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The Gradient-Based Cache Partitioning Algorithm
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This paper addresses the problem of partitioning a cache between multiple concurrent threads and in the
presence of hardware prefetching. Cache replacement designed to preserve temporal locality (e.g., LRU)
will allocate cache resources proportional to the miss-rate of each competing thread irrespective of whether
the cache space will be utilized [Qureshi and Patt 2006]. This is clearly suboptimal as applications vary
dramatically in their use of recently accessed data. We address this problem by partitioning a shared cache
such that a global goodness metric is optimized. This paper introduces the Gradient-based Cache Partitioning
Algorithm (GPA), whose variants optimize either hitrate, total instructions per cycle (IPC) or a weighted
IPC metric designed to enforce Quality of Service (QoS) [Iyer 2004]. In the context of QoS, GPA enables us to
obtain the maximum throughput of low-priority threads, while ensuring high performance on high-priority
threads. The GPA mechanism is robust, low-cost, integrates easily with existing cache designs and improves
the throughput of an in-order 8-core system sharing an 8MB L3 cache by ∼14%.
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1. INTRODUCTION

Last level cache replacement mechanisms designed to preserve temporal locality (e.g.,
LRU) will allocate cache resources proportional to the miss-rate of each competing
thread irrespective of whether the cache space will be utilized [Qureshi and Patt 2006].
This is suboptimal, as applications vary dramatically in their use of recently accessed
data, and is due to a variety of reasons: the extraction of all useful temporal locality
by upper level caches, effective prefetching, streaming access patterns, etc. Unregu-
lated shared caches, employing a temporal replacement algorithm (e.g., LRU), are also
subject to other hazards like prefetcher pollution and unfairness [Kim et al. 2004],
as the cache partition for each thread is linear in the relative rates of replacement.
Consider the example of a system administrator with a high-priority task and a multi-
core system. The administrator may be tempted to run the high-priority task in isola-
tion because she is powerless to stop a background thread from thrashing the shared
cache and, unwittingly, slowing down her high-priority thread. Alternatively, she may
opt to buy a machine with private L3 caches and thus protect her high-priority thread,
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though at the expense of not being able to allocate most of the total cache area to the
high-priority thread. If she were designing her own shared-cache multi-core system,
she may be tempted to implement a version of way partitioning [Suh et al. 2004], where
each thread has some dedicated ways at their disposal, and there is a communal pool of
ways allocated like a normal shared cache. Again, she will guarantee some modicum of
Quality of Service (QoS) to her high-priority thread as with a private cache, though she
will have no power to grant the high-priority thread the extra shared system resources.
Making matters worse, the way partitioning approach allows fewer threads than ways
(8-32 in typical systems and holding), whereas the number of threads increases with
Moore’s law or greater.

We present an approach to this problem that nominally optimizes the allocation
of cache capacity such that a global goodness metric is optimized, while exposing
QoS controls to the system administrator. Further, our algorithm utilizes an adaptive
insertion policy and a simple temporal replacement algorithm, One-Bit LRU (OBL)
[Al-Zoubi 2004], as opposed to using a complex replacement algorithm. We do this to
avoid allocating additional state, on which a complex replacement decision would be
made, and to be more sensitive to the replacement decision circuitry on the critical
path. Cache designs which select victims upon insertion would be quite sensitive to the
complexity of the circuit that selects the victim. By contrast, our use of an adaptive
insertion policy allows us to insert a cache block such that it will be replaced soon if we
suspect that it is useless data. For instance, if we suspect that a prefetcher is polluting
the cache, we can mark those prefetches as next to be replaced, or vulnerable, and
allow other useful data to live longer in the cache. In this way we indirectly control
the partition of each thread; by controlling the rate at which each thread is chosen for
replacement via vulnerable insertion.

1.1. Contributions and Related Work

There are a number of papers that have influenced this work, giving insight into
dynamic behavior of shared caches and application behavior, just a few of which are
Guo et al. [2007], Dhodapkar and Smith [2002], Qureshi et al. [2007], Chiou [1999] and
Stone et al. [1992]. There are also several excellent cache replacement schemes aimed
at improving cache hitrate and/or reducing cache latency in shared caches: Chang
et al. [2006] makes proximity-aware caching decisions, Qureshi et al. [2006] exploits
memory-level parallelism and Jaleel et al. [2008] opportunistically evicts cache blocks
that are unlikely to be useful, making room for more useful data. More recently, Jaleel
et al. [2010] have presented a baseline replacement policy, RRIP, which is more robust
and higher-performance than true LRU, while maintaining a modest hardware cost.
Albonesi [1999] evaluates the performance of an application as a function of cache space
online and adaptively turn off ways, when appropriate, in order to save power. Another
branch of cache management that has influenced this work is related to Quality of
Service (QoS) enforcement: Guo et al. [2006], Rafique et al. [2006], Guo et al. [2007],
Iyer et al. [2007] and Nesbit et al. [2007]. The QoS literature is largely dominated by
calls for architectural support to guarantee minimum levels of performance or cache
space in order to provide QoS. These techniques are primarily motivated by Virtual
Machine environments, where system administrators are faced with unpredictable
interactions of many unrelated applications sharing system resources.

We propose the Gradient-based Cache Partitioning Algorithm (GPA) in an effort
to provide a scalable, robust, low-complexity adaptive mechanism for partitioning
a shared cache between competing threads and prefetchers. In addition, we expose
controls to the System Administrator to customize the performance metric to opti-
mize, including provisions to complement OS-level QoS mechanisms. Finally, there are
three approaches which most closely resemble GPA: Modified LRU (mLRU) by Suh
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et al. [2004], Utility Cache Partitioning (UCP) by Qureshi and Patt [2006] and Cache-
Partitioning Aware Replacement (CPAR) by Dybdahl et al. [2006]. Each of these three
replacement policies periodically allocate cache space in quanta of ways, such that they
optimize some fixed performance metric (e.g., Reduction in Misses, Throughput etc.). In
addition, each requires a modification to the replacement decision such that the victim
selection circuit is dependent on the state of the set and the identity of the thread
requesting the cache block, which is a consequence of the method of maintaining each
thread’s cache allocation. We will take the opportunity to contrast GPA with these
three approaches.

(1) High Performance. GPA can match the throughput performance of an in-order 8
core system with 4MB private L3 caches with a shared 8MB L3 cache across several
heterogeneous mixes of SPEC2006 workloads.

(2) Continuous Adjustment. As opposed to being updated periodically at a constant
rate, GPA reacts immediately to program changes and potential performance gains.

(3) Acceleration. GPA is a control system, adjusting sooner when there is a larger
potential performance gain, due to a dynamic threshold governed by the Chernoff
bound.

(4) Data Classes. GPA can delineate between each thread’s demand and prefetch ref-
erence stream, individually controlling the amount of cache space each receives.

(5) Continuous Partition Granularity. GPA allocates partitions on cache block gran-
ularity, rather than on a per way granularity, without requiring full-associativity
or LRU replacement. In addition, GPA is able to allocate cache space quite delib-
erately, whereas Adaptive Insertion Policies: Set Dueling Thread-Aware (SD-TA)
by Jaleel et al. [2008] make a binary decision about whether a thread is useful,
allowing the cache space to be greedily allocated among threads deemed to be
useful.

(6) Scalability. GPA only requires more sets (and not more ways) to scale with number
of cores, while UCP, mLRU and CPAR need more ways. Cache sets typically grow
linearly with the number cores via banking, so GPA promises to scale indefinitely.

(7) Flexible Performance Metric Optimization. GPA can optimize a variety of different
metrics (e.g., IPC, MissRate, Weighted IPC etc.) with common hardware. In ad-
dition, the weights in a weighted IPC performance metric can be controlled by a
system administrator to enable an OS-level QoS system.

(8) Robust. In none of the experiments in this paper does GPA fail to outperform
an unregulated shared cache in Harmonic Mean of Relative Speedups, generally
regarded as a strong metric of fairness [Luo et al. 2001].

(9) Low Complexity. GPA is composed of simple logic which passively observes the
reference stream and consumes ∼5 Bytes of register state per thread, which is
negligible, particularly in the face of 1MB (or more) L3 cache per core; Only Qureshi
et al. [2007] and Jaleel et al. [2008] have comparably low complexity. In addition,
GPA does not impact the victim selection circuit, only adds one mux stage to the
install policy circuit and all calculations can be performed well ahead of the install
policy decision.

In Section 2, we will describe the GPA algorithm and a hardware implementation of
it. Section 3 will detail our simulation infrastructure and results, highlighted by the
result that using GPA in an 8-core shared L3 cache configuration with 1MB per core
achieves nearly the effective throughput of a system with a private L3 cache system
with 4MB per core. Section 4 is a case-study of one mix, illustrating what effect GPA
has on cache partitions and how it is able to incorporate QoS controls. Finally, we
include an appendix where we derive the concepts underlying GPA more rigorously.
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2. GRADIENT-BASED CACHE PARTITIONING ALGORITHM

We present the Gradient-based Cache Partitioning Algorithm (GPA) which addresses
the problem of cache partitioning between different threads and prefetchers by applying
the gradient descent algorithm, otherwise known as hill-climbing. The hardware will
continuously monitor whether it is better for the whole system to allocate extra cache
space to one thread by taking it from the others, or vice-versa. This does not require
a large data structure; rather, the hardware will evaluate the state of the cache itself.
Each thread will have a dynamically controlled throttle associated with it which dictates
the fraction of that thread’s memory references that will be installed vulnerably, or in a
deprecated manner (equivalent to β from the Bimodal Fill Policy [Qureshi et al. 2007]).
Recall that a cache block installed vulnerably will be a candidate for replacement earlier
than if it had been installed normally. So, all other things being equal, if a thread’s
throttle is lower, the thread’s effective share of the cache (or cache partition) will tend to
be smaller. In addition, each thread will have ∼5 Bytes of register state associated with
it. The GPA hardware passively monitors the sequence of cache references to decide
when each thread is over- or underallocated, moving the associated throttle in the
appropriate direction. Whenever a cache block is inserted into the cache, the insertion
mechanism is advised by the GPA module as to whether the block’s replacement state
should be vulnerable or not, according to the throttle. Quite conveniently, the hardware
continuously and indirectly adjusts the partition for each thread without having to
intimately comprehend what the other threads are doing, yet it manages to navigate
the partition of the cache to a globally optimum state.

The value of any thread’s references can be artificially changed to enforce Quality of
Service (QoS). Thus, we are able to re-allocate cache space if the high-priority threads
are not making good use of it, but they will more easily maintain a larger partition if
they are indeed utilizing it. Finally, GPA achieves excellent cache partitioning among
a practically unbounded number of threads while being very conservative in hardware
and non-invasive to the critical paths of existing typical cache designs.

2.1. Determining the Throttles

We have discussed the idea that each thread has a throttle which dictates what fraction
of its cache misses will be installed vulnerably, indirectly controlling the cache alloca-
tion for that thread. So, how do we learn what the throttle should be for each thread?
We could search for the optimal set of throttle values; though, with each coming from
a continuous range, the combinatorics would be staggering. Instead, we take a differ-
ent approach. To understand how we determine the throttles, consider the following
example. Imagine we have 2 threads, t1 and t2, running on a system with a shared
cache. We have predetermined (whether randomly, by profiling, or some other means),
that thread t1 should get a fraction f of the cache and that t2 should get the rest, 1 − f ,
of the cache. Now, we do not know if f and 1 − f are the fractions that would optimize
the combined hitrate of t1 and t2. Thus, we would like to perform two experiments,
one in which t1 would get slightly more cache, say f + ε, and another experiment in
which t1 would get slightly less cache, say f − ε. Thread t2 would get 1 − f − ε and
1 − f + ε, respectively, in the two experiments. After running each experiment for a
“large” number of cycles, we analyze the overall hitrate of the cache in each experiment.
If the overall hitrate is better in the experiment in which t1 received more cache, we
may conclude that t1 should be given a little more cache than its previous allocation,
and t2, slightly less. On the other hand, the experiments may indicate that overall
hitrate improves when t1 gets slightly less cache. In either case, we could at this point
adjust how much cache to give each thread, and then repeat the experiments, again
skewing slightly more and slightly less than the new allocation. Eventually, using this
hill-climbing approach, we would arrive at some optimal partitioning.
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Fig. 1. Pseudocode illustrating how to skew the throttle and thus the partition of cache.

In practice, we would like to perform these experiments while the threads are run-
ning, invisible to the user, and have the shared cache adjust its allocation for each
thread dynamically and automatically. We start with the premise that the reference
stream to each set in the cache has approximately the same statistics [Qureshi et al.
2006]. Given that assumption, we assign a collection of cache sets, called a gradient
region, to each thread. The gradient regions are non-overlapping (i.e., a cache set may
be a member of at most 1 gradient region). Each thread conducts experiments in its
own gradient region, skewing the effective throttle a bit higher in one half (we refer to
this half as the positive half, or +ve half) and a bit lower in the other half (the negative,
or –ve, half). Figure 1 lists the pseudocode describing how the hardware would skew
the throttle—and thus the partition of cache—when performing the experiments for
a thread. Notice that when inserting a new cache block into a set that is not in the
requesting thread’s gradient region, the hardware does not skew the throttle. Only
when inserting a block into a thread’s gradient region is the probability of a vulnerable
insertion skewed (by a constant value, grDelta). Deciding whether a set belonging to a
gradient region is in the positive or negative half can be as simple as calculating the
set number modulo 2.

Given a thread T, the behavior of all other threads in thread T ’s gradient region is
constant (i.e., there is no skewing of their throttles). So the predominant difference in
performance of the two halves of a gradient region can be attributed to the skewing
of the corresponding thread’s throttle. It is worth emphasizing that the performance
we are measuring is that of every thread combined. After all, the experiment we are
hoping to conduct in a gradient region is whether the cache space is better spent
on the thread under test or on the other threads. For each gradient region, we will
keep track of which half is doing better via a counter, the randomWalkCounter (see
Section 2.2). If one half performs much better than the other, the randomWalkCounter
will become very negative or very positive. We use the Chernoff Bound (see Appendix E.
The Chernoff Bound) to decide when the randomWalkCounter is sufficiently extreme
to warrant moving the throttle.

The Chernoff Bound gives GPA a kind of acceleration; it adapts the throttle more
quickly when there is a strong difference in performance (see Figure 2). The converse
is that it is less turbulent when there is a weak difference in performance, providing
robustness and stability. While it may seem complicated, the Chernoff Bound resolves
to a very simple calculation between randomWalkCounter and the referenceCounter
(see Section 2.2) and does not require information from any other thread. In this way,
we are able to achieve a globally optimum cache partition while only performing local
calculations.
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Fig. 2. Pseudocode illustrating how the hardware would measure the performance of each set map and use
the Chernoff Bound to move the throttle. Reference() would only be called for threads whose gradient region
corresponds to the set index of the reference address.

2.2. GPA Hardware

Each thread will be equipped with three counters: a throttle (∼4 bits), a reference-
Counter (∼20 bits) and a randomWalkCounter (∼12 bits). The referenceCounter counts
the number of demand references that are made by any thread to its corresponding
gradient region. The randomWalkCounter is a differential counter, measuring the dif-
ference of the performance between the two halves of the gradient region. Figure 3
illustrates the update logic for the three counters and Figure 4 depicts the logic that
governs the fill priority decision between normal and vulnerable.

3. EXPERIMENTAL SETUP

We simulate a single-issue, in-order, x86 multi-core processor with three levels of cache,
using the same simulation methodology as other comparable algorithms [Qureshi et al.
2007; Jaleel et al. 2008]. The L1 instruction cache is 2-way associative and the L1 data
cache is 4-way associative; both are 32KB. The private L2 cache is 12 cycle load-to-use,
8-way associative with 256KB capacity. The L1 and L2 caches use One-Bit-LRU (OBL)
replacement in all configurations. We simulate 27 cycle load-to-use 16-way L3 caches
of 1MB per core in non-inclusive private and shared configurations of 4 and 8 cores,
with memory at a constant 180 cycles. We use OBL as the baseline replacement policy
as opposed to true LRU for two reasons. First, it is realistic; true LRU is implausible as
a hardware replacement, whereas OBL is used widely in practice and performs nearly
as well. Second, we are not testing the replacement policy itself, but rather a dynamic
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Fig. 3. referenceCounter and randomWalkCounter update logic.

addition to it, so we wanted to be able to demonstrate a high-performance dynamic
replacement scheme with a solid and plausible foundation; after all, a replacement
scheme that is built on top of true LRU is not terribly interesting in practice. In
addition to the three level cache hierarchy, there is a standard L2 streaming prefetcher
[Palacharla et al. 1994], with 10 streams per thread, which installs prefetches at the L2
and L3 levels. We do not model interconnect congestion or a memory controller, as we
are primarily investigating the dynamics of cache sharing, though such effects will be
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Fig. 4. Vulnerable/normal fill decision logic.

Fig. 5. Workload mixes for 4-core and 8-core experiments, respectively. A black dot denotes the inclusion of
a workload (on the corresponding row) in a mix (on the corresponding column).

comprehended in future work. We test various L3 cache replacement strategies with
14 heterogeneous workload mixes each drawn randomly from SPEC2006: {astar.r,
bzip2.c, games.c, gcc.s, GemsFDTD.r, h264ref.f, hmmer.r, lbm.l, libquantum.r, mcf.r,
milc.s, perlbench.d, soplex.p, soplex.r, sphinx3.a, xalancbmk.r, zeusmp.z}. The specific
combinations for 4 and 8-core mixes are denoted in Figure 5. Each mix is run until
every thread has completed 500 million instructions, taking the first half of the run (in
cycles) as warmup and collecting statistics on the second half. As with all timing-based
multi-core simulations, the instruction composition of each mix varies from algorithm
to algorithm. We rely on the fact that 500 million instructions are generally sufficient
to find a consistent steady-state. The rationale behind using a heterogeneous mix
of SPEC2006 workloads is that it is a reasonable proxy for a VM system, running
totally unrelated workloads. Extending to cooperative parallel applications and other
commercial workloads will be left to future work.

3.1. Throughput Optimization

The baseline for the following experiments is a Private 16-way L3 with 1MB per core
under OBL replacement and we compare a variety of shared cache alternatives to it.
In particular, we evaluate GPA – MissRate Optimal, which implies that the weights
from Section 2 (and treated analytically in the appendix) equal 1, and GPA – IPC
Optimal, which implies that the weights equal Ti, the instantaneous Throughput of
the ith thread. For these particular 4-core and 8-core CMP configurations we found
the best GPA parameters (gradientDelta = .5, updateDelta = .05, K = ln(ε−2) = 8,
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Fig. 6. Total Throughput Speedup (as compared to Private L3 Cache 1MB per core) by workload mix and
replacement algorithm from (left to right: OBL, UCP, SD-TU, SD-TA, GPA-MissRate Optimal, GPA-IPC
Optimal) for the 4-core configuration.

Fig. 7. Total Throughput Speedup (as compared to Private L3 Cache 1MB per core) by workload mix and
replacement algorithm (from left to right: OBL, SD-TU, SD-TA, GPA-MissRate Optimal, GPA-IPC Optimal)
for the 8-core configuration.

gradientRegions = 8) via a directed exhaustive search. GPA appears to be fairly robust
to the choice of those parameters, as more than 50% of the combinations are within 5%
throughput performance of the peak combination. Any particular CMP architecture
will require such an optimization procedure and we will not go into the details of
it here for the sake of brevity, but consider that in silicon these parameters can be
optimized on-line and are not bound at design time. In these studies, we assign the
demand misses and prefetcher for each thread to its own throttle, as though the L2
prefetcher for each thread is a separate thread and GPA manages its cache capacity
accordingly. This enables GPA to stop a thread’s prefetchers from polluting the cache
when necessary.

The results for the 4 thread mixes can be found in Figure 6, broken out by each
cache partitioning algorithm managing a 4MB Shared L3 cache. In addition, the 8
thread mixes can be found in Figure 7, though notice that UCP is not present due to
the fact that it did not scale to 8 threads in our simulation environment. We use two
performance metrics to compare each replacement algorithm: Relative Throughput and
Harmonic Mean of Relative Speedups, which are particularly relevant for measuring
raw performance and fairness [Luo et al. 2001], respectively. Relative Throughput is
defined as the total throughput (i.e., IPC) of the shared cache configuration divided
by the total throughput of the baseline private cache configuration. The Harmonic
Mean of Relative Speedups is defined as n/[

∑n
i=1 s−1

i ] where si is the relative speedup
of the ith thread in the shared cache configuration over its performance in the baseline
configuration. It generally penalizes an algorithm which tremendously slows down a
thread in order to accelerate another.
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Fig. 8. Summary Speedups of the 4-core (left) and 8-core (right) shared cache experiments, respectively.

 

Fig. 9. Summary Speedups of the 4-core (left) and 8-core (right) shared cache experiments, respectively.

Figure 6 shows that GPA, either IPC or MissRate Optimal, is the best throughput
performer in 11 of 14 of the 4-core mixes, though in 3 of those 11 mixes, MissRate
Optimal slightly outperforms IPC Optimal. We can see in Figure 7 that the 8-core
configuration looks particularly promising for the scalability of GPA: whereas GPA is
only the best throughput performer in 11 of the 14 4-core mixes, GPA-IPC Optimal is
the best performer in every 8-core mix.

A summary of the 4- and 8-core simulations can be found in Figure 8 and Figure 9,
plotting average relative throughput and average harmonic mean of relative speedups,
respectively, averaged across the 14 mixes. Here, we have also included Private L3
caches of 2MB, 3MB and 4MB per core using OBL replacement, as a point of reference.
It is interesting to note that not only does GPA effectively coax the performance of a
much larger cache out of 1MB per core, but that much larger caches do not improve
performance very much with temporal replacement (e.g., OBL): Quadrupling the cache
to get a 14% speedup would seem to be a dubious return on investment.

In addition, the performance of the adaptive schemes (Set Dueling and GPA) appear
to be better with 8 cores than with 4, which might suggest that they are harnessing
the load-balancing potential of a large shared cache. Even the 8-core shared cache
managed by OBL shows a modest improvement over the 4-core case (∼1% throughput
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Fig. 10. Breakdown of Memory Traffic by Thread (in the same order from top to bottom as the legend). The
segment width represents speedup compared to a 1MB Private L3 cache (1.78 max: soplex.p @ 8MB).

improvement with improvement in harmonic mean of relative speedups of 4%). Further,
this data suggests that indeed SD-TU is an improvement over OBL, SD-TA is an
improvement over SD-TU and that GPA-IPC Optimal is an improvement over each.
Certainly, GPA is a much cheaper way to improve performance than doubling or even
quadrupling the L3 cache size, which are the only points that are superior to GPA in
Figure 8 and Figure 9.

4. WEIGHTED THROUGHPUT OPTIMIZATION: A CASE-STUDY

Now, we turn to a case-study on the dynamics of cache sharing, to illustrate how
GPA can generally eradicate cache pollution and usefully expose QoS controls. Our
case study is of an 8-core system running 8-core mix # 7: GemsFDTD.r, libquantum.r,
zeusmp.z, soplex.p, hmmer.r, bzip2.c, astar.c and milc.s. We choose soplex.p (shown in
black in the following figures) to be designated a “high-priority” thread to illustrate
some interesting cache sharing phenomena. We run this mix across multiple Private L3
cache configurations {.375MB, .5MB, .75MB, 1MB, 2MB, 3MB, 4MB, 6MB, 8MB} and
an 8MB Shared L3 Cache managed by multiple replacement algorithms {OBL, Set Du-
eling – Thread Unaware (SD-TU), Set Dueling – Thread Aware (SD-TA), GPA – Miss-
Rate Optimal, GPA – IPC Optimal W = {1, 2, 4, 8, 16}}. When using weights in a QoS
context, it is helpful to think of the trade-off intuitively: A high-priority thread with
weight 4, for instance, is worth 4 times as much of the performance metric (e.g., IPC) as
the low-priority threads. That is, we must gain 4 times as much incremental through-
put to justify moving a cache block from the high-priority thread to the low-priority
threads. For the weighted GPA runs, only the high-priority thread, soplex.p, has a non-
unity weight, the others have weights of 1. Notice that Figure 10 suggests that soplex.p
would benefit considerably from much extra cache and generates comparatively high
memory traffic. However, the absolute IPC of soplex.p is quite low, as shown in Fig-
ure 11. If it were given an 8MB cache it would only improve in throughput by 0.1 IPC,
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Fig. 11. IPC vs. Private L3 Cache Size.

Fig. 12. Breakdown of Shared Cache Capacity (total 8MB) by Thread vs. Cycles (1 Billion) under OBL (left)
and SD-TA (right) replacement. The 612 million instruction point for GemsFDTD is noted illustrating a
prominent phase change.

whereas hmmer.r and bzip2.c would improve by improve by 0.2 in absolute IPC. Also
worth noting is that astar.r, bzip2.c and hmmer.r (2nd, 3rd and 4th applications from
the bottom) all generate comparatively little memory traffic given 2 or 3MB of cache
yet have high IPC potential, a seemingly good return on investment for throughput
performance.

It is also interesting to note that milc.s generates a large proportion of memory
traffic and seems entirely unaffected by cache size, yet in Figure 12, milc.s appears to
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Fig. 13. Breakdown of Cache Capacity by Thread vs. various replacement algorithms in an 8MB Shared L3
cache. The segment width represents the fraction of installs that are normal, the rest are vulnerable.

be allocated a large cache partition under OBL replacement, supporting the observation
that cache partitions under temporal replacement are proportional to the relative miss-
rate. Sadly, the applications that would benefit the most from extra cache, hmmer.r,
bzip2.c, and astar.r, are comparatively under-allocated. However, as designed, SD-TA
manages to keep milc.s from obtaining a large partition and allocates more cache to
hmmer.r and bzip2.c, though not astar.r. SD-TA allocates a very large partition to
soplex.p, which is a consequence of the binary nature of SD-TA, if a thread is deemed
to be useful, its relative miss-rate will govern its cache partition. That is, all threads
deemed to be useful under SD-TA compete for cache space greedily, as in OBL. Also
of interest, is the observation that at 612 million instructions GemsFDTD.r very
aggressively strides through data and is thus allocated a large partition under OBL
replacement. SD-TA appears to react very quickly to this phase change, restricting
GemsFDTD.r to a small partition immediately after the phase change.

We can see in Figure 13 that GPA is able to favor soplex.p with increasing weights,
though progressively at the expense of hmmer.h, bzip2.c and astar.r. Clearly, the overall
performance is suffering, as we see in Figure 14, though the performance of soplex.p
indeed improves. Also, we see that GPA-IPC Optimal is able to exploit the fact that
hmmer.h, bzip2.c and astar.r all benefit more in throughput from additional cache than
soplex.p, despite the fact that soplex.p indeed improves. As such, GPA-IPC Optimal
gives it a small cache partition, though GPA-MissRate Optimal favors it more, due
to its large reference rate. However, unlike SD-TA, GPA-MissRate Optimal is able to
favor astar.r, which benefits greatly from cache (Figure 11).

In addition, we can see from the capacity graphs in Figure 15 that even with a weight
of 2, the weighted version of GPA gives considerably more cache space to soplex.p, while
still preserving reasonable capacity for hmmer.h, bzip2.c and astar.r and holding back
the streaming access pattern of milc.s (the bottom trace). Notice that in both GPA
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Fig. 14. Breakdown of IPC by Thread vs. various replacement algorithms in an 8MB Shared L3 cache. The
segment widths represent the fraction of capacity.

           

Fig. 15. Breakdown of Shared Cache Capacity (total 8MB) by Thread vs. Cycles (1 Billion) under GPA –
IPC Optimal replacement with high-priority (soplex.p, in black) weights of 1 and 2, respectively.

capacity graphs (Figure 15), they are able to recover quickly from the phase change in
GemsFDTD, whereas OBL allocates roughly a third of the cache to it.

Finally, we see in Figure 16 that GPA can span a continuum from optimizing total
throughput to protecting any particular thread(s) via the QoS weights. In this, admit-
tedly contrived, example we are able to get soplex.p within 10% of its performance given
all the system resources and only take a slowdown of 3% off of the peak throughput
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Fig. 16. QoS Summary depicting on the Y-axis the relative performance of soplex.p running in a shared
environment vs. running alone with the entire 8MB L3 cache to itself. The X-axis is the total throughput of
the whole system.

with GPA – IPC Optimal. This is a very reasonable choice, since running soplex.p in
isolation yields only ∼0.26 IPC and we are able to perform an additional ∼3.5 IPC of
background work while suffering only a minor slowdown for soplex.p. It is interesting
to notice that with weights of 4 and 8, GPA – IPC Optimal improves the performance of
soplex.p in a shared environment over the private environment, where it has the entire
cache available to it. While this may seem counterintuitive, it is because we have a
separate throttle for the main thread and the corresponding prefetcher. Stream-based
hardware prefetchers commonly found in modern processors tend to be rather inac-
curate for soplex.p. This leads GPA to reduce the throttle associated with soplex.p’s
prefetcher which results in less cache pollution and more performance. To reiterate,
running soplex.p as a high-priority thread using GPA’s QoS feature, allows the system
administrator to get more performance for soplex.p running in isolation using OBL and
get ∼3.25 IPC worth of throughput from 7 other background threads simultaneously.

5. CONCLUSION

GPA is a low-cost, scalable, robust and high performance mechanism for dynamically
partitioning a shared cache. GPA – IPC Optimal improves Throughput of 4-core and
8-core CMPs by 8% and 14% respectively, which is roughly equivalent to doubling
the L3 cache for 4 cores and quadrupling it for 8. GPA generally always improves
performance, though suffers a 1% degradation in system throughput on two 4-core
mixes as compared to a Private L3 cache with 1MB per core. The worst slowdown of
any thread across all mixes is 13.9% and 16.3% for the 4-core and 8-core configurations,
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respectively. However, the Average Harmonic Mean of Relative Speedups is 7% and
11% for 4-core and 8-core configurations, respectively, implying that it achieves a net
improvement in total throughput without suffering unfair individual slowdowns as a
result. Further, we can expose controls to the System Administrator which enable an
artificial inflation of importance via the weights to the thread of their choosing. This
tool can be used in conjunction with performance counters to implement an OS-level
QoS system. Further, GPA could be used within a QoS-enabled architecture [Iyer
et al. 2007; Rafique et al. 2006; Nesbit et al. 2007; Guo and Solihin 2007] to sensibly
govern allocation in a shared pool of otherwise ‘greedily’ allocated cache. GPA is cheap
(∼5 Bytes of register state per thread), easy to build and has minimal impact to the
critical path of the cache install path.

5.1. Future Work

We intend to pursue other uses of GPA: adapting parameters of prefetchers, adapting
GPA parameters like gradientDelta and updateDelta and optimizing for power or per-
formance per watt. We will apply GPA to RRIP replacement presented by Jaleel et al.
[2010] in two ways. First, we will let the throttles control the fraction of installs at
a value of 1 (the rest at 0). Second, we will let the throttle control the actual inser-
tion value on a continuum – on a 3-bit counter, we continuously adjust the insertion
value from 0 to 7. Additionally, we intend to apply GPA to upper levels of cache in
SMT configurations and to comprehend memory bandwidth saturation effects. Future
work will include some study of cooperative parallel applications and other commercial
workloads. Finally, we intend to expose GPA registers to the operating system as a
performance counter for code tuning and feedback directed compilation.

APPENDIXES

A. Constrained Optimization

In this work we attempt to start from first principles and cast cache partitioning as a
constrained optimization problem. That is, given a finite amount of cache, C, how do we
partition it to optimize some goodness metric? We will consider a few metrics, but let
us begin with mi(ci), the miss-rate (misses per cycle) of the ith thread, given ci cache.
Suppose we wished to find the ci ’s that minimize the overall miss-rate of the cache,
M(C), subject to the constraint that the ci ’s sum to C. We can cast this optimization in
terms of the Method of Lagrange Multipliers.

M(C) =
n∑

i=1

mi(ci) + λ

(
C −

n∑
i=1

ci

)

dM(C)
dci

= dmi(ci)
dci

− λ = 0

dmi(ci)
dci

= dmj(c j)
dc j

∀i, j

This result implies that the conditions for optimality occur when the derivative of the
miss-rate curves are equal. Of course, this is not a new result; it has been known for
at least twenty years [Stone et al. 1992].

B. Gradient Descent and Convexity

Unfortunately, our ability to detect when the optimality condition holds does not neces-
sarily imply that there is an efficient algorithm for finding it. However, it is well known
that the Gradient Descent (Hill-Climbing) algorithm will converge to this optimality
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condition. The astute reader may notice that a globally optimum partition implies that
the optimality condition above holds, but the reverse is not necessarily true (i.e., a
local optimum) unless all mi(ci) are convex. Stone et al. [1992] assumed that all mi(ci)
are convex, and while it is not strictly true, for most applications in the presence of
prefetching, it typically is.

C. Gradients in Memory Space

There is a potential pitfall to the time-multiplexed Gradient Descent strategy described
above: programs have phases. It might be difficult to tell the difference between a
performance benefit due to a change in cache policy or a cache-friendly phase of a
program. Alternatively, we could divide some subset of the cache sets into two parts
or set maps, S0 and S1, mapping each cache set to one or the other pseudo-randomly.
This could be accomplished by implementing a one-to-one hash on the set index and
using the least significant bit to select S1 or S0. Then, experiments can be carried
out simultaneously, by allocating more cache to the ith thread in S1 and less in S0,
measuring the system performance of each. This requires that the access patterns of
two non-contiguous, randomly selected subsets of the memory space are equivalent.
Compiler writers attempt to map data structures to physical pages such that the
probably of accessing any particular set in the cache is equal. In fact, it is critical
for good performance that references are uniformly distributed among sets in a set-
associative cache; after all, the performance of a program that uses only one or a few
sets of the cache would be too horrible to imagine. Further, our strategy is validated
by the fact that the Dynamic Insertion Policy from Qureshi et al. [2007] relies even
more heavily on this assumption, as it further sub-samples the memory space (i.e., it
measures the performance of very few sets), yet it yields high performance.

D. Bimodal Insertion Policy

Thus far, our strategy requires that we enforce a particular cache partition in S1 and
S0, skewed such that the ith thread (i.e., the thread that is currently being adjusted),
has slightly more cache in S1 than in S0. Certain details complicate this process. For
instance, suppose the appropriate partition has been achieved and we need to install a
block for the ith thread, but there are no blocks from the ith thread in that particular
set. How do we choose the victim and still maintain the appropriate partition?

We define a throttle per thread, Ti, equivalent to β of the Bimodal Fill Policy [Qureshi
et al. 2007], which is the relative proportion of installs for the ith thread that are
installed normally. The rest are installed in a vulnerable or deprecated manner. This
deprecation can take many forms, but the minimum requirement is that the expected
lifetime of a block installed vulnerably is shorter than the lifetime of a block that is
installed normally. Ultimately, the larger the proportion of vulnerable insertions a
thread has, the more other threads will evict them and the smaller the partition will
become. Thus, we assert that the value of throttle, Ti, is monotonic in cache partition,
ci: Ti < T ′

i → ci ≤ c′
i. Exploiting this observation, we can apply Gradient Descent

to the Ti ’s, by adding and subtracting an offset, delta, to the throttle in S1 and S0,
respectively. This obviates the need to keep track of the partition of cache allocated to
each thread. More importantly, it obviates the need to keep track of which thread each
cache block belongs to, which requires additional state, and keeps the victim selection
decision free from having to comprehend that data, which would likely lengthen the
critical path of the victim selection circuit.

E. The Chernoff Bound

Up to this point, we have demonstrated how we can create a gradient in memory space
using a throttle and the concept of vulnerable insertion. That is, we have a mechanism
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to enforce that the ith thread has a larger partition of cache in S1 than in S0. Next, we
face the problem of measuring the relative performance impact to S1 and S0, and in a
timely fashion. Ideally, we would observe a string of references and when we see that
either S1 or S0 clearly has the advantageous partition, move Ti in the direction of the
gradient, increasing if S1 is better, decreasing if not. This is very much like the classic
example of the Chernoff Bound; how many times must one flip a biased coin before it
can be declared with some probability of error the side that is biased? Chernoff tells us
that n flips is sufficient: n ≥ (2p − 1)−2 ln

(
ε−2

)
, where p is the probability of heads (the

bias) and ε is the probability of error. After n flips, one merely subtracts the number of
tails from the number of heads and if the result is positive, the coin is biased to heads,
tails otherwise. Similarly, we can accumulate the results of references to the cache; we
increment a counter, Ai (i.e., randomWalkCounter, a state variable in GPA), for a hit
to S1 or a miss to S0, decrement it for a hit to S0 or a miss to S1. The probability of
an increment (i.e., heads) is 1

2 (H (S1) + (1 − H (S0))), where H (S1) is the probability
that a reference to S1 is a hit (likewise for S0), and we assume that the references are
evenly divided between S1 and S0. Before declaring that S1 or S0 is superior, again
we must observe at least n references: n ≥ (H (S1) − H (S0))−2 ln

(
ε−2

)
. Further, after n

references, the expected value of Ai is:

E[Ai] =
[

1
2

(H(S1) + (1 − H(S0))) −
[
1 − 1

2
(H(S1) + (1 − H(S0)))

]]
n

= [H(S1) − H(S0)][(H(S1) − H(S0))−2 ln(ε−2)]
= (H(S1) − H(S0))−1 ln(ε−2)

In addition, we will accumulate the total number of references (i.e., n) in a counter, Ri
(i.e., referenceCounter, another state variable in GPA). So, right at the moment when
the Chernoff Bound would suggest that we can confidently declare the direction of the
bias, the condition: A2

i ≥ ln(ε−2)Ri holds. Because we do not know a priori what the
bias is, we test for this condition after each reference and when it is met, we increment
or decrement Ti, depending on the sign of Ai (as in Figure 2).

We call the amount by which we increment or decrement, the updateDelta, which is a
free parameter to GPA. Incidentally, the weight in the pseudo-code segment (Figure 2)
is used to optimize other metrics and will be discussed at the end of this section. There
is a curious acceleration that occurs with this mechanism; when the bias is strong (i.e.,
not close to .5), A2

i ≥ ln(ε−2)Ri for small values of Ri, which allows us to adapt quickly.
Conversely, when the bias is weak (i.e., close to .5), we will judiciously observe many
more references before we update Ti.; This is illustrated in Figure 17.

F. Simultaneous Experimentation

The algorithm we have assembled so far allows us to find a value of Ti that is opti-
mal given the current values of the other Tj∀ j �= i. We could potentially use time-
multiplexing to successively adjust each throttle in turn, though we run the risk of re-
acting slowly to a phase change (e.g., we are experimenting with thread 2, while thread
3 is going through a phase change, etc.). Alternatively, we can perform experiments on
all threads simultaneously by assigning non-overlapping collections of sets or gradient
regions to each thread. Nominally, one hashes the set index and then uses the result
to assign the gradient region to each thread. For instance, with 16 threads, we use
the lowest four bits of the set index hash to identify if a set belongs to the gradient
region of a particular thread and a one-bit hash of the set index could determine the
set map. In a distributed L3 cache, a hash on the address determines which L3 bank
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Fig. 17. Examples of random walks with various biases. The curved lines represent the Chernoff Bounds.

is relevant; this hash is appropriate for assigning gradient regions (i.e., one per bank),
though a protocol for notifying other banks of throttle updates would be required in
such a situation.

G. Weighted Throughput Optimization

Now we turn to our original promise to optimize throughput and yet cede QoS controls
to the system administrator. We do this by optimizing weighted throughput, where
the weights are configurable and represent the relative value of a particular thread
compared with the others. For instance, if a thread has a weight of 4 (a high-priority
thread) and the others have a weight of 1 (a background thread), GPA would need
to observe 4 times as much incremental throughput from the background threads as
compared to the high-priority thread to justify moving in that direction (i.e., taking
cache capacity away from the high-priority thread and giving it to the background
threads). In this way, we still manage to partition the cache sensibly, according to the
needs and abilities of each thread, but with the flexibility to artificially modulate the
value of any thread.

We start with an approximation to Throughput, Ti, or instructions per cycle (IPC),
which is based on the misses per reference in the cache, Mi (ci), given ci cache capacity.
In addition, the IPC approximation relies on Ri, the fraction of instructions from the
ith thread that are memory references, LM and LC , the latency to memory and the
cache, respectively, Di, all other sources of latency that do not depend on the partition
of cache to the ith thread. Then, we use the Lagrange Multipliers approach to optimize
T, the weighted throughput of the ensemble of threads, with the ith thread receiving a
weight of Wi. Very fortunately, Ri combines with Ti to convert the derivative of misses
per reference, Mi (ci), to the derivative of misses per cycle, mi (ci), which we know how
to optimize from Appendix A. Thus, we can use the previous mechanism from the
MissRate Optimal formulation, with the enhancement that we weight the increments
and decrements to the randomWalkCounter and the referenceCounter by Wi times the
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IPC of the particular thread.

Ti = [
Ri Mi (ci) (LM − LC) + Di

]−1

T =
n∑

i=1

Wi
[
Ri Mi (ci) (LM − LC) + Di

]−1

d
(
T + λ

(
C − ∑n

i=1 ci
))

dci
= Wi Ri (LM − LC) T 2

i
dMi (ci)

dci
+ λ

→ WiTi
dmi (ci)

dci
= WjTj

dmj
(
c j

)
dc j
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