
Using Inflight Chains To Build A Scalable Cache Coherence Protocol

Using In-flight Chains to Build a Scalable Cache Coherence

Protocol

SAMANTIKA SUBRAMANIAM, INTEL CORPORATION

SIMON C. STEELY, INTEL CORPORATION

WILL HASENPLAUGH, INTEL CORPORATION and MIT
AAMER JALEEL, INTEL CORPORATION
CARL BECKMANN, INTEL CORPORATION
TRYGGVE FOSSUM, INTEL CORPORATION
JOEL EMER, INTEL CORPORATION and MIT

As microprocessor designs integrate more cores, scalability of cache coherence protocols

becomes a challenging problem. Most directory-based protocols avoid races by using blocking

tag-directories which can impact the performance of parallel applications. In this paper we

first quantitatively demonstrate that state-of-the-art blocking protocols significantly constrain

throughput at large core counts for several parallel applications. Non-blocking protocols

address this throughput concern at the expense of scalability in the interconnection network or

in the required resource overheads. To address this concern, we enhance non-blocking

directory protocols by migrating the point of service of responses. Our approach uses in-flight

chains of cores making parallel memory requests to incorporate scalability while maintaining

high-throughput. The proposed cache coherence protocol called Chained Cache Coherence, can

outperform blocking protocols by up to 20% on scientific and 12% on commercial applications.

It also has low resource overheads and simple address ordering requirements making it both a

high-performance and scalable protocol. Furthermore, inflight chains provide a scalable

solution to building hierarchical and non-blocking tag-directories as well as optimize

communication latencies.

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple Data Stream Architectures,

B.3.2 [Hardware]: Design Styles

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Cache coherence, tag-directories, non-blocking, synchronization

 INTRODUCTION 1.

Many-core systems are attractive for the high-performance computing and scientific

markets, as evidenced by the recently released Intel Xeon Phi (Jeffers, 2012).

Managing application data coherence efficiently on a socket with many cores is an

important requirement since even applications that are traditionally parallelized

using message-passing are starting to use shared memory optimizations by placing

multiple MPI tasks on a socket (Graham & Shipman, 2008). Maintaining coherence

involves tracking shared address locations in ordering points such as tag-directories,

as well as sending probe messages to forward data, and invalidation messages to

eliminate stale copies of data. Thus, the performance and efficiency of coherence

protocols is intricately tied to the sharing in applications. High-performing coherence

protocols can be implemented with low resource overheads in small systems. In

many-core systems however, the number of outstanding requests in the memory

hierarchy increases, which increases contention in addresses. Applications designed

for these systems also have large working sets resulting in long memory accesses.

Furthermore, workloads that model the synchronization overheads in shared

memory applications such as CLOMP; demonstrate that the performance of even

small but frequently accessed parallel regions can be a major factor in the overall

 S.Subramaniam et al.

2

system performance (Bronevetsky, 2009). Thus naively scaling the coherence

mechanism can degrade performance and impact bandwidth (Gharachorloo, Sharma,

Steely, & Van Doren, 2000).

Figure 1: Coherence scalability concerns in many-core systems

 Figure 1 shows the interactions of eight cores in a coherent system and highlights

key bottlenecks. The figure shows seven cores (C1 through C7) requesting the same

data residing in C0’s cache. The tag-directory (TD) processes these requests and

sends probes to C0. The first scalability concern marked as [A] in the figure is to

achieve high throughput when processing multiple requests to the same address at

the tag-directories. Modern blocking protocols serialize request processing either by

queuing requests at the TDs or by sending back-off messages to other conflicting

requestors to guarantee correctness which could hamper throughput and increase

occupancy of the system (Chaiken, Fields, Kurihara, & Agarwal, 1990) (Marty & Hill,

Virtual Hierarchies, 2008) (Laudon & Lenoski, 1997). Conversely, protocols that

remove this blocking feature either have network ordering requirements to handle

protocol races that are difficult to implement or require a large number of resources

and bandwidth at the requesting cores to keep up with the increased throughput

leading to the second scalability challenge (Gharachorloo, Sharma, Steely, & Van

Doren, 2000) (Marty M. R., 2008). The second scalability concern marked as [B] is to

maintain low resource overheads at the cores, which implies that any single core

should only receive a small and bounded number of probes for data. Coherence

protocols that allow a core to receive probes from and provide data to all the other

cores for an address might have to maintain a large number of buffers at the cores to

hold these requests as well as issue multiple responses. Finally the third scalability

concern marked as [C] is in state storage at the TDs. As we add cores to the

coherence domain, each TD entry needs to maintain more state to track these

additional cores. If this state grows linearly with the number of cores, scalability of

the system can be severely impacted. All three scalability challenges worsen as core

counts increase as is the trend in most HPC systems.

 Non-blocking protocols, which have been proposed in the past, preserve

coherence while maintaining high-throughput, by employing instant updates to the

TD that take the system to the final state without making any intermediate states

visible. While instant updates achieve concurrency of request processing and address

the throughput scalability challenge at the tag-directory, they do not reduce the

resource and response overheads at the core which could now receive multiple

forwarded requests for data. In our work, we propose to improve the scalability of

non-blocking directory protocols by enhancing them with the principle that the point

of service of responses should migrate between the cores. Migration of response

delivery is achieved by building an inflight ordered chain of cores making parallel

C0 C1 C2 C3

0 1 2 3 4 5 6 7

C4 C5 C6 C7

[A]

[C]

[B]

TD

Using Inflight Chains To Build A Scalable Cache Coherence Protocol

conflicting requests. This in-flight chain is temporary and does not require

permanent pointers in the private caches making it a scalable solution. Using

properties of this temporary chain, we can guarantee that only one buffer is required

at each core to hold a forwarded request as well as ensure that response delivery

work is distributed among the cores. Instant updates augmented with in-flight

chains addresses the first two scalability challenges described above and form the

foundation of our novel cache coherence protocol called Chained Cache Coherence or

CCC.

 This paper makes the following key contributions:

(a) We present the design and evaluation of Chained Cache Coherence or CCC, a

novel, non-blocking, high-performance and scalable directory based protocol that

only requires point-to-point address-ordering of probes and can be implemented

in modern networks.

(b) Using cycle-accurate simulations and data sharing characterizations this paper

presents, to the best of our knowledge, the first quantitative analysis to show

that state-of-the-art blocking directory protocols, even those with migratory

sharing optimizations significantly constrain performance for parallel

applications.

(c) Finally the paper shows both quantitatively and by use of formal verification that

the concept of in-flight chains can be directly applied to build non-blocking and

race-free hierarchical tag-directories. This extension to CCC can further

minimize the latency of communication and provide a scalable representation of

state storage thus addressing the third challenge. This extension also makes

CCC, to the best of our knowledge, the first non-blocking and hierarchical

directory protocol that addresses the key scalability challenges of throughput and

resource overhead.

The rest of the paper is as follows. Section 2 quantitatively presents the scalability

challenges of modern blocking protocols and motivates the need for non-blocking tag-

directories (TD). Section 3 describes the potential bottleneck of non-blocking TDs and

describes the in-flight chains used in Chained Cache Coherence that remove this

bottleneck. This section also depicts how CCC can naturally handle all protocol races

and its scalability advantages. Section 4 presents the design of hierarchical CCC

which uses the concept of in-flight chains to build a non-blocking, hierarchical and

race-free TD thus addressing all three scalability challenges. We present the

evaluation of CCC and hierarchical CCC in Section 5 and compare it to a highly-

optimized predictive protocol. We also present a sensitivity analysis for CCC that

shows that it performs well when scaled to larger core counts as well as when used in

a network with smaller queues. In Section 6, we compare CCC with non-blocking,

non-directory protocols in particular the Token Coherence class of protocols and

discuss the scalability benefits of CCC over these protocols. Finally we contrast CCC

with other protocols that have focused on improving scalability of large-scale

systems.

 MOTIVATION 2.

In this section, we describe blocking directory protocols and demonstrate their

potential scaling challenges. We then motivate the use of non-blocking protocols.

 Challenges in blocking directory protocols 2.1

Directory-based protocols can handle multiple outstanding requests to an address by

ensuring that only a single transaction is processed at a time, while stalling other

requests in the interim period (Marty & Hill, Virtual Hierarchies, 2008) (Lenoski, et

 S.Subramaniam et al.

4

al., 1992) (Hagersten & Koster, 1999). Blocking protocols accomplish this by marking

a tag-directory entry for a particular address as being in-use or blocked after being

accessed by a request. Subsequent requests to the same address from different cores

are held back from being processed or forced to back-off and retry until the tag-

directory entry is unblocked. Unblocking a directory entry is done by sending a

completion message to the tag-directory. Blocking preserves the global order between

conflicting memory requests since every request is completed and acknowledged by

the TD before it processes another one.

Figure 2: (a) Blocking directory example showing requests from C1 and C2 being

blocked and (b) Blocking directory example showing unnecessary blocking of request

from C2

 While blocking tag-directories ensure coherence, they can cause unnecessary

delays in the processing of transactions and forgo some concurrency as shown in the

following two examples. Figure 2 (a) shows a request from core C0 that misses the

cache and is sent out to memory. When this request accesses the tag-directory (TD)

on the path to memory, it blocks the TD entry until the response returns. This means

that any other request to the same address, such as the read requests from cores C1

and C2, will get stopped at this ordering point in the interim period, ensuring that

coherence is maintained as shown in the figure. In Figure 2 (b), a read-for-ownership

request for address A (RFO A) from core C1 at the TD generates a probe to receive

the data from core C0 which has a copy of A. At the same time another core, C2

issues a read request for A (Rd A) that reaches the tag-directory. At this point the TD

has the necessary information to generate a probe message to the C1 and service this

request in the shadow of the previous request. However, it is blocked from doing so

until it receives a completion message from C0 stating that the directory (and thus

the system) is in a stable and coherent state.

2.1.1 Impact on Throughput and Occupancy:

Figure 3: Transaction timeline for a blocking protocol shows processing delay for

request A from Core 1 (tpA).

 Consider Figure 3 that shows a timeline of transactions from two cores in a

system enforcing coherence through blocking. RIA0 is the time at which a request is

issued for address A from Core 0, RPA0 is when the request for A from Core 0 is

processed and CA0 is when the response for A is sent to Core 0 thus completing the

C0 C1 C2

TD

Rd A

1

Blocked on A

Rd A

3 Rd A
4

MEM

Rd A
2

MEM

C0 C1 C2

TD

PrbRFOA 1

Blocked on A after Probe

RFO A
Rd A
32

RIA
0 RPA

0 RIA
1 CA

0 RPA
1 CA

1

tpA
t0

Using Inflight Chains To Build A Scalable Cache Coherence Protocol

transaction. RIA1 , RPA1 , and CA1 are corresponding times for a request for address A

issued from Core 1. The timeline shows that in a blocking protocol, RPA1 is blocked

until CA0 is received leading to a transaction processing delay, tpA, in the system.

Although it may seem that individual transaction latencies might not be impacted by

blocking, concurrent work for each transaction such as forwarding probes and

collecting acknowledgements also get delayed and could impact the throughput of the

application.

 Stalled requests also increase occupancy (the time that a message occupies a

queue slot) at the tag-directories since they have longer lifetimes in the network

queues. High occupancy can impact the performance of the system since it creates

contention in the queues as observed in prior studies (Chaudhuri, Hienrich, Holt,

Singh, & Hennessy, 2003). Blocking protocols that send back-off messages to

conflicting requestors instead of queuing, also generate more messages in the

network queues and in Section 5.5, we quantitatively show that non-blocking

protocols are able to get high performance even with smaller queues.

2.1.2 Enhanced Blocking Protocols

 While blocking has been the industry and academic standard to designing most

directory-based protocols, there have been several proposals that use predictive

sharing techniques to reduce the impact of the directory indirection and thus

mitigate the impact of blocking (Kaxiras & Georgios, 2010) (Cheng, Carter, & Dai,

2007) (Martin, Harper, Sorin, Hill, & Wood, 2003) (Mukherjee & Hill, 1998) (Kaxiras

& Goodman, 1999) (Cox & Fowler, May 1993). These optimizations typically predict

producer-consumer sharing patterns and convert 3-hop (requestor-directory-

responder) coherence protocols into 2-hop (requestor-responder) protocols. They can

cut the latency of directory accesses but require high accuracy to avoid costly

mispredictions. Additionally in several HPC and scientific applications, the data sets

do not completely fit in the on-chip caches and require many memory accesses which

not only increases the blocking duration, but also reduces the accuracy of these

predictions. Consequently, these proposals have not been adopted in industry designs

although they provide performance benefits over blocking directories. In this paper,

we show that CCC removes the throughput bottleneck at the tag-directory itself in a

non-speculative manner which can reduce the need for additional predictive

performance optimizing mechanisms. Furthermore, in Section 5.2, we demonstrate

that CCC even outperforms one recently proposed predictive mechanism.

Table 1: Sharing patterns in typical parallel applications

Workload Percentage of

shared blocks

Percentage of

accesses to

shared blocks

Percentage of

accesses to shared

blocks (>2 threads)

BT 10 66 60

SP 8 38 31

LU 4 77 65

CG 30 22 20

MG 9 30 24

FT 3 17 15

IS 5 15 10

 S.Subramaniam et al.

6

 Data Sharing in Applications 2.2

The timeline in Figure 3 shows that blocking is a serious concern when there is

address contention among threads. Intuitively, for a parallel application to be

scalable, memory requests should be balanced across the memory blocks in the data

structure. However, several parallel applications experience significant amount of

read sharing even at small thread counts (Jaleel, Mattina, & Jacob, 2006) (Woo,

Ohara, Torrie, Singh, & Gupta, 1995). In this section, we characterize the sharing

patterns of parallel applications using two studies. The first study focuses on the

spatial component of data sharing and was done using published methodology

(Jaleel, Mattina, & Jacob, 2006). Table 1 illustrates the data sharing patterns

observed when executing 8 application threads of some common HPC applications

from the NAS suite (Bailey, Fall 1994). Table 1 depicts shared cache blocks that are

currently resident in the cache and not blocks that have been shared in the past.

Only read sharing is captured since this highlights the real benefit of non-blocking

directories. The first column is the workload under consideration while columns 2-4

present the sharing metrics. As expected, the second column shows that most

applications have a small percentage of shared cache blocks. On the other hand, the

third column shows that, there is significant amount of accesses to these shared

blocks. Finally, the fourth column shows that when there is sharing, it generally

involves more than two threads. These results are not surprising since many of the

NAS applications (BT, LU and SP) exhibit nearest-neighbor communication patterns

while others have some producer-consumer sharing in phases (CG and MG).

Figure 4: Cycles/accesses stack showing fraction of execution cycles lost due to

blocked requests

 The temporal component of data sharing is another factor contributing to the

performance of a coherence protocol. Blocking can significantly impact throughput if

the threads simultaneously access shared data. The second study, illustrated in

Figure 4 depicts the temporal component of data sharing in HPC, scientific and

commercial applications by showing the fraction of execution cycles that are lost due

to stalled requests at tag directories. Similar to conventional CPI stacks, this data is

collected from the time a request is issued into the memory hierarchy until it receives

its response. We use a cycle-accurate simulator for this study the details of which are

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fr
ac

ti
o

n
 o

f
to

ta
l e

xe
cu

ti
o

n
 c

yl
e

s

Blocked

Using Inflight Chains To Build A Scalable Cache Coherence Protocol

described in Section 5.1. As can be seen, in most applications, between 10 and 20% of

the execution cycles are due to blocked tag-directory stalls. These blocked cycles also

correspond to the performance improvements that will be shown during the

evaluation of the CCC protocol. These results show the prevalence of simultaneous

data sharing in parallel applications. This phenomenon has also been observed in

other works that explored global synchronization in parallel applications (Singh,

Wolf-Dietrich, & Gupta, 1992).

 An interesting point to note is that large shared caches have often been used in

small-scale systems to improve the performance of shared data. In sockets with large

core counts (>=64) however, these large banked shared caches are not considered

attractive due to the increased effective access latency and thread contention

(http://www.theregister.co.uk/2012/09/05/intel_xeon_phi_coprocessor/). Recently

released many-core HPC machines also appear to be moving away from shared

caches (http://www.theregister.co.uk/2012/09/05/intel_xeon_phi_coprocessor/).

Although this paper focuses on data sharing, there is significant code sharing as well

which will exacerbate the scaling challenges in protocols.

 Principle of Non-blocking Directory Protocols 2.3

Another approach to designing directory-based coherence protocols is to ensure that

messages reach their destinations in the order that they were sent out from the TD.

This approach does not block tag-directory entries on requests thus achieving high

throughput at the tag-directories.

Figure 5: Cache coherence pipeline

Consider Figure 5, which presents a general cache coherence mechanism as a series

of pipelined operations that occur both at the core and in the network. In the figure,

the TD determines an order between the requests that have been issued to it and

sends out a probe to receive the data or invalidations in case the request is for

ownership (RFO). The probed and invalidated cores, in turn respond either with data

or acknowledgements to ensure that no stale copies of data are present in the

hierarchy. When the requesting core receives its responses, it resolves the request

which typically involves writing the cache and then activating the data for use.

 When there are multiple simultaneous in-flight requests to the same address, a

blocking tag-directory chooses one request to order which has to resolve and notify

the TD that the system is in a globally coherent state before it can begin processing

other requests. This leads to a stall in the system as shown by arrow A. However,

there is considerable parallelism in stages 3 and 4 that can occur in the shadow of

processing the next request. If the coherence stall is moved from ordering to

resolution and the tag-directory is instantly updated such that all subsequent

requests know which cores to probe or invalidate, a globally coherent view can be

maintained even before a globally coherent state is reached. This design principle is

used in the AlphaServer GS320, which uses non-blocking tag-directories.

Consequently a request only has to stall in stage 5 where the outstanding request

has to have received the data and/or necessary acknowledgements reducing the

system stall to arrow B (Gharachorloo, Sharma, Steely, & Van Doren, 2000).

Issue

Request
Order for

Dependency

Forward or

Invalidate

Resolve

Request

Activate

Data

Respond

A

B

1 2 3 4 5 6

 S.Subramaniam et al.

8

 Disadvantages of Prior Non-Blocking Directory Protocols: 2.4

Non-blocking tag-directories can maintain correct coherence by making instant

updates to the TD entry with the requesting core information and sending the probe

or invalidation messages to the appropriate cores as an atomic operation. An atomic

update means that once the TD is updated and the probe or invalidation message is

sent to a core, they have to be processed at the core without any intervening

operations that might make the global state of the system inconsistent with the tag-

directory view. The AlphaServer paper describes in detail the potential deadlock that

can occur in non-blocking tag-directories if this restriction is not maintained and the

actual implementation of the GS320 used stringent total ordering guarantees across

all addresses in the network channel carrying probes to avoid the deadlock.

Implementing total ordering in a network requires a non-scalable, switch-style

interconnect that is impractical in modern mesh or torus networks. Additionally, the

requirement to maintain total order between different addresses can create further

stalls in the message queues and lead to high message buffering at the core

boundaries both of which are scalability challenges. In Section 5.7, we present the

number of additional stalls that are generated due to total ordering of probes in the

network.

 A proposed optimization hypothesized that the AlphaServer GS320 could have

been implemented with just point-to-point ordering of probes and did not require

total ordering across all the probe channels (Yongqin, Aidong, Jun, & Xiangdong,

2009). However this hypothesis is not true in modern interconnection networks like a

mesh or torus, with banked tag-directories that are distributed across a tiled

network. Here, each TD bank independently orders requests that it receives and

deadlock can occur in a non-blocking protocol unless total ordering of probes across

all addresses is employed. In Section 3.3, we demonstrate how in-flight chains as

implemented in our work can remove the total ordering requirement.

 An alternate approach to total ordering to eliminate the deadlock that can arise

in non-blocking tag-directories is to store away all probe messages that cannot be

immediately handled for later processing as described in (Kong, Yew, & Gyungho,

1999). This approach allows the coherence protocol to process any ready probe

message. But in the absence of an optimized algorithm that limits the number of

probes received at a core, this would mean that every core in the system would have

to maintain a buffer large enough to hold probes from every other core in the system.

The additional resource overhead due to high message buffering at the core

boundaries is a key scalability challenge as described earlier in the paper.

 A CHAINED CACHE COHERENCE APPROACH TO A NON-BLOCKING AND SCALABLE 3.
PROTOCOL

In the previous section we showed that simultaneous sharing was prevalent in high-

performance computing applications and introduced the concepts and overheads of

non-blocking directory protocols. In this section we first expand on the bottleneck in

non-blocking protocols and then propose a method to augment them with in-flight

chains so as to retain their high-throughput while incorporating scalability.

 Potential Bottleneck in a Non-blocking Protocol 3.1

If the coherence stall is moved from the ordering to the resolution stage without

considering the ramifications on scalability, then stage 5 in Figure 5 can become a

bottleneck. Since the TD can now order and start processing multiple requests to an

address before even one of them is completed, a core can receive probes from

Using Inflight Chains To Build A Scalable Cache Coherence Protocol

potentially every other core in the coherence domain. Consider as an example, a read-

for-ownership request for address A, denoted as RFO A, which is issued from a core

C0. This request misses in the tag-directory and is sent to memory. It will be many

cycles before C0’s cache receives the data. In the interim period, any other request for

address A is forwarded to C0 as a probe. Since C0 has to wait to receive the data from

memory before it can service these probes, it has to maintain buffers to store the

messages. In addition, once C0 receives the data it has to send responses to all the

cores that have sent it forwarded requests. Note also that network arbitration rules

might mean that C0 could have to wait several cycles between sending these

responses. Figure 1 in the paper illustrated this scenario as scalability concern ‘B’.

However, a non-blocking protocol can avoid forwarding all the probes to a single core

if it can ensure that the point of service of response delivery migrates between the

cores making simultaneous conflicting requests. Thus migration of response delivery

can remove the scalability bottleneck in a non-blocking directory protocol.

 In-flight Chains of Last Accessor Cores to Migrate Point of Service of Response Delivery 3.2

In MOESI-based cache coherence protocols, the owner core of an address is

responsible for servicing on-socket requests for the address as well as for keeping

memory up-to-date. However, the owner does not have to be the core that services all

requests for data. Any core that has the up-to-date-value in its cache and which has

the storage capability to process messages and forward data can service a request.

 Prior works have made this observation in non-directory based protocols such as

the Token Coherence protocol (Raghavan, Blundell, & Martin, 2008) and in bus-

based protocols (Rajamony, Shafi, Williams, & Wright). The SCI protocol also used

this principle to maintain permanent pointers between cores in a linked list

(Gustavson & Li, 1996) (Chaiken, Fields, Kurihara, & Agarwal, 1990). Chained

Cache Coherence, however, is the first protocol to apply this principle to improve the

scalability and reduce the resource overheads of non-blocking tag-directories without

increasing the storage required in the core caches.

 The approach used in CCC to migrate the point of service of responses is to

designate every core that accesses a line as the last accessor of a line and transfer

responsibility to service requests from a last accessor to the next last accessor on

read and RFO requests. The protocol supports last accessor migration by building an

in-flight chain of every accessor to the line and only storing the location of the

current last accessor in the tag-directory in order to send the next probe. Last

accessor migration by way of chaining ensures that every core in the chain is sent at

most one probe (following which responsibility to service a request is transferred) and

thus has to maintain only a single buffer entry and forward data to at most one other

core, solving both the problems of buffering scalability and response delivery

scalability. Note that the chains used in CCC are temporarily built during a period of

conflicting accesses to the tag-directory and unlike the previously mentioned SCI

protocol, no permanent pointers are required in the core caches and no special

maintenance regarding insertion or removal of members in the chain is necessary. In

Section 7, we further contrast the in-flight chains used in CCC with other protocols

that used chaining or linking of requesting cores.

 Implementing the CCC Protocol 3.3

In this section, we describe the implementation of the Chained Cache Coherence

Protocol using instant updates and in-flight chains of last accessors.

 S.Subramaniam et al.

10

3.3.1 Implementing Instant Updates in CCC

Let us consider Figure 6(a) which shows the interactions between two cores C0 and

C1 that are making read-for-ownership requests to address A (RFO A). C0 already

has the data due to a prior read operation but now wants to update the data whereas

C1 needs to read the data and write to it. The bit vector field in the TD, which tracks

the sharers of a line and is known as the core-valid or CV vector, indicates that C0’s

cache has the only copy of A in the socket. Let us assume that the tag-directory

ordered the RFO A from C1 before the RFO A from C0. In Figure 6 (b), we see the

states of the system after the request are ordered at the tag-directory. The CV vector

is instantly updated to show that C1 has a copy of the data but C0’s copy is

invalidated; as a result no other access to A will be forwarded to C0 even though the

data in C0’s cache is yet to be invalidated. The PrbRFO (probe to get data for the

RFO request) sent to C0 will eventually invalidate its copy and send the data to C1.

Figure 6: Instant updates at the tag-directory when ordering two requests in (a) take

the system to the final state in (b) even though the caches have yet to be updated.

Since instant updates allow the tag-directory to process parallel requests without

blocking, a core could receive a read probe followed by an invalidation message

(generated due to an RFO issued by a third core). These two messages should be

serviced in the order they were sent by the TD so that the correct version of data is

preserved. To ensure correct processing of these messages, we designate three virtual

channels in our protocol. VcReq carries all requests, VcResp carries all responses and

invalidation-acknowledgements (sent in response to RFO requests to maintain

sequential consistency) and VcPrb carries all probes and invalidation messages. The

VcReq and VcResp channels in CCC have no ordering constraints similar to the

AlphaServer GS320 protocol. The VcPrb channel in that protocol however had to

maintain total order across all addresses as described earlier. Since in-flight chains

allow the tag-directory to only send one probe to any given core after which the

service of response is migrated to the next last accessor, the VcPrb channel in CCC

only requires address-ordering implying that only messages for a particular address

in that channel need to travel in order from one source to one destination. Address

ordering can be implemented as multiple interleaved in-order channels and unlike

total ordering used in the AlphaServer GS320 has no negative impact on buffering or

scalability.

 Ordering decisions at the TD are conveyed to requesting cores using an order-

marker (OM) message (similar in function to the marker message in the AlphaServer

GS320). Order-markers travel on the VcPrb and are subject to the same address

ordering constraints as probes and invalidations. An OM signals to the core that its

TD

RFO A

C0 C1

RFO A

A

A 10

TD

C0 C1

PrbRFO A

A

A 01

(a) (b)

Using Inflight Chains To Build A Scalable Cache Coherence Protocol

request was ordered at the TD and that any probe or invalidation received before the

OM has to be processed instantaneously since it refers to a prior version of data

whereas a probe or invalidation received after the OM can only be processed after the

core has completed its request.

3.3.2 Implementing In-flight Chains in CCC

Since all requesting cores that miss in their core caches access the tag-directory to

obtain the latest coherent version of data, we could consider building the in-flight

chain at the TD itself. However, this would require significant storage at the TD

(potentially as large as the in-flight chain) as well as require the TD, which is already

a contended resource, to be involved in the generation of responses to each member of

the chain. Another resource that could be used to hold the chain is the cache line.

However, this approach requires providing storage in each cache line to hold the core

id of the next member in the chain. A key benefit of in-flight chains in CCC is that

they are only maintained for requests that are still outstanding and so TD and the

cache do not have to be aware of the existence of the in-flight chain. All the TD has to

maintain is the current last accessor to an address.

 Let us consider Figure 7 that shows an in-flight chain being built by three cores,

all waiting on read data for address A. The last accessor in the figure for A is C2

since this was the last core to access A. As seen in the figure, C0 and C1 are part of

the chain and have been last accessors at some point. Since the miss-address-file

(MAF) sometimes called the Outstanding Buffer in the core already maintains

storage for every in-flight request, it can easily be extended to also maintain the

chain. Every MAF entry is augmented with a field that holds the target identification

for the next core in the chain. Since every core only receives one probe before it

transfers ownership of a line, the number of bits in this field only has to be large

enough to store the value of the last core in the node. The MAF entry also requires a

field that denotes if a probe has been received for this address before the data is

available and its type (Read/RFO). Since the size of the MAF (32 entries in recent

processor designs) is much smaller than that of the cache or the TD, it is a scalable

solution to hold the next member in the chain without significant are overhead.

Figure 7: In-flight chaining of parallel requests for address A between C0, C1 and C2.

Instant updates at TD show C2 as last accessor even though C0 is yet to receive data.

In the figure, C0 and C1 each received one probe which was stored away in their

MAF entry so that they know to send a fill response to C1 and C2 respectively. When

C0 receives the data from memory, it processes the MAF entry, uses the data and

then forwards it to C1 which in turn forwards it to C2. As the figure shows, even if

A

MAF
C0

TD
A 1 1 1 0C2

MEM

A

MAF
C1 A

MAF
C2

data for A

C1 C2

 S.Subramaniam et al.

12

cores are added to the chain, only a single buffer entry needs to be kept at every MAF

entry and only a single response needs to be delivered providing scalability.

Similarly, the MAF entry has to also hold storage for an invalidation message that it

may receive.

 As a result of in-flight chaining, every probe is directed to the last accessor for an

address. A concern might be that the last accessor is not necessarily the closest core

to the requesting core in the network which could increase resolution latency.

However communication locality implies that the probability of sharing tends to be

higher in neighboring cores as opposed to randomly distributed cores mitigating any

adverse impact of chaining (Bailey, Fall 1994). In Section 5 we show that the

performance of CCC assuming “perfect chaining” (where the responses in the chain

are all serviced directly from the head of the chain) is not significantly higher than

in-flight chaining.

 Avoiding Protocol Races in the CCC protocol 3.4

Correctness of a coherence protocol is often measured by how it avoids races resulting

in deadlock. The first possible coherence race is the Late Race. A late race occurs if a

probe for a request reaches the last accessor after it has started eviction of a cache

line. The problem occurs because at the time the probe is generated at the TD, the

last accessor has the line in a valid state. However, the last accessor could have

started the victim response in the VcResp channel as the probe is making its way up

in the VcPrb channel. CCC solves the late race by maintaining a valid copy of the

data that is being written back at the core until an acknowledgement is received from

the tag-directory that it has recorded the eviction and that no further probes for data

will be sent to the core. There are different implementations that can be used to hold

this data. Either it can reside in the cache until the acknowledgement arrives or a

separate structure that is sometimes present in modern cache hierarchies called the

victim buffer (VB) can be used to hold this data temporarily. Since this storage is

only required to hold evicted cache lines temporarily, it does not have to grow due to

scaling of core counts making it a scalable solution.

 The second commonly occurring race in coherence protocols is the Early Race. An

early race occurs if a probe for a request arrives at the last accessor core before the

data arrives and the last accessor has to decide which version of data the probe

should be serviced with. We have described this scenario during the discussion of

instant updates earlier in the paper. We use the order-marker message to resolve

this ambiguity since any probe that arrives at the MAF entry before the OM has been

ordered before the request. Since a MAF can only hold one outstanding request per

address, it is trivial to math up order-markers and probes. Furthermore, due to in-

flight chaining, which transfers service ownership on accesses, we are guaranteed

that at most one probe will be sent from the TD to the last accessor core. Therefore

even if the probe has to be buffered it does not impact scalability.

 Other Scalability Advantages of Chained Cache Coherence 3.5

3.5.1 Avoiding Nacks, Retries and Timeouts

Negative-acknowledgements or nacks are typically used in protocols to resolve races

and to avoid deadlocks that may occur due to resource dependencies. Nacks and

retries are undesirable for several reasons; they add uncertainty in the processing of

requests in the protocol, they can impact fairness (if a particular core request is

always having to retry for example) and they have a negative effect on scalability

Using Inflight Chains To Build A Scalable Cache Coherence Protocol

since these messages add to the buffering requirements and queue sizes. CCC does

not run into deadlock issues caused by resource dependencies at the cores due to the

properties of inflight-chains as well as in the tag-directories due to instant updates.

Thus the CCC protocol does not require or support any form of negative-

acknowledgments which improves its scalability and efficiency.

3.5.2 Scalability of Message Buffers

Protocols that block or stall could put undue pressure on the message buffers or

channels which can cause back-pressure, contention and overall inefficiency in the

protocol. Blocking protocols have the obvious challenge, that multiple requests to a

line get blocked at the tag-directory which means that the queues may have to be

large enough to support these blocked requests. Protocols based on total ordering

requirements may also need large queues since ready messages will have to wait

until they reach the head of the queue to be processed. Consider for example, a back-

invalidation issued to make space in the tag-directory is sent to a core. If that core is

already processing a request for the same address, it will not process the back-

invalidation until the request is complete. This could potentially hold up an

important probe for another address behind it that requires data causing slowdowns

in the protocol. Since CCC does not block during request completions and does not

have total ordering requirements, it is able to process or buffer away probes and

responses as soon as they are received at their destinations.

 USING IN-FLIGHT CHAINS TO BUILD A NON-BLOCKING AND HIERARCHICAL 4.
PROTOCOL

An added benefit of CCC is that its principles can be applied towards building race-

free and non-blocking hierarchical tag-directories. Blocking protocols with hierarchy

avoid coherence races since each level of the hierarchy is blocked until the request

completes and the TD receives an acknowledgement for the same. In a high-

throughput non- blocking protocol like CCC however, each level of the tag- directory

could be processing a different request since the stall is moved to resolution at the

core which makes building a hierarchical and correct protocol very challenging

(Zhang, 2010). This section explores the benefit of hierarchical tag-directories and

shows how CCC can incorporate hierarchical tag-directories using race-free and

scalable techniques.

 Instant Updates augmented with in-flight chains addressed the first two

scalability concerns described in Figure 1. The third concern was in the storage

required to track the coherence state. As the number of cores (and thus private

caches) in a coherence domain increase, the CV vector grows with the respective

number of cores. Every core adds one bit in each CV vector and the number of entries

in the TDs would have to grow to accommodate the extra cache in order to avoid

contention; thus the storage requirement grows by O (n*n) where n is the number of

cores. Proposals to reduce the CV size by representing multiple cores with a single bit

have been studied. Imperfect CV bits, as they are popularly known, result in spurious

probes and invalidate messages and cause tag-directories to fill up with entries that

cannot be cleaned out unambiguously, thus requiring more tag-directory entries.

 Prior hierarchical tag-directories (Wallach, 1992) (Yang, Thangadurai, &

Bhuyan, 1992) arranged the core caches in domains with a TD that tracks the state

and ordering for all the cores in a domain. Following this trend, the TDs can be

organized in domains themselves, resulting in a second-level tag-directory (TD2) that

tracks the state and ordering for all the first-level tag directories (TD1). The storage

requirement for a hierarchical TD organization grows by O (n *log n) since addition

of a core only adds a bit in the CV vector in the respective domain. In-flight chains

 S.Subramaniam et al.

14

can be used to extend non-blocking tag-directories to introduce hierarchy in a race-

free manner. To incorporate hierarchy in CCC, each TD entry is augmented with a

domain state field that tracks the state of the line in the local domain as well as in

other domains. This field has three possible values indicating exclusive ownership in

a domain, shared access permission and lack of access permission in a domain

respectively.

 Hierarchical TDs can also reduce message latencies. In communication

paradigms like nearest neighbor communication, stencil algorithms and halo-

exchanges, locality exists primarily within a small domain of cores and thus sharing

tends to be higher in neighboring cores than in randomly distributed cores (Bailey,

Fall 1994). Consider Figure 8 that depicts the path of communication for a request

that misses in the on-die caches and goes to memory. A hierarchy of two levels as

shown in the figure requires the request to make two hops to go memory since the

first hop indicates the data in not present in C0’s domain and the second hop

indicates it is not present in the on-die caches. This two hop process may seem like a

disadvantage as opposed to a single hop in a flat directory. But note that each of the

tag directories (TD1 and TD2) will be smaller than one flat directory and thus has

lower access latency. Figure 9 shows the true performance benefit from hierarchy. As

the data for request A from C1 is present in its domain itself, this request can avoid

going down to TD2 and is able to get a response from its local neighbor, C0, which

reduces the response latency. In general, if a request’s data can be serviced within its

domain, then this request can avoid going down in the hierarchy and is able to get a

response from its local neighbor which reduces the response latency. This

phenomenon is called Short-circuiting. CCC uses the domain state field to determine

whether reads or RFOs or both can short-circuit the hierarchy. Since CCC

implements non-blocking by building in-flight chains of requests, the TDs can

maintain independent local domain chains as well as global chains without any

impact on throughput. The second key feature in the CCC protocol that enables

building race-free hierarchies is that probes sent between levels are always processed

without stalling since they travel on the VcPrb channel, thus avoiding deadlock.

Figure 8: First access in a hierarchy has

to make an extra hop to go to memory

Figure 9: Short-circuiting for a read

within a domain optimizes a 3-hop

protocol

TD 1

C0 C1

RFO A

1

TD 2

RFO A

2

MEM

RFO A
3

Rd A

Fill A

TD 1

C0 C1

1

A

TD 2

MEM

PrbRd A
2

3

Using Inflight Chains To Build A Scalable Cache Coherence Protocol

 EVALUATION AND VERIFICATION 5.

In the preceding sections we have qualitatively enumerated the benefits of CCC over

other protocol scaling techniques. In this section, we quantify these benefits in terms

of performance speedups and other metrics that measure stalls. We also present the

performance of hierarchical CCC and demonstrate its sensitivity to core counts and

queue sizes.

 Methodology 5.1

Simulation Environment

We employ a cycle-accurate performance simulator to implement and study CCC that

is based on the Asim performance modeling infrastructure (Emer, et al., 2002). The

baseline system models a socket with 64 tiles arranged in an 8x8 mesh

interconnection network. The configuration of each tile (core, MAF, VB, TD1 slice,

TD2 slice) as well as the memory and the interconnection network is summarized in

Table 2. As described earlier, we do not model an L3 due to the increased access

latency and thread contention at such large core counts. The TD1s are banked and

are arranged column-wise such that a domain comprises eight tiles. This implies that

every memory access issued by a core only has to check the TD1 on its column to

determine if it can be serviced in its domain itself. The TD2s are arranged row-wise

such that once a home for a particular address is determined on the interconnection

network; it has a specific TD1 tile and a specific TD2 tile that can service it. Thus all

messages make at most one turn when they go from the TD1 to the TD2. The

memories are placed on three sides of the tiled network to reduce hop count on

memory accesses.

Parameter Configuration

Core In-Order, 2-threads, 4-way, 32

outstanding misses

L1 Cache 32KB, Private, 4-way, 1-cycle,

L2 Cache 512KB,Private, 8-way, 10-cycle

MAF,VB 32-entry, FA

TD1,TD2 128KB, 8-way, 10-cycle

Interconnect

Network

2-D mesh, 16-entry queues,1-cycle

link latency

Memory 150-cycle latency

Table 2: System Configuration

For the experiments reported in the paper that do not use hierarchy, we force all

requests to go to the TD2 in order to access shared data even if it is in the same

domain. The simulation infrastructure does not use an operating system; but is

augmented with an application scheduler. For the HPC workloads studied, the

impact of system-level events are not significant while for the server workloads full-

system traces are used so the impacts of system-level events are modeled. The

baseline model uses a blocking directory-based MOESI protocol, which is similar to

the CMP_directory protocol modeled in the gem5 simulation infrastructure, and

unblocks tag-directories by sending acknowledgements once the requesting core

completes its transaction (Binkert, et al., 2011). In addition to the CCC protocol we

also study an enhanced blocking protocol by using one recently proposed predictive

sharing optimization that avoids directory indirection by using “writer prediction”

(Kaxiras & Georgios, 2010). We model the PC-based predictor; however rather than

deal with the complexity of handling mispredictions in their protocol, we only

forward data directly from the producer to the consumer when a “peek” into the

 S.Subramaniam et al.

16

directory indicates that the prediction is correct. Thus the baseline shows the upper-

bound performance potential of writer prediction without the penalty of recovery.

Workloads

Due to their computing resources, large-scale systems are generally attractive to the

following market segments: HPC, scientific computing, parallel servers and

supercomputing. We chose seven Class C applications from the NAS Parallel

benchmark suite as representative of the HPC domain and ran the default problem

size for the class (Bailey, Fall 1994). We use Barnes (16384 nodes, 123 seed) and

Ocean (258*258 array) from the Splash-2 benchmark suite to represent the scientific

computing similar to other published studies (Woo, Ohara, Torrie, Singh, & Gupta,

1995). The online transaction processing and web server needs of server applications

are modeled with in-house Tpcc and Specweb full-system traces. We forward 100B

instructions and then simulate 500 million instructions for each workload.

Simulations continue to execute until at least one thread in each domain (column in

the topology) executes 500 million instructions. The supercomputing domain is

modeled using three specialized workloads. First, the RandomAccess workload from

the HPCC benchmark suite, where the dominant pattern is random read-modify-

write updates to a hash table. Since this benchmark was designed to measure the

Giga Updates per Second of the system, which is a critical marker of supercomputing

systems, it is denoted as GUPS in the results. We also studied a linear barrier

algorithm, denoted as Linear Barrier, in which all cores reach a barrier at a random

address continuously to study the benefit that a non-blocking protocol with hierarchy

would have on such a heavily shared pattern. Finally a more realistic tree-based

barrier is explored. The total area sizes for the synthetic workloads were realistically

chosen to be larger than the individual core caches. Studying a wide spectrum of

workloads helps to analyze the benefits and overheads of a coherence protocol.

 Improving Performance over Blocking 5.2

 In-flight chains using instant updates allow simultaneous conflicting requests to

be processed without blocking which could result in higher throughput at the tag-

directory. Figure 10 presents the performance advantages of three protocol designs

over the baseline blocking protocol. We group the applications based on their market

segment.

 The first data point, BL_WrPred, explores the upper-bound performance of a

blocking protocol that is enhanced with writer prediction. Since this data point does

not include the latency of mispredictions, it provides an upper bound on the

performance of a blocking protocol. The results indicate that writer prediction

alleviates some of the penalties imposed by blocking tag-directories and improves the

performance across all the applications. The key aspect is whether the application

can service a significant portion of the accesses out of the cache itself. In Tpcc in

particular, predictive sharing achieves all the benefit that a non-blocking protocol

with hierarchy provides since it has a small footprint that fits mostly in the cache. In

the barrier workloads, however, any thread could reach the barrier in any order

which impacts the prediction accuracy. The fact that CCC has higher performance

overall than predictive sharing in a completely non-speculative manner indicates

that it is more likely to be implemented and scaled as core counts increase which

could cause thrashing in the predictor. Nevertheless, CCC can also be augmented

with a sharing predictor to improve its performance.

Using Inflight Chains To Build A Scalable Cache Coherence Protocol

 The second data point in this plot, CCC_Original, demonstrates the performance

of the original CCC protocol without optimized short-circuiting in the hierarchy. As

described earlier in Section 2.2, the applications BT, SP and LU all show nearest

neighbor communication patterns with significant sharing among many threads. As

a result, they have over 10% speedup due to the high-throughput nature of CCC.

Specweb has a large memory footprint and thus many of the stalls are to memory

which increases the time the tag-directory is blocked. In Barnes, the main data

structure results in a majority of single producer multiple consumer patterns which

can benefit from the high-throughput of a non-blocking directory. These results

correspond to the lost cycles due to blocking that was demonstrated in Figure 4 and

show that CCC eliminates almost all the negative impact of blocking with negligible

overhead. GUPS is a randomized pattern of read-modify-write operations to a hash

table with negligible sharing and so has little performance benefit from eliminating

blocking. The tree barrier workload is a radix 8 algorithm that matches the

simulated configuration. Finally the extreme linear barrier example shows the upper

bound on performance that a scalable, non-blocking protocol like CCC can achieve. In

this workload the TD was blocked for more than 40% of the execution time. The

performance for the barrier workloads also shows that when there are many small

and frequently accessed parallel regions, as is the case in many synchronization

primitives; CCC can provide much higher performance than even a highly optimized

blocking protocol.

Figure 10: Performance speedup using in-flight chaining and instant updates relative

to a blocking protocol

 We use several statistics to analyze and verify the performance data. First, the

data shown earlier in the paper in Figure 4 shows that blocked tag-directories add

significant cycles to the execution time. Analyzing the data showed that if one of the

stalls was to memory, they had the most impact. Second, Table 3 represents the

percentage of stalls in the baseline caused due to conflicting requestors at the TDs for

the most interesting workloads. The data shows that the barriers and producer-

consumer patterns suffer the most. One way to improve the performance of blocking

protocols is to stall requests only if they will modify data and allow all read requests

that conflict to be processed and instantly update the TD. The problem with this

solution is that, there needs to be storage to hold all these read probes which leads to

0

10

20

30

40

50

60

Sp
ee

d
u

p
 o

ve
r

B
lo

ck
in

g
(%

)

BL_WrPred CCC _Original CCC_Hierarchy

 S.Subramaniam et al.

18

a scalability problem. An in-flight chain of last accessors solves the bottleneck in non-

blocking directories with a scalable storage solution. As a last analysis experiment

we built an analytical model to verify the HPCC GUPS workload.

Table 3: Percentage of stalls due to blocked TDs in the baseline

 Optimizing Local Communication with Hierarchy 5.3

Figure 11: Requests that can be short-circuited

Section 4 illustrated the performance benefits of short-circuiting the hierarchy using

an example access pattern. In this section we quantify this benefit depicted in the

third data point in Figure 10 labeled as CCC_Hierarchy. The results are normalized

to the baseline blocking protocol without hierarchy so these results indicate the

cumulative impact of designing a non-blocking and scalable protocol and being able

to short-circuit the hierarchy. As can be seen in the figure, the linear barrier

workload has significant locality of communication since it represents a single miss

being brought in from memory which can service the entire domain. On the other

hand, the benefit in performance for many of the HPC applications is primarily

achieved by the non-blocking nature of the tag-directory. We also measure the

number of reads and RFO requests that could be short-circuited which is shown in

Figure 11 . As expected, more reads than RFOs are short-circuited since RFOs have

to invalidate all valid copies of data and can only be serviced completely in their

domain if they have exclusive access.

 Applying “Perfect Chaining” 5.4

In this section, we focus on the possible adverse performance impact of in-flight

chaining if the last accessor core jumps around the network. To study this effect we

simulate the CCC protocol with perfect chaining, i.e. we implement CCC as it is but

assign performance latencies for response delivery as though the responses were sent

out by the head of the chain. Figure 12 demonstrates this configuration. The first

interesting observation from these results is that across the spectrum of workloads

Wkd BT LU SP CG Tpcc Specweb Barrier Tree Barr

%Blocked Access6.9 9.4 6.7 3.6 8.9 15.3 32.3 15.3

0

10

20

30

40

50

60

70

80

P
e

rc
e

n
ta

ge
 o

f
to

ta
l r

e
q

u
e

st
s Read RFO

Using Inflight Chains To Build A Scalable Cache Coherence Protocol

perfect chaining only impacts a few workloads (CG, Specweb and Barnes). The

second interesting observation is that adding hierarchy in the tag-directory

organization mitigates the impact of chaining as every local domain has its own last

accessor that can be used to short-circuit the hierarchy whereas the owner core may

belong in another domain. This phenomenon can be seen in CG and Barnes. The

original protocol with perfect chaining has slight improvement, but when hierarchy is

introduced the performance is slightly worse than CCC_Hierarchy since the benefit

of hierarchy is crossed out due to the head of the chain being in a different domain.

Specweb on the other hand has a performance speedup since the dominant pattern is

an RFO followed by reads and the reads in a domain do not reach the tag-directory in

a linear manner.

Figure 12: Impact of Perfect Chaining

 Performance Scalability of CCC 5.5

Although the results presented in the paper so far were for a 64-tile system, a

practical design point for running long and detailed simulations, we also studied the

final hierarchical CCC design using a larger socket with 128 tiles using an 8x16

mesh interconnect and appropriate scaled queue sizes. All the other simulation

parameters are kept the same. Figure 13 shows that the trends are similar to the

medium-sized 64-tile socket. However, the difference in the barrier workloads is

higher since these workloads are directly impacted by scaling core counts.

0

10

20

30

40

50

60

Sp
ee

du
p

us
in

g
"P

er
fe

ct
 C

ha
in

in
g"

 (%
)

CCC_Original CCC_Hierarchy

 S.Subramaniam et al.

20

Figure 13: Performance of CCC on larger sockets

Figure 14: Sensitivity of CCC to network queue sizes

 Sensitivity of CCC to queue sizes 5.6

Sizing network queue structures appropriately can significantly affect the

performance of a coherence protocol. We perform a sensitivity study that measures

the performance benefits of CCC relative to a blocking protocol when using smaller

network queues (8 and 12 entries) as presented in Figure 14. The analysis shows that

in general the CCC protocol performs just as well with 12-entry and 8-entry queues.

However for the barrier workloads, we find that the speedup is even higher at the 8-

entry configuration as the smaller queues degrade the performance of the blocking

protocol more than that of CCC. Smaller queues in the interconnection network can

reduce energy consumption and area making CCC a scalable and efficient solution.

0

10

20

30

40

50

60

70

Sp
ee

d
u

p
 w

h
en

 s
ca

lin
g

C
C

C
 (

%
) Medium Large

0

10

20

30

40

50

60

70

Sp
e

e
d

u
p

 o
ve

r
B

lo
ck

in
g

(%
)

16-entry 12-entry 8-entry

Using Inflight Chains To Build A Scalable Cache Coherence Protocol

Figure 15: Percentage increase in stalls in a totally ordered network

 Scalability Advantages of CCC over Total Ordering 5.7

In-flight chains allow the building of a deadlock and livelock-free protocol without

requiring total ordering across different addresses in the probe channel. In addition

to the implementation infeasibility of building a totally ordered network as described

earlier in the paper, total ordering could also pose a performance problem, especially

when there are outstanding requests for addresses for which cores receive probes. In

these scenarios, the probes have to wait for the data to reach the core before they can

be processed, causing them to experience long stalls in the queues. To study the

impact that total order has on the rate of probe processing at the cores, we analyzed

the number of probe messages that are blocked due to a stall at the head of the probe

queue from the tag-directories to the cores. Figure 15 shows the percentage increase

in probes that are stalled in a protocol implementing total ordering over the in-flight

chains used in CCC. The data indicates that the same type of workloads that perform

well with CCC (those that simultaneously access shared data) also experience many

stalls in a totally ordered network since these workloads often have probes at the

head of the queue that are waiting for fills.

 Verification 5.8

We verified the original and hierarchical CCC protocol using the Murphi checker

(Dill, 1996). We used Murphi to study three major aspects of our protocol: deadlock

free, which means that every state reached in Murphi simulation is one from where

progress can be made, MOESI property, which states if there is a line in the modified

state in any cache the hierarchy then no other valid copy can exist in and the value

property which states that the last value to be written for any line is the value that

any subsequent read for the line receives. In order to verify systems, Murphi

exhaustively expands the state graph of a system and walks all the paths in the state

graph. State enumeration in Murphi is vulnerable to explosion if scale of the system

is very large and so we chose to verify a smaller system but with multiple domains so

that all the protocol transactions were encountered. We use multiple addresses in our

verification since victims and back-invalidations occur only in the presence of

multiple addresses.

0

5

10

15

20

25

30

35

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 S
ta

lls

ov
er

 C
CC

 S.Subramaniam et al.

22

 COMPARISON OF CCC WITH DISTRIBUTED COHERENCE PROTOCOLS 6.

An alternate coherence framework is the Token Coherence protocol, which attempts

to avoid the latency of directory accesses (Martin, Hill, & Wood, Token Coherence:

Decoupling Performance and Correctness, 2003) (Martin, Sorin, Hill, & Wood, 2002).

In this framework, coherence is maintained by tracking a pre-established number of

tokens for each block of shared memory. The key idea is to separate the high-

performance features of the protocol from the correctness and resorting to retries in

the event of synchronization races. While eliminating directory accesses can enable a

two-hop low latency protocol, races can cause persistent retries that are much slower

and consumer bandwidth. The base implementation of token coherence is described

as relying on broadcasts in the network to get the low latency of cache-to-cache

transfers in snooping protocols. However, such a system would be overwhelmed by

bandwidth limitations as we scale the cores on a socket. In broadcast-based token

coherence for a system with 64-cores, a read request would generate several

unnecessary messages to search for data as opposed to the request, probe and

response messages generated in a directory-based protocol and the original paper on

Token Coherence shows that a basic version of the protocol can use twice the

interconnect bandwidth of a basic directory protocol. CCC provides the low

bandwidth requirements of directory-based protocols while improving their

throughput and scalability using in-flight chains.

 Variations on token coherence protocols use adaptive mechanisms with both

snooping and directory accesses to mitigate the bandwidth impact, however these

hybrid protocols are more complex to implement (Bilir, Dickson, Hu, Plakal, & Sorin,

1999) (Martin, Sorin, Hill, & Wood, 2002). Prior work has explored the feasibility and

performance of a hierarchical Token Coherence protocol to improve its scalability

(Marty, Bingham, Hill, Hu, Martin, & Wood, 2005). In such a system, the coherence

protocol would first send out broadcasts in its local domain and if none of the local

caches respond with the data, the request will be forwarded to the global domain.

This additional latency in sending out a global request could have an adverse impact

on the performance. In contrast, the hierarchical CCC protocol is able to use in-flight

chains to optimize local requests as well as efficiently identify and issue requests that

need to go to the global tag-directory level.

 RELATED WORK 7.

 Blocking Directory protocols 7.1

SCI or the Scalable Coherent Interface implements a blocking tag-directory using a

linked-list directory structure which leads to design complexity and latency issues

especially when accessing nodes in the middle of the linked list. (Gustavson & Li,

1996). SCI is also a strict request-reply blocking protocol and cannot use CCC’s

probes and order-markers without adding a third virtual channel. While SCI uses

chains to link sharing cores, it requires forward and backward permanent pointers

stored in each cache line, whereas CCC only builds temporary forward pointing

chains in the outstanding MAF buffer (32-entries) leading to far less area

requirement. CCC’s in-flight chains are also likely to be smaller than SCI’s linked

lists leading to faster data propagation and higher performance. SCI also has to

traverse the doubly-linked list for invalidations and patch up head and tail pointers

during evictions whereas CCC only uses a small victim buffer to maintain correct

state. Consequently, we believe that it non-trivial to make SCI a race-free non-

Using Inflight Chains To Build A Scalable Cache Coherence Protocol

blocking protocol. The novelty in CCC is that the last requestor/accessor can augment

a non-blocking protocol to make it scalable.

 Directory CMP is a hierarchical blocking coherence protocol that uses safe and

transient state to resolve races (Marty & Hill, Virtual Hierarchies, 2008). As the

number of cores being integrated on a chip increase however, the probability that the

protocol hits unsafe or blocked states increases.

 Non-blocking Directory Protocols 7.2

 The non-blocking protocol in the AlphaServer GS320 uses a global switch to

implement total ordering which as described earlier is infeasible from a modern

implementation perspective and can lead to high occupancy in the queues. The SGI

Origin protocol is another non-blocking directory-based protocol that uses back-off

messages to avoid deadlocks indicating to a requester core that it should directly

send its request (Laudon & Lenoski, 1997). Since CCC is able to provide a high-

throughput and non-blocking protocol without total ordering or the use of back-off

massages, we believe it is more scalable.

 Improving Performance of Shared Data 7.3

This body of work looked specifically at extending protocols to improve the

performance of widely shared data (Kaxiras S. G., 1996). The general principle in

these works is that they provide extensions and solutions to map logically sharing

tree algorithms to physical networks. Some of these solutions include building and

invalidating a tree in logarithmic time (Nilsson, 1992) (Johnson, 1993). Other works

build limited tree-based directories for shared data (Maa, 1991). CCC aims to provide

a general framework to improve the performance of critical shared data and

synchronization variables in a scalable manner. Since CCC is implemented using a

general tag-directory present in modern hierarchies and is based upon the non-

blocking directory that was built in the AlphaServer product, we believe that it is

more likely to be adopted.

 Optimizing the Tag-Directory Structure 7.4

Hierarchical or tree-based cache coherence organizations have been studied

previously as a way to provide scalability in data storage and communication (Ladan-

Mozes & Leiserson, 2008). The primary motivation in this work is to avoid timeouts

and nacks by creating a unique path through the tree from each core to a given

memory bank. Alternative approaches to reducing the data storage overhead include

building tagless directories using bloom filters or by building efficient directories

using a variable number of tags based on sharing patterns and optimized hash

functions (Zebchuk, Srinivasan, Qureshi, & Moshovos, 2009) (Sanchez & Kozyrakis,

2012) (Ferdman, Lotfi-Kamran, Balet, & Falsafi, 2011). All these designs can be used

in conjunction with the basic principle of migrating the point of service of responses

in CCC to further improve its scalability.

 Hardware Coherence and Software Coherence 7.5

Other work in cache coherence protocols has focused on highlighting the importance

of hardware-based on-chip cache coherence (Martin, Hill, & Sorin, Why On-Chip

Cache Coherence is Here to Stay, 2012). This work shows that by following the goals

of scalability, on-chip cache coherence can be made efficient and low-cost which is the

same high-level goal of the Chained Cache Coherence protocol.

 S.Subramaniam et al.

24

 CONCLUSIONS AND FUTURE WORK 8.

Scalability in cache coherence protocols is a challenging problem facing designers and

blocking protocols have serious concerns in being able to maintain high-throughput.

Non-blocking directory protocols as designed so far require significant resource

overheads and impractical network ordering constraints in order to provide high-

performance. In this paper, we exploit a key insight that service ownership of

responses for data can be migrated by building in-flight chains of parallel memory

requests. The Chained Coherence Protocol built on instant updates and in-flight

chains has higher performance than traditional and predictive blocking protocols

with minimal channel ordering requirements as compared to prior non-blocking

protocols. In-flight chains can also be used to incorporate hierarchy in the tag-

directory organization in a race-free and scalable manner. Future work may explore

multi-socket cache coherence which is another communication bottleneck.

REFERENCES

Bailey, D. H. (Fall 1994). The NAS Parallel Benchmarks.

Bilir, E. E., Dickson, R. M., Hu, Y., Plakal, M., & Sorin, D. J. (1999). Multicast Snooping: A New Coherence

Method Using a Multicast Address Network. International Symposim on Computer

Architecture(ISCA).

Binkert, N., Beckmann, B., Black, G., Reinhardt, S., Saidi, A., Arkaprava, B., et al. (2011). The gem5

simulator. ACM SIGARCH Computer Architecture News, 39(2), 1-7.

Bronevetsky, G. G. (2009). CLOMP: Accurately Characterizing OpenMP Application Overheads.

International Journal of Parallel Programming.

Chaiken, D., Fields, C., Kurihara, K., & Agarwal, A. (1990). Directory-Based Cache Coherence in Large-

Scale Multiprocessors. Computer, 23(6), 49-58.

Chaudhuri, M., Hienrich, M., Holt, C., Singh, J. P., & Hennessy, J. (2003). Latency, Occupancy, and

Bandwidth in DSM Multiprocessors: A Performance Evaluation. IEEE Transactions on Computers,

52(7).

Cheng, L., Carter, J. B., & Dai, D. (2007). An Adaptive Cache Coherence Protocol Optimized for Producer-

Consumer Sharing. International Symposium on High-Performance Computer Architecture (HPCA).

International Symposium on High-Performance Computer Architecture.

Cox, A., & Fowler, R. (May 1993). Adaptive cache coherency for detecting migratory shared data.

International Symposium on Computer Architecture.

Dill, D. L. (1996). The Murphi Verification System. CAV.

Emer, J., Ahuja, P., Borch, E., Klauser, A., Luk, C., Manne, S., et al. (2002). Asim: A Performance Model

Framework. IEEE Computer.

Ferdman, M., Lotfi-Kamran, P., Balet, K., & Falsafi, B. (2011). Cuckoo Directory: A scalable Directory for

Many-Core Systems. International Symposium on High-Performance Computer Architecture (HPCA).

Gharachorloo, K., Sharma, M., Steely, S., & Van Doren, S. (2000). Architecture and Design of AlphaServer

GS320. International Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS). Architectural Support for Progragramming Languages and Operating Systems.

Graham, R., & Shipman, G. (2008). MPI Support for Multi-Core Architectures: Optimized Shared Memory

Collectives. European PVM/MPI Users' Group Meeting on Recent Advances in Parallel Virtual

Machine and Message Passing Interface .

Gustavson, D., & Li, Q. (1996). The Scalable Coherent Interface (SCI). IEEE Communications, 34(8), 52-63.

Hagersten, E., & Koster, M. (1999). WildFire: A Scalable path for SMPs . International Symposium on

High-Performance Computer Architecture (HPCA).

http://www.theregister.co.uk/2012/09/05/intel_xeon_phi_coprocessor/. (n.d.).

Jaleel, A., Mattina, M., & Jacob, B. (2006). Last Level Cache (LLC) Performance of Data Mining

Workloads On a CMP — A Case Study of Parallel Bioinformatics Workloads. International Symposium

on High-Performance Computer Architecture (HPCA).

Jeffers, J. (2012). Intel® Many Integrated Core Architecture: An Overview and Programming Models.

Johnson, R. E. (1993). PhD Thesis: Extending the Scalable Coherent Interface for Large-Scale Shared-

Memory Multiprocessors.

Kaxiras, S. G. (1996). The Glow Cache Coherence Protocol Extensions for widely shared data.

International Conference on Supercomputing.

Kaxiras, S., & Georgios, K. (2010). SARC Coherence: Scaling Directory Cache Coherence in Performance

and Power. IEEE Micro, 30(Sept 2010), 54-65.

Using Inflight Chains To Build A Scalable Cache Coherence Protocol

Kaxiras, S., & Goodman, J. (1999). Improving CC-NUMA performance using instruction-based prediction.

International Symposium on High-Performance Architecture (HPCA). International Symposium on

High-Performance Computer Architecture.

Kong, J., Yew, P.-c. Y., & Gyungho, L. (1999). A Non-blocking Directory Protocol for Large-Scale

Multiprocessors. University of Minnesota.

Ladan-Mozes, E., & Leiserson, C. (2008). A Consistency Architecture for Hierarchical Shared Caches.

Annual Symposium on Parallelism in Algorithms and Architectures (SPAA). ACM Symposium on

Parallelism in Algorithms and Architectures.

Laudon, J., & Lenoski, D. (1997). The SGI Origin: A ccNUMA Highly-Scalable Server. International

Symposium on Computer Architecture (ISCA). International Symposim on Computer Architecture.

Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W., Gupta, A., Hennessy, J., et al. (1992). The Stanford

Dash multiprocessor. Computer, 25(3), 63-79.

Maa, Y.-C. P. (1991, September). Two Economical Directory Schemes for Large-Scale Cache-Coherent

Multiprocessors. Computer Architecture News, pp. 10-18.

Martin, M. M., Harper, P. J., Sorin, D. J., Hill, M. D., & Wood, D. A. (2003). Using Destination-Set

Prediction to Improve the Latency/Bandwidth Tradeoff in Shared-Memory Multiprocessors.

International Symposium on Computer Architecture (ISCA). San Diego, CA.

Martin, M. M., Hill, M. D., & Sorin, D. J. (2012). Why On-Chip Cache Coherence is Here to Stay.

Communications of the ACM, 55, 78-89.

Martin, M. M., Hill, M. D., & Wood, D. A. (2003). Token Coherence: Decoupling Performance and

Correctness. International Symposium on Computer Architecture (ISCA).

Martin, M. M., Sorin, D. J., Hill, M. D., & Wood, D. A. (2002). Bandwidth Adaptive Snooping. International

Symposium on High-Performance Computer Architecture (ISCA).

Marty, M. R. (2008). Cache Coherence Techniques for Multi-core Processors. University of Wisconsin Ph.D.

Thesis.

Marty, M., & Hill, M. (2008). Virtual Hierarchies. International Symposium on Computer Architecture

(ISCA). IEEE Computer Society.

Marty, M., Bingham, J., Hill, M., Hu, A., Martin, M., & Wood, D. (2005). Improving Multiple- CMP

systems using Token Coherence. International Symposium on High Performance Computer

Architecture (HPCA).

Mukherjee, S. S., & Hill, M. D. (1998). Using Prediction to Accelerate Coherence Protocols. International

Symposium on Computer Architecture(ISCA). New York.

Nilsson, H. ,. (1992). The Scalable Tree Protocol - A Cache Coherence Approach for Large-Scale

Multiprocessors. International Symposium on Parallel and Distributed Computing.

Raghavan, A., Blundell, C., & Martin, M. M. (2008). Token Tenure: Patching Token Counting using

Directory Coherence. International Symposium on Microarchitecture (MICRO).

Rajamony, R., Shafi, H., Williams, D., & Wright, K. (n.d.). Chained Cache Coherency States For Sequential

Non-Homogeneous Access to a Cache Line .

Sanchez, D., & Kozyrakis, C. (2012). SCD: A Scalable Coherence Directory with Flexible Sharer Set

Encoding. Internationsla Symposium on High performance Computer Architecture (HPCA).

Singh, J., Wolf-Dietrich, W., & Gupta, A. (1992). SPLASH: Stanford Parallel Applications For Shared

Memory. Stanford University.

Wallach, D. (1992). PHD: A Hierarchical Cache Coherent Protocol.

Woo, S., Ohara, M., Torrie, E., Singh, J., & Gupta, A. (1995). The SPLASH-2 Programs: Characterization

and Methodological Considerations. International Symposium on Computer Architecture (ISCA).

Yang, Q., Thangadurai, G., & Bhuyan, L. (1992). Design of an adaptive cache coherence protocol for large

scale multiprocessors. IEEE Transactions on Parallel and Distributed Systems , 3.

Yongqin, H., Aidong, Y., Jun, L., & Xiangdong, H. (2009). A Novel Directory-Based Non-busy, Non-

blocking Cache Coherence . Computer Science-Technology and Applications (IFCSTA).

Zebchuk, J., Srinivasan, V., Qureshi, M., & Moshovos, A. (2009). A Tagless Coherence Directory.

International Symposium on Microarchitecture (MICRO). International Symposium on

Microarchitecture.

Zhang, M. L. (2010). Fractal Coherence: Scalably Verifiable Cache Coherence . International Symposium

on Microarchitecture.

