
Triggered Instructions: A Control Paradigm for
Spatially-Programmed Architectures

Angshuman Parashar† Michael Pellauer†
Michael Adler† Bushra Ahsan† Neal Crago† Daniel Lustig? Vladimir Pavlov. Antonia Zhai†�

Mohit Gambhir† Aamer Jaleel† Randy Allmon† Rachid Rayess. Stephen Maresh.

Joel Emer†‡
† VSSAD, . Intel Corporation ‡ CSAIL, MIT ? Princeton University � University of Minnesota

Hudson, MA 01749 Cambridge, MA 02139 Princeton, NJ 08544 Minneapolis, MN 55455

†.{angshuman.parashar, michael.i.pellauer, michael.adler, bushra.ahsan, neal.c.crago, vladimir.pavlov,
mohit.gambhir, aamer.jaleel, randy.allmon, rachid.e.rayess, stephen.maresh, joel.emer}@intel.com

?dlustig@princeton.edu �zhai@cs.umn.edu ‡emer@csail.mit.edu

ABSTRACT
In this paper, we present triggered instructions, a novel
control paradigm for arrays of processing elements (PEs)
aimed at exploiting spatial parallelism. Triggered instruc-
tions completely eliminate the program counter and allow
programs to transition concisely between states without
explicit branch instructions. They also allow efficient reac-
tivity to inter-PE communication traffic. The approach pro-
vides a unified mechanism to avoid over-serialized execu-
tion, essentially achieving the effect of techniques such as
dynamic instruction reordering and multithreading, which
each require distinct hardware mechanisms in a traditional
sequential architecture.

Our analysis shows that a triggered-instruction based spa-
tial accelerator can achieve 8× greater area-normalized per-
formance than a traditional general-purpose processor. Fur-
ther analysis shows that triggered control reduces the num-
ber of static and dynamic instructions in the critical paths
by 62% and 64% respectively over a program-counter style
spatial baseline, resulting in a speedup of 2.0×.

Categories and Subject Descriptors
C.1.3 [Computer Systems Organization]: Processor
Architectures—Other Architecture Styles

Keywords
Spatial Programming, Reconfigurable Accelerators

1. INTRODUCTION
Recently, SIMD/SIMT accelerators such as GPGPUs have

been shown to be effective as offload engines when paired
with general-purpose CPUs. This results in a complemen-
tary approach where the CPU is responsible for running the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA ’13 Tel Aviv, Israel
Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

operating system and irregular programs, and the accelera-
tor executes inner loops of uniform data-parallel code.

Unfortunately, not every workload exhibits sufficiently
uniform data parallelism to take advantage of the efficiencies
of this pairing. There remain many important workloads
whose best-known implementation involves asynchronous
actors performing different tasks, while frequently communi-
cating with neighboring actors. The computation and com-
munication characteristics of these workloads cause them to
map efficiently onto spatially-programmed architectures such
as field-programmable gate arrays (FPGAs). Furthermore,
a number of important workload domains exhibit such ker-
nels, such as signal processing, media codecs, cryptography,
compression, pattern matching and sorting. As such, one
way to boost the performance efficiency of these workloads
is to add a new spatially-programmed accelerator to the sys-
tem, complementing the existing SIMD/SIMT accelerators.

While FPGAs are very general in their ability to map the
compute, control and communication structure of a work-
load, their lookup table (LUT) based datapaths are deficient
in compute density compared to a traditional microproces-
sor — much less a SIMD engine. Furthermore, FPGAs
suffer from a low-level programming model inherited from
logic prototyping that includes unacceptably long compila-
tion times, no support for dynamic context-switching, and
often inscrutable debugging features.

Tiled arrays of coarse-grained ALU-style datapaths are
known to achieve higher compute density than FPGAs
[20, 13, 18]. A number of prior works [4, 12, 23] have
proposed spatial architectures with a network of ALU-
based processing elements (PEs) onto which operations are
scheduled in systolic or dataflow order, with limited or no
autonomous control at the PE level. Other approaches
incorporate autonomous control at each PE using a program
counter (PC) [24, 27, 21]. Unfortunately, as we will show,
PC sequencing of ALU operations introduces several ineffi-
ciencies when attempting to capture intra- and inter-ALU
control patterns of a frequently-communicating spatially-
programmed fabric.

In this paper, we present triggered instructions, a novel
control paradigm for ALU-style datapaths for use in arrays
of PEs aimed at exploiting spatial parallelism. Trig-

gered instructions remove the program counter completely,
instead allowing the processing element to concisely tran-
sition between states of one or more finite-state machines
(FSMs) without executing instructions in the datapath to
determine the next state. This also allows the PE to react
quickly to incoming messages on communication channels.
In addition, triggered instructions provide a unified mecha-
nism to avoid over-serialized execution, essentially achieving
the effect of techniques such as dynamic instruction reorder-
ing and multithreading, which each require distinct hard-
ware mechanisms in a traditional sequential architecture.

We evaluate the triggered-instruction approach by sim-
ulating a spatially-programmed accelerator on a range of
workloads. Our analysis for this set of workloads, which
span a range of algorithm classes not known to exhibit exten-
sive uniform data parallelism, shows that such an accelerator
can achieve 8× greater area-normalized performance than a
traditional general-purpose processor. We provide further
analysis of both a set of common control idioms and the
critical paths of the workload programs to illustrate how a
triggered instruction architecture contributes to this perfor-
mance gain.

2. BACKGROUND AND MOTIVATION

2.1 Spatial Programming Architectures
Spatial programming is a paradigm whereby an algo-

rithm’s dataflow graph is broken into regions, which are
connected by producer-consumer relationships. Input data
is then streamed through this pipelined graph. Ideally, the
number of operations in each stage is kept small, as perfor-
mance is usually determined by the rate-limiting step.

Just as vectorizable algorithms see large efficiency boosts
when run on a vector engine, workloads that are naturally
amenable to spatial programming can see significant boosts
when run on an enabling architecture. A traditional pro-
cessor would execute such programs serially over time, but
this does not result in any noticeable efficiency gain, and
may even be slower than other expressions of the algorithm.
A shared-memory multicore can improve this by mapping
different stages onto different cores, but the small number
of cores available relative to the large number of stages in
the dataflow graph means that each core must multiplex
between several stages, so the rate-limiting step generally
remains large.

In contrast, a typical spatial-programming architecture is
a fabric of hundreds of small processing elements (PE) con-
nected directly via an on-chip network. Given enough PEs,
an algorithm may be taken to the extreme of mapping a
single operation in the kernel’s dataflow graph to each PE,
resulting in a very fine-grained pipeline. This is the approach
taken by a number of reconfigurable architectures.

FPGAs are the most successful spatially-programmed
reconfigurable architecture in use today. FPGAs are
designed to emulate a broad range of logic circuits because
they are primarily targeted at ASIC prototyping and
replacement. Consequently, they use very fine-grain recon-
figurable elements such as lookup tables (LUTs) [6, 17]. The
LUTs are chained into larger operations using flexible-but-
expensive on-chip networks. This generality limits the clock
speed at which mapped designs can be run.

FPGAs also suffer from a low-level programming model
due to its roots in logic prototyping. The generality and

PE PE ... PE

if (incoming > cur)
 send(cur); cur := incoming;
else
 send(incoming);

cur = 27 cur = 17 cur undef

32 12 14 83 5 ...

Figure 1: Example of a spatially-programmed sort.

fine-granularity of LUTs and the interconnection network
creates a large search space of solutions for place and route
algorithms, leading to unacceptably long compilation times.
Reprogramming an FPGA is also a slow process and is at
odds with the rapid context-switches that a reconfigurable
logic accelerator would be expected to support.

When using reconfigurable architectures for direct algo-
rithmic acceleration instead of logic prototyping, these issues
can be partially addressed by the observation that the
class of operations that the reconfigurable architecture needs
to cover is more limited—particularly when used in con-
junction with a traditional CPU. As observed by several
efforts [20, 13, 18], this limited class of operations cre-
ates opportunities to achieve higher area density and bet-
ter power/performance efficiency than conventional FPGAs
while retaining sufficient flexibility. This has led to several
proposals [4, 21, 24, 23, 20, 13, 18] that use an array of
coarser-grained multi-bit ALUs as the datapath of PEs in a
spatially-programmed architecture.

Within the domain of array-of-ALU approaches is a class
of architectures that do not feature any autonomous control
mechanism inside each ALU. These architectures are either
purely systolic [16], statically map only one operation per
ALU [12], or schedule operations onto the ALUs in strict
dataflow order [4]. These architectures rely on being able
to transform control flow graphs into predicated dataflow
graphs. Such approaches are effective at mapping the con-
trol structures of a subset of problems, but do not approach
the flexibility or generality of architectures with internal
autonomous control at each PE. Another class of propos-
als calls for general autonomously-controlled PEs [24, 27,
21] using variants of the existing PC-based control model.
The PC-based control model has historically been the best
choice for standalone CPUs that run arbitrary and irregular
programs. In the remainder of this section, we demonstrate
that PC-based control introduces unacceptable inefficiencies
in the context of spatial programming.

2.2 Spatial Programming Example
As a concrete example, let us explore how a well-known

workload can benefit from spatial programming. Consider
the simple spatially-mapped sorting program shown in Fig-
ure 1. In this approach, the worker PEs communicate in a
straight pipeline. The unsorted array is streamed in by the
first PE. Each PE simply compares the incoming element
to the largest element seen so far. The larger of the two
values is kept, and the smaller sent on. Thus after process-
ing k elements worker 0 will be holding the largest element,
and worker k − 1 the smallest. The sorted result can then
be streamed out to memory through the same straightline
communication network.

PE PE ... PE

if (listA > listB ||
 (listA.finished && !listB.finished))
 send(listB);
else if (!listA.finished)
 send(listA);

22 14 83 5 ...

2
4

6

.
.
.

.
.
.

.
.
.

PE

for x = 1..NPASSES
 for y = 1..k
 // control loop

32

1
1

3
0

1
1

7
2

1
0

8
8

1
4

Figure 2: A more realistic spatial merge sort.

This example represents a limited toy workload in many
ways—it requires k PEs to sort an array of size k, and worker
0 will do k−1 comparisons while worker k−1 will only do 1
(an insertion sort, with a total of k2 comparisons). However,
despite its naivete this workload demonstrates some remark-
able properties. First, the peak utilization of the system is
quite good—in the final step all k datapaths can simulta-
neously execute a comparison. Second, the communication
between PEs is local and parallel—on a typical mesh fabric
it is easy to map this workload so that no network con-
tention will ever occur. Finally—and most interestingly—
this approach sorts an array of size k with exactly k loads
and k stores. The loads and stores that a traditional CPU
must use to overcome its relatively small register file are
replaced by direct PE-to-PE communication. This reduc-
tion in memory operations is critical in understanding the
benefits of spatial programming. We have been able to char-
acterize the benefits as follows:

• Direct communication uses roughly 20× lower power
than communication through an L1 cache, as the over-
heads of tag matching, load-store queue search, and
large data array read are removed.

• Cache coherence overheads, including network traffic
and latency are likewise removed.

• Reduced memory traffic lowers cache pressure, which
in turn increases effective memory bandwidth for
remaining traffic.

Finally, it is straightforward to expand our toy example
into a realistic merge sort engine able to sort a list of any
size (Figure 2). First, we begin by programming a PE into a
small control FSM that handles breaking the array into sub-
arrays of size k and looping. Second, we slightly change the
worker PEs’ programming so that they are doing a merge
of two distinct sorted sub-lists. With these changes our toy
workload is now a radix k merge sort capable of sorting
a list of size n in n ∗ logk(n) loads. Because k can be in
the hundreds for a reconfigurable fabric, the benefits can be
quite large. In our experiments we observed 17× fewer mem-
ory operations compared to a general-purpose CPU and an
area-normalized performance improvement of 8.8× (Section
5), which is better than the currently best-known GPGPU
performance [19].

2.3 Limitations of PC-based Control
To illustrate the inefficiencies of program counters in the

spatial programming context, let us code the merge sort PE
shown in Figure 2. We must first address the representation
of the queues that pass the sorted sub-lists between work-

check_a: beqz %in0.notEmpty, check_a // listA

check_b: beqz %in1.notEmpty, check_b // listB

check_o: beqz %out0.notFull, check_o // outList

beq %in0.tag, EOL, a_done

beq %in1.tag, EOL send_a

cmp.lt %r0, %in0.first, %in1.first

bnez %r0, send_a

send_b: enq %out0, %in1.first

deq %in1

jump check_a

send_a: enq %out0, %in0.first

deq %in0

jump check_a

a_done: beq %in1.first, EOL, done

jump send_b

done: deq %in0

deq %in1

return;

Static Insts 18
Avg Insts/Iteration 10
Avg Branches/Iteration 7

Figure 3: PC+RegQueue ISA merge sort worker
representation using register-mapped queues.

ers. In a multicore system, the typical approach is to use
shared memory for the queue buffering, along with sophis-
ticated polling mechanisms such as memory monitors. In a
spatially-programmed fabric, having hundreds of PEs com-
municating using shared memory would create unacceptable
bandwidth bottlenecks—in addition to increased overheads
of pointer chasing, address offset arithmetic, and head/tail
occupancy comparisons. Thus shared memory communica-
tion queues are not considered in this paper.

Instead, let us assume that the ISA directly exposes data
registers and status bits corresponding to direct commu-
nication channels between PEs. The ISA must contain a
mechanism to query if the input channels are not empty,
and output channels are not full, to read the first ele-
ment, and to enqueue and dequeue. Furthermore we add
an architecturally-visible tag to the channel that merge sort
uses to indicate that the end of a sorted sub-list has been
reached (EOL). A representation of the merge sort in this
theoretical assembly language is given in Figure 3. Several
inefficiencies are immediately noticeable. First, it uses active
polling to test the queue status, an obvious power waste.
Second, it falls victim to over-serialization. For example,
if new data on listA arrives before that on listB there is
no opportunity to begin processing the listA-specific part
of the code. Finally, the code is quite branch-heavy when
compared to that typically found on a traditional core, and
some of these branches are hard to predict.

In order to be fair to this PC-based ISA we must try to
improve the architecture somehow. Table 1 summarizes the
techniques that we explore below.

One idea to improve queue accesses is to allow destruc-
tive reads of input channels. In such an ISA the SRC fields
of the instruction are supplemented with a bit indicating
whether a dequeue is desired. This is an important improve-
ment because it reduces both static and dynamic instruction
count. Merge sort’s implementation on this architecture can
remove 3 instructions compared to Figure 3.

The next idea is to replace the active polling with a

Feature Description Notes

PC (Baseline) PEs use program counters, communicate using shared-memory queues. High latency, bottlenecks.
+RegQueue Expose register-mapped queues to ISA, test via active polling. Poor power efficiency.
+FusedDeq Destructive read of queue registers without separate instructions. Good improvement.
+RegQSelect Allow indirect jump based on register queue status bits. Minimal improvement.
+RegQStall Issue stalls on queue input/output registers without special instructions. Bubbles, over-serialization.
+QMultiThread Stalling on empty/full queue yields thread. Significant additional hardware.
+Predication Predicate registers that can be set using queue status bits. Boolean expressions don’t compose.
+Augmented ISA augmented with all of the above features except +QMultiThread. Used in our evaluations (Section 5).

Table 1: Adding features to a PC-based ISA to improve efficiency for spatial programming.

start: beq %in0.tag, EOL, a_done

beq %in1.tag, EOL, send_a

cmp.ge p2, in0.first, in1.first

send_b: (p2) enq %out0, %in1.first (deq %in1)

send_a: (!p2) enq %out0, in0.first (deq %in0)

jump start

a_done: cmp.ne p2, %in1.first, EOL

(p2) jump send_b

nop (deq %in0, deq %in1)

return;

Static Insts 9
Avg Insts/Iteration (Issued) 6
Avg Insts/Iteration (Committed) 5
Avg Branches/Iteration 3
Speedup vs PC+RegQueue (Fig 3) 1.4×

Figure 4: PC+Augmented ISA merge sort worker.

select—an indirect jump based on queue status bits. This is
a marginal improvement in instruction count but does not
help power efficiency. A better idea is to add implicit stalling
to the ISA. In this case the queue registers such as %in0

would be treated specially—any instruction that attempts
to read/write them would require the issue logic to test the
empty/full bits and delay issue until the status becomes cor-
rect. Merge sort’s implementation on this architecture is the
same as in Figure 3, but removes the first three instructions
entirely.

Of course, the downside of this is that the ALU will not
be used when the PE is stalled. Therefore the next logical
extension is to consider a limited form of multi-threading.
In this ISA any read/write of a queue would make the
thread eligible to be switched out and replaced with a ready
one. This is a promising approach, but we believe that the
overheads associated with it—duplication of state resources,
additional muxing, and scheduling fairness—run counter to
the fundamental spatial-architecture principle of replicating
simple PEs. In other words, the cost-to-benefit ratio of mul-
tithreading is unattractive. We reject out-of-order issue for
similar reasons.

The final ISA extension we consider is predication. We
define a variant of our ISA that is able to test and set a
dedicated set of boolean predicate registers. Figure 4 shows
a re-implementation of the merge sort worker in a language
with predication, implicit stalling, and destructive reads. It
is interesting to note how little predication improves the
control flow of the example. This is because of several limi-
tations:

• Instructions are unable to read multiple predicate reg-
isters at once (inefficient conjunction).

• Composing multiple predicates into more complex
boolean expressions (disjunctions, etc) must be done
using the ALU itself.

• Jumping between regions requires that the predicate
expectations be set correctly. (Note that the branch
from a_finished is forced to use p2 with a positive
polarity.)

• Predicated false instructions introduce bubbles into
the pipeline (Section 4).

Taken together, these inefficiencies mean that conditional
branching remains the most efficient way to express the
majority of the code in Figure 4. While we could continue to
try to add features to PC-based schemes in order to improve
efficiency, in the remainder of the paper we demonstrate that
taking a different approach altogether can efficiently address
these issues while simultaneously removing over-serialization
and providing the benefits of multi-threading.

3. TRIGGERED INSTRUCTIONS
A large degree of the inefficiency discussed in the pre-

vious section stems from the issue of efficiently composing
boolean control flow decisions. In order to overcome this,
we draw inspiration from the historical computing paradigm
of guarded actions, a field that has a rich technical her-
itage including Dijkstra’s language of guarded commands
[8], Chandy and Misra’s Unity [5], and the Bluespec hard-
ware description language [3].

Computation in a traditional guarded action system is
described using rules composed of actions — state transi-
tions — and guards — boolean expressions that describe
when a certain action is legal to apply. A scheduler is
responsible for evaluating the guards of the actions in the
system and posting ready actions for execution, taking into
account both inter-action parallelism and available execu-
tion resources. Algorithm 1 illustrates our merge sort worker
in traditional guarded action form. Note how this paradigm
naturally separates the representation of data transforma-
tion (via actions) from the representation of control flow (via
guards). Additionally, the inherent side-effect-free nature of
the guards means that they are a good candidate for parallel
evaluation by a hardware scheduler.

A triggered instruction architecture (TIA) applies this con-
cept directly to controlling the scheduling of operations on
a PE’s datapath at an instruction-level granularity. In the
historical guarded action programming paradigm, arbitrary
boolean expressions are allowed in the guard, and arbitrary
data transformations can be described in the action. To
adapt this concept into an implementable ISA, both must
be bounded in complexity. Furthermore, the scheduler must
have the potential for efficient implementation in hardware.
To this end, we define a limited set of operations and state
updates that can be performed by the datapath (instruc-
tions) and a limited language of boolean expressions (trig-
gers) built from a variety of possible queries on a PE’s archi-
tectural state.

Algorithm 1 Traditional Guarded Action Merge Sort Worker

rule sendA
when listA.first() != EOL && listB.first() != EOL &&
listA.data < listB.data do

outList.send(listA.first()); listA.deq();
end rule
rule sendB
when listA.first() != EOL && listB.first() != EOL &&
listA.data >= listB.data do

outList.send(listB.first()); listB.deq();
end rule
rule drainA
when listA.first() != EOL && listB.first() == EOL do

outList.send(listA.first()); listA.deq();
end rule
rule drainB
when listA.first() == EOL && listB.first() != EOL do

outList.send(listB.first()); listB.deq();
end rule
rule bothDone
when listA.first() == EOL && listB.first() == EOL do

listA.deq(); listB.deq();
end rule

The architectural state of our proposed TIA PE is com-
posed of the following elements:

• A set of data registers (R/W).
• A set of predicate registers (R/W).
• A set of input-channel head elements (R-only).
• A set of output-channel tail elements (W-only).

Each channel has three components — data, a tag and
a status predicate that reflects whether an input channel is
empty or an output channel is full. Tags do not have any
special semantic meaning — the programmer can use them
in a variety of ways.

A trigger is a programmer-specified boolean expression
formed from the logical conjunction1 of a set of queries on
the PE’s architectural state. Triggers are evaluated by a
hardware scheduler (described shortly). The set of allow-
able trigger query functions are carefully chosen to main-
tain scheduler efficiency while allowing for a large degree of
generality in the useful expressions. These query functions
are:

• Predicate Register Values (optionally negated):
A trigger can specify a requirement for one or more
predicate registers to be either true or false, e.g., p0
&& !p1 && p7.

• Input/Output Channel Status (implicit): The
scheduler implicitly adds the empty status bits for each
operand input channel to the trigger for an instruction.
Similarly, a not-full check is implicitly added to each
output channel an instruction attempts to write. The
programmer does not have to worry about these condi-
tions, but must understand while writing code that the
hardware will check them. This facilitates convenient,
fine-grained, producer/consumer interaction.

• Tag Comparisons against Input Channels: A
trigger may specify a value that an input channel’s
tag must match, e.g., in0.tag == EOL.

An instruction represents a set of data and predicate com-
putations on operands drawn from the architectural state.

1Although the architecture natively allows only conjunctions in
trigger expressions, disjunctions can be emulated by creating a
separate triggered instruction for each disjunctive term.

doCheck:

when (!p0 && %in0.tag != EOL

&& %in1.tag != EOL) do

cmp.ge p1, %in0.data, %in1.data (p0 := 1)

sendA:

when (p0 && p1) do

enq %out0, %in0.data (deq %in0, p0 := 0)

sendB:

when (p0 && !p1) do

enq %out0, %in1.data (deq %in1, p0 := 0)

drainA:

when (%in0.tag != EOL && %in1.tag == EOL) do

enq %out0, %in0.data (deq %in0)

drainB:

when (%in0.tag == EOL && %in1.tag != EOL) do

enq %out0, %in1.data (deq %in1)

bothDone:

when (%in0.tag == EOL && %in1.tag == EOL) do

nop (deq %in0, deq %in1)

Static Insts 6
Avg Insts/Iteration 2
Speedup vs PC+RegQueue (Fig 3) 5×
Speedup vs PC+Augmented (Fig 4) 3×

Figure 5: Triggered instruction merge sort worker.

Instructions selected by the scheduler are executed on the
PE’s datapath. An instruction has the following read, com-
pute and write capabilities:

• An instruction may read a number of operands, each
of which can be data at the head of an input channel,
a data register, or the vector of predicate registers.

• An instruction may perform a data computa-
tion using one of the standard functions provided
by the datapath’s ALU. It may also generate one
or more predicate values that are either constants
(true/false) or derived from the ALU result via a lim-
ited set of datapath-supported functions, e.g., reduc-
tion AND, OR and XOR operations, bit extractions,
ALU flags such as overflow, etc.

• An instruction may write the data result and/or
the derived predicate result into a set of destinations
within the architectural state of the PE. Data results
can be written into the tail of an output channel, a data
register, or the vector of predicate registers. Predicate
results can be written into one or more predicate reg-
isters.

Figure 5 shows our merge sort expressed using trig-
gered instructions. Note the density of the trigger control
decisions—each trigger reads at least two explicit boolean
predicates. Additionally, conditions for the queues being
notEmpty or notFull are recognized implicitly. Only the
comparison between the actual multi-bit queue data val-
ues is done using the ALU datapath, as represented by the
doCheck instruction. Predicate p0 is used to indicate that
the check has been performed, while p1 holds the result
of the comparison. Note also the lack of over-serialization.
Only the explicitly programmer-managed sequencing using
p0 is present.

An example TIA PE is illustrated in Figure 6. The PE is
pre-configured with a static set of instructions. The triggers
for these instructions are then continuously evaluated by a

dedicated hardware scheduler that dispatches legal instruc-
tions to the datapath for execution. At any given scheduling
step, the trigger for zero, one, or more instructions can eval-
uate to true. The guarded action model — and by extension
our triggered instruction model — allows all such instruc-
tions to fire in parallel subject to datapath resource con-
straints and conflicts.

Figure 6: A triggered-instruction based PE.

The high-level microarchitecture of a TIA hardware sched-
uler is shown in Figure 7. The scheduler uses standard com-
binatorial logic to evaluate the programmer-specified query
functions for each trigger based on values in the architectural
state elements. This yields a set of instructions that are eli-
gible for execution, among which the scheduler selects one
or more depending on the datapath resources available. The
example shown in this figure illustrates a scalar data-path
that can only fire one instruction per cycle, therefore the
scheduler selects one out of the available set of ready-to-fire
instructions using a priority encoder.

Datapath

P

P P

P P

P P

P P

P P

P

Trigger
Resolution

Priority Encoder

Trigger Instruction

Triggered Instruction

Channel Status Tags

Instruction Ready

Predicate
Registers

Predicate Updates

Trigger Instruction
Trigger Instruction
Trigger Instruction
Trigger Instruction
Trigger Instruction
Trigger Instruction
Trigger Instruction

Execute

Figure 7: Microarchitecture of a TIA scheduler.

As with any architecture, a triggered-instruction archi-
tecture is subject to a number of parameterization options
and their associated cost-vs-benefit tradeoffs. Architectural
parameters include the number of instances of each class of
architectural state element (data registers, predicate regis-
ters, etc.), the set of data and predicate functions supported
by the datapath, the scope and flexibility of the trigger func-
tions, and the number of input operands and output desti-
nations. The design space of microarchitectural alternatives

Sources per Instruction 2
Registers 8
Predicates 8
Max Triggered Instructions per PE 16

Table 2: Example PE Architecture Parameters.

includes scheduler implementation choices, scalar vs. super-
scalar datapaths, pipelining strategies, etc. An exhaustive
investigation of the entire design space is outside the scope
of this work. To provide the reader with some intuition
on what a reasonably balanced TIA PE could look like, we
provide an example architectural configuration in Table 2.
This is also the configuration we use for our evaluation in
Section 5.

3.1 Observations on the Triggered Model
Having defined the basic structure of a triggered instruc-

tion architecture, we are now in a position to make some key
observations:

• A TIA PE does not have a program counter or any
notion of a static sequence of instructions. Instead,
there is a limited pool of triggered instructions that
are constantly bidding for execution on the datapath.
This fits very naturally into a spatial programming
model where each PE is statically configured with a
small pool of instructions instead of streaming in a
sequence of instructions from an instruction cache.

• Observe that there are no branch or jump instructions
in the triggered ISA—every instruction in the pool is
eligible for execution if its trigger conditions are met.
Thus, every triggered instruction can be viewed as a
multi-way branch into a number of possible states in
an FSM.

• With clever use of predicate registers, a TIA can
be made to emulate the behavior of other control
paradigms. For example, a sequential architecture can
be emulated by setting up a vector of predicate reg-
isters to represent the current state in a sequence—
essentially, a program counter. Predicate registers can
also be used to emulate classic predication modes,
branch delay slots and speculative execution. Trig-
gered instructions is a superset of many traditional
control paradigms. The cost of this generality is sched-
uler area and timing complexity, which imposes a
restriction on the number of triggers (and thus, the
number of instructions) that the hardware can monitor
at all times. While this restriction would be crippling
for a temporally programmed architecture, it is rea-
sonable in a spatially-programmed framework because
of the low number of instructions typically mapped to
a pipeline stage in a spatial workload.

• The hardware scheduler is built from combinatorial
logic — it simply is a tree of AND gates. This means
that only the state equations that require re-evaluation
will cause the corresponding wires in the scheduler
logic to swing and consume dynamic power. In the
absence of channel activity or internal state changes,
the scheduler does not consume any dynamic power
whatsoever. The same control equations would have
been evaluated using a chain of branches in a PC-based
architecture.

A) Seq Composition B) Par Composition
(autonomous) (autonomous)

n
 o

p
s ...{

C) Control Dependence D) Loop (k iterations)

n
 o

p
s

...

E) Nested Loop F) Seq Composition
(k iterations per level) (queue input)

n
op

s

...

m
 le

ve
ls

...

NA D.ops

TATB

B

A

NB D.ops

G) Par Composition H) Par Composition
(queue input) (queue output)

NA D.ops

TA TB

BA
NB D.ops

NA D.ops

TA TB

BA
NB D.ops

Idiom Legend

Idiom PC+RegQueue PC+Augmented Triggered Instructions TI Advantage
over

PC+Augmented
(A) D.ops = n D.ops = n D.ops = n -

(serialized) (serialized) (serialized)
(B) D.ops = n D.ops = n D.ops = n eliminates

(serialized) (serialized) (unordered) serialization

(C) D.ops = m or n + 1† D.ops = m or n + 1† D.ops = m or n + 1† eliminates
C.ops = 1 F.ops = m or n C.ops = 0; F.ops = 0 m or n F.ops

† 1 comparison † 1 comparison † 1 comparison

(D) D.ops = n ∗ k + k† D.ops = n ∗ k + k† D.ops = n ∗ k + k† eliminates
C.ops = k C.ops = k C.ops = 0 k C.ops

† k comparisons † k comparisons † k comparisons
(E) D.ops = km ∗ n D.ops = km ∗ n D.ops = km ∗ n

+ k(km−1)
(k−1)

†
+ k(km−1)

(k−1)

†
+ k(km−1)

(k−1)

†
eliminates

C.ops = k(km−1)
(k−1)

C.ops = k(km−1)
(k−1)

C.ops = 0 k(km−1)
(k−1)

C.ops

† k(km−1)
(k−1)

comparisons † k(km−1)
(k−1)

comparisons † k(km−1)
(k−1)

comparisons

(F) D.ops = NA + NB D.ops = NA + NB D.ops = NA + NB

Q.ops = 2 Q.ops = 0 Q.ops = 0 -
wait = TA + max(TB − TA −NA, 0) wait = TA + max(TB − TA −NA, 0)

(G) D.ops = NA + NB D.ops = NA + NB D.ops = NA + NB

Q.ops = 2 Q.ops = 0 Q.ops = 0
wait = if (TA > TB) wait = if (TA > TB) if (TA > TB)

TA TB + max(TA − TB −NB , 0) min(NB , TA − TB)
(serialized A → B) else else wait filled

TA + max(TB − TA −NA, 0) TA + max(TB − TA −NA, 0)
(serialized A → B)

(H) D.ops = NA + NB D.ops = NA + NB D.ops = NA + NB

Q.ops = 2 Q.ops = 0 Q.ops = 0
wait = if (TA > TB) wait = if (TA > TB) if (TA > TB)

TA TB + max(TA − TB −NA, 0) min(NA, TA − TB)
else else wait filled

(serialized A → B) TA + max(TB − TA −NB , 0) TA + max(TB − TA −NB , 0)
(serialized A → B)

D.ops = data ops, C.ops = control ops, Q.ops = queue ops, F.ops = predicated false ops, wait = serialization penalty
autonomous = internal activities of a PE, queue = PE responding to external events, Ti = time of channel availability

Table 3: Dynamic instruction cost of common spatial programming control idioms.

4. EVALUATION: CONTROL IDIOMS
In this section we evaluate the quantitative benefit of

triggered instructions by examining a number of con-
trol idioms that arise frequently in spatially-programmed
workloads. Table 3 compares implementations of each
idiom on a triggered architecture to implementations
on the PC+RegQueue and PC+Augmented architectures
described in Section 2.

From this table we see some general patterns emerging.
First, TI is never less efficient than a PC-based approach,
i.e. it never requires more instructions. Second, TI removes
all control operations such as branches. In a classic PC-
based setting, the accepted rule of thumb is that about 1
in every 4-5 instructions is a branch [10]. In this setting
TI’s expected benefit would be around 20%. However in
Section 5.3 we demonstrate that the fine-grained producer-
consumer nature of spatially-programmed codes means that
control makes up 44% of all operations, which increases the
benefit of TI significantly.

Finally, TI removes the over-serialization problem pre-
sented in Section 2.3. This has several benefits, but they
are harder to quantify directly. First, as the equations in
Table 3 rows G-I demonstrate, there are certainly scenarios
where over-serialization results in no penalty because the
data arrives in the order that matches the static sequence
chosen by the compiler. If the compiler can precisely sched-
ule cross-PE data delivery rates then it is possible that this
deficiency will never be exposed. In practice, the numer-
ous sources of variable dynamic latency (memory hierarchy,
network contention, data-dependent divergence, etc.) mean
that there is plenty of opportunity to take advantage of the
ability to break over-serialization.

Breaking over-serialization can be accomplished by find-
ing independent operations. These can be found from two
sources. The first source is local parallelism in the PE’s

dataflow graph, in which case computation can start as the
data arrives, i.e., classical dynamic instruction reordering.
The second source arises when the spatial compiler chooses
to place unrelated sections of the overall algorithm dataflow
graph onto a single PE, statically partitioning the regis-
ters between them and statically interleaving operations, i.e.
compiler-directed multithreading. On a PC-based architec-
ture, the serialization restriction is a significant barrier to a
compiler’s ability to statically partition one thread of con-
trol between unrelated sections of a single algorithm. The
dynamic data production/consumption rates must be known
to schedule the code—both for efficiency, and to avoid dead-
lock. On a TI architecture we expect compiler-directed mul-
tithreading of non rate-limiting PEs to be a common and
important optimization.

To reiterate these benefits, since a TI architecture does
not impose any ordering between instructions unless explic-
itly specified, it can gain the ILP benefits of an out-of-
order issue processor without the expensive instruction win-
dow and reorder buffer. Simultaneously, a TI machine can
take advantage of multi-threading without duplicating data
and control state, but by the compiler partitioning resources
as it sees fit. Of course there is a hardware cost associated
with this benefit—the TI PE must have a scheduler (see Fig-
ure 7) that can efficiently evaluate the program’s triggers.

5. EVALUATION: WORKLOADS

5.1 Approach
The objective of our quantitative evaluation in this section

is twofold:

1. To demonstrate the effectiveness of a TIA-based
spatial architecture compared to a traditional high-
performance sequential architecture.

2. To demonstrate the benefits of using TIA-based PEs in
a spatial architecture compared to PC-based PEs using
the PC+RegQueue and PC+Augmented architectures
described in Section 2.

The main challenge with the first objective is that raw
performance of a spatial accelerator is a function of area
and memory bandwidth allocated to the accelerator, and
parallelism available in the workload. Because spatial work-
loads generally exhibit good scalability, providing raw per-
formance requires assessing a particular design point with
a specific set of area/bandwidth values. However, since the
purpose of this paper is to present a control paradigm for
spatial architectures in general, we instead present perfor-
mance numbers area-normalized against a typical host pro-
cessor – namely a single 3.4 GHz out-of-order superscalar
IntelR© CoreTM i7-2600 core.

Our evaluation fabric is a scalable spatial architecture
built from an array of TIA PEs organized into blocks, which
form the granularity of replication of the fabric. Each block
contains a grid of interconnected PEs, a set of scratchpad
slices distributed across the block, a private L1 cache, and
a slice of a shared L2 cache that scales with the number of
blocks on the fabric. Figure 8 provides an illustration of
a block and the parameters that we use in our evaluation.
Note that our evaluation PEs use 32-bit integer/fixed-point
datapaths and do not include hardware floating point units
(which is orthogonal to triggered instructions and beyond
the scope of this evaluation). Area estimates of each PE
were obtained via implementation feasibility analysis dis-
cussed further in Section 5.4. Area estimates for the caches,
register files, multipliers, and on-chip network were added
using existing industry results. As a reference, 12 blocks
(each including PEs, caches, etc.) are about the same size
as our baseline i7-2600 core (including L1 and L2 caches),
normalized to the same technology node.

We developed a detailed cycle-accurate performance
model of our spatial accelerator using Asim, an established
performance modeling infrastructure [9]. We model the
detailed microarchitecture of each TIA PE in the array,
the mesh interconnection network, L1 and L2 caches, and
DRAM.

We evaluate our spatial fabric on application kernels from
a variety of domains. We do this under the assumption
that the computationally-intensive portions of the workload
will be offloaded from the main processor, which will handle
peripheral tasks like setting up the memory and handling
rare-but-slow cases. As a baseline we used sequential soft-
ware implementations running on the i7-2600 host processor.
When possible, we chose existing optimized workload imple-
mentations. In other cases, we auto-vectorized the work-
load using the IntelR© C/C++ compiler (icc) version 13.0,
enabling processor-specific ISA extensions.

For our second evaluation objective, we analyze how much
of the overall speedup benefit is attributable to triggered
instructions (as opposed to spatial programming in general)
using the same framework described above. We demon-
strate this by examining the critical loops that form the
rate-limiting steps in the spatial pipeline of our workloads.
We implemented the loops on spatial accelerators using the
traditional program-counter based approaches. This anal-
ysis demonstrates how frequently the triggered instruction
control idiom advantage presented in Table 3 translates to
practical improvements.

Scratchpad
Slices

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

L1 Cache

L2 Cache Slice

PEs 32
Network Mesh (1 cycle link latency)

Scratchpad 8KB (distributed)
L1 Cache 4KB (4 banks, 1KB/bank)
L2 Cache 24 KB shared slice

DRAM 200 cycle latency
Estimated Clock Rate 2 GHz

Figure 8: Block Illustration and Parameters.

5.2 Evaluation Application Kernels
For our analysis we have purposely chosen workloads span-

ning the space of data parallelism, pipeline parallelism, and
graph parallelism. Table 4 presents an overview of the cho-
sen kernels.

The triggered instruction versions of these kernels we
implemented directly in our PE’s assembly language and
hand-mapped spatially across our fabric. (In the future
we expect this to be done by automated tools from higher-
level source code.) We offer these insights on the workloads’
amenability to spatial programming:

• AES-CBC: Encryption with cipher-block chaining
implemented using a memoized table in which byte
substitution is performed. The algorithm is performed
on a 4x4 grid of 8 bits apiece. One PE is responsible for
providing the computation for a single byte, exposing
16-way parallelism.

• Dense Matrix Multiply: We adapt the SUMMA
algorithm [11] by blocking problem size to the fab-
ric. Input data is pipelined through loader PEs. Each
worker PE operates on an 8*8 resultant matrix.

• KMP String Search: We adapt the Knuth-Morris-
Pratt (KMP) [15] string search algorithm by slicing
the text string into small segments and distributing it
across a large number of PE workers. Another set of
PEs are configured as pattern state machine generators
and servers. A spatial implementation is able to slide
the string window by simply rotating the logical order
of the workers, discarding the block of text from the
oldest worker and shifting in a new block in its place.

• FFT: We adapt a Fast Fourier Transform by block-
ing the complex-multiply butterfly structure into a size
specific to our number of PEs. A control FSM re-uses
this block to compose an FFT of arbitrary size.

• Flow Classifier: Network packet masking is paral-
lelized by allocating different segments of the packet
to different PEs. The hash key calculation is pipelined
through a large number of PEs. The final comparison
for matching flows is parallelized by processing multi-
ple segments of the flow in parallel on multiple PEs.

• Graph500-BFS: The graph500 benchmark is meant
to span multiple nodes of a supercomputer. We sim-
ulate what a single node would look like if enhanced
with a spatial accelerator. We are able to pipeline the
loading, testing, and updating of the nodes to expose
a large number of in-flight memory requests.

Workload Berkeley Dwarf [2] Domain Comparison Software Implementations

AES-CBC Combinational Logic Cryptography Intel reference using AES - ISA extensions
KMP String Search Finite State Machines Various Non-public optimized implementation
Dense Matrix Multiply Dense Linear Algebra Scientific Computing IntelR© MKL library implementation [11]
FFT Spectral Methods Signal Processing FFT-W with auto-vectorization
Graph500-BFS Graph Traversal Supercomputing Non-public optimized implementation
k-means Clustering Dense Linear Algebra Data mining MineBench implementation with auto-vectorization
Merge Sort Map/Reduce Databases Non-public optimized implementation
Flow classifier Finite State Machines Networking Non-public optimized implementation
SHA-256 Combinational Logic Cryptography Intel reference (x86 assembly)

Table 4: Target Workloads for Evaluation.

• k-means Clustering: Our implementation maps the
Euclidean distance function for a single cluster to a PE.
Input data, along with the current nearest cluster, is
streamed through the PEs in order to compare against
all clusters.

• Merge Sort: Described previously in Section 2.2.
• SHA-256: The tight inner-loop is spatially mapped

across PEs, with each function being mapped to a sep-
arate PE. Key generation is parallelized.

5.3 Performance Results
Figure 9 demonstrates the magnitude of performance

improvement that can be achieved from using a spatially-
programmed accelerator. Across our workloads, we observe
area-normalized speedup ratios ranging from 3× (FFT) to
around 22× (SHA-256) compared to the performance of the
traditional core, with a geometric mean of 8×.

Now let us analyze how much of this benefit is attributable
to the use of triggered instructions by comparing the
rate-limiting inner loops of our workloads to implementa-
tions on spatial architectures using the PC+RegQueue and
PC+Augmented control schemes.

Table 5 shows the average frequency of branches in the
dynamic instruction stream for the PC-based spatial archi-
tectures. The branch frequency ranges from 8% to 70%, with
an average of 50%. These inner loops are all very branchy
and dynamic—far more than traditional sequential code.

This dynamism manifests itself as additional control
cycles for both PC-based architectures, as shown in Fig-
ure 10. This figure shows the dynamic execution cycles for
all architectures broken down into cycles spent on operations
in each category defined in in Section 4. The cycle counts are
all normalized to the number of D.ops (Data Computation
operations) executed by PC+RegQueue. We augment this
data with Figures 11 and 12, which respectively show the
static and dynamic (average) instruction/op counts in the
inner loops of rate-limiting steps for each workload. The
data in these figures demonstrates that the control idiom
efficiencies presented in Table 3 are applicable to real-world
kernels. Specifically:

• TIA demonstrates a significant reduction in dynamic
instructions executed compared to both PC+RegQueue
(64%) and PC+Augmented (28%) on average, and
an average performance improvement of 2.0× vs.
PC+RegQueue and 1.3× vs. PC+Augmented in the
critical loops. A large part of the performance gained
by PC+Augmented over PC+RegQueue is from the
reduction of Queue Management ops. TIA benefits
from this too but gets a further performance boost
over PC+Augmented from a reduction in Control ops
and Predicated-False ops.

• An additional benefit of TIA over PC+Augmented
comes from a reduction in Wait cycles. This is most
evident in the k-means (50%), Graph500 (100%) and
SHA-256 (40%) workloads. This is due to the ability
of triggered instructions to avoid unnecessary serializa-
tion. Note that because these are critical rate-limiting
loops in the spatial pipeline, there are fewer oppor-
tunities for multiplexing unrelated work onto shared
PEs. Despite this, the workloads show benefits from
avoiding over-serialization.

• The workload that sees the largest benefit from trig-
gered instructions is Merge Sort. Merge Sort has the
highest dynamic branch rate (70%) of all workloads on
the PC+RegQueue architecture. It also spends a num-
ber of cycles polling queues. PC+Augmented elim-
inates all the queue-polling cycles, resulting in 1.6×
performance improvement in the rate-limiting step.
TIA further cuts down a large number of control cycles,
leading to a further 2.3× performance improvement vs.
PC+Augmented and a cumulative 3.7× performance
benefit over PC+RegQueue.

• On the average, PC+Augmented does not see a sig-
nificant benefit from predicated execution for these
spatially-programmed workloads.

• Triggered instructions use a substantially smaller
static instruction footprint. The reduction in footprint
compared to PC+RegQueue is particularly significant
— 62% on average. PC+Augmented’s enhancements
help reduce footprint but TIA still has 30% fewer static
instructions on average.

The static code footprint of these rate-limiting inner loops
is in general fairly small across all architectures. This obser-
vation, along with the real-world performance benefits we
observed versus traditional high-performance architectures,
provides strong evidence of the viability and effectiveness
of the spatial programming model with small, tight loops
arranged in a pipelined graph.

5.4 Implementation Feasibility Analysis
We collaborated with circuit-design experts to lay out a

TIA PE in a state-of-the-art industry technology process.
The resulting 2-stage pipelined PE has a comparable num-
ber of gate levels in the critical path to a high-performance
commercial microprocessor. The large degree of replication
in a spatial fabric would, however, justify even further design
effort to optimize the PEs.

The hardware scheduler is the centerpiece of a TIA PE.
Scheduler implementation cost is one of the primary factors
that bounds the scalability of PE size in a triggered control
model. Fortunately, the nature of spatial programming is
such that small, efficient PEs are effective.

AES DMM FFT Flow Classifier Graph-500 k-means KMP Search Merge Sort SHA-256 Average

PC+RegQ 58% 50% 36% 50% 50% 69% 8% 70% 63% 50%
PC+Aug 6% 33% 11% 50% 40% 29% 14% 50% 22% 28%

Table 5: Percentage of dynamic instructions that are branches in rate-limiting step inner loop.

0

5

10

15

20

25

P
er

fo
rm

an
ce

 R
at

io

Figure 9: Area-normalized perfor-
mance ratio of a TIA-based spa-
tial accelerator compared to a high-
performance out-of-order core.

0

0W5

1

1W5

2

2W5

3

3W5

4

4W5

5

P
C

H
R

eg
Q

P
C

H
A

ug T
IA

P
C

H
R

eg
Q

P
C

H
A

ug T
IA

P
C

H
R

eg
Q

P
C

H
A

ug T
IA

P
C

H
R

eg
Q

P
C

H
A

ug T
IA

P
C

H
R

eg
Q

P
C

H
A

ug T
IA

P
C

H
R

eg
Q

P
C

H
A

ug T
IA

P
C

H
R

eg
Q

P
C

H
A

ug T
IA

P
C

H
R

eg
Q

P
C

H
A

ug T
IA

P
C

H
R

eg
Q

P
C

H
A

ug T
IA

P
C

H
R

eg
Q

P
C

H
A

ug T
IA

AES DMM FFT FlowrClassifier Graph500 kymeans KMPrsearch MergerSort SHAy256 Mean

D
yn

am
ic

rC
yc

le
s

QWops

FWops

CWops

Wait

DWops

Figure 10: Breakdown of dynamic execution cycles in rate-limiting
inner loops normalized to D.ops executed by PC+RegQueue.

0

5

10

15

20

25

30

35

40

45

S
ta

ti
c

In
st

ru
ct

io
n

s

PC+RegQ

PC+Augmented

TIA

Figure 11: Static instruction counts
for rate-limiting inner loops.

0

5

10

15

20

25

30

35

40

45
P

C
6

R
eg

Q

P
C

6
A

ug T
IA

P
C

6
R

eg
Q

P
C

6
A

ug T
IA

P
C

6
R

eg
Q

P
C

6
A

ug T
IA

P
C

6
R

eg
Q

P
C

6
A

ug T
IA

P
C

6
R

eg
Q

P
C

6
A

ug T
IA

P
C

6
R

eg
Q

P
C

6
A

ug T
IA

P
C

6
R

eg
Q

P
C

6
A

ug T
IA

P
C

6
R

eg
Q

P
C

6
A

ug T
IA

P
C

6
R

eg
Q

P
C

6
A

ug T
IA

P
C

6
R

eg
Q

P
C

6
A

ug T
IA

AES DMM FFT FlowGClassifier GraphN500 kNmeans KMPGSearch MergeGSort SHAN256 Mean

A
ve

ra
g

eG
In

s
tr

u
ct

io
n

s
Gp

er
GIt

er
a

ti
o

n

NonNControl

Control

Figure 12: Average dynamic instruction counts for rate-limiting
inner loops.

Our implementation analysis shows that the area cost
of the TIA hardware scheduler is less than 2% of a PE’s
overall area, much of which is occupied by its architec-
tural state (registers, input/output channel buffers, predi-
cates and instruction storage), datapath logic (operand mul-
tiplexers, functional units, etc.) and microarchitectural con-
trol overheads—none of which are unique to triggered con-
trol. This is not surprising—the core of the TIA scheduler is
essentially a few 1-bit wide trees of AND gates feeding into
a priority encoder. For our chosen parameterization, this
logic is dwarfed by everything else in the PE.

Similarly, scheduler power consumption is small compared
to the rest of the PE. The scheduler logic does not con-
sume dynamic power unless there is a change in predicate
states. When this happens, the only wires that swing are
the ones that are recomputing the changed control signals.
This manner of computing control is more power-efficient
than executing datapath instructions to compute the same
results. In a degenerate scenario where the PE is walking
down a sequence of stages in a gray-coded FSM, at most 1-2
predicate bits swing each cycle. The power consumed in this
scenario is negligible.

6. RELATED WORK
We separate prior research into two categories: architec-

tures with autonomous control flow where each PE internally
controls itself, and non-autonomous control flow where each
PE is controlled externally through outside control logic.

6.1 Autonomous PEs
Classic dataflow architectures such as [7, 1] trigger instruc-

tions when tokens associated with input data is ready. Mul-
tiple pipeline stages are devoted to marshalling tokens, dis-
tributing tokens, and scoreboarding which instructions are
ready. A“Wait-Match”pipeline stage must dynamically pair
incoming tokens of dual-input instructions. In contrast, TI
expresses dependencies via single-bit predicate registers that
are explicitly managed by the program, improving scheduler
scalability and removing the token-related pipeline stages.

The RAW project is a coarse-grained computation fabric,
consisting of 16 large cores with instruction and data caches
that are directly connected through a register-mapped and
circuit-switched network [24]. While applications written
for RAW are spatially mapped, program counter manage-
ment and serial execution of instructions reduces efficiency,
and makes the cores on RAW sensitive to variable latencies,
which TIA overcomes using instruction triggers.

The Asynchronous Array of simple Processors (AsAP) is
a 36-PE processor for DSP applications, with each PE exe-
cuting independently using instructions in a small instruc-
tion buffer and communicating using register-mapped net-
work ports [27]. While early research on AsAP avoided the
need to poll for ready data, later work extended the original
architecture to support 167-PEs and zero-overhead looping
to reduce control instructions [25]. Triggered instructions
not only reduce the amount of control instructions but also
enable data-driven instruction issue, overcoming the serial-
ization of AsAP’s program-counter based PE.

Picochip is a commercially available 308-PE accelerator
for DSP applications [21]. Each PE has a small instruc-
tion and data buffer, and communication is performed
with explicit put and get commands. A strength of Pic-
ochip is compute density, but the architecture is limited to
serial 3-way LIW instruction issue using a program counter.
Triggered instructions enable control flow at low cost and
dynamic instruction issue dependent on data arrival, result-
ing in less instruction overhead.

6.2 Non-autonomous PEs
Transport-Triggered Architectures [14] is a scheme where

the functional units in the system are exposed to the com-
piler, which then uses MOV operations to explicitly route
data through the transport network. Overall control flow is
maintained by a global program counter. Operation execu-
tion is triggered by the arrival of data from the network, but
no other localized control exists.

TRIPs is an explicit dataflow graph execution (EDGE)
processor which utilizes many small PEs to execute general-
purpose applications [4]. TRIPs dynamically fetches and
schedules large VLIW instruction blocks across the small
PEs using centralized program-counter based control tiles.
While large reservation stations within each PE enable
“when-ready” execution of instructions, only single-bit pred-
ication is used within PEs to manage small amounts of con-
trol flow.

WaveScalar is a dataflow processor for general-purpose
applications that does not utilize a program counter [23].
A PE consists of an ALU, input and output network con-
nections, and a small window of 8 instructions. Blocks of
instructions known as waves are mapped down onto the
PEs, and additional “WaveAdvance” instructions are allo-
cated at the edges to help manage coarse grained or loop-
level control. Conditionals are handled by converting control
flow instructions to data flow, resulting in filtering instruc-
tions that conditionally pass values to the next part of the
dataflow graph. In WaveScalar there is no local PE register
state; when an instruction issues the result must be commu-
nicated to another PE across the network.

DySER integrates a circuit-switched network of ALUs
inside the datapath of contemporary processor pipeline [12].
DySER maps a single instruction to each ALU and does
not allow memory or complex control flow operations within
the ALUs. TIA enables efficient control flow and spatial
program mapping across PEs, enabling high-utilization of
ALUs with PEs without the need for an explicit control
core. Other recent work such as Garp [13], Chimaera [26],
and ADRES [18] similarly integrate LUT-based or coarse
grained reconfigurable logic controlled by a host processor,
either as a coprocessor or within the processor’s datapath.

MATRIX [20] is an array of 8-bit function units with
a configurable network. With different configurations,
MATRIX can support VLIW, SIMD or Multiple-SIMD com-
putations. The key feature of the MATRIX architecture
was claimed to be its ability to deploy resources for control
based on application regularity, throughput requirements
and space available.

PipeRench [22] is a coarse-grained RL system designed
for virtualization of hardware to support high-performance
custom computations through self-managed dynamic recon-
figuration. It is constructed from 8-bit Processing Elements.
The functional unit in each PE contains eight 3-input LUTs

that are identically configured.
In contrast to all these non-autonomous control based

approaches, TIA enables complex fine-grained control at
each PE, which makes it applicable to a broader domain
of spatial workloads.

7. CONCLUSION
We believe that spatial parallelism is a promising comput-

ing paradigm with the potential to achieve significant per-
formance improvement over traditional high-performance
architectures for a number of important workloads, many
of which do not exhibit uniform data parallelism. Our
simulated performance estimates on a triggered-instruction
based spatial architecture confirm the potential of this style
of computing, showing an average area-normalized perfor-
mance that is 8× better than a high-end sequential processor
across a range of workloads.

Triggered instructions provide a uniform solution to the
control problem for a PE in a spatially-programmed archi-
tecture, allowing the PE to execute autonomous control
loops efficiently as well as react quickly to messages on com-
munication channels. The same mechanism also avoids over-
serialization, providing the benefits of dynamic instruction
reordering and multithreading without any additional hard-
ware. Our evaluation demonstrates the cumulative benefits
of all these effects, with our triggered-instruction PE achiev-
ing 2.0× better performance than a baseline PE with PC-
based control, and 1.3× better performance than an opti-
mized version.

The triggered control model is feasible within a spatially-
programmed environment because the amount of static
instruction state that must be maintained in each PE
is small, allowing for inexpensive implementation of a
triggered-instruction hardware scheduler. Our implementa-
tion analysis confirms this, showing that the scheduler occu-
pies less than 2% of the area of the PE.

These results provide a solid foundation of evidence for
the merit of a triggered-instruction based spatial architec-
ture. The ultimate success of this paradigm will be premised
on overcoming a number of challenges, including providing
a tractable memory model, dealing with the finite size of
the spatial array, and providing a high-level programming
and debugging environment. Our ongoing work makes us
optimistic that these challenges are surmountable.

Acknowledgments
We thank James Brodman, Rakesh Komuravelli, Neal
Oliver, Shaojuan Zhu, Hisham Qayum and Jerome David
Rosen for their valuable contributions to workload analysis.
We benefited greatly from the circuit implementation anal-
ysis provided by Jagdish Patil, George Clark and Jonathan
Enoch. We acknowledge Tao Wang and Peng Li for con-
tributions to earlier incarnations of these ideas. Finally,
we greatly appreciate the many insightful discussions with
Arvind, Kermin Elliott Fleming and Arch Robison.

8. REFERENCES
[1] Arvind and R. S. Nikhil. Executing a Program on the

MIT Tagged-Token Dataflow Architecture. IEEE
Transactions on Computers, 39(3):300–318, 1990.

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L.

Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.
The Landscape of Parallel Computing Research: A
View from Berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University
of California, Berkeley, Dec. 2006.

[3] Bluespec, Inc. Bluespec System Verilog Reference
Guide. 2007.

[4] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin,
L. K. John, C. Lin, C. R. Moore, J. Burrill, R. G.
McDonald, and W. Yoder. Scaling to the End of
Silicon with EDGE Architectures. Computer,
37(7):44–55, July 2004.

[5] K. M. Chandy and J. Misra. Parallel Program Design:
a Foundation. Addison-Wesley, 1988.

[6] K. Compton and S. Hauck. Reconfigurable
Computing: A Survey Of Systems and Software. ACM
Computer Survey, 34(2):171–210, June 2002.

[7] J. B. Dennis and D. P. Misunas. A Preliminary
Architecture for a Basic Data-Flow Processor. In
Proceedings of the 2nd annual Symposium on
Computer Architecture, pages 126–132, 1975.

[8] E. W. Dijkstra. Guarded Commands, Nondeterminacy
and Formal Derivation of Programs. Communications
of the ACM, 18(8):453–457, Aug. 1975.

[9] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk,
S. Manne, S. S. Mukherjee, H. Patil, S. Wallace,
N. Binkert, R. Espasa, and T. Juan. Asim: A
Performance Model Framework. Computer,
35(2):68–76, 2002.

[10] J. S. Emer and D. W. Clark. A Characterization of
Processor Performance in the vax-11/780. In
Proceedings of the 11th Annual International
Symposium on Computer Architecture (ISCA), pages
301–310, 1984.

[11] R. A. V. D. Geijin and J. Watts. SUMMA: Scalable
Universal Matrix Multiplication Algorithm. Technical
report, 1997.

[12] V. Govindaraju, C.-H. Ho, and K. Sankaralingam.
Dynamically Specialized Datapaths for Energy
Efficient Computing. In Proceedings of 17th
International Conference on High Performance
Computer Architecture (HPCA), 2011.

[13] J. Hauser and J. Wawrzynek. Garp: A MIPS
Processor with a Reconfigurable Coprocessor. In
Proceedings of the IEEE Symposium on FPGAs for
Custom Computing Machines, pages 12–21, April
1997.

[14] J. Hoogerbrugge and H. Corporaal.
Transport-Triggering vs. Operation-Triggering. In
Lecture Notes in Computer Science 786, Compiler
Construction, pages 435–449. Springer-Verlag, 1994.

[15] D. E. Knuth, J. Morris, and V. R. Pratt. Fast Pattern
Matching in Strings. SIAM Journal of Computing,
6(2):323–350, 1977.

[16] H. T. Kung. The CMU Warp Processor. In F. A.
Matsen and T. Tajima, editors, Supercomputers:
Algorithms, Architectures, and Scientific Computation,
pages 235–247. 1986.

[17] A. Marquardt, V. Betz, and J. Rose. Speed and Area
Tradeoffs in Cluster-Based FPGA Architectures. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 8(1):84 –93, Feb. 2000.

[18] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and
R. Lauwereins. ADRES: An Architecture with Tightly
Coupled VLIW Processor and Coarse-Grained
Reconfigurable Matrix. In Proceedings of 13th
International Conference on Field-Programmable Logic
and Applications, pages 61–70, Sep. 2003.

[19] D. G. Merrill and A. S. Grimshaw. Revisiting Sorting
for GPGPU Stream Architectures. In Proceedings of
the 19th International Conference on Parallel
Architectures and Compilation Techniques (PACT),
pages 545–546, 2010.

[20] E. Mirsky and A. DeHon. MATRIX: A Reconfigurable
Computing Architecture with Configurable Instruction
Distribution and Deployable Resources. In Proceedings
of the IEEE Symposium on FPGAs for Custom
Computing Machines, pages 157–166, Apr. 1996.

[21] G. Panesar, D. Towner, A. Duller, A. Gray, and
W. Robbins. Deterministic Parallel Processing.
International Journal of Parallel Programming,
34(4):323–341, Aug. 2006.

[22] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine,
and R. Taylor. PipeRench: A Virtualized
Programmable Datapath in 0.18 Micron Technology.
In Proceedings of the 2002 IEEE Custom Integrated
Circuits Conference, pages 63–66, May 2002.

[23] S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen,
A. Putnam, K. Michelson, M. Oskin, and S. J. Eggers.
The WaveScalar Architecture. ACM Transactions on
Computer Systems, 25(2):4:1–4:54, May 2007.

[24] M. Taylor, J. Kim, J. Miller, D. Wentzlaff,
F. Ghodrat, B. Greenwald, H. Hoffman, P. Johnson,
J. Lee, W. Lee, et al. The Raw Microprocessor: A
Computational Fabric for Software Circuits and
General-Purpose Programs. IEEE Micro, 22(2):25–35,
2002.

[25] D. Truong, W. Cheng, T. Mohsenin, Z. Yu,
A. Jacobson, G. Landge, M. Meeuwsen, C. Watnik,
A. Tran, Z. Xiao, E. Work, J. Webb, P. Mejia, and
B. Baas. A 167-Processor Computational Platform in
65 nm CMOS. IEEE Journal of Solid-State Circuits,
44(4):1130–1144, April 2009.

[26] Z.-A. Ye, A. Moshovos, S. Hauck, and P. Banerjee.
CHIMAERA: A High-Performance Architecture with
a Tightly-Coupled Reconfigurable Functional Unit. In
Proceedings of the 27th International Symposium on
Computer Architecture (ISCA), pages 225–235, Jun.
2000.

[27] Z. Yu, M. Meeuwsen, R. Apperson, O. Sattari, M. Lai,
J. Webb, E. Work, T. Mohsenin, M. Singh, and
B. Baas. An Asynchronous Array of Simple Processors
for DSP Applications. In Solid-State Circuits
Conference (ISSCC), Digest of Technical Papers,
pages 1696–1705, Feb. 2006.

