SHIP: Signature-based Hit Predictor
for High Performance Caching

§ . e
Carole-Jean Wu* Aamer Jaleel” Will Hasenplaugh™* Margaret Martonosi* Simon C. Steely Jr. Joel Emert#

Princeton University™ Intel Corporation, VSSAD' Massachusetts Institute of Technology*
Princeton, NJ Hudson, MA Cambridge, MA
{carolewu,mrm}@princeton.edu {aamer.jaleel,william.c.hasenplaugh,

simon.c.steely.jr,joel.emer}@intel.com

ABSTRACT memory speeds increase the importance of a high perforniiy L
Recent studies, however, have shown that the commonlyiRed
replacement policy still leaves significant room for penfiance
improvement. As a result, a large body of research work has fo
cused on improving LLC replacement [5, 10, 15, 16, 17, 20, 27,
29, 31, 32]. This paper focuses on improving cache perfocman
by addressing the limitations of prior replacement policygosals.

In the recently-proposed Re-Reference Interval Predi¢tRiRIP)
framework [10], cache replacement policies base theiamgrhent
decisions on grediction of the re-reference (or reuse) pattern of
each cache line. Since the exact re-reference pattern ksooin,
the predicted re-reference behavior is categorized irfterdit
buckets known ase-reference intervals. For example, if a cache
line is predicted to be re-referenced soon, it is said to laavear-
immediate re-reference interval. On the other hand, if a cache line
is predicted to be re-referenced far in the future, it is &ro have
a distant re-reference interval. To maximize cache performance,
cache replacement policies continually update the re-erte in-
terval of a cache line. The natural opportunity to predicid(ap-
date) the re-reference interval is on cache insertions acldechits.

The commonly-used LRU replacement policy (and its approx-
imations) predict thatll cache lines inserted into the cache will
have anear-immediate re-reference interval. Recent studies [10,

The shared last-level caches in CMPs play an important role i
improving application performance and reducing off-chipmory
bandwidth requirements. In order to use LLCs more efficieng-
cent research has shown that changing the re-referencietpad
on cache insertions and cache hits can significantly impcacbe
performance. A fundamental challenge, however, is how & be
predict the re-reference pattern of an incoming cache line.

This paper shows that cache performance can be improved by
correlating the re-reference behavior of a cache line withigue
signature. We investigate the use of memory region, program
counter, and instruction sequence history based sigrsatWe also
propose a novel Signature-based Hit Predictor (SHiP) ta ldze
re-reference behavior of cache lines belonging to eaclagige.
Overall, we find that SHiP offers substantial improvements the
baseline LRU replacement and state-of-the-art replacepadicy
proposals. On average, SHiP improves sequential and muiltip
grammed application performance by roughly 10% and 12% over
LRU replacement, respectively. Compared to recent repiace
policy proposals such as Seg-LRU and SDBP, SHiP nearly dsubl
the performance gains while requiring less hardware oaethe

Categones and SUbJeCt Descrlptors 27] have shown that always predictingear-immediate re-reference
B.8.3 Hardware]: Memory Structures interval on cache insertions performs poorly when appboatef-

erences have distant re-reference interval. This situation occurs
General Terms when the application working set is larger than the ava@laalche

or when the application has a mixed access pattern where some
Design, Performance memory references havenear-immediate re-reference interval

while others have distant re-reference interval. For both of these
Keywords access patterns, LRU replacement causes inefficient caiiza-u

. - tion. Furthermore, since LLCs only observe referencesréitte
Replacement, Reuse Distance Prediction, Shared Cache through the smaller caches in the hierarchy, the view oéference
1. Introduction ICo;g!ié)é at the LLCs can be skewed by this filtering of upparel

The widespread use of chip multiprocessors with shared last In efforts to improve cache performance, many studies hewe p

level caches (LLCs) and the widening gap between procesgbr a posed novel ideas to improve cache replacement [5, 15, 12017
31]. While these proposals address the limitations of LRblaee-
Sa large part of this work was performed while Carole-Jean Wu ment, they either require additional hardware overhead:quire
was an intern at Intel/VSSAD. significant changes to the cache structure. Alternativalydies
have also shown that simply changing the re-reference giredi
on cache insertions [10, 27, 29, 32] can significantly improache

o o]] performance at very low hardware overhead. However, a funda

Permission to make digital or hard copies of all or part of thiork for mental challenge today is how to best design a practical arésin

personal or classroom use is granted without fee providatidbpies are . i . .
not made or distributed for profit or commercial advantage that copies Lhnaf:;s‘ﬁeai%csiﬁtgrlé predict the re-reference interval afche line

bear this notice and the full citation on the first page. Toyootherwise, to

republish, to post on servers or to redistribute to listguies prior specific Recent proposals [10, 27, 32] use simple mechanisms tocpredi
permission and/or a fee. the re-reference interval of the incoming cache line. Sjmadly,
MICRO ' 11 December 3-7, 2011, Porto Alegre, Brazil thes mechanisms predict tkame re-reference interval for the ma-

Copyright 2011 ACM 978-1-4503-1053-6/11/12 ...$10.00.

Table 1: Common Cache Access Patterns.

Recency-Friendly (A1, ey A1, Ay Ay A1y vy Q1)
Thrashing & > C) (a1, ...,an_1,a1)"
Streaming £ = o0) (a1,...,ak_1,ar)

Mixed (k < C,m >C) [(a1, ..., an) " Pe(b, .., b))~

C represents the cache set associativity.

a; represents a cache line access.

(a1,az2,...,ax—1, ar) is a temporal sequence bfunique
addresses to a cache set.

(a1,as,...,ar_1,a)" represents a temporal sequence that
repeatsV times.

Pc(a1,az2,...,ax_1, ar) is a temporal sequence that occurs
with some probabilityP..

jority of cache insertions and, as a result, make replaceneni-
sions at a coarse granularity. While such proposals arelsiamul
improve cache performance significantly, we show that tieop-
portunity to improve these predictions. Specifically, wewlihat
re-reference predictions can be made at a finer granularitate-
gorizing references into different groups by associatisigaature
with each cache reference. The goal is that cache referéhnaes
have the same signature will have a similar re-referenesvat.

This paper investigates simple, high performing, and loerov
head mechanisms to associate cache references with a @wiggue
natureand to predict the re-reference interval for that signature. We
propose a Signature-based Hit Predictor (SHiP) to predietier
the incoming cache line will receive a future hit. We use ¢hre
unique signatures to predict the re-reference intervaépatmem-
ory region signatures (SHiP-Mem), program counter sigeatu
(SHiP-PC), and instruction sequence history signatundfR$Seq).
For a given signature, SHiP uses a Signature History CoUiter
ble (SHCT) of saturating counters tearn the re-reference inter-
val for that signature. SHiP updates the SHCT on cache his an
cache evictions. On a cache miss, SHiP indexes the SHCT héth t
corresponding signature to predict the re-referenceviataf the
incoming cache line.

SHIP is not limited to a specific replacement policy, but eath
can be used in conjunction with any ordered replacementyoli
SHIP is a more sophisticated cache insertion mechanisnidess
more accurate re-reference predictions than recent casketion
policy proposals [10, 27, 32]. Our detailed performancalissi
show that SHiP significantly improves cache performance jprrer
state-of-the art replacement policies. Of the three sigeat SHiP-

PC and SHiP-I1Seq perform the best across a diverse set of se-

quential applications including multimedia, games, serard the

SPEC CPU2006 applications. On average, witha 1 MB LLC, SHIP i tion for all cache insertions.

outperforms LRU replacement by 9.7% while existing stété&ie-

art policies like DRRIP [10], Seg-LRU [5] and SDBP [16] impe
performance by 5.5%, 5.6%, and 6.9% respectively. Our avalu
tions on a 4-core CMP with a 4 MB shared LLC also show that

SHIP outperforms LRU replacement by 11.2% on average, com-

pared to DRRIP (6.5%), Seg-LRU (4.1%), and SDBP (5.6%).
2. Background and Motivation

tions in replacement policies include improvements in eaoker-
tion and promotion policies [10, 27, 32], dead block pradit{15,
16, 18, 20], reuse distance prediction [10, 14, 17], frequdrased
replacement [19] and many more [1, 2, 6, 11, 24, 28, 30, 31].

To better understand the need for more intelligent replacgm
policies, a recent study [10] summarized frequently oéograc-
cess patterns (shown in Table 1). LRU replacement (and jiioap
imations) behaves well for both recency-friendly and strie@ ac-
cess patterns. However, LRU performs poorly for thrashind a
mixed access patterns. Consequently, improving the pedoce
for these access patterns has been the focus of many reglacem
policy proposals.

Thrashing occurs when the application working set is |atigen
the available cache. In such cases, preserving part of thidwgo
set in the cache can significantly improve performance. Rece
proposals show that simply changing the re-reference giieds
on cache insertions can achieve this desired effect [10, 27]

Mixed access patterns on the other hand occur when a fréguent
referenced working set is continuously discarded from thehe
due to a burst of non-temporal data references (catlags). Since
these access patterns are commonly found in importantmmedia,
games, and server applications [10], improving the cachfope
mance of such workloads is of utmost importance.

To address mixed access patterns, a recent study propased th
Dynamic Re-Reference Interval Prediction (DRRIP) replaest
policy [10]. DRRIP consists of two component policies: Bitab
RRIP (BRRIP) and Static RRIP (SRRIP). DRRIP uses Set Duel-
ing [27] to select between the two policies. BRRIP is spegilfic
targeted to improve the performance of thrashing accessrpat
SRRIP is specifically targeted to improve the performanadaigéd
access patterns. DRRIP performance is shaped by how well-it p
forms on the two component policies.

The performance of the SRRIP component policy is dependent
on two important factors. First, SRRIP relies on the actieeking
set to be re-referenced at least once. Second, SRRIP perfoens
constrained by the scan length. Table 2 illustrates scagsaquat-
terns using the scan notation from Table 1, and their pedoca
under SRRIP. For short scan lengths, SRRIP performs well-Ho
ever, when the scan length exceeds the SRRIP threshold ar whe
the active working set has not been re-referenced beforecie,
SRRIP behaves similarly to LRU replacement. We focus on de-
signing a low overhead replacement policy that can impréne t
performance of mixed access patterns.

3. Signature-based Hit Predictor

Most replacement policies attempt to learn the re-referénc
terval of cache lines by always making tkeme re-reference pre-
Instead of making gaene re-
reference predictions for all cache insertions, we asso@ach
cache reference with a distinggnature. We show that cache re-
placement policies can be significantly improved by dynathic
learning the re-reference interval of each signature andyayy
the information learned at cache insertion time.

3.1 Signature-based Replacement
The goal of signature-based cache replacement is to prelét

Increasing cache sizes and the use of shared LLCs in CMPs hagher the insertions by a given signature will receive futoaehe

spurred research work on improving cache replacement.véno

hits. The intuition is that if cache insertions by a givennsityre

Table 2: n-bit SRRIP Behavior with Different Mixed Access Patterns

Mixed Access Patterns

[(a17a27 "'7akflyak)APe(b17b27) bm)]N

Example

Short Scan
Long Scan

Exactly One Reuse A = 1regardless ofn

m<=(C—-K)x(2"—1)andA > 1
m>(C—K)* (2" —1)andA > 1

(a17a2)7 (a17a2)7b17b27b37 (a17a2)7
(a17a2)7 (a17a2)7b17b27b37b47b57b67 (a17a2)7
(a17a2)7b17b27b37b47 (a’17a’2)7

m: the length of a scart}": the cache set associativiti: the length of the active working set.

(a) SHiP Structure

(b) SHiP Algorithm

if hit then

-]
©
-

data

signature
setindex

signature_m;
outcome;

Update LRU?

LLC hit?

signature_m
" outcome

SHCT

Last-Level Cache

cache line.outcome true;
Increment SHCT[signature m];

else

if evicted cache line.outcome != true
Decrement SHCT[signature m];
cache line.outcome false;
cache line.signature m signature;
if SHCT[signature]
Predict distant re-reference;
else
Predict intermediate re-reference;

end 1if

Figure 1: (a) SHiP Structure and (b) SHiP Algorithm.

(a) Memory Region Signature
Low-Reuse
Mem. Regions

1.E+04 Low-Reuse

Mem. Regions

High-Reuse
Addr. Regions

8.E+03

M Cache Misses

4.E+03

Cache Hits

(b) Instruction PC Signature
4.E+04

M Cache Misses
0O Cache Hits (Reuse Distance < 16)
@ Cache Hits (Reuse Distance < 8)

N
m
+
o
B

Reference Counts

0.E+00

1 101

16K Data Address Regions (Ranked by Reference Counts)

Figure 2: (a) Memory region signature: 393 unique 16KB addras

Reference Counts

10 20

30
Top 70 Instruction Program Counters (Ranked by Reference Counts)

40 50 60

regions are referenced in the entirdinmer program run. The

most-referenced regions show high data reuse whereas thehet regions include mostly cache misses. (b) Instruction PS8ignature:

reference counts per PC forzeusnp

are re-referenced, then future cache insertions by the sama-

ture will again be re-referenced. Conversely, if cacheriimes by

a given signature do not receive subsequent hits, therefirtser-

tions by the same signature will again not receive any sulesgq
hits. To explicitly correlate the re-reference behavioa sfgnature,
we propose &gnature-based Hit Predictor (SHiP).

To learn the re-reference pattern of a signature, SHiP resjui
two additional fields to be stored with each cache line: theature
itself and a single bit to track theutcome of the cache insertion.
The outcome bit (initially set to zero) is set to one only if the cache
line is re-referenced. Like global history indexed brancédjctors
[33], we propose &gnature History Counter Table (SHCT) of sat-
urating counters to learn the re-reference behavior of masige.
When a cache line receives a hit, SHiP increments the SHCQY ent
indexed by the signature stored with the cache line. Whenea li
is evicted from the cache but has not been re-referenced 8inc
sertion, SHiP decrements the SHCT entry indexed by the sigmna
stored with the evicted cache line.

The SHCT value indicates the re-reference behavior of asign
ture. A zero SHCT value provides a strong indication thafrieit
lines brought into the LLC by that signature will not receiey
cache hits. In other words, references associated withsigisa-
ture always have distant re-reference interval. On the other hand,
a positive SHCT counter implies that the correspondingatigne
receives cache hits. The exact re-reference interval inawk be-
cause the SHCT only tracks whether or not a given signature is
re-referenced, but not its timing.

Figure 1 illustrates the SHiP structure and SHiP pseude-cod
The hardware overhead of SHiP includes the SHCT and the two
additional fields in each cache line: signature and outcditiP
requires no changes to the cache promotion or victim selepili-
cies. To avoid the per-line overhead, Section 7.1 illustdie use
of set sampling [27] to limit the hardware overhead to onlew f
cache lines for SHCT training.

SHIP can be used in conjunction with any ordered replacement

policy. The primary goal of SHiP is to predict the re-refarein-
terval of an incoming cache line. For example, on a cache, miss
the signature of the missing cache line is used to consuBHET.

If the corresponding SHCT entry is zero, SHiP predicts that t
incoming line will have adistant re-reference interval, otherwise
SHIP predicts that the incoming line will have axtermediate re-
reference interval. Given the re-reference predictioa, réplace-
ment policy can decide how to apply it. For example, LRU re-
placement can apply the predictiondiftant re-reference interval
by inserting the incoming line at the end of the LRU chaintgasl

of the beginning). Note that SHiP makes re-reference piiedi
only on cache insertions. Extensions of SHiP to updatefexerce
predictions on cache hits are left for future work.

For our studies, we evaluate SHiP using the SRRIP replademen
policy. We use SRRIP because it requires less hardware tRah L
and in fact outperforms LRU [10]. In the absence of any extbm
formation, SRRIP conservatively predicts that all cactseitions
have anintermediate re-reference interval. If the newly-inserted
cache line is referenced quickly, SRRIP updates the rearte
prediction tonear-immediate; otherwise, SRRIP downgrades the
re-reference prediction tdistant. In doing so, SRRIP learns the
re-reference interval for all inserted cache lines uporeference.
SHIP on the other hand explicitly and dynamically predibes te-
reference interval based on the SHCT. SHiP makes no chaages t
the SRRIP victim selection and hit update policies. On a each
miss, SHiP consults the SHCT with the signature to predet#h
reference interval of the incoming cache line. Table 3 surizes
the cache insertion and hit promotion policies for the 23RRIP
and 2-bit SHiP schemes.

Table 3: Policies for the 2-bit SRRIP and SHiP.

SRRIP SHiP
Insertion always 2 if (SHCT[Signature] == 0) 3; else 2;
Promotion always 0 always 0

Instruction Sequence tions have alistant re-reference interval. A PC-based sig-

:::\z %ecx, %eax non-MEM [gy yx nature can generate accurate re-reference predictiorssif m
movslq %ebx,%rdx non-MEM [0 xx references from a given PC have similar reuse behavior.
N addl $7, %ecx non-MEM |0 0x X . .
£ sarl $3, %eax non-MEM |0000 e Instruction Sequence History Signature Cache references
Z| movl %eax, (%r8,%rdx,4) MEM 1000b can also be grouped using an instruction sequence history fo
movl %ebx, (%rdi,%rdx,4) MEM 1100p0 that memory reference. We define instruction sequence his-
'C’:E'pl %sefgztx, b i 0110p00 tory as a binary string that corresponds to the sequence of
il Loop non-MEM |0001h 0000 instructions decoded before the memory instruction. If-a de
xorl - %ebx, %ebx non-MEM |o000h 10000 coded instruction is a load/store instruction, a ‘1’ is itee
into the sequence history, else a ‘0’ is inserted into the se-
Figure 3: Example of Encoding Instruction Sequence History quence history. Figure 3 illustrates this using an example.
Instruction sequences can capture correlations betwésn re
3.2 Signatures for Improving Replacement ences and may be more compact than PC-based signatures.

While there are many ways of choosing a signature for each

cache reference, we evalaute SHIP using the following tiige 4. EXperimental Methodology

natures. 4.1 Simulation Infrastructure

e Memory Region Signature Cache references can have sig- We evaluate SHiP using the the simulation framework rektase
natures based on the memory region being referenced. Specifby the First JILP Workshop on Computer Architecture Competi
ically, the most significant bits of the data address can be tions [12]. This Pin-based [22] CMP$im [8] simulation frawmrk
hashed to form a signature. Figure 2(a) illustrates theereus models a 4-way out-of-order processor with a 128-entrydeor
characteristics fohnmer . The x-axis shows a total of 393 buffer and a three-level cache hierarchy. The three-lexehe hi-
unique 16KB memory regions referenced in the entire pro- erarchy is based on an Intel Core i7 system [7]. The L1 and L2
gram (ranked by reference counts) while the y-axis shows caches use LRU replacement and our replacement policyestudi
the number of references in each region. Data references toare limited to the LLC. Table 4 summarizes the memory hiénarc
certain address regions have “low-reuse” and always result For the SHiP scheme, we use a default 16K-entry SHCT with
cache misses. On the other hand, references to other addres8-bit saturating countetsSHiP-PC uses the 14-bit hashed instruc-
regions are reused more often. A memory-region-based sig- tion PC as the signature indexing to the SHCT. SHiP-ISeq uses
nature can generate accurate re-reference predictiorls if a the 14-bit hashed memory instruction sequence as the signat
references to a given memory region have a typical access The instruction sequence is constructed at the decode sfdge
pattern (e.g. scans). pipeline. Like all prior PC-based schemes, the signatustoised

e Program Counter (PC) Signature: Cache references canbe N the load-store queue and accompanies the memory reéerenc
grouped based on the instructions which reference memory. throughout_all levels of the cache hlerar(_:hy. SHiP-Mem ukes
Specifically, bits from the instruction Program Counter (PC ~ UPPer 14-bit of data addresses as the signature. Table 3 umm
can be hashed to form a signature. Figure 2(b) illustrates th 128 re-reference predictions made by SHiP upon cachgimse
reference counts per instruction PC for a SPEC CPU2006 ap- .
plication,zeusnp. The x-axis shows the 70 instructions that 4.2 Work_load ConStrUCtlo_n]
most frequently access memory (covering 98% of all LLC ~ Our evaluations use both sequential and multiprogrammek-wo
accesses), while the y-axis shows the reference counts. Theloads. We use 24 memory-sensitive applications from mekim
bars show, under LRU replacement, whether these memory dia and PC games (Mm.), enterprise server (Srvr.), and tfe&CSP
references receive cache hits or misses. Intuitively, P 1gach SHCT entry is a measure of confidence. When the entry is

identify the frequently-missing instructions (i.e. insttions zero, it gives high confidence that the corresponding rataswill
1-4) and predict that all memory references by these instruc not be re-referenced.

Table 4: Architectural parameters of the simulated system.

L1 Inst. Caches | 32KB, 4-way, Private, 1 cycle MSHR 32 entries allowing up to 32 outstanding misses
L1 Data Caches | 32KB, 8-way, Private, 1 cycle LLC 1MB per-core, 16-way, Shared, 30 cycles
L2 Caches 256KB, 8-way, Private, 10 cycles Main Memory 32 outstanding requests, 200 cycles
Mm./Games Applications Server Applications SPEC CPU2006 Applications
12 1MB 16MB |, ol fantasy 20 | 1MB | | 16MB | 18 40 1MB 16MB | —e—bwaves
1 1)] 1 _mNT _’_‘_“—‘\,_",\ -beip2
P P —B-halflife
10 r \ : 4 halo 16 : ﬁ\ : —4—SP 30 : I —A—cactusADM
8 1 1 e 1 \ 1 —SSM 1 1 —<gemsFDTD
_ | \ 1 omeworld _12 ' 1 _ 1 1
E 6 : : ——flashplayer & 1 : : eSS £ 20 ° # : i::?er
2 ‘\ 1 \ | —®—excel 2 g B i 2 | SO b 1
4 1 D LERTLTE gunmetal [SwB y T . o sphinx3
------ \:'%“ \ 1 1 tpc-c 10 = = - I zeusmp
) ° ' renderman 4 - 1 w
—P=ee e a0 e | X I
. o [‘ i : 0 % ‘TW' =| &
256 1024 4096 16384 65536 256 1024 4096 16384 65536 256 1024 4096 16384 65536

Cache Size (KB) Cache Size (KB) Cache Size (KB)

Figure 4: Cache Sensitivity of the Selected Applications.

1.4

M DRRIP OSHiP-Mem ESHiP-PC [SHiP-ISeq

IPC Performance Normalized

HDRRIP OSHiP-Mem & SHiP-PC & SHiP-ISeq

> @ o © S 35| = c | o | £ | a v | o o Q I o S5 m o)
g £ 3 2 ¢ 3 £ 8 % 2 & 23 3 2 6 ¢ 2 2z 828 2 2 % ¢
£ | E | < o © x o €] 3 Q| & N [a) € £ &
= S s g o £ s =] s 2| 5 < £ < S
“w < “EJ < S| o o 2 g < a9
—_ w
©] © o 5 5] S
& < | = L Y] Q0
i=

Mm./Games Server SPEC CPU2006 ‘

Figure 5: Performance comparison of DRRIP, SHiP-PC, SHiP-8eq, and SHiP-Mem.

<
K]
=]
Q
>
©
=)
5
e
o9
o3
2 > o o T | & T ®wW € o E o v o o 9| v N ol s 5 o o
s g £ 2 2 8¢ ¢ 5 2826 =233 ¢&g ¢ ¢ 3 28 88 % 2
Q 2 £ < 9 & x| 2 g a 2 &l s N 2 o E =R
3 S = 2 2 % E| 3 Tz 2 % 5 E < 32
l_.t: OE)ﬁ g_c e 2 | < 3| 8
© s | ®© °°f-,:, SR
£ c | < S| w
=
Mm./Games Server SPEC CPU2006

Figure 6: SHiP miss count reduction over LRU.

CPU2006 categories. From each category, we select eighhben
marks for which the IPC performance doubles when the caaee si
increases from 1MB to 16MB. Figure 4 shows the cache sensitiv
ity of the selected applications. The SPEC CPU2006 worldoad
were collected using PinPoints [25] for the reference isgtitvhile

the other workloads were collected on a hardware tracirngopta.
These workloads were run for 250 million instructions.

To evaluate shared LLC performance, we construct 161 hetero
geneous mixes of multiprogrammed workloads. We use 35 het-
erogeneous mixes of multimedia and PC games, 35 heterageneo
mixes of enterprise server workloads, and 35 heterogenaoies
of SPEC CPU2006 workloads. Finally, we create another 56 ran
dom combinations of 4-core workloads. The heterogeneoxeami
of different workload categories are used as a proxy for waif
ized system. We run each application for 250 million indiares
and collect the statistics with the first 250 million insttioas com-
pleted. If the end of the trace is reached, the model rewihds t
trace and restarts automatically. This simulation methagiois
similar to recent work on shared caches [4, 9, 10, 21, 32].

5. Evaluation for Private Caches

In particular, SHiP-PC and SHiP-1Seq are especially effeén
managing a commonly found access pattern in applicatioos su
ashal o, excel , gensFDTD, andzeusnp. Figure 7 captures a
stream of memory references to a particular cache sgtims FDTD.
For this particular cache set, addresfe8, C, andD are brought
into the cache by instructiddl. Before getting re-referenced again,
A, B, C, andDare evicted from the cache under both LRU and DR-
RIP because the number of distinct interleaving refereageseds
the cache associativity. As a result, the subsequent eserates to
A, B, C, andD by a different instructiorP2 result in cache misses.

However, under SHiP-PC, the SHCT learns the re-reference in
terval of references associated to instructdrasintermediate and
the re-reference interval of other referencesliagnt. As a result,
when the initial references, B, C, andD are inserted to the LLC at
P1, SHiP predicts these to have the intermediate re-refeliatere
val while other interleaving references have the distaméeference
interval. This example illustrates how SHiP-PC and SHiPg&an
effectively identify the reuse pattern of data brought itite LLC
by multiple signatures.

Regardless of the signature, SHiP outperforms both DRRP an
LRU. Though SHiP-Mem provides gains, using program context
information such as instruction PC or memory instructiciussce

Figures 5 and 6 compare the throughput improvement and cachep,q,ides more substantial performance gains. Among theethr

miss reduction of the 24 selected applications. For apipics that
already receive performance benefits from DRRIP suéh asl -
fantasy, | B, SJS, andhnmer, all SHiP schemes further im-
prove performance. For these applications, performanices gai-
marily come from SHiP’s ability to accurately predict theredere-
nce interval for incoming lines.

More significantly, consider applications, sucthas o, excel ,
gensFDTD, andzeusnp, where DRRIP provides no performance
improvements over LRU. Here, SHiP-PC and SHiP-ISeq can pro-
vide performance gains ranging from 5% to 13%. The perfooaan
gains is due to the 10% to 20% reduction in cache misses. Fhe re
sults show that SHiP-PC and SHiP-ISeq both dynamicallyetate
the current program context to an expected re-refereneevadt

SHiP-PC and SHiP-1Seq perform better than SHiP-Mem. On-aver
age, compared to LRU, SHiP-Mem, SHiP-PC and SHiP-ISeq im-
prove throughput by 7.7%, 9.7% and 9.4% respectively whike D
RIP improves throughput by 5.5%. Unless mentioned, the irema
der of the paper primarily focuses on SHiP-PC and SHiP-1Seq.

5.1 Coverage and Accuracy

To evaluate how well SHiP identifies the likelihood of reubes
section analyzes SHiP-PC coverage and prediction accurable
5 outlines the five different outcomes for all cache refeesnmnder
SHIP. Figure 8 shows results for SHiP-PC. On average, oriy @2
data references are predicted to receive further cacts hitfl are

& Instruction P1 @ Instruction P2

% g O 0 /.‘ @ ‘.’
F AN R TA A R, ~ A AN
- VAYAWAWIVAVYAWAVARV S SAVAVAVWW.WAWALVALY. VAWV AV
I W VOV) i Ve oV x
- B [D A | B | [D

Reference Stream (Time)
Figure 7: Cross-instruction reuse pattern: SHiP-PC can lean and predict that referencesA, B, C, and D brought in by instruction P1
receive cache hits under a different instructionP2. SHiP learns the data references brought in byP1 are reused byP2 and, therefore,
assigns an intermediate re-reference interval té, B, C, and D. As a result, the second occurrences @, B, C, and D by P2 hit in the
cache whereas, under either LRU- or DRRIP-based caché, B, C, and Dall miss in the cache.

inserted to the LLC with théntermediate re-reference prediction.
The rest of the data references are inserted to the LLC weh th
distant re-reference prediction.

The accuracy of SHiP’s prediction can be evaluated by compar
ing against the actual access pattern. For cache linesiitdhe
distant re-reference (DR) interval, SHiP-PC is considénedake a
misprediction if a DR-filled cache line receives furthervadit(s)
during its cache lifetime. Furthermore, a DR-filled cache lunder
SHiP-PC could have received cache reuse(s) if it were fillgd w
the intermediate re-reference interval. To fairly accdontSHiP-
PC’s misprediction for DR-filled cache lines, we implement&
way first-in-first-out (FIFO) victim buffer per cache $eFor cache
lines that are filled with thelistant re-reference prediction, Figure
8 shows that SHiP-PC achieves 98% prediction accuracy. FRw D
filled cache lines see further cache reuse after insertiamsider
applications likegens FDTD andz eusnp for which SHiP-PC of-
fers large performance improvements. Figure 8 shows th#®-SH
PC achieves more than 80% accuracy for cache lines predizted
receive further cache hit(s).

On average, for the cache lines filled with timsermediate re-

2A victim buffer is used for evaluating SHiP prediction acauy.

It is not implemented in the real SHiP design. The per-seCFIF
victim buffer stores DR-filled cache lines that have not ez a
cache hit before eviction.

reference (IR) prediction, SHiP-PC achieves 39% predictio-
curacy. SHiP-PC's predictions for cache lines that willeige
no further cache reuse(s) are conservative because theedisp
tion penalty for DR-filled cache lines is performance degtamh,
while the misprediction penalty for IR-filled cache linegust the
cost of missing possible performance enhancement. For e m
predicted IR-filled cache lines, SHiP learns that these edicles
have received no cache hit(s) at their eviction time andsasljitis
re-reference prediction accordingly. Consequently, SPitPtrains
its re-reference predictions gradually and more accyratith ev-
ery evicted cache line.

Over all the evicted cache lines, SHiP-PC doubles the agpplic
tion hit counts over the DRRIP scheme. Figure 9 illustrakes t
percentage of cache lines that receive at least one cactarhig
their cache lifetime. For applications suchfasnal - f ant asy,
SJB, gensFDTD, andzeusnp, SHiP-PC improves the total hit
counts significantly. This is because SHiP-PC accurateddipts
and retains cache lines that will receive cache hit(s) inlth€.
Consequently, the overall cache utilization increasesudiP-
PC. A similar analysis with SHiP-1Seq showed similar bebavi

5.2 Sensitivity of SHiP to SHCT Size

The SHCT size in SHiP should be small enough to ensure a prac-
tical design and yet large enough to mitigate aliasing betwen-

Table 5: Definition of SHiP accuracy.

Re-Reference Interval Prediction Outcome Definition
accurate DR cache lines receive no cache hit(s) before eviction.
Distant Re-Reference (DR) inaccurate DR cache lines receive cache hit(s) before eviction.
inaccurate DR cache lines receive cache hit(s) in the victim buffer.
Inter mediate Re-Reference (IR) accurate IR cache I?nes rece?ve cache hit(s) before evicti(_)n:
inaccurate IR cache lines receive no cache hit(s) before eviction.

100% | — -
B %I% %I%I% O DR; hits in victim buffer
'E % % // % / / ; hitsin
: . / | ONCREOENN .
g " > @ o v 5| 9! ® €|l E|a v o o o | o | o~ ol s 5| ol a ol ® IR; no hits
g é % E T;S é % g g 1T % a3 E é’. § '_v-% é § é E é § %D | IR; hits (:ccurate)
Mm./Games Server SPEC CPU2006 ‘ All ‘

Figure 8: SHiP-PC coverage and accuracy.

60%

ved

40%

that Have R

20%

0% -

Cache Hit(s) during their Lifetime

halflife

% of Cacheli
flashplayer
gunmetal
renderman

final-fantasy
homeworld

Mm./Games Server

O DRRIP
B SHiP-PC

cactusADM
gemsFDTD

SPEC CPU2006 ‘ All ‘

Figure 9: Comparison of application hit counts under DRRIP and SHiP-PC.

100%

75% -
50% -

25% 3§

0% -

Occupancy of the 16K-entry SHCT
under SHiP-PC

final-fantasy
halflife
homeworld
flashplayer
excel
gunmetal
renderman

Mm./Games

Server

Figure 10: SHCT utilization and aliasing under the SHiP-PC £heme.

related signatures mapping to the same SHCT entry. Sinadethe
gree of aliasing depends heavily on the signature used &xitige
SHCT, we conduct a design tradeoff analysis between pesdiocm
and hardware cost for SHiP-PC and SHiP-ISeq separately.

Figure 10 plots the number of instructions sharing the saf@T™S
entry for a 16K-entry SHiP-PC. In general, the SHCT utiliaatis
much lower for the multimedia, games, and SPEC CPU2006-appli
cations than the server applications. Since the instnuatiorking
set of these applications is small, there is little aliasmthe 16K-
entry SHCT. On the other hand, server applications withelang-
struction footprints have higher SHCT utilizations.

For SHiP-PC, we varied the SHCT size from 1K to 1M entries.
Very small SHCT sizes, such as 1K-entries, reduced SHiR-PC’
effectiveness by roughly 5-10%, although it always outpenfs
LRU even with such small table sizes. Increasing the SCHOhey
16K entries provides marginal performance improvemenis &h
because the instruction footprints of all our workloads flvinto
the 16K-entry SCHT. Therefore, we recommend an SCHT of 16K
entries or smaller.

Given the same 16K-entry SHCT size, SHiP-ISeq exhibits-a dif
ferent utilization pattern because it uses the memoryunstm se-
qguence signature to index to the SHCT. For all applicatitess
than half of the 16K-entry SHCT is utilized. This is becausgain
memory instruction sequences usually do not occur in anappl
tion. Hence, this provides an opportunity to reduce the SHET
SHiP-ISeq.

Instead of using the 14-bit hashed memory instruction secpie
to index to the SHCT directly, we further compress the sigreat

O Unused
L] 4 1 || | ®m>=5Inst.
B4 Inst.
| 3 Inst.
§ 32 2 5 15 2 2
2 5 2o E E £ N2 Inst.
S 8 ¢ ¢ € £ 35
= § gl < 2 | @ | mWExactly 1Inst. (No Aliasing)
9l o
IS
SPEC CPU2006

applications under DRRIP, SHiP-PC, SHiP-1Seq, and SHEHS

H over LRU. While SHiP-1Seq-H uses the 8K-entry SHCT (half of
the default 16K-entry SHCT), it offers a comparable perfance

gain as SHiP-PC and SHiP-ISeq and improves performance by an
average of 9.2% over LRU.

6. Evaluation for Shared Caches
6.1 Results for SHIP-PC and SHiP-ISeq

For shared caches, on average, DRRIP improves the perfoeman
of the 161 multiprogrammed workloads by 6.4%, while SHiP-PC
and SHiP-1Seqimprove the performance more significantlyh2%
and 11.0% respectively. For an in-depth analysis, we rahdeea
lected 32 multiprogrammed mixes of sequential applicati@pre-
sentative of the behavior of all 161 4-core workloada/ith the de-
fault 64K-entry SHCT scaled for the shared LLC, Figure 12xho
that the performance improvement of the selected workloadsr
SHiP-PC and SHiP-ISeq is 12.1% and 11.6% over LRU respec
tively while it is 6.7% under DRRIP. Unlike DRRIP, SHiP-PCdan
SHiP-1Seq performance improvements are primarily due te-fin
grained re-reference interval predictions.

Section 5.2 showed that aliasing within a sequential apto
is mostly constructive and does not degrade performancev- Ho
ever, for the multiprogrammed workloads, aliasing in theCIH
becomes more complicated. In a shared SHCT, aliasing ngt onl
comes from multiple signatures within an application bualio
stems from signatures from different co-scheduled aptdina. Con-
structive aliasing helps SHiP to learn the correct dataer@asterns

to 13 bits and use the compressed 13-bit signature to index anquickly because the multiple aliasing signatures from ifffergnt

8K-entry SHCT. We call this variation SHiP-1Seq-H. Figurkd)
shows that the utilization of the 8K-entry SHCT is increasigghif-
icantly. While the degree of memory instruction sequen&esilg
increases as well, in particular for server workloads, tluiss not
affect the performance as compared to SHiP-ISeq. Figure)11(
compares the performance improvement for the selectec:aggli

applications adjust the corresponding SHCT entry unangyou
Consequently, SHiP’s learning overhead is reduced. Onftther o
hand, destructive aliasing can also occur when the alisSga-

%The performance improvement of the randomly selected work-
loads is within 1.2% difference compared to the performance
provement over all 161 multi-programmed workloads (Figl2g

(b) SHiP-1Seg-H Performance

— 100% 1.15
z
w 75% 2
E -
§ 50% 2
N o
® 8
o 25% ®
£ ’ £
k3 5
z 0% 2
£ o & k) T 5 s a]
g 8E|E|% 3| g NS g
S c|l® = £l = < e »n = ©
o | <] c| v 2 o g (=] <
8 ho £ 52 2 | g £ 2 8
° g 2 ®g 8) o 3 S
- ~ a.
g s}
Mm./Games Server SPEC CPU2006 s E
N
M Exactly 1 Inst. (No Aliasing) E2Inst. @3Inst. ®4Inst. MW>=5Inst. [Unused ODRRIP W SHiP-PC @ SHiP-ISeq @ SHiP-ISeq-H

Figure 11: SHiP-1Seq-H (a) utilization and aliasing in SHCT (b) performance comparison with SHiP-1Seq.

tures adjust the same SHCT entry in opposite directionss @éun
affect SHiP accuracy and reduce its performance benefits.

To investigate the degree of constructive versus destriatias-
ing among the different co-scheduled applications, weuatalthree
different SHCT implementations: the unscaled default Esitry
SHCT, the scaled 64K-entry SHCT, and the per-core privake 16
entry SHCT for each of the four CMP cores. The former two de-
signs propose a monolithic shared SHCT for all four co-salextl
applications while in the latter design, each core has its jorivate
SHCT to completely eliminate cross-core aliasing.

6.2 Per-core Private vs. Shared SHCT

Figure 13 illustrates the sharing patterns among all ceculed
applications in the shared 16K-entry SHCT under SHiP-P@ Th
No Sharer bars plot the portion of the SHCT used by exactly one
application. TheMore than 1 Sharer (Agree) bars plot the portion
of the SHCT used by more than one application but the predicti
results among the sharers agree. Thare than 1 Sharer (Dis-
agree) bars plot the portion of the SHCT suffering from destructive
aliasing. Finally, theUnused bars plot the unused portion of the
SHCT. The degree of destructive aliasing is fairly low asrafi
workloads: 18.5% for Mm./Games mixes, 16% for server mixes,
only 2% for SPEC CPU2006 mixes, and 9% for general multipro-
grammed workloads.

Figure 14 compares the performance improvement for the thre
SHCT implementations in the SHiP-PC and SHiP-1Seq schemes
Although destructive aliasing does not occur frequentthashared
16K-entry SHCT, multimedia, games, and server workloadk st
favor the per-core 16K-entry SHCT over the other shared SHCT
designs. This is because, as shown in the private cacherperfo
mance analysis, multimedia, games, and server applicatiane
relatively larger instruction footprints. When the numioércon-
current applications increases, the SHCT utilizationéases as

well and aliasing worsens. This problem can be alleviatedday-
ing the shared SHCT from 16K-entry to 64K-entry. Howevee th
per-core private SHCT is the most effective solution.

Unlike the multimedia, games, and server workloads, the mul
tiprogrammed SPEC CPU2006 application mixes receive thet mo
performance improvement from the shared SHCT designs. #s di
cussed in Section 5.2, a significant portion of the 16K-eStCT
is unused for any SPEC CPU2006 application alone. When more
SPEC CPU2006 applications are co-scheduled, the utdizaif
the shared SHCT increases but the shared 16K-entry SHCIll is st
sufficient. While the per-core private 16K-entry SHCT eliaties
destructive aliasing completely, itimproves the perfang®for the
SPEC CPU2006 workloads less because of the learning ovkrhea
each private SHCT has to pay to warm up the table.

Overall, for the shared LLC, the two alternative SHCT desjgn
the shared 16K-entry SHCT and the per-core private 16Kyentr
SHCT, perform comparably to the shared 64K-entry SHCT in the
SHiP-PC and SHiP-1Seq schemes.

7. SHiP Optimization and Compari-
son with Prior Work

While the proposed SHiP scheme offers excellent performanc
gains, to realize a practical SHiP design, we present twaniqaes

.to reduce SHiP hardware overhead: SHiP-S and SHiP-R. bhefea

using all cache sets in the LLC, SHiP-S selects a few caclsaset
ples to train the SHCT. Then, in the SHiP-R scheme, we exfhare
optimal width of the saturating counters in the SHCT. Fipalle
compare the performance of all SHiP variants with the thtates
of-the-art cache replacement policies: DRRIP, Segmented L
(Seg-LRU), and Sampling Dead Block Prediction (SDBP) arsd di
cuss the design tradeoff for each of the schemes.

514

[O DRRIP mSHiP-PC & SHiP-ISeq

o o l3

3

T34,

$ 21

&a

Egl,lf

XA

2w

S e

5 0.9

2 diy 0T eis @ pd oo eSS @I YT R eS QDY TN O S Qb ow
elelelele elelel< elelelelelelele < gle elelelele el eleleElEIEIEIEIEI T <

Mm./Games ‘ Server ‘ SPEC CPU2006 ‘ General ‘AII‘

Figure 12: Performance comparison for multiprogrammed workloads under DRRIP, SHiP-PC, and SHiP-ISeq.

100% -

75% |

50% -

25% |

I .
7/ A

0% -

Among 16K-entry SHCT of SHiP-PC

X2 IEITREZTZHIIRIREZTZEEFYRTYIRERRERYERYERERES
EEE EE E EE S E|E E E E|E E E|S E E E|E E E|E E S|E E E E|E E E|E T
z z z z
Mm./Games ‘ Server ‘ SPEC CPU2006 ‘ General ‘
M No Sharer More than 1 Sharer (Agree) @ More than 1 Sharer (Disagree) B Unused
Figure 13: Utilization and aliasing for the shared 16K-entry SHCT under SHiP-PC.
5 12 W Shared 16K SHCT less hardware for the SHCT. We see a similar trend for theuttefa
os 115 O Shared 64K SHCT SHiP-I1Seq and SHiP-ISeqg-R2.
§§ : I B Per-Core 16K SHCT For the shared LLC, using the 2-bit saturating counters é th
58 11 | . SHCT accelerates SHiP’s learning of signature reuse patteéks
E g I I I I a result, SHiP-PC-R2 and SHiP-1Seq-R2 both perform belfin t
§2 1.05 1 I I I I I I I I I I I the default SHiIP-PC and default SHiP-ISeq schemes.
£
5 1
= ISeq ISeq ISeq ISeq ISeq 7.3 Comparison with Prior Work
Mm. /Games Server ‘ SPEC2K6 ‘ General ‘ Al ‘ In addition to DRRIP, we compare the proposed SHiP scheme
with two recently proposed cache management techniques,
Figure 14: Performance comparison for per-core private vs. Segmented-LRU (Seg-LRU) [5] and Sampling Dead Block Predic
shared SHCT. tion (SDBP) [16]. DRRIP, Seg-LRU, and SDBP are the top three
best-performing cache replacement policies from JILP E&Rb&-
. . . . placement Championship Workshop. Among the three, SDBP als
7.1 SHIiP-S: Reducing Per-line Storage uses additional information, such as instruction PCs, tisags

Using every cache line’s reuse outcome for SHiP training re- LLC management.
quires each cache line to store two additional informatishbit Figure 16 compares the performance improvement for sequen-
si gnat ure_mand 1-bitout cone, for the SHCT to learn the tial applications under DRRIP, Seg-LRU, SDBP, and our psego
reuse pattern of the signature. We propose to use set s@nplin SHiP schemes. For applications suchSdsS, the additional in-
to reduce the per-cache line storage overhead of the d&hiiiR- struction level information in SDBP, SHiP-PC, and SHiP¢%elps
PC and SHiP-I1Seq schemes. SHiP-PC-S and SHiP-ISeg-S aelect improve LLC performance significantly over the LRU, DRRIRga
number of cache sets randomly and use cache lines in théexklec Seg-LRU schemes. While SDBP, SHiP-PC, and SHiP-ISeq all im-
cache sets to train the SHCT. prove performance for applications, suchexsel , SHiP-PC and
For the private IMB LLC, using 64 out of the total 1024 cache SHiP-1Seqoutperforms SDBP for other applications, suaiess -
sets is sufficient for SHiP-PC-S to retain most of the perforoe FDTD and zeusnp. Furthermore, while SDBP performs better
gain from the default SHiP-PC scheme. This reduces SHiR-C’ than DRRIP and Seg-LRU, its performance improvement for se-
tal storage in the LLC from 30KB to only 1.875KB. For the slthre quential applications varies. For examps® andgenms FDTD re-
4MB LLC, more sampling cache sets are required for SHCT 4rain ceive no performance benefits under SDBP. Although SDBP and
ing. Overall, 256 out of the total 4096 cache sets offers algoo SHiP use instruction-level information to guide cache linger-
design point between performance benefit and hardware Eigst. tion and replacement decisions, SHiP-PC and SHiP-ISecpvepr
ure 15 shows that with set sampling, SHiP-PC and SHiP-ISeq re application performance more significantly and more caestty
tain most of the performance gains while the total per-linesge by an average of 9.7% and 9.4% over LRU while SDBP improves
overhead is reduced to less than 2% of the entire cache tapaci performance by only 6.9%. For the shared LLC, SHiP-PC and
. . . SHiP-1Seq outperforms the three state-of-the-art caghlacement
7.2 SHIiP-R: Reducing the Width of Saturat- schemes by 11.2% and 11.0% over the LRU baseline while DR-
ing Counters in the SHCT RIP, Seg-LRU, and SDBP improve performance by 6.4%, 4.1%,

We can further reduce SHiP hardware overhead by decreasingand 5.6%.
the width of SHCT counters. In the default SHiIP scheme, SHCT .. .
uses 3-bit saturating counters. Using wider counters regumore 7.4 Sensitivity to Cache Sizes

hardware but ensures higher prediction accuracy for SHiRUze To evaluate the effectiveness of SHiP-PC and SHiP-1Secdier v
only re-references with a strongly-biased signature aeelipred ious cache sizes, we perform a sensitivity study for botvepeiand
to have thedistant re-reference interval. On the other hand, using shared LLCs. We find that larger caches experience lessri@rie
narrower counters not only requires less hardware butdatadsel- so the differences in replacement approaches are reduced- H
erates the learning time of the signatures. ever, both SHiP-PC and SHiP-ISeq still continue to improge s

Figure 15 compares the performance of the default SHiP-RIC an quential application performance over the DRRIP and LR\¢s&s.
SHiP-PC-R2 based on 2-bit saturating counters in the SHGT. F For a typical 4MB shared LLC on a 4-core CMP system, SHiP-
the private LLC (Figure 15(a)), the default SHiP-PC and thigPS PC improves the performance of all 161 multiprogrammed work
PC-R2 schemes perform similarly while SHiP-PC-R2 uses 33% loads by an average of 11.2% over the LRU scheme while DR-

(a) Sequential Applications

112

%108 %%%Z
Ei04 1 %% %%
; 11l
g BEEE

(b) Multiprogrammed Workloads

I
N
=Y

=

N

N
I

=

o

®
I

\\\\\k\\\\\\\\\\w

=

o

B
|

/

\\\\\\\K\\\}\\K\\\\\3
N\

o
I

Weighted Speedup over LRU

o = N a =
o 8 (=) 8
Prior Work ‘ SHiP-PC ‘ SHiP-ISeq Prior Work ‘ SHiP-PC ‘ SHiP-ISeq
Figure 15: Performance comparison of SHiP realizations angbrior work.
14
2 132
-
e 1.24
E 1.16
= 1,08 -
©
E 14
2 092
O > () o | © s |9 © c =] = o s [} @ 2] Q 4] [o\] S [a)] s © %) [=3 b
g 8 E = 5 % ¢ 8 ¢ Z2 2 a2 4 a8 2 2 % 25 5 g E E E Z
c] s 35 U £ = v = s | o < o £ = >
T E 3 - 3 2 E| < 5 8
= £ o & < © 9]
2 2 = g g w
=
Mm./Games Server SPEC CPU2006 ‘ All ‘
WDRRIP [Seg-LRU MSDBP & SHiP-PC [SHiP-ISeq

Figure 16: Comparing SHiP with DRRIP, Seg-LRU, and SDBP.

RIP improves the performance by 6.3%. As the shared cackes siz
increase, SHiP-PC and SHiP-1Seq performance improvengent r
mains significant. For a shared 32MB cache, the throughput im

all, for a diverse variety of multimedia, games, server, SREC
CPU2006 applications, the practical SHiP-PC-S-R2 and S5&®j-
S-R2 designs use only slightly more hardware than LRU and DR-

provement of SHiP-PC (up to 22.3% and average of 3.2%) and RIP, and outperform all state-of-the-art cache replacépalicies.

SHiP-ISeq (up to 22% and average of 3.2%) over LRU still dou-

Furthermore, across all workloads, the simple and low{wead

bles the performance gain under the DRRIP scheme (up to 5.8% SHiP-PC-S-R2 and SHiP-ISeq-S-R2 schemes provide more con-

and average of 1.1%).

7.5 Comparison of Various SHiP Realizations:

Performance and Hardware Overhead

In summary, this paper presents a novel Signature-basdrfétit
dictor (SHiP) that learns data reuse patterns of signammdsuse
the signature-based information to guide re-referencdigien as-
signment at cache line insertion. The full-fledged SHiP-RE i
proves sequential application performance by as much asa®¢Po
by an average of 9.7% over LRU.

In addition to the detailed performance analysis for th@ppsed
SHiP scheme, we present two techniques that lead to prestitiR
designs. Figure 15 compares the performance improvemetitéo
various implementations for SHiP-PC and SHiP-1Seq. Amdrey t
SHiP-PC variants, while using much less hardware, set sagpl
(SHiP-PC-S) reduces SHiP-PC performance gain slightheraly
SHiP-PC-S and SHiP-PC-S-R2 still outperform the prior atie
various SHiP-1Seq practical designs show similar trends.

Furthermore, while reducing the hardware overhead fromBi2K
for the default SHiP-PC to merely 10KB for SHiP-PC-S-R2, BHi
PC-S-R2 can retain most of SHiP-PC’s performance benefits an
improve sequential application performance by as much & 32

sistent performance gains than any prior schemes.

8. Related Work

While we cannot cover all innovations in cache replacement r
search[1, 2, 3, 6, 10, 11, 14, 16, 18, 19, 20, 24, 26, 27, 2810,
we summarize prior art that closely resembles SHiP.

8.1 Dead Block Prediction

Lai etal. [18] proposed dead block correlating prefetciPBCP)
that prefetch data into dead cache blocks in the L1 cache. DBC
encodes a trace of instructions for every cache access besloa
the idea that if a trace leads to the last access for a paticathe
block the same trace will lead to the last access for otherkilo
The proposed DBCP scheme can identify more than 90% of dead-
blocks in the L1 cache for early replacement; however, antece
study [16] shows that DBCP performs less well at the lastllev
cache of a deep multi-level memory hierarchy.

Instead of using instruction traces to identify cache dauis,

Liu et al. [20] proposed Cache-Burst that predicts deadksloc
based on the hit frequency of non-most-recently-used BW)
cache blocks in the L1 cache. Similarly, cache blocks that ar
predicted to have no more reuses become early replacement ca

and by an average of 9%. Table 6 gives a detailed comparison ofdidates. Cache-Burst, however, does not perform well foE&L

performance improvement versus hardware overhead forahe v
ious cache replacement policies investigated in this paPeer-

because cache burstiness is mostly filtered out by the higher
caches. In addition, Cache-Burst requires a significantuzamof

Table 6: Performance and hardware overhead comparison for por work and SHiPs.

LRU DRRIP Seg-LRU[5] SDBP[16] SHiP-PC* SHiP-ISeq*
For IMB LLC 8 4 8+7.68 8+13.75 4+6 4+6
Total Hardware (KB) 8 4 15.68 21.75 10 10
Selected App. 1 1.055 1.057 1.069 1.090 1.086
All App. 1 1.021 1.019 1.024 1.036 1.032
Max. Performance 1 1.28 1.21 1.33 1.32 1.33
Min. Performance 1 0.94 0.87 0.95 1.02 1.02

SHIiP-PC* and SHiP-1Seq* use 64 sampling sets to train its BM&h 2-bit counters (S-R2).

meta-data associated with each cache block.

To eliminate dead cache blocks in the LLC, Khan et al. [16]
proposed Sampling Dead Block Prediction (SDBP) which mtsdi
dead cache blocks based on the last-referenced instrectiahre-
places the dead blocks prior to the LRU replacement carelidat
SDBP implements a three-level prediction table trained byoap
of sampled cache sets, called sampler. Each cache bloak $ath-
pler remembers the last instruction that accesses the tdatie
If the last-referenced instruction leads to a dead blocta Hkcks
associated with this instruction are likely to be dead inlth€.

A major shortcoming of SDBP is that its deadblock prediction
relies on a low-associativity LRU-based sampler. Althokdtan
et al. claim that the LRU-based sampler is decoupled fronuthe
derlying cache insertion/replacement policy, our evaduet show
that SDBP only improves performance for the two basic caehe r
placement policies, random and LRU. SDBP also incurs signifi
hardware overhead.

One can potentially describe SDBP as a signature-baseateepl
ment policy. However, the training mechanisms of both pediare
fundamentally different. SDBP updates re-reference ptieatis on

the last accessing signature. SHiP on the other hand makes re

reference predictions based on the signature that indeatdirte
into the cache. Correlating re-reference predictions éo“thser-
tion” signature performs better than the “last-accessiaiare.

tern of incoming cache blocks. Instead of storing the regevith
each cache line, both SRRIP and DRRIP store the re-refepeace
diction with each cache line. Both use simple mechanisms to learn
the re-reference interval of an incoming cache line. Thegaoby
assigning the same re-reference prediction to the majofitache
insertions andearning the re-reference interval on subsequents.
While simple, there is no intelligence in assigning a resrefice
prediction. SHiP improves re-reference predictions bygatiz-

ing references based on distinct signatures.

Gao and Wilkerson [5] proposed the Segmented LRU (Seg-LRU)
replacement policy. Seg-LRU adds a bit per cache line torgbse
whether the line was re-referenced or not. This is similath&
outcome hit stored with SHiP. Seg-LRU modifies the victim selec-
tion policy to first choose cache lines whasgcome is false. If no
such line exists, Seg-LRU replaces the LRU line in the caSleg-
LRU also proposes additional hardware to estimate the hisroéfi
bypassing modifications to the hit promotion policy. Sed:-LR-
quires several changes to the replacement policy. On tlee bémd
SHIP is higher performing, only modifies the insertion pgliand
requires less hardware overhead.

9. Conclusion

Because LLC reference patterns are filtered by higher-tmaahes,

Finally, Manikantan, Rajan, and Govindarajan proposed NU- typical spatial and temporal locality patterns are muctdéato

cache [23] which bases its re-use distance predictionysotein-
struction PCs. In contrast, SHiP explores a number of diffesig-
natures: instruction PC, instruction sequence, and menegign.
Furthermore, while NUcache results in performance gainssaca
range of SPEC applications, this paper shows that theregniéis
cantly fewer unique PCs in SPEC applications (10’s to 10b'ah
in multimedia, games, and server workloads (1,000's toQ®s).
This hinders NUcache’s effectiveness for these workloads.
While NUcache is relevant to SHiP, NUcache requires signifi-

cant modification and storage overhead for the baselineecach
ganization. Furthermore, SHiP’s reuse prediction SHCTthen
other hand, is elegantly decoupled from the baseline cathe-s
ture. Overall, SHIP requires much less hardware overheast dut
not least, this work explores three unique signatures to 8&liP.
Instruction sequence is a novel signature, and otherslgteliction
PC and memory address are novel in how they are applied.

8.2 Re-Reference Prediction

Instead of relying on a separate prediction table, Hu et@]. [
proposed to use time counters to keep track of the livenessabie
blocks. If a cache block has not been referenced for a spepifie
riod of time, itis predicted to be dead. These “dead” blocksdme
the eviction candidates before the LRU blocks [6, 31] forheaati-
lization optimization or can be switched off to reduce lepk§fl3].

In addition to the LRU counters, the proposed scheme keetis ad
tional coarser-grained counters per cache line, whichrinmore
hardware requirement than SHiP.

optimize for. In response, our approach uses signaturesh-as!
memory region, instruction PC, or instruction path seqeenm
distinguish instances where workloads are mixes of somilyhig
re-referenced data (which should be prioritized) alondhwsibme
distant-reuse data. In this paper we have presented a samglef-
fective approach for predicting re-referencing behavarlfLCs.

The proposed SHiP mechanism, which accurately predictsethe
reference intervals for all incoming cache lines, can Sicgtly
improve performance for intelligent cache replacemeraritigms.
Over a range of modern workloads with high diversity in datd a
instruction footprint, we have demonstrated performarie ts
consistently better than prior work such as Seg-LRU and SDBP
with much less hardware overhead. Although we evaluated our
method on top of SRRIP, the re-reference predictor is a géner
idea applicable to a range of LLC management questions.

10. Acknowledgements

We thank the entire Intel VSSAD group for their support and
feedback during this work. We also thank Yu-Yuan Chen, Danie
Lustig, and the anonymous reviewers for their useful insigh-
lated to this work. This material is based upon work suppbbig
the National Science Foundation under Grant No. CNS-059940
and CNS-0720561. The authors also acknowledge the support o
the Gigascale Systems Research Center, one of six centetsdu
under the Focus Center Research Program (FCRP), a Semicondu
tor Research Corporation entity. Carole-Jean Wu is sup@art

Jaleel et al. [10] proposed SRRIP and DRRIP to learn reuse pat part by an Intel PhD Fellowship.

11.

(1]

References

S. Bansal and D. S. Modha. CAR: Clock with adaptive
replacement. IfProc. of the 3rd USENIX Conference on File
and Sorage Technologies, 2004.

[2] A.Basu, N. Kirman, M. Kirman, and M. Chaudhuri.

(3]
[4]

(5]

Scavenger: A new last level cache architecture with global
block priority. InProc. of the 40th International Symposium

on Microarchitecture, 2007.

L. A. Belady. A study of replacement algorithms for a uiat
storage computer. IIBM Syst. J., volume 5, June 1966.

M. Chaudhuri. Pseudo-LIFO: the foundation of a new famil
of replacement policies for LLCs. IRroc. of the 42nd
International Symposium on Microarchitecture, 2009.

H. Gao and C. Wilkerson. A dueling segmented LRU
replacement algorithm with adaptive bypassingPtac. of

the 1st JILP Workshop on Computer Architecture
Competitions, 2010.

[6] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in the

[7]

memory system: Predicting and optimizing memory
behavior. InProc. of the 29th International Symposium on
Computer Architecture, 2002.

Intel Core i7 Processors
http://www.intel.com/products/processor/corei7/.

[8] A.Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob. CMP$im: A

Pin-based on-the-fly multi-core cache simulatorPtoc. of
the 4th Workshop on Modeling, Benchmarking and
Smulation, 2008.

[9] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Glgte

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Jr., and J. Emer. Adaptive insertion policies for managing
shared caches. Proc. of the 17th International Conference
on Parallel Architecture and Compilation Techniques, 2008.
A. Jaleel, K. B. Theobald, S. C. Steely Jr., and J. EmaghH
performance cache replacement using re-reference ihterva
prediction (RRIP). IrProc. of the 38th International
Symposium on Computer Architecture, 2010.

S. Jiang and X. Zhang. LIRS: An efficient low inter-reface
recency set replacement policy to improve buffer cache
performance. IrProc. of the International Conference on
Measurement and Modeling of Computer Systems, 2002.
JILP Workshop on computer architecture competitions
http://jilp.org/jwac-1/.

S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay:
Exploiting generational behavior to reduce cache leakage
power. InProc. of the 28th International Symposium on
Computer Architecture, 2001.

G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache
replacement based on reuse-distance predictiofrda of
the 25th International Conference on Computer Design,
2007.

S. M. Khan, D. A. Jiménez, D. Burger, and B. Falsafi. Using
dead blocks as a virtual victim cache.Pnoc. of the 19th
International Conference on Parallel Architecture and
Compilation Techniques, 2010.

S. M. Khan, Y. Tian, and D. A. Jiménez. Dead block
replacement and bypass with a sampling predictoPrbc.

of the 43rd International Symposium on Microarchitecture,
2010.

M. Kharbutli and Y. Solihin. Counter-based cache
replacement and bypassing algorithmslEEE Trans.
Comput., volume 57, April 2008.

[18] A. Lai, C. Fide, and B. Falsafi. Dead-block prediction &

dead-block correlating prefetchers.Prnoc. of the 28th

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

International Symposium on Computer Architecture, 2001.

D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min, Y. Cho, and
C. S. Kim. LRFU: A spectrum of policies that subsumes that
least recently used and least frequently used policies. In
IEEE Trans. Comput., volume 50, December 2001.

H. Liu, M. Ferdman, J. Huh, and D. Burger. Cache bursts: A
new approach for eliminating dead blocks and increasing
cache efficiency. IProc. of the 41st International

Symposium on Microarchitecture, 2008.

G. Loh. Extending the effectiveness of 3D-stacked DRAM
caches with an adaptive multi-queue policyPRiroc. of the
42nd International Symposium on Microarchitecture, 2009.
C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
Building customized program analysis tools with dynamic
instrumentation. IfProc. of the 2005 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, 2005.

R. Manikantan, K. Rajan, and R. Govindarajan. NUcache:
An efficient multicore cache organization based on next-use
distance. IrProc. of the 17th International Symposium on

High Performance Computer Architecture, 2011.

N. Megiddo and D. S. Modha. A self-tuning low overhead
replacement cache. Proc. of the 2nd USENIX Conference

on File and Sorage Technologies, 2003.

H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and

A. Karunanidhi. Pinpointing representative portions ofjta
Intel Itanium programs with dynamic instrumentation. In
Proc. of the 37th International Symposium on

Microarchitecture, 2004.

P. Petoumenos, G. Keramidas, and S. Kaxiras.
Instruction-based reuse-distance prediction for effecti
cache management. Rroc. of the 9th International

Conference on Systems, Architectures, Modeling and
Simulation, 2009.

M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely Jr., and

J. Emer. Adaptive insertion policies for high performance
caching. InProc. of the 35th International Symposium on
Computer Architecture, 2007.

K. Rajan and G. Ramaswamy. Emulating optimal
replacement with a shepherd cachePioc. of the 40th
International Symposium on Microarchitecture, 2007.

S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback
directed prefetching: Improving the performance and
bandwidth-efficiency of hardware prefetchersPhoc. of the
13th International Symposium on High Performance

Computer Architecture, 2007.

R. Subramanian, Y. Smaragdakis, and G. Loh. Adaptive
caches: Effective shaping of cache behavior to workloads. |
Proc. of the 39th International Symposium on

Microarchitecture, 2006.

C.-J. Wu and M. Martonosi. Adaptive timekeeping
replacement: Fine-grained capacity management for shared
CMP caches. IMCM Trans. Archit. Code Optim., volume 8,
February 2011.

Y. Xie and G. Loh. PIPP: Promotion/insertion
pseudo-partitioning of multi-core shared cache$1oc. of

the 37th International Symposium on Computer Architecture,
20009.

T. Yeh and Y. N. Patt. Two-level adaptive training brnc
prediction. InProc. of the 24th International Symposium on
Microarchitecture, 1991.

