
PACMan: Prefetch-Aware Cache Management
for High Performance Caching

Carole-Jean Wu∗
§
Aamer Jaleel† Margaret Martonosi∗ Simon C. Steely Jr.† Joel Emer†‡

Princeton University∗
Princeton, NJ

{carolewu,mrm}@princeton.edu

Intel Corporation, VSSAD†

Hudson, MA
{aamer.jaleel,simon.c.steely.jr,

joel.emer}@intel.com

Massachusetts Institute of Technology‡

Cambridge, MA

ABSTRACT
Hardware prefetching and last-level cache (LLC) management are
two independent mechanisms to mitigate the growing latency to
memory. However, the interaction between LLC management and
hardware prefetching has received very little attention. This paper
characterizes the performance of state-of-the-art LLC management
policies in the presence and absence of hardware prefetching. Al-
though prefetching improves performance by fetching useful data
in advance, it can interact with LLC management policies to in-
troduce application performance variability. This variability stems
from the fact that current replacement policies treat prefetch and
demand requests identically.
In order to provide better and more predictable performance, we

propose Prefetch-Aware Cache Management (PACMan). PACMan
dynamically estimates and mitigates the degree of prefetch-induced
cache interference by modifying the cache insertion and hit pro-
motion policies to treat demand and prefetch requests differently.
Across a variety of emerging workloads, we show that PACMan
eliminates the performance variability in state-of-the-art replace-
ment policies under the influence of prefetching. In fact, PAC-
Man improves performance consistently across multimedia, games,
server, and SPECCPU2006 workloads by an average of 21.9% over
the baseline LRU policy. For multiprogrammed workloads, on a 4-
core CMP, PACMan improves performance by 21.5% on average.

Categories and Subject Descriptors
B.8.3 [Hardware]: Memory Structures

General Terms
Design, Performance

Keywords
Prefetch-Aware Replacement, Reuse Distance Prediction, Shared
Cache, Set Dueling

§A large part of this work was performed while Carole-Jean Wu
was an intern at Intel/VSSAD.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO ’11 December 3-7, 2011, Porto Alegre, Brazil
Copyright 2011 ACM 978-1-4503-1053-6/11/12 ...$10.00.

1. Introduction
Technology trends show that main memory speeds significantly

lag behind processor speeds. In response, both industry and acade-
mia have invested significant efforts in improving a processor’s
memory subsystem. One approach relies on efficiently manag-
ing the on-chip last-level cache (LLC) through intelligent cache
replacement. Such proposals reduce LLC interference by dynam-
ically modifying the cache insertion policy to prioritize the most
reused and important data. Another popular approach is to prefetch
data into the cache hierarchy before the actual reference. While
prefetching can hide memory latency and improve performance
significantly, it can severely degrade performance in the event of
untimely and/or inaccurate prefetch requests. To avoid prefetcher
pollution, recent studies have proposed alternative cache insertion
policies for prefetch requests [18, 31]. Unfortunately, these pro-
posals incur significant hardware overhead. In contrast, this paper
proposes simple and low-overhead dynamic prefetch-aware LLC
management to provide consistent performance improvements in
the presence of hardware prefetching.
State-of-the-art cache replacement policies improve performance

over the baseline least-recently-used (LRU) replacement policy by
preserving the useful working set in the cache [2, 5, 12, 16, 17, 23,
26, 27, 30, 32, 35]. However, the majority of recent replacement
policy proposals are evaluated in the absence of hardware prefetch-
ing. In the presence of prefetching, we find that intelligent replace-
ment policies may provide minimal performance improvements or
unexpectedly degrade performance. This stems from the fact that
the majority of replacement policy proposals make the same re-
placement policy decisions for prefetch and demand requests.
This paper proposes Prefetch-Aware Cache Management (PAC-

Man). The goals of PACMan are (1) avoid cache pollution due to
harmful prefetch requests and (2) retain cache lines that cannot be
easily prefetched, and hence are more valuable in the cache. PAC-
Man accomplishes both goals by recognizing that prefetch and de-
mand requests can be treated differently on cache hits and cache in-
sertions. In doing so, we show that PACMan reduces prefetcher in-
duced cache pollution and combines the performance benefits from
hardware prefetching and intelligent cache management.
We apply PACMan to the recent Dynamic Re-Reference Inter-

val Prediction (DRRIP) [12] replacement policy. We show that the
additional information on the type of request (demand or prefetch)
can improve the re-reference predictions made by DRRIP. In the
presence of hardware prefetching, PACMan significantly improves
application performance by an average of 21.9%while DRRIP alone
improves performance by only 5.8%. For server workloads, where
prefetcher pollution is particularly problematic, PACMan improves
performance by an average of 27.5% over LRU.
Furthermore, our evaluations with 4-core multi-programmed work-

Figure 1: Hardware prefetching significantly improves application performance. See Section 5 for methodology details.

Figure 2: Performance of individual applications under cache management policies without prefetching: Cache management
schemes, DRRIP, Seg-LRU, and SDBP, effectively improve performance in the absence of prefetching.

loads show that PACMan effectively eliminates inter-core, as well
as intra-core, prefetch-induced interference in shared LLCs. In
the presence of hardware prefetching, PACMan improves multi-
programmed workload performance by an average of 21.5% while
DRRIP alone improves performance by 7.8% over LRU.
Overall, the contributions of the paper are as follows:

• This paper provides a comprehensive performance evalua-
tion of state-of-the-art cache management policies in the pres-
ence and absence of hardware prefetching. While an intelli-
gent cache management technique can improve application
memory performance, prefetching can increase performance
even more by fetching useful data in advance to the cache.
However, we show that prefetching alone, without the help of
a prefetch-aware cache management technique, can interact
poorly with LLC management, often causing performance
degradation and variability.

• In addition to improving performance significantly, PACMan
effectively eliminates performance variability introduced by
prefetching. PACMan’s ability to provide quality of service
is particularly important for server applications, for which
performance guarantee is a high priority.

• Finally, PACMan insights presented in this paper are inde-
pendent from the underlying replacement policy. PACMan
can be built on top of any ordered replacement policy. PAC-
Man’s simple and elegant prefetch-aware decision offers sig-
nificant performance improvements without incurring addi-
tional overhead.

2. Motivation
To understand the effects of hardware prefetching thoroughly,

we evaluate replacement policies in the presence and absence of
hardware prefetching. For the purpose of this paper, we model a

stream prefetcher that closely models the mid-level cache (MLC)
stream prefetcher of an Intel Core i7 [8]. In addition, we im-
plement three recent replacement policy proposals: DRRIP [12],
Segmented-LRU (Seg-LRU) [5], and Sampling Deadblock Predic-
tion (SDBP) [16] and evaluate their performance in the presence of
hardware prefetching.

2.1 Performance Variability under Various
Cache Replacement with Prefetching

Figure 1 illustrates a summary of application performance (for
each workload category) in the presence of hardware prefetching.
Overall, the figure shows that prefetching significantly improves
application performance by roughly 35%. However, when we look
at the performance of individual applications from each workload
category more closely, we find that the performance of prefetch-
ing varies significantly across the different cache management poli-
cies. Figures 2 and 3 highlight this performance variability in the
absence and presence of prefetching respectively. In both figures,
the x-axis represents the different workloads under study while the
y-axis represents the performance relative to the baseline LRU re-
placement policy without prefetching.
Figure 2 shows that, in the absence of prefetching, intelligent

cache management schemes can improve application performance
for a variety of applications. However, in the presence of prefetch-
ing, we observe very different behavior. For example, final-
fantasy receives 2-8% performance improvement in the absence
of prefetching. However, as Figure 3 shows, in the presence of
prefetching, its performance varies from -12% to 8% across the
four different underlying cache replacement policies.
In addition to performance variability across cache replacement

policies, prefetching can severely degrade performance. This is
particularly true for server applications where performance degrades
by more than 20% (e.g. tpc-c). For some workloads (e.g. IB and

Figure 3: Performance of individual applications under cache management policies in the presence of prefetching: Prefetcher cache
interference not only can cause performance degradation but also introduces performance variability. Note: Y-axes use different
scales.

Figure 4: Reuse of prefetched cache lines at the L2 and last-level L3 caches. This is in part due to prefetcher LLC pollution on
inaccurate prefetches, but also due to the temporal filtering of effective prefetches by references in smaller caches.

tpc-c), intelligent cache replacement policies can address some
of the performance degradation caused by prefetcher pollution.
Most importantly, Figure 3 illustrates that the performance im-

provements from intelligent replacement policies drop significantly
in the presence of prefetching. For example, in the absence of
prefetching, gemsFDTD and sphinx3 receive roughly 7% and
24% performance improvements respectively from an intelligent
replacement policy. However, in the presence of prefetching, intel-
ligent replacement yields negligible performance benefits for
gemsFDTD while the benefits for sphinx3 reduce to roughly
15% over the baseline LRU. This raises the question as to whether
there exists a prefetch-aware cache management policy that can fur-
ther improve performance of such applications in the presence of
prefetching.

2.2 Low LLC Reuse of Prefetch Requests
To further motivate the need for a prefetch-aware cache manage-

ment policy, Figure 4 illustrates the reuse characteristics of lines
prefetched into the LLC. The x-axis represents the different work-
loads while the y-axis represents the fraction of cache lines inserted
by a prefetcher that are re-referenced by a demand request. On av-
erage, 47% of prefetched cache lines are never reused by a demand
request.
Low reuse of prefetched cache lines at the LLC can be due to

prefetcher pollution. Such behavior is indicative of workloads whose
performance degrades in the presence of prefetching (e.g. tpc-c).
Alternatively, low reuse also occurs because of timely prefetched
data in the smaller, upper-levels of the cache hierarchy (L2 cache
in our case). Subsequent demand requests are directly serviced by
the prefetched cache lines inserted into the L2 cache, and never
reach the LLC. As a result, the filtering of temporal locality by the
smaller caches causes low reuse of the prefetched lines in the LLC

(e.g. homeworld and SPEC CPU2006 workloads).
In conclusion, the appearance of zero-reuse prefetched cache

lines at the LLC and the reduced gains from intelligent replacement
policies in the presence of hardware prefetching motivate alterna-
tive policies for handling prefetch requests at the LLC. The next
section proposes such a policy.

3. Prefetch-Aware CacheManagement
Despite the ubiquitous industry use of hardware prefetching, ex-

isting cache management policies do not distinguish between prefe-
tch and demand requests. This leaves a significant opportunity
to improve cache management by making Prefetch-Aware Cache
Management (PACMan) decisions.
From a cache management perspective, prefetch requests have

different properties than a demand request. In general, cache lines
inserted into the LLC by demand requests are more likely to be
performance-critical than prefetch requests. Thus, a replacement
policy may benefit by giving more preference to items fetched by
demand requests versus those from prefetch requests. This work
explores different replacement policies for prefetch requests.
Cache replacement policies essentially predict the re-reference

behavior of cache lines [12]. The natural opportunity to make re-
reference predictions is on cache insertions and cache hits. For ex-
ample, LRU predicts that a missing cache line will be re-referenced
soon and always inserts the missing line at the “MRU position”
of the LRU chain. Similarly, LRU predicts that a line receiving a
cache hit will also be re-referenced soon and moves the line to the
MRU position.
Traditionally, the majority of replacement policies assign the same

re-reference predictions for demand and prefetch requests. To tackle
the problem of prefetch-induced cache interference, we propose to
make re-reference predictions at the granularity of a request type

Figure 5: PACMan RRPV Assignment under DRRIP. We use the BRRIP configuration in [12] for all PACMan schemes under
DRRIP: 95% of cache lines are inserted with an RRPV of 3, and 5% are inserted with an RRPV of 2.

(i.e. demand or prefetch). Specifically, we investigate replacement
policies that apply the baseline re-reference predictions for demand
requests, but apply modified re-referenced predictions for prefetch
requests. We propose four types of prefetch-aware cache manage-
ment policies:

• PACMan onMisses (PACMan-M): PACMan-Mmodifies the
re-reference prediction only when a prefetch request misses
in the cache. In particular, PACMan-M predicts that all
prefetch requests will be re-referenced in the distant future.
For example, like previous LRU-based studies, PACMan-M
can be implemented by inserting all prefetch requests at the
LRU position [18, 31]. In doing so, PACMan-M reduces the
average in-cache lifetime of a prefetched cache line, in ef-
fect prioritizing demand requests over prefetch requests. In
the event the line is subsequently re-referenced, the replace-
ment state is updated on the cache hit. However, if there
is no subsequent request, PACMan-M is useful for avoiding
prefetcher pollution.

• PACMan on Hits (PACMan-H): PACMan-Hmodifies the re-
reference prediction only when a prefetch request hits in the
cache. Unlike a conventional replacement policy that always
updates re-reference predictions on cache hits, PACMan-H
chooses not to update the re-reference prediction on prefetch
cache hits. In doing so, PACMan-H treats “prefetchable” re-
quests with lower priority. In doing so, PACMan-H enables
useful, but hard to prefetch, demand requests to be retained
in the cache.

• PACMan on Hits and Misses (PACMan-HM): PACMan-HM
modifies the re-reference predictions for prefetch request cache
hits and misses. PACMan-HM gives shorter lifetime to all
prefetch requests by using the PACMan-M policy on prefetch
misses and the PACMan-H policy on prefetch hits. PACMan-
HM is useful for avoiding prefetcher pollution and retaining
hard to prefetch lines.

• Dynamic PACMan (PACMan-DYN): Statically predicting
the re-reference pattern of prefetch requests can significantly
degrade performance of workloads that benefit from prefetch-
ing. To ensure robust prefetch-aware replacement, we pro-
pose to dynamically detect the re-reference behavior of
prefetch requests. PACMan-DYN uses Set Dueling [27] to
dynamically predict the re-reference behavior of prefetch re-
quests.

4. PACMan Implementation
PACMan can be applied to any existing state-of-the-art cache

management policy. We implement PACMan upon the recently
proposed Dynamic Re-Reference Interval Prediction (DRRIP) re-
placement policy [12] because of its simple design and low imple-
mentation complexity.

4.1 DRRIP Background
Instead of using a 4-bit LRU counter per cache line for a 16-way

set-associative cache, DRRIP uses an M-bit counter per cache line
to store the lines re-reference prediction value (RRPV). The RRPV
in essence controls the lifetime of a cache line. In general, large
RRPVs cause insertion closer to the “LRU position” and, there-
fore, have a short lifetime in the cache. In contrast, small RRPVs
comparatively have a longer lifetime in the cache.
We base PACMan on 2-bit DRRIP, where each cache line can

have RRPV between 0 and 3. DRRIP uses Set Dueling [28] to
choose between its two component policies: SRRIP and BRRIP.
SRRIP always inserts cache lines with an RRPV of 2 while BRRIP
inserts most of cache lines with an RRPV of 3. On hits, DRRIP
updates the RRPV of a cache line to 0. On replacements, DRRIP
chooses a cache line with RRPV of 3 for replacement. If no block
with RRPV of 3 is found, all RRPVs in the set are incremented and
the search for a replacement block is repeated.

4.2 Applying PACMan to DRRIP
As summarized in Figure 5, PACMan’s RRPV assignment is

based on the DRRIP policy as follows:
PACMan-M: PACMan-M modifies DRRIP’s insertion policy on

cache misses. If a miss is due to a demand request, PACMan-M
follows the baseline DRRIP insertion policy and inserts these cache
lines with an RRPV of 2 (or 3). However, if the cache miss is due
to a prefetch request, PACMan-M always inserts these lines with
an RRPV of 3.
PACMan-H: PACMan-Hmodifies DRRIP’s policy on cache hits.

If the hit is due to a demand request, PACMan-H follows the base-
line DRRIP policy and updates the line’s RRPV to 0. However,
if the cache hit is due to a prefetch request, PACMan-H does not
modify the line’s RRPV state. In doing so, PACMan-H explicitly
prioritizes retaining more “valuable” (harder to prefetch) blocks in-
stead of “prefetchable” blocks in the cache1.
PACMan-HM: PACMan uses the PACMan-M policy at cache

misses and follows the PACMan-H policy at cache hits.

4.3 PACMan-DYN
To differentiate whether a cache line is brought into the LLC by

a demand versus prefetch request, prior work [1] proposed using
an additional prefetch bit per cache block. To avoid this overhead,
PACMan-DYN instead uses Set Dueling Monitors (SDMs) to de-
termine which applications benefit from prefetching. An SDM es-
timates the number of cache misses for any given policy by perma-
nently dedicating a few cache sets to follow that policy. The rest of
1DRRIP [12] assigns re-reference predictions based on the ex-
pected re-reference pattern. PACMan-H, however, assigns re-
reference predictions based on the expected value of the cache line.
For example, it is more “valuable” to retain cache lines that are
harder to prefetch.

Figure 6: PACMan-DYN Algorithm.

the cache sets then follow the policy whose SDM gives the fewest
cache misses.
A brute force approach to use Set Dueling for determining the

best PACMan prefetching and cache replacement combination re-
quires 8 SDMs. As you will see in the result section, PACMan-H
always performs better and provide more consistent gains than the
underlying DRRIP replacement policy. As a result, we switch our
baseline to PACMan-H and use Set Dueling to determine dynami-
cally whether to use the PACMan-M component.
PACMan-DYN implements 3 SDMs: SDMSRRIP+PACManH ,

SDMSRRIP+PACManHM , and SDMBRRIP+PACManH over the
2-bit implementation of DRRIP. SDMSRRIP+PACManH follows
the cache insertion and update policy based on SRRIP and PACMan-
H, SDMSRRIP+PACManHM follows the cache insertion and up-
date policy based on SRRIP and PACMan-HM, and
SDMBRRIP+PACManH follows the cache insertion and update
policy based on BRRIP and PACMan-H. PACMan-DYN does not
implement the additional SDMBRRIP+PACManHM policy because,
for cache misses, most references, regardless of prefetch or de-
mand, are inserted with an RRPV of 3. In other words, the
SDMBRRIP+PACManHM and SDMBRRIP+PACManH policies
are essentially identical.
The PACMan-DYN algorithm is described in Figure 6 and its

implementation is presented in Figure 7. Each SDM has an associ-
ated counter. When a demand cache miss2 occurs at a set within a
particular SDM, the associated counter is incremented by 2 and the
counters associated with the other two SDMs are decremented by 1.
If any counter is saturated, all counters remain the same. This pol-
icy selection process is based on a scheme proposed in [21] where
the goal is to choose the best out of 3 different policies. For cache
misses occurring at follower sets, PACMan-DYN finds the mini-
mum of the three SDM counters and uses the corresponding policy
for inserting and updating the references.

2Prefetch and writeback misses do not update the counters.

SDM
SRRIP+PACMan-H

�…

index

Existing cache module

SDM
SRRIP+PACMan-HM

SDM
BRRIP+PACMan-H

cntSRRIP+PACMan-H

cntSRRIP+PACMan-HM

cntBRRIP+PACMan-H

MIN

Follower sets

Figure 7: PACMan-DYN Implementation.

5. Experimental Methodology
5.1 Simulation Infrastructure
We evaluate PACMan using the the simulation framework re-

leased by the First JILPWorkshop on Computer Architecture Com-
petitions [13]. This Pin-based [20] CMP$im [10] simulation frame-
work models a 4-way out-of-order processor with a 128-entry re-
order buffer and a three-level cache hierarchy. The three-level cache
hierarchy is based on an Intel Core i7 system [8]. The L1 and L2
caches use LRU replacement and our replacement policy studies
are limited to the LLC. We model a per-core streamer prefetcher
with 16 stream detectors that trains on L2 cache misses. The prefet-
cher issues prefetch requests from the L2 cache and inserts prefetc-
hed cache lines into the L2 and LLC.

Table 1: Architectural parameters of the simulated system.
MSHR: 32 entries allowing up to 32 outstanding misses
L1 Inst. Caches: 32KB, 4-way, Private, 1 cycle
L1 Data Caches: 32KB, 8-way, Private, 1 cycle
Mid-Level L2 Caches: 256KB, 8-way, Private, 10 cycles
LLC: 1MB per-core, 16-way, Shared, Non-inclusive, 30 cycles
Main Memory: 32 outstanding requests, 200 cycles

We also model an interconnect with a fixed average latency. Traf-
fic entering the interconnect is modeled using a fixed number of
miss status handling registers (MSHRs). Modeling MSHR con-
tention reflects the latency penalty of excess traffic in the system.
All transactions, including all data demand and prefetch requests,
contend for the MSHRs. Table 1 lists the architectural parameters
for the memory hierarchy and Table 2 summarizes the configura-
tions used for the comparison replacement policy proposals.

5.2 Workload Construction
We perform our evaluation for state-of-the-art cache replacement

schemes and PACMan using both sequential and multiprogrammed
workloads. For single-program studies, we use a collection of ap-
plications from multimedia and PC games (Mm.), enterprise server
(Srvr.), and SPEC CPU2006 (Spec) [29] applications. While these
applications are quite diverse, most of our performance analysis fo-
cuses on 18 applications (which span the three categories) that are

Table 2: Description and configuration for the three state-of-the-art cache management techniques under study: DRRIP, Seg-LRU,
and SDBP. The configuration is selected to represent the best performance in each scheme.

Policies Description and Parameters
DRRIP A cache insertion/replacement scheme using re-reference interval prediction to assign lifetime to cache blocks [12].

10-bit policy selector; 32 sets per set-dueling monitor; 2-bit RRIP counters.
Seg-LRU A cache replacement and bypassing scheme based on a segmented-LRU cache [5].

Adaptive bypassing enabled for Seg-LRU and LRU; Aging enabled for Seg-LRU; Initial bypassing probability is 64;
Second minimum bypassing probability is 1/4096.

SDBP A cache replacement and bypassing scheme based on instruction-aware deadblock prediction [16].
32-set 12-way sampler; Three 4096-entry skew table; True 16-way LRU policy.

cache intensive. We conclude with a performance summary that
includes all 65 applications.
The SPEC CPU2006 reference traces were collected using Pin-

Points [24] for the reference input set, while other application traces
were collected on a hardware tracing platform. The hardware-
traced workloads include both operating system and user-level ac-
tivity while the SPEC CPU2006 workloads only include user-level
activity. These workloads were run for 250 million instructions.
To evaluate cache management techniques for the shared LLC,

we also construct 161 heterogeneous mixes of multiprogrammed
workloads. First, we use 35 mixes of Mm. applications, 35 mixes
of Srvr. applications, and 35 mixes of Spec programs. Finally, we
create another 56 combinations of 4-core workloads comprising
randomly-chosen applications that are mixed from different cate-
gories. The heterogeneous mixes of different workload categories
are used as a proxy for a virtualized system. We run each appli-
cation for 250 million instructions and collect the statistics with
the first 250 million instructions completed. If the end of the trace
is reached, the model rewinds the trace and restarts automatically.
This simulation methodology is similar to recent work on shared
caches [3, 11, 12, 19, 35].

6. Performance Evaluation
6.1 Overview Results for PACMan
Figure 8 compares the sequential application performance re-

sults for PACMan-M, PACMan-H, PACMan-HM, and PACMan-
DYN with the baseline LRU scheme (LRU) and DRRIP. In gen-
eral, PACMan-M or PACMan-H alone improves performance sig-
nificantly over both LRU and DRRIP under prefetching across all
types of workloads. PACMan-HM, combining the performance
benefits from PACMan-M and PACMan-H, shows further perfor-
mance improvement, except for bwaves and gemsFDTD. This is
because PACMan-HM actively de-prioritizes prefetch requests over
demand requests at cache hits and misses. As a result, applications
which do not suffer from prefetch-induced cache pollution origi-

nally, e.g. gemsFDTD, experience performance degradation under
PACMan-HM. PACMan-DYN resolves this negative performance
impact. This is because PACMan-DYN eliminates performance
degradation for applications that actually benefit from aggressive
prefetching by giving beneficial prefetch requests higher priority.
Finally, while PACMan-HM is effective, PACMan-DYN improves
performance even more for applications like sphinx3 because of
its dynamic adjustment. Most importantly, PACMan-DYN consis-
tently improves performance over the baseline for all applications.

6.2 Results for Sequential Workloads
Figure 9 compares the overall performance results for sequen-

tial applications. While DRRIP under prefetching improves per-
formance by an average of 5.8% over the baseline LRU, PACMan-
DYN improves performance by 21.9%. PACMan’s prefetch-aware
management is particularly important for server applications. It fur-
ther improves server workload performance by an average of 27.5%
over LRU. Looking more closely at SPEC CPU2006 applications,
although application performance is less sensitive to replacement
policies in the presence of prefetching, we find that PACMan-DYN
still further improves SPECCPU2006 workload performance. While
DRRIP gives 1% performance benefit compared to LRU in the
presence of prefetching, PACMan-DYN improves performance for
SPEC CPU2006 applications more significantly by an average of
14.3%. Overall, PACMan-DYN demonstrates an effective cache
management by differentiating prefetch and demand requests at
cache hits and cache misses.

6.3 Performance Consistency
We categorize the sequential applications into three distinct clas-

ses, as summarized in Table 3. Class I applications represent those
experiencing prefetch-induced cache interference and, as a result,
seeing prefetch-induced performance degradation. Class II appli-
cations represent those that receive performance gains under intel-
ligent cache management schemes [33] and can also benefit from
prefetching. Finally, Class III applications represent those that are

Figure 8: Performance comparison for PACMan-M, PACMan-H, PACMan-HM, and PACMan-DYN.

Figure 9: Performance comparison for sequential workloads.

not cache sensitive but benefit from prefetching. Typically, stream-
ing and compute-bound applications fit into Class III.
Overall, PACMan-DYN consistently and effectively improves

performance for applications in a diverse range of workloads. Fig-
ure 10 shows the consistent performance improvement under
PACMan-HM (except for bwaves and gemsFDTD) and PACMan-
DYN for all multimedia, games, server, and SPEC CPU2006 ap-
plications. This is because PACMan-DYN can exploit the distinct
access characteristics of prefetch versus demand references and dy-
namically determine better cache insertion and cache update poli-
cies based on its observation. As a result, PACMan-DYN can man-
age the degree of prefetch-induced LLC interference more effec-
tively.
PACMan-DYN’s ability to eliminate performance variability

caused by prefetch-induced cache interference is particularly im-
portant for applications in Class I, which experience the most sig-
nificant cache pollution among the three categories. While DRRIP
under prefetching improves the performance of Class I applications
by an average of 1.13X over the baseline LRU scheme, PACMan-
DYN improves the performance even more by an average of 1.44X

and by as much as 1.67X for tpc-c.
For Class II applications, which not only are sensitive to the un-

derlying cache management schemes but also receive benefit from
prefetching, we show that both PACMan-HM and PACMan-DYN
can further improve the performance significantly and consistently
for all applications in this category. In particular, among all Class
II applications, PACMan-DYN improves sphinx3’s performance
the most: 1.36X over the baseline LRU scheme under the influence
of prefetching.
Finally, for Class III applications, which neither suffer from

prefetch-induced interference nor receive performance benefit with
larger cache sizes, PACMan-DYN can sustain the performance im-
provement from prefetching by accurately identifying beneficial
prefetching.
On average, in the presence of prefetching, PACMan-DYN im-

proves application performance consistently by an average of 21.9%
over the baseline LRU scheme. More importantly, PACMan-DYN
is able to provide performance predictability in the presence of
hardware prefetching. This performance guarantee is particularly
important for server applications, for which performance quality of
service is an important requirement.

6.4 PACMan forMultiprogrammedWorkloads
Prefetch-induced cache interference becomes more complicated

and severe for multiprogrammed workloads. Applications not only
experience intra-application cache interference from their own
prefetch requests, but also cross-application prefetch-prefetch and
prefetch-demand interference. As a result, the degree of cache con-
tention is also higher than that observed in sequential workloads.
To implement PACMan-DYN for multiprogrammed workloads,

we investigate two approaches: PACMan-DYN-Local and
PACMan-DYN-Global. PACMan-DYN-Local duplicates the group
of SDMs directly from PACMan-DYN for sequential applications.
Similar to the adaptive insertion policy [11], each application has
its own SDMs for the three policies described in Section 4.3. The
follower sets then use the best of the three policies based on the
counters associated with each application. Based on each indi-

Table 3: Applications selected to represent 3 distinct categories under prefetching influence.
Class I: Harmful Prefetching
final-fantasy (Mm.), halflife2 (Mm.), SA (Srvr.), IB (Srvr.), SW (Srvr.), tpc-c (Srvr.)
Class II: Beneficial Prefetching, Cache Sensitive
doom3 (Mm.), NOLF (Mm.), homeworld (Mm.), PP (Mm.), MS (Srvr.); bzip2 (Spec), omnetpp (Spec), sphinx3 (Spec)
Class III: Beneficial Prefetching, Cache Insensitive
GG (Srvr.), bwaves (Spec), gemsFDTD (Spec), libquantum (Spec)

Figure 10: Performance comparison for applications from 3 different classes (See Table 3). Both PACMan and PACMan-DYN can
effectively and consistently improve application performance when compared to other state-of-the-art LLC management schemes.

Figure 11: PACMan-DYN implementation for the 4-core workloads. (a) PACMan-DYN-Local: A group of 3 SDMs is used to
determine the best per-application-basis PACMan policy. For example, the three top-most SDMs are dedicated to App0. References
of App0 follow the PACMan policy pre-assigned to each of its SDMs. References from the other three applications follow the policies
determined by the per-core policy selection counters: P1, P2, or P3. (b) PACMan-DYN-Global: A group of 2 SDMs is dedicated to
each application. Similar to how the default DRRIP works, applicationi follows the policy determined by the per-application policy
counter, Pi. In addition, two SDMs are used to determine which of the PACMan policies (PACMan-H or PACMan-HM) the follower
sets use.

vidual application’s prefetching preference, PACMan-DYN-Local
follows the best local, per-application basis policy. Figure 11(a)
depicts PACMan-DYN-Local’s implementation.
To explore a more global prefetch decision for the shared LLC,

we also propose PACMan-DYN-Global. PACMan-DYN-Global
chooses a uniform global prefetch cache insertion and update de-
cision for all per-core prefetchers. In PACMan-DYN-Global, each
application in the multiprogrammed workload has two SDMs that
follow the baseline DRRIP policies: SRRIP and BRRIP. To deter-
mine whether prefetching is beneficial globally to the LLC, PACMan-
DYN-Global implements two additional SDMs: SDMPACManH

and SDMPACManHM . SDMPACManH follows the better of the
two policies for each application together with the PACMan-H pol-
icy. Similarly, SDMPACManHM follows the better policy for each
application along with the PACMan-HM policy for prefetch re-
quests. Note, as Figure 11(b) shows, since each application in
PACMan-DYN-Global uses only two SDMs, only one saturating
counter (instead of three for PACMan-DYN-Local) is required for
each application. Furthermore, PACMan-DYN-Global requires
fewer total SDMs than in PACMan-DYN-Local.

6.5 Results for Multiprogrammed Workloads
Figure 12 shows that, in the presence of prefetching, DRRIP

can improve performance by an average of 7.8% over the base-
line LRU already. This is because although DRRIP does not di-
rectly distinguish between demand and prefetch requests, its in-

trinsic scan- and thrash-resistant properties can identify aggressive,
but low-reuse, prefetch requests and reduce interfering prefetch re-
quests in the LLC. However, PACMan-HM with explicit prefetch-
aware cache management improves performance even more: an av-
erage of 22.9% for multiprogrammed workloads. For the multipro-
grammed workloads studied in this paper, PACMan-DYN-Local
and PACMan-DYN-Global did not perform better than PACMan-
HM because of the SDM learning overhead; however, PACMan-
DYN-Local and PACMan-DYN-Global are still more robust when
prefetching preference varies over time in the workload. Nonethe-
less, for all 161 multiprogrammed workloads, both PACMan-DYN-
Local and PACMan-DYN-Global still offer significant performance
improvements over LRU by an average of 20.9% and 21.5% re-
spectively. Since PACMan-DYN-Global requires less SDM learn-
ing overhead while offering slightly better performance gain over
PACMan-DYN-Local, it is preferable to use PACMan-DYN-Global
for the shared LLC. For the rest of the paper, for the shared LLC,
we will refer PACMan-DYN-Global as PACMan-DYN.
If we focus on the performance improvement for the multipro-

grammed mixes of SPEC CPU2006 applications, we do not see
much performance difference across the different state-of-the-art
cache management policies when considering prefetching. This is
similar to what we observe for sequential SPEC CPU2006 appli-
cations. However, both PACMan-HM and PACMan-DYN demon-
strate their effective management by using prefetch-aware cache
insertion and cache hit policies. As a result, PACMan-HM and

Figure 12: Performance comparison for multiprogrammed workloads.

Figure 13: PACMan’s impact on memory bandwidth.

PACMan-DYN improve the performance of multiprogrammed SPEC
CPU2006 workloads by an average of 12.3% and 12.0% over the
baseline LRU under prefetching. Finally, similar to sequential server
workloads, PACMan-DYN’s prefetch-aware cache management de-
cisions improve multiprogrammed server workloads the most: an
average of 47.8% (46.1% for PACMan-DYN-Local). This is a con-
siderable improvement over the 20.8% offered by DRRIP.

6.6 Impact on Memory Bandwidth
Prefetching can adversely affect the bandwidth requirements to

memory. This section evaluates the influence of PACMan’s cache
management decision on memory bandwidth. Figure 13 compares
PACMan’s impact on bandwidth between the LLC and the main
memory. The upper portion of the figure plots the number of prefetch
requests to memory per instruction, normalized to the baseline LRU
scheme. The lower portion of the figure plots the number of data
demand requests to memory per instruction normalized to the base-
line LRU scheme under prefetching. On average, PACMan-HM
increases the bandwidth usage from hardware prefetchers by 22%
while PACMan-DYN incurs less memory bandwidth overhead (by
an average of 20%). This increase in memory bandwidth due to
prefetching is because PACMan-HM does not cache many prefetched
cache lines in the LLC that are considered harmful. This results in
more memory traffic for prefetched requests.
When comparing PACMan’s impact on data demand memory

bandwidth usage, we see a significant reduction for all PACMan
schemes. This is because PACMan can significantly decrease the
number of demand cache misses at the LLC, and, as a result, im-
prove the data demand memory bandwidth between the LLC and
the main memory. For the selected applications, while DRRIP un-
der prefetching can reduce demand memory bandwidth by an av-
erage of 7.6%, PACMan-HM and PACMan-DYN improve demand
memory bandwidth more significantly by an average of 29.5% and
31.3% respectively.
In particular, for applications that do not suffer much from prefetch-

induced cache pollution i.e. gemsFDTD, PACMan-DYN’s dynamic
detection and adjustment for cache insertion and update policies
help to minimize the memory bandwidth consumption. While
PACMan-HM increases gemsFDTD’s demand memory bandwidth
by 12.6%, PACMan-DYN can reduce this significant bandwidth
overhead to merely 2%. Finally, we note that PACMan-DYN is

Figure 14: PACMan-DYN sensitivity to cache sizes for (a) se-
quential and (b) multiprogrammed workloads.

essentially a lightweight dynamic method for detecting prefetch-
induced cache pollution. As such, we foresee future methods where
PACMan-DYN is used to modulate prefetcher aggressiveness to
further reduce memory bandwidth requirement caused by today’s
aggressive hardware prefetchers.

6.7 PACMan-DYN Sensitivity to Cache Sizes
and Various Cache Hierarchies

To analyze the effectiveness of PACMan under various cache
sizes, we perform a cache size sensitivity study for PACMan-DYN.
Figure 14(a) shows that for sequential workloads, PACMan-DYN
consistently outperforms DRRIP. The performance benefit levels
off for an 8MB LLC. This is because an 8MB cache is adequate to
accommodate both prefetch and demand references. For multipro-
grammed workloads, the LLC experiences higher cache contention.
Figure 14(b) illustrates that, for cache sizes ranging from 2MB to
16MB, PACMan consistently outperforms LRU and DRRIP for all
shared cache sizes.
Although this work evaluates the various PACMan insertion and

promotion policies for non-inclusive cache hierarchy, the core idea
of the prefetch-aware cache management applies to strictly inclu-
sive [9] and exclusive [15] cache hierarchies as well. For the in-
clusive cache hierarchy, we apply exactly the same PACMan-DYN
insertion and hit promotion policies. For the exclusive cache hier-
archy, we retain the same capacity in the three-level hierarchy by

doubling the L2 cache size and halving the LLC size. Since exclu-
sion requires lines evicted from the L2 cache to be filled into the
LLC, to implement PACMan-DYN, the L2 cache must remember
which L2 cache lines were brought in by prefetch requests. This
can be accomplished by adding a prefetch bit per line in the L2
cache to remember whether the L2 cache line was brought in by
a demand or a prefetch request. To distinguish between demand
and prefetched lines, this prefetch bit at the L2 cache is used by
PACMan-DYN to determine the LLC insertion policy. Across all
workloads, our evaluation of PACMan-DYN for the strictly inclu-
sive and exclusive cache hierarchies see as much as 28% perfor-
mance improvement (and 5% on average) over LRU: this doubles
the performance gain over DRRIP.

6.8 Hardware Overhead
Table 4 compares hardware overhead and performance for sev-

eral prior state-of-the-art schemes, along with PACMan-HM and
PACMan-DYN. We show performance for the 18 sequential ap-
plications considered thus far, and also for the full 65-application
suite from which they were drawn. PACMan-DYN uses the same
amount of hardware as DRRIP but, on average, it offers 16.2%
more performance improvement for the selected sequential applica-
tions and 13.8% more for multiprogrammed workloads. Seg-LRU
offers the best performance of the prior schemes, but uses much
more hardware implementation overhead. In contrast, PACMan-
DYN improves performance even more than Seg-LRU—an addi-
tional 10.6%. Also importantly, PACMan-DYN offers a much sim-
pler implementation than Seg-LRU, with little hardware beyond its
underlying replacement policy. Finally, we note that while the per-
formance improvements for the full 65-application suite (includ-
ing non-cache-intensive applications) are lower than those for the
18 cache-intensive applications, PACMan-DYN’s performance im-
provements are still considerable. They still greatly exceed that
of the other possible approaches. Overall, PACMan-DYN offers a
simple and practical cache design for managing LLC prefetching
influence.
6.9 Results Summary
To summarize, we provide the first characterization for prefetch-

induced LLC interference within an application, as well as across
applications, under state-of-the-art cache capacity management tech-
niques. We illustrate that, in the presence of hardware prefetch-
ing, performance benefits using prior proposals become more var-
ied. Some applications experience significant performance degra-
dation. To tackle this problem, we propose a simple prefetch-
aware cache management scheme, PACMan-DYN. PACMan-DYN
offers a more consistent performance improvement across applica-
tions for a diverse range of workloads: multimedia, games, server,
and SPEC CPU2006. In the presence of prefetching, PACMan-
DYN improves the performance of the 65 sequential and 161 mul-

tiprogrammed workloads by an average of 9.2% and 21.5% respec-
tively over the baseline LRU scheme while DRRIP improves per-
formance by 2.9% and 5.8%. This work shows the need of cache
management schemes to recognize the unique access behavior for
demand and prefetch requests in future design. Finally, while we
build PACMan-DYN upon DRRIP, our insights to the interaction
between demand and prefetch requests are not limited to a DRRIP-
based cache; the same ideas hold regardless of underlying cache
management policies.

7. Related Work
7.1 Dynamic Prefetching Control
Prefetching takes advantage of available memory bandwidth to

reduce memory latencies. However, the benefits of aggressive
prefetching heavily rely on its accuracy. Other prior work [1, 4, 6,
7, 14, 18, 22, 25, 31, 34, 36] improves prefetching accuracy and
reduces cache pollution caused by prefetch requests. All of these
work mainly focus on designs that reduce per-core interference be-
tween prefetch and demand requests for different cores in CMP
systems.
Lin, Reinhardt, and Burger [18] proposed a mechanism to reduce

DRAM latencies by modulating prefetcher issue rate, maximizing
DRAM low hit rate, and always inserting prefetch requests with the
lowest priority in the LLC. Their proposed mechanism is static and
always gives prefetch references lower priority by inserting them in
the LRU position. Our paper, on the other hand, introduces several
policy variations including a dynamic prefetch-aware cache man-
agement solution.
Alameldeen and Wood [1] proposed to use an additional prefetch

bit per cache block to estimate the degree of prefetch-induced cache
pollution and adjust the aggressiveness of hardware prefetchers ac-
cordingly. Our cache pollution estimation scheme proposed here
accurately approximates when prefetching harms performance, but
at negligible hardware overhead.
Srinath et al. [31] built a feedback-directed prefetching mecha-

nism which uses an additional prefetch bit per cache block to help
identify prefetcher accuracy. Furthermore, additional hardware is
required to help identify the degree of prefetch-induced cache pol-
lution. Again, the light-weight cache pollution estimation mech-
anism proposed in PACMan can be used in [31] and the insights
discovered in PACMan can help further improve the feedback di-
rected prefetching scheme’s decision on cache fill and hit policies
for demand and prefetch cache blocks.
Wu and Martonosi [34] characterized real-system cache pollu-

tion caused by hardware prefetchers and proposed a dynamic
prefetcher manager that modulates the aggressiveness of prefetch-
ers at runtime. Their real-system prefetch manager implementa-
tion offers an orthogonal and coarser-grained approach to mitigate
prefetch-induced cache pollution without hardware changes.

Table 4: Hardware overhead and performance comparison for prior state-of-the-art schemes, PACMan-HM, and PACMan-DYN.

Policies %IPC vs. LRU (18 rep. apps) %IPC vs. LRU (65 apps) Hardware Overhead** 16-way 1MB LLC
LRU 33.0 29.3 n ∗ log2 n 8KB
DRRIP 38.8 32.2 2n 4KB
Seg-LRU*** 44.4 33.6 5n + 5.68KB 15.68KB
SDBP*** 40.4 32.6 5n + 13.75KB 23.75KB
PACMan-HM 53.6 38.0 2n 4KB
PACMan-DYN 55.0 38.5 2n 4KB
**Assuming an n-way set-associative cache, HW overhead is measured in bits required per cache set.
***Hardware overhead for Seg-LRU and SDBP scales up as the number of cores sharing the LLC increases.

On the other hand, Ebrahimi et al. [4] proposed coordinated con-
trol of CMP prefetchers to reduce inter-core prefetcher-prefetcher
LLC interference. However, this approach requires modification
to prefetcher organization in hardware whereas PACMan leverages
hardware implementation of the underlying cache replacement pol-
icy and with little additional overhead.
To our knowledge, there has not been any research that analyzes

cache management schemes under prefetching in detail. We are
the first to compare the performance of three state-of-the-art cache
management techniques, DRRIP, SLRU, and SDBP, in the presence
of prefetching. We further propose PACMan, a novel and practical
prefetch-aware cache management scheme to address both intra-
and inter-core prefetch-induced cache interference.

7.2 LLC Interference Characterization and
Cache Capacity Management

The LLC is one of the most critical shared resources in CMPs.
For performance isolation, quality of service, and better system
throughput for the LLC, there has been research addressing cache
capacity management problems [2, 5, 12, 16, 17, 23, 26, 30, 32,
35]. However, real systems have many contributing factors to LLC
interference including per-core prefetchers. This interference be-
comes more complicated as multiple applications and multiple per-
core prefetchers share the LLC simultaneously.
Prior work often focuses on characterizing inter-core cache in-

terference only; they neglect other contributing factors to LLC in-
terference in real systems. As characterized in the paper, hard-
ware prefetching implemented in all of today’s high performance
systems influences memory sub-system performance significantly.
To the best of our knowledge, we are the first to analyze prefetch-
induced interference for private and shared LLCs, offer a compre-
hensive study on the effect of prefetching for the state-of-the-art
cache management techniques, and propose a novel management
solution addressing this problem.

8. Conclusion
The most important research impact of our work is to highlight

the need for cache research studies to consider prefetching and
other real-system effects when evaluating management schemes
and other design proposals. As characterized in the paper, hard-
ware prefetching implemented in today’s high performance sys-
tems significantly influences memory sub-system performance. In
the presence of prefetching, performance benefits using prior pro-
posals become more varied. Some applications experience signifi-
cant performance degradation. Other applications, which originally
see significant performance improvement from an intelligent cache
management scheme in the absence of prefetching, do not continue
to see these gains when prefetching effects are accounted for.
To address the challenges of performance degradation and vari-

ability under prefetching, we propose a novel Prefetch-Aware Cache
Management technique (PACMan) to mitigate prefetch-induced LLC
interference. We build PACMan on top of a state-of-the-art re-
placement policy, DRRIP, by modifying cache insertion and cache
hit promotion policies differently for prefetch and demand requests
to (1) avoid cache pollution due to harmful prefetch requests, and
(2) retain cache lines that cannot be easily prefetched in the cache.
The proposed dynamic PACMan policy implements Set Dueling to
determine when prefetching is beneficial to running applications.
Thus, unlike prior work, PACMan can exploit benefits of hardware
prefetching without additional hardware overhead.
PACMan can effectively and consistently reduce the degree of

prefetch-induced cache pollution, a prominent issue particularly in
server workloads. As a result, in the presence of prefetching, server

workload performance is significantly improved by an average of
27.9% over the baseline LRU scheme. Moreover, PACMan can
further improve the performance of SPEC CPU2006 and other ap-
plications which benefit hardware prefetching originally. On aver-
age, while the best of the state-of-the-art techniques improves the
performance of the diverse range of applications by an average of
11.4% over LRU, PACMan can improve performance by an average
of 21.9% over LRU and by 16.2% over DRRIP under prefetching.
Furthermore, we evaluate PACManwith multiprogrammed work-

loads, for which prefetch-induced interference is a more compli-
cated problem. Workloads not only experience intra-core demand-
prefetch interference, but aggressive per-core prefetchers worsens
the problem by introducing inter-core prefetch-prefetch and prefetch-
demand interference. We show PACMan can eliminate intra-core,
as well as inter-core, prefetch-induced interference for shared LLCs.
As a result, the performance of multiprogrammed workloads is im-
proved by an average of 21.5% over LRU and by 13.8% over DR-
RIP under prefetching. Finally by more effectively caching the
most useful demand- and prefetch-requested data, PACMan also
reduces demand memory bandwidth considerably: an average of
roughly 31.3%. Overall, the detailed analysis of state-of-the-art
cache management policies in this paper can guide future work
in memory hierarchy architecture and design regarding the impor-
tance and challenges of prefetching.

9. Acknowledgements
We thank the entire Intel VSSAD group for their support and

feedback during this work. We also thank Yu-Yuan Chen, Daniel
Lustig, and the anonymous reviewers for their useful insights re-
lated to this work. This material is based upon work supported by
the National Science Foundation under Grant No. CNS-0509402
and CNS-0720561. The authors also acknowledge the support of
the Gigascale Systems Research Center, one of six centers funded
under the Focus Center Research Program (FCRP), a Semiconduc-
tor Research Corporation entity. Carole-Jean Wu is supported in
part by an Intel PhD Fellowship.

10. References
[1] A. Alameldeen and D. Wood. Interactions between

compression and prefetching in chip multiprocessors. In
Proceedings of the 35th International Symposium on
Computer Architecture, 2007.

[2] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting
inter-thread cache contention on a chip multi-processor
architecture. In Proceedings of the 11th International
Symposium on High-Performance Computer Architecture,
2005.

[3] M. Chaudhuri. Pseudo-LIFO: The foundation of a new
family of replacement policies for LLCs. In Proceedings of
the 42nd International Symposium on Microarchitecture,
2009.

[4] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt. Coordinated
control of multiple prefetchers in multi-core systems. In
Proceedings of the 42nd International Symposium on
Microarchitecture, 2009.

[5] H. Gao and C. Wilkerson. A dueling segmented LRU
replacement algorithm with adaptive bypassing. In
Proceedings of the 1st JILP Workshop on Computer
Architecture Competitions, 2010.

[6] I. Hur and C. Lin. Memory prefetching using adaptive stream
detection. In Proceedings of the 39th International
Symposium on Microarchitecture, 2006.

[7] S. Iacobovici, L. Spracklen, S. Kadambi, Y. Chou, and S. G.

Abraham. Effective stream-based and execution-based data
prefetching. In Proceedings of the 18th International
Conference on Supercomputing, 2004.

[8] Intel Core i7 Processors
http://www.intel.com/products/processor/corei7/.

[9] A. Jaleel, E. Borch, M. Bhandaru, S. C. Steely Jr., and
J. Emer. Achieving non-inclusive cache performance with
inclusive caches: Temporal locality aware (TLA) cache
management policies. In Proceedings of the 43rd
International Symposium on Microarchitecture, 2010.

[10] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob. CMP$im: A
Pin-based on-the-fly multi-core cache simulator. In
Proceedings of the 4th Workshop on Modeling,
Benchmarking and Simulation, 2008.

[11] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. C. Steely
Jr., and J. Emer. Adaptive insertion policies for managing
shared caches. In Proceedings of the 17th International
Conference on Parallel Architecture and Compilation
Techniques, 2008.

[12] A. Jaleel, K. B. Theobald, S. C. Steely Jr., and J. Emer. High
performance cache replacement using re-reference interval
prediction (RRIP). In Proceedings of the 38th International
Symposium on Computer Architecture, 2010.

[13] JILP Workshop on computer architecture competitions
http://jilp.org/jwac-1/.

[14] N. P. Jouppi. Improving direct-mapped cache performance
by the addition of a small fully-associative cache and
prefetch buffers. In Proceedings of the 17th International
Symposium on Computer Architecture, 1990.

[15] N. P. Jouppi and S. J. E. Wilton. Tradeoffs in two-level
on-chip caching. In Proceedings of the 21st International
Symposium on Computer Architecture, 1994.

[16] S. M. Khan, Y. Tian, and D. A. Jiménez. Dead block
replacement and bypass with a sampling predictor. In
Proceedings of the 43rd International Symposium on
Microarchitecture, 2010.

[17] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and
partitioning in a chip multiprocessor architecture. In
Proceedings of the 13th International Conference on Parallel
Architectures and Compilation Techniques, 2004.

[18] W.-f. Lin, S. Reinhardt, and D. Burger. Reducing DRAM
latencies with an integrated memory hierarchy design. In
Proceedings of the 7th International Symposium on High
Performance Computer Architecture, 2001.

[19] G. Loh. Extending the effectiveness of 3D-stacked DRAM
caches with an adaptive multi-queue policy. In Proceedings
of the 42nd International Symposium on Microarchitecture,
2009.

[20] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
Building customized program analysis tools with dynamic
instrumentation. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation, 2005.

[21] P. Michaud. The 3P and 4P cache replacement policies. In
Proceedings of the 1st JILP Workshop on Computer
Architecture Competitions, 2010.

[22] K. Nesbit, A. Dhodapkar, and J. Smith. AC/DC: An adaptive
data cache prefetcher. In Proceedings of the 13th
International Conference on Parallel Architectures and
Compilation Techniques, 2004.

[23] K. Nesbit, J. Laudon, and J. Smith. Virtual private caches. In
Proceedings of the 35th International Symposium on
Computer Architecture, 2007.

[24] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi. Pinpointing representative portions of large
Intel Itanium programs with dynamic instrumentation. In
Proceedings of the 37th International Symposium on
Microarchitecture, 2004.

[25] J.-K. Peir, S.-C. Lai, S.-L. Lu, J. Stark, and K. Lai. Bloom
filtering cache misses for accurate data speculation and
prefetching. In Proceedings of the 16th International
Conference on Supercomputing, 2002.

[26] M. Qureshi and Y. Patt. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to
partition shared caches. In Proceedings of the 39th
International Symposium on Microarchitecture, 2006.

[27] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely Jr., and
J. Emer. Adaptive insertion policies for high performance
caching. In Proceedings of the 35th International Symposium
on Computer Architecture, 2007.

[28] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A
case for MLP-aware cache replacement. In Proceedings of
the 34th International Symposium on Computer Architecture,
2006.

[29] Standard Performance Evaluation Corporation CPU2006
Benchmark Suite. http://www.spec.org/cpu2006/.

[30] S. Srikantaiah, M. Kandemir, and M. J. Irwin. Adaptive set
pinning: Managing shared caches in chip multiprocessors. In
Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and
Operating Systems, 2008.

[31] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback
directed prefetching: Improving the performance and
bandwidth-efficiency of hardware prefetchers. In
Proceedings of the 13th International Symposium on High
Performance Computer Architecture, 2007.

[32] E. Suh, S. Devadas, and L. Rudolph. A new memory
monitoring scheme for memory-aware scheduling and
partitioning. In Proceedings of the 8th International
Symposium on High-Performance Computer Architecture,
2002.

[33] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C.
Steely Jr., and J. Emer. SHiP: Signature-based hit predictor
for high performance caching. In Proceedings of the 44th
International Symposium on Microarchitecture, 2011.

[34] C.-J. Wu and M. Martonosi. Characterization and dynamic
mitigation of intra-application cache interference. In
Proceedings of the International Symposium on Performance
Analysis of Systems and Software, 2011.

[35] Y. Xie and G. Loh. PIPP: Promotion/insertion
pseudo-partitioning of multi-core shared caches. In
Proceedings of the 37th International Symposium on
Computer Architecture, 2009.

[36] X. Zhuang and H.-H. Lee. Reducing cache pollution via
dynamic data prefetch filtering. In IEEE Trans. Comput.,
volume 56, January 2007.

