent, memory interface, we can easily inte-
grate a scratchpad-based hierarchy. We implemented three
distinct memory hierarchies and attached them to the H.264
decoder, illustrated in Figure 5. First, we implemented a sim-
ple, shared, on-die, RAM-based frame buffer. This buffer is
constrained by both the size of on-die RAM available on the
FPGA and offered bandwidth, which must be multiplexed
among the three field streams. It is worth noting that this
memory architecture is chosen by many published H.264
implementations. Second, we implemented a single scratch-
pad memory hierarchy backed by the central cache. While
the architecture makes use of the automatic mid-level cache
provided by scratchpads, the lowest-level cache is still multi-
plexed among many users. Third, we used separate scratch-
pads to implement the storage for the luma and chroma
components. Although this architecture requires a larger
number of caches, the bandwidth offered by the hierarchy is
substantially higher due to the distribution of requests across
caches. Additionally, individual caches experience better per-
formance due to the removal of conflict misses. In configuring
the designs, we attempted to size memory parameters to
achieve similar levels of on-die memory usage in each design.

3.1.3 Results
The performance results for the various memory hierarchy

implementations are shown in Figure 6. Results are not shown
for higher resolutions using on-die RAM blocks because they
are not synthesizable on the FPGA, due to the size of the
on-die RAM frame buffer. Unlike direct implementations
employing on-die memory, the scratchpad versions require
only caches on the FPGA and remain synthesizable as the
problem size grows. As expected, the memory hierarchy in
which only a single scratchpad is used offers less performance
than the hierarchy in which the field memory streams are
split across multiple platforms. However, the performance
increase is much larger than a factor of three. This larger
difference is a result of head-of-line blocking in the single
scratchpad hierarchy. High-latency misses prevent faster, un-
related hits from exiting the in-order memory response queue,
thereby stalling the processor pipeline. To determine the im-
plementation area of the different memory hierarchies, shown
in Figure 7, we combine the areas of the FPGA platform
and H.264 memory control. Because of our complex synthesis
process, it is difficult to separate individual components of
the FPGA platform from one another, so an FPGA platform
without any memory hierarchy is provided as a reference.



Fr
am

e 
B

uf
fe

r

Frame Buffer Control

H
.2

64 H.264 
Interpolator

Scratchpad
Interface

Private
Cache

Frame Buffer Control

H.264 
Interpolator

Frame Buffer Control

H.264 
Interpolator

Private CachePrivate
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Scratchpad
Interface

Scratchpad
Interface

Scratchpad
Interface

a) On-Die Frame Buffer b) Single Scratchpad c) Multiple Scratchpads

Memory Interface

Figure 5: H.264 memory hierarchies explored. (a) Stores all interpolation data on the FPGA. (b) Stores
the same data in a single scratchpad, allowing the decoder to work on larger frame resolutions. (c) Stores
the data in multiple scratchpads, increasing memory I/O parallelism and reducing cache conflict misses and
head-of-line blocking.

 0.1

 1

 10

 100

 1000

QCIF VGA 720p 1080p

F
ra

m
es

 p
er

 S
ec

on
d

Frame Resolution

H.264 Decoding Performance Using Scratchpads

On-die Frame Buffer

Single Scratchpad

Multiple Scratchpad

Figure 6: H.264 performance, plotted on a log scale.

3.2 Multi-Core Processor Timing Model
The second memory hungry workload we consider is a pro-

cessor timing model. FPGAs are a well-known solution for
emulating and prototyping designs after the RTL has been
written. Recently, a new application has emerged: using FP-
GAs for accelerating architectural design-space exploration.
This scenario presents two problems: not every circuit trans-
lates efficiently into an FPGA and FPGA capacity becomes
a concern as it should not artificially limit architectural ex-
ploration. The solution to these problems is separation of the

Memory Hierarchy Registers LUTs On-Die
RAM KB

Platform Components 9599 11239 8
On-die Frame Buffer 22834 31880 244
Single Scratchpad 53941 66184 208
Multiple Scratchpads 37815 52748 208

Figure 7: H.264 synthesis results, targeting Nallat-
ech ACP.

FPGA clock from the model clock [20]. This allows us to use
FPGA-efficient circuits such as RAM blocks while simulating
the timings of FPGA-inefficient circuits such as CAMs and
multi-ported register files. RAM configured to model a CAM
may be searched sequentially, and the model clock cycle is
not incremented until the search concludes.

In separating the FPGA clock from the model clock we
treat the FPGA as a highly parallel programming substrate.
Like a software-based timing model, the FPGA is configured
to compute model time algorithmically, independent of the
FPGA’s hardware clock. This programmatic computation
of model time offers the model writer many opportunities
for choosing space-efficient structures. For example, multiple
instances of the same target model circuit may be represented
by time-multiplexing a single physical instance in the model.
A multi-core target processor may be modeled using a single
physical instance of the core, with the multiplexed modeling
algorithm stepping round robin through the logical target
cores. Only the data for each core, such as the register file
state, must be replicated. The modeling algorithm is typically
implemented as many stages in an FPGA pipeline. Time-
multiplexed instances then run in parallel along the pipeline,
in the same fashion as instruction execution in standard
processor pipelines [23].

3.2.1 Scratchpads in Timing Models
Time-multiplexing solves only one space problem: logic

for many instances of the same target processor now fits on
an FPGA. Another problem remains: the data representing
the state for each multiplexed object is proportional to the
number of instances. What if the required data does not fit
on-board the FPGA? Once again, we take advantage of the
separation between the FPGA clock and the model clock.
There is no specific FPGA-clock timing required for simulator
accesses to modeling data. A target model’s register file and
cache states may be stored anywhere in an FPGA or host
memory hierarchy. High latency storage may adversely affect
simulator performance, but long latencies will have no effect
on the results of simulation.

Timing models of processor caches are obvious candidates
for off-FPGA storage. There is insufficient on-die RAM to
hold modeled cache state, especially when many simulated



processors are multiplexed on a single FPGA. We employ
scratchpad memories to store modeled cache states.

In our simulator we split the model into two components:
functional and timing. Both run on the FPGA. The func-
tional model is responsible for architecturally correct exe-
cution of instructions according to the target instruction
set architecture. The timing model is solely responsible for
computing the time required for instructions to complete on
the target microarchitecture. Only data required to compute
target model cycles flows through the timing model’s FPGA
pipelines. Addresses of memory references are present in the
timing model because they are required to compute cache
occupancy. The values actually loaded and stored by memory
references do not flow through the timing model because
they do not affect timing. The values loaded and stored flow
only through the functional model. Consequently, a timing
model of a cache need store only the tags associated with
each cache line. The data for the line itself is unnecessary,
since it is redundant with the functional model state. While
this optimization significantly reduces the complexity and
memory footprints of cache timing models, tag arrays for
multi-core simulation are still relatively large compared to
FPGA RAM block sizes.

3.2.2 Experimental Configuration
Our timing models are modular and may be configured

into a variety of target topologies, ranging from simple single-
model-cycle cores to detailed out-of-order cores. Cores may
optionally have private instruction and data caches. Cores
may be connected together using a variety of network topolo-
gies, including rings and meshes.

To understand the impact of scratchpads we are interested
in the performance of the simulator itself, not the perfor-
mance of any particular modeled microarchitecture. For this
study we picked a simple target architecture: a set of inde-
pendent cores. Each core is connected to a private memory
controller. The performance of the architecture thus scales
linearly with the number of cores in the target. This microar-
chitecture is well suited for measuring simulator performance
as the problem size varies. For this target, a multiplexed
simulator with access to infinite on-die memory and with
fully utilized FPGA pipelines should have a constant simula-
tion speed, measured in simulated instructions per wall-clock
second, as the number of target cores varies. This is due
do the multiplexing. While the available parallelism within
the target varies relative to the number of target cores, the
parallelism within the simulator implementation is limited
by the single multiplexed core model. Of course there is not
infinite on-die memory within the FPGA, which is why we
employ scratchpads. With this simulator configuration the
impact of varying FPGA memory hierarchies on run-time
can be tested. By adjusting the number of target cores we
vary the memory footprint.

We tested a model configuration in which each core has a
simulated private, physically indexed, 128KB, direct mapped
instruction and also a 128KB, direct mapped, data cache
with 32 byte lines. Each cache is represented only by the
address tags corresponding to references. For a 34 bit physical
address space, each processor requires 2KB of storage for each
cache model. The model is multiplexed, with only a single
physical instance of a core described on the FPGA. Likewise,
the cache tag arrays are multiplexed. A single multiplexed
array holds the storage representing the cache tag array for

all processor instruction caches and another holds the tags
for all data caches. The arrays grow linearly with the number
of simulated cores. We varied the problem size between 8
and 64 simulated cores, translating to total cache tag array
footprints between 32KB and 256KB.

As a test of scratchpad performance we configured two
flavors: one in which the cache tag arrays are stored directly
in FPGA RAM blocks and another in which the arrays are
stored in scratchpads. As noted in Section 2.7, these varia-
tions differ only in a single source line that either instantiates
storage as on-die RAM or as a scratchpad. The algorithm
accessing the storage is written deliberately to function cor-
rectly independent of timing. The scratchpads are fronted
by 4KB of private L1 scratchpads caches, stored in RAM
blocks on the FPGA. Note that these are physical caches on
the FPGA to speed up scratchpad references, not part of the
timing model target architecture.

The functional model also has data storage requirements.
While both virtual to physical address translation and func-
tional memory are managed by a connected software-based
simulator, they are cached on the FPGA to improve simula-
tor performance. Both the translation lookaside buffer (TLB)
used for virtual to physical translation and functional mem-
ory are clients of the central cache. The TLB employs a 4KB
private cache and functional memory is fronted by a 32KB
cache to reduce pressure on the central cache. Synthesized
FPGA resource requirements are shown in Figure 8.

Model Registers LUTs On-Die
RAM KB

16 Cores / On-die RAM 79729 97736 5670
16 Cores / Scratchpads 94341 114220 3582
32 Cores / Scratchpads 101230 126114 3978
64 Cores / Scratchpads 108491 148630 5130

Figure 8: Timing model synthesis results, targeting
Nallatech ACP.

A workload consisting of eight reference programs from
SPEC 2000 was run through the simulator: ammp, applu,
gcc, mcf, mesa, parser, perlbmk and wupwise. Because we are
interested in simulator performance and not the performance
of the modeled target architecture, we simply need programs
to generate scratchpad traffic. The simulator was run for 500
million instructions on each target core. The eight workloads
were replicated for configurations with more than eight cores.
Each core was allocated a private physical address space, so
no memory was shared and the problem size grew linearly
with the number of cores.

3.2.3 Results
The simulation rate, varying the number of cores in the

target architecture, is shown in Figure 9. We measure simu-
lator performance as the number of instructions simulated
relative to wall clock time. Because the simulator is a sin-
gle, multiplexed, instance, the simulation rate on unlimited
memory is mostly constant and independent of the number
of simulated cores. (In fact, because the simulator itself is
pipelined on the FPGA, simulation rates measured in MIPS
may improve as more cores are simulated. We see this in the
speedup between 8 and 16 cores.)

For 8 and 16 core models it was possible to build equivalent
simulators using both scratchpads and RAM blocks to hold
the timing model’s cache tag arrays. For those configurations,



 0

 1

 2

 3

 4

 5

 6

 7

 8

8 16 32 64

S
im

ul
at

io
n 

R
at

e 
(M

IP
S

)

Simulated Cores

Timing Model Performance Using Scratchpads

Scratchpads

RAM Block

Figure 9: Timing model throughput, measured in
simulation rate (millions of instructions per second)
relative to wall clock time. For 8 and 16 core simula-
tions it is physically possible to synthesize cache tag
arrays in RAM blocks. Above 16 cores, the arrays
no longer fit on the FPGA.

the performance with scratchpads was nearly identical to
the direct implementation. The FPGA’s RAM block area
is simply not large enough for 32 and 64 core models. We
see interesting results for those two configurations. Simula-
tor performance drops for two reasons. First, central cache
capacity is a problem, as seen in the miss rates in Figure 10.
Second, the FPGA pipeline becomes saturated, leaving no
room for additional parallelism. While performance clearly
decreases as central cache pressure grows due to the sizes of
scratchpads and functional memory, it should be noted that
without these techniques the simulator would simply have
failed to synthesize for the FPGA. Performance degradation
due to cache footprint growth is similarly problematic on
general purpose hardware. We have achieved our goal of an
FPGA platform with a general purpose programming model.

4. CONCLUSION
Automatic cache instantiation frees the FPGA application

developer to concentrate more on algorithmic design and less
on memory management. A platform-provided memory hier-
archy automatically partitions the on-board memory among
competing clients. Without it, application writers would be
forced to manage access to on-die RAM blocks and shared
DDR RAM explicitly. Designers would most likely hard par-
tition memory among clients. Like application development
on general purpose machines, core algorithms may be written
and then tuned for their particular memory access patterns.

LEAP scratchpads are in active use in projects as diverse
as H.264 decoders and micro-architectural timing models.
We have found them to be particularly useful for managing
storage in applications that require multiple, large, random
access buffers.

 0

 5

 10

 15

 20

 25

8 16 32 64

M
is

se
s 

pe
r 

10
00

 C
or

e 
C

yc
le

s

Simulated Cores

Central Cache Miss Rate

Scratchpads

RAM Block

Figure 10: Central cache miss rate.

5. REFERENCES
[1] D. Andrews, R. Sass, E. Anderson, J. Agron, W. Peck,

J. Stevens, F. Baijot, and E. Komp. Achieving
Programming Model Abstractions for Reconfigurable
Computing. IEEE Trans. Very Large Scale Integr.
Syst., 16(1):34–44, 2008.

[2] Arvind. Bluespec: A Language for Hardware Design,
Simulation, Synthesis and Verification. In
MEMOCODE ’03: Proceedings of the First ACM and
IEEE International Conference on Formal Methods and
Models for Co-Design, page 249. IEEE Computer
Society, 2003.

[3] Z. Budimlic, A. M. Chandramowlishwaran, K. Knobe,
G. N. Lowney, V. Sarkar, and L. Treggiari. Declarative
Aspects of Memory Management in the Concurrent
Collections Parallel Programming Model. In DAMP ’09:
Proceedings of the 4th Workshop on Declarative Aspects
of Multicore Programming, pages 47–58. ACM, 2008.

[4] H. J. C. Chung, Eric S. and K. Mai. CoRAM: An
In-Fabric Memory Abstraction for FPGA-based
Computing. In FPGA ’11: Proceedings of the 19th
Annual ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, 2011.

[5] N. Dave, M. C. Ng, M. Pellauer, and Arvind. A design
flow based on modular refinement. In Formal Methods
and Models for Codesign (MEMOCODE), 2010 8th
IEEE/ACM International Conference on, pages 11 –20,
Jul. 2010.

[6] J. B. Dennis. Segmentation and the Design of
Multiprogrammed Computer Systems. J. ACM,
12(4):589–602, 1965.

[7] K. Fleming, C.-C. Lin, N. Dave, Arvind, G. Raghavan,
and J. Hicks. H.264 Decoder: A Case Study in Multiple
Design Points. In Formal Methods and Models for
Co-Design, 2008. MEMOCODE 2008. 6th ACM/IEEE
International Conference on, pages 165 –174, Jun. 2008.

[8] M. B. Gokhale, J. M. Stone, J. Arnold, and
M. Kalinowski. Stream-Oriented FPGA Computing in
the Streams-C High Level Language. In FCCM ’00:
Proceedings of the 2000 IEEE Symposium on
Field-Programmable Custom Computing Machines,



page 49. IEEE Computer Society, 2000.

[9] I.-T. V. C. E. Group. Draft ITU-T Recommendation
and Final Draft International Standard of Joint Video
Specification, May, 2003.

[10] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. SPARK:
A High-Lev l Synthesis Framework for Applying
Parallelizing Compiler Transformations. In VLSID ’03:
Proceedings of the 16th International Conference on
VLSI Design, page 461. IEEE Computer Society, 2003.

[11] S. S. Huang, A. Hormati, D. F. Bacon, and R. Rabbah.
Liquid Metal: Object-Oriented Programming Across
the Hardware/Software Boundary. In ECOOP ’08:
Proceedings of the 22nd European conference on
Object-Oriented Programming, pages 76–103.
Springer-Verlag, 2008.

[12] W. W. Hwu and P. P. Chang. Achieving High
Instruction Cache Performance with an Optimizing
Compiler. SIGARCH Comput. Archit. News,
17(3):242–251, 1989.

[13] C.-K. Luk and T. C. Mowry. Cooperative Prefetching:
Compiler and Hardware Support for Effective
Instruction Prefetching in Modern Processors. In
MICRO 31: Proceedings of the 31st Annual ACM/IEEE
International Symposium on Microarchitecture, pages
182–194. IEEE Computer Society Press, 1998.

[14] W. A. Najjar, W. Böhm, B. A. Draper, J. Hammes,
R. Rinker, J. R. Beveridge, M. Chawathe, and C. Ross.
High-Level Language Abstraction for Reconfigurable
Computing. Computer, 36(8):63–69, 2003.

[15] P. Panda, N. Dutt, and A. Nicolau. Local Memory
Exploration and Optimization in Embedded Systems.
Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 18(1):3 –13, Jan. 1999.

[16] R. J. Pankhurst. Operating Systems: Program Overlay
Techniques. Commun. ACM, 11(2):119–125, 1968.

[17] A. Parashar, M. Adler, K. Fleming, M. Pellauer, and
J. Emer. LEAP: A Virtual Platform Architecture for
FPGAs. In CARL ’10: The 1st Workshop on the
Intersections of Computer Architecture and
Reconfigurable Logic, 2010.

[18] A. Parashar, M. Adler, M. Pellauer, and J. Emer.
Hybrid CPU/FPGA Performance Models. In WARP
’08: The 3rd Workshop on Architectural Research
Prototyping, 2008.

[19] M. Pellauer, M. Adler, D. Chiou, and J. Emer. Soft
Connections: Addressing the Hardware-Design
Modularity Problem. In DAC ’09: Proceedings of the
46th Annual Design Automation Conference, pages
276–281. ACM, 2009.

[20] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and
J. Emer. A-Port Networks: Preserving the Timed
Behavior of Synchronous Systems for Modeling on
FPGAs. ACM Trans. Reconfigurable Technol. Syst.,
2(3):1–26, 2009.

[21] I. E. Richardson. H.264 and MPEG-4 Video
Compression. John Willey & Sons, 2003.

[22] J. Simsa and S. Singh. Designing Hardware with
Dynamic Memory Abstraction. In FPGA ’10:
Proceedings of the 18th Annual ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, pages 69–72. ACM, 2010.

[23] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook,

D. Patterson, and K. Asanović. RAMP Gold: an
FPGA-Based Architecture Simulator for
Multiprocessors. In DAC ’10: Proceedings of the 47th
Design Automation Conference, pages 463–468. ACM,
2010.

[24] Xilinx, Inc. UG363: Virtex-6 FPGA Memory Resources
User Guide. 2010.

[25] P. Yiannacouras and J. Rose. A Parameterized
Automatic Cache Generator for FPGAs. In Proc.
Field-Programmable Technology (FPT), pages 324–327,
2003.




