
Exploiting Spatial Architectures for
Edit Distance Algorithms

Jesmin Jahan Tithi
Stony Brook University
jtithi@cs.stonybrook.edu

Neal C. Crago
VSSAD, Intel Corporation

neal.c.crago@intel.com

Joel S. Emer
VSSAD, Intel Corporation / CSAIL, MIT
joel.emer@intel.com, emer@csail.mit.edu

Abstract—In this paper, we demonstrate the ability of spatial
architectures to significantly improve both runtime performance
and energy efficiency on edit distance, a broadly used dynamic
programming algorithm. Spatial architectures are an emerging
class of application accelerators that consist of a network of many
small and efficient processing elements that can be exploited
by a large domain of applications. In this paper, we utilize
the dataflow characteristics and inherent pipeline parallelism
within the edit distance algorithm to develop efficient and scalable
implementations on a previously proposed spatial accelerator.

We evaluate our edit distance implementations using a cycle-
accurate performance and physical design model of a previously
proposed triggered instruction-based spatial architecture in order
to compare against real performance and power measurements
on an x86 processor. We show that when chip area is normalized
between the two platforms, it is possible to get more than a 50×
runtime performance improvement and over 100× reduction in
energy consumption compared to an optimized and vectorized x86
implementation. This dramatic improvement comes from lever-
aging the massive parallelism available in spatial architectures
and from the dramatic reduction of expensive memory accesses
through conversion to relatively inexpensive local communication.

I. INTRODUCTION

There is a continuing demand in many application domains
for increased levels of performance and energy efficiency.
While the number of transistors is expected to continue to scale
with Moore’s law for at least the next five years, the “power
wall” has dramatically slowed single-core processor perfor-
mance scaling. Recently, several accelerator architectures have
emerged to further improve performance and energy efficiency
over multi-core processors in specific application domains.
These architectures are tailored using the properties inherently
found in these domains, and can range in programmability.
Perhaps the best-known examples are fixed-function acceler-
ators, which are tailored to single algorithms such as video
decoding, and GPUs, which are fully programmable and target
data parallel and SIMT-amenable code.

Spatially programmed architectures are an emerging class
of programmable accelerators that target application domains
with workloads whose best-known implementation involves
asynchronous actors performing different tasks, while fre-
quently communicating with neighboring actors. Such archi-
tectures are typically made up of hundreds of small processing
elements (PEs) connected together via an on-chip network.
When an algorithm is mapped onto a spatial architecture,
the algorithm’s dataflow graph is broken into regions, which
are connected by producer-consumer relationships. Input data
is then streamed through this pipelined set of regions. The

application domains that spatially-programmed architectures
target spans a number of important areas such as signal
processing, media codes, cryptography, compression, pattern
matching, and sorting.

Edit distance is a broad class of algorithms that find use
in many important applications, spanning domains such as
bioinformatics, data mining, text and data processing, natural
language processing, and speech recognition. The edit distance
problem determines the minimum number of “non-match” data
edits to convert a source string or data object S to a target
string or data object T . The algorithm also keeps track of the
specific data edits required to convert S to T , from a set of four
possible data edits: insertion, deletion, match or substitution.
For example, if S = “computer” and T = “commute”, the
minimum number of “non-match” edits to convert S to T is
2 and the edits are, MMMSMMMD (where M = Match,
S = Substitute, D = Delete).

The edit distance problem is ripe for acceleration, as the
dynamic programming techniques typically used to solve the
problem take O(nm) time and space, where m and n are the
lengths of the strings S and T respectively. However, the nature
of data dependences within the algorithm makes vectorization
and parallelization non-trivial on modern CPUs and GPUs. On
the other hand, these same data dependences have very nice
dataflow properties which are quite naturally mapped on spatial
architectures using pipeline parallelism [1], [2]. Moreover, the
exploitation of pipeline parallelism also enables the conversion
of many memory references into much less expensive local
communication which further improves efficiency.

In this paper, we study the potential of spatial architectures
to solve the edit distance problem. Our main goal is to
show that edit distance and similar algorithms naturally map
to spatial architectures, improving performance and energy
consumption substantially over general-purpose processors.
We first build intuition on why spatial architectures are a
good fit for edit distance and similar algorithms with local
dependencies. We then describe three different algorithmic im-
plementations of edit distance tailored to spatial architectures.
We evaluate these implementations by conducting a detailed
experimental analysis of performance and energy consump-
tion on a triggered instruction-based spatial architecture [3].
Finally, we compare the performance and energy consumption
of our implementations to highly optimized and vectorized x86
implementations.

1

C F

B

A
E

D

G
I

H

Region

(A,B,E)

Region

(G,H,I)
Region

(C,D,F)

Stage 0 Stage 1

Dataflow Graph Spatial Pipeline

Fig. 1: Spatial programming example. Converting a dataflow
graph to a spatial pipeline of regions.

II. BACKGROUND

A. Spatial Architectures

In the spatial programming paradigm, an algorithm’s
dataflow graph is broken up into regions so that it can be
represented as a pipeline of computation. Sets of independent
regions act as stages within the pipeline, with producer-
consumer relationships between stages. Ideally, the number
of operations in each region is kept small, as performance
is usually determined by the rate-limiting step. Figure 1
presents an example dataflow graph and its corresponding
representation in the spatial programming paradigm. In this
example, each region is made up of three nodes from the
original dataflow graph, and the total number of pipeline stages
is two. Note that in Stage 0, two regions are independent and
are executed in parallel. After the pipeline is generated, the
input dataset can be streamed through the pipeline and the
inherent pipeline parallelism can be exploited.

While the pipeline can in theory be mapped to general-
purpose processors, executing the algorithm on the appropri-
ate accelerator architecture can provide significant benefits.
Accelerator architectures execute alongside general-purpose
processors with the end goal of improving the performance
and energy consumption of a select set of algorithms and
application domains. Similar to how vector engines and GPUs
are chosen to accelerate many vectorizable algorithms, spatial
architectures are chosen to accelerate algorithms amenable to
spatial programming. Spatial architectures are a computational
fabric of hundreds or thousands of small processing elements
(PEs) directly connected together with an on-chip network.
The algorithm’s pipeline is successfully mapped onto a spatial
architecture by utilizing some number of PEs to implement
each region of the dataflow graph, and then by connecting the
regions using the on-chip network. As performance depends
on minimizing the execution time of each pipeline stage,
the regions are typically sized as small as possible, with the
algorithm utilizing all of the available PEs.

Spatial architectures broadly fall into two categories, pri-
marily based upon the basic unit of computation: logic-grained
and coarse-grained. Field-programmable gate arrays (FPGAs)
are among the most well known logic-grained spatial archi-
tectures and are most commonly used for ASIC prototyping
and as stand-alone general logic accelerators. FPGAs are
designed to emulate a broad range of logic circuits and use
very fine-grained lookup tables (LUTs) as their primary unit
of computation [4], [5]. More complex logical operations are
constructed by connecting many LUTs together using the on-

Output Channels

ALU

REG

FILE

Input Channels

INSTR

REGs

Control

Logic Operand Select

L1 Cache

L2 Cache Slice L2 Cache Slice

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Scratchpad Memory

Fig. 2: Example spatial architecture. Network of PEs, scratch-
pad memory, and caches are shown alongside a PE diagram.

chip network. While the use of fine-grained LUTs results in a
high-degree of generality, this generality results in much lower
clock speeds for mapped algorithms when compared with
ASIC implementations. In general, FPGAs and logic-grained
spatial architectures sacrifice compute density for complete
bit-level generality. It is also well known that the program-
ming environment for FPGAs is particularly complex. FPGAs
typically use a low-level programming model (e.g. VHDL or
Verilog) due to being used primarily for ASIC prototyping.
Additionally, the fine-grained nature of the LUTs creates a
large solution search space for place and route algorithms,
which can lead to unacceptably long compilation times.

However, a common observation is that many algorithms
primarily utilize byte- or word-level primitive operations,
which are not efficiently mapped to bit-level logic and logic-
grained spatial architectures such as FPGAs. To partially
address these inefficiencies, some FPGAs now provide digital-
signal processing datapaths alongside the traditional LUTs.
In contrast to FPGAs, coarse-grained spatial architectures are
designed from the ground up to suit the properties of these
algorithms. Coarse-grained spatial architectures optimize byte-
and word-level primitive operations into hardened logic and
through the utilization of ALUs within PE datapaths [6], [7],
[8]. The hardened logic results in much higher compute den-
sity, which leads to faster clock speeds and reduces compilation
times substantially compared to FPGAs. Generally speaking,
these coarse-grained spatial architectures have a higher-level
programming abstraction, which typically includes some no-
tion of an instruction set architecture. In other words, PEs can
be programmed by writing a sequence of software instructions,
rather than requiring the hardware-level programming of an
FPGA. The distinct advantages and large possible design
space of coarse-grained spatial architectures has resulted in
a significant amount of recent research. Specifically, there has
been research into evaluating architectures, control schemes,
and levels of integration with host processor cores [3], [9],
[10], [11].

Given the clear benefits of coarse-grained compared to
logic-grained, in this paper we focus on implementing edit dis-
tance on coarse-grained spatial architectures. Figure 2 presents
the high-level architecture and PE-level architecture of the
coarse-grained spatial architecture we consider. The architec-
ture consists of a collection of PEs, scratchpad memory, a
cache hierarchy, and an on-chip network. For our architecture,
each PE has some control logic, an instruction memory, a
register file, an ALU, and some number of input and output

2

0 1, i 2, i 3. i 4, i 5, i

1, d 0, m 1, i 2, i 3, i 4, i

2, d 1, d 1, s 1, m 2, i 3, i

3, d 2, d 2, s 2, s 1, m 2, i

4, d 3, d 3, s 3, s 2, d 1, m

 ----------------T[1:n] ------------------

“” s p o r t

“”

s

o

r

t --
--

--
S

[1
:m

]-
--

--
-

Fig. 3: Solving for edit distance using dynamic programming.
The dark-shaded cells are the edits for solving the base cases,
and the light-shaded cells are the required minimum edits.

connections to an on-chip network. To further support high
compute density and provide efficiency, the instruction mem-
ory and register file within the PE are kept quite small, and
the complexity of the ALU is kept low. PEs connect to each
other, scratchpad memory, and the cache hierarchy using the
on-chip network.

B. Edit Distance

In this section, we describe the edit distance problem and
what makes it amenable to pipeline parallelism and spatial
architectures. The edit distance problem is defined as finding
the minimum edit cost to convert one string or data object
into another string or data object. Solving the edit distance
problem is interesting because of its prevalence in important
application domains including bioinformatics, data mining,
text and data processing, natural language processing, and
speech recognition. In addition to those domains, achieving
better performance and energy efficiency on edit distance
through exploiting spatial architectures can also provide insight
into how other applications with similar local dependencies
might benefit when mapped to spatial architectures. Such
domains include dynamic programming problems with local
dependences (e.g., longest common subsequence, sequence
alignment), virus scanners, security kernels, stencil computa-
tions, and financial engineering kernels.

ED(S[1 : i], T [1 : j]) =8>>>>>>><>>>>>>>:

0 if i = j = 0,
CostOfInsert(T [1 : j]) if i = 0, 1 ≤ j ≤ n,
CostOfDelete(S[1 : i]) if j = 0, 1 ≤ i ≤ m,

min

8<: MatchOrSub(S[i], T [j]) + ED(S[1 : i− 1], T [1 : j − 1]),
CostOfInsert(T [j]) + ED(S[1 : i], T [1 : j − 1]),
CostOfDelete(S[i]) + ED(S[1 : i− 1], T [1 : j])

9=;
if i, j > 0.

(Recurrence 1)

1) Overview of the Edit Distance Problem: Recurrence
1 solves the edit distance problem. The edit distance for
converting S of length i to T of length j can be computed
by taking the minimum of solutions to three smaller sub-
problems. The first sub-problem is to match or substitute
S[i] with T [j], and then recursively find the edit distance of
converting S of length i− 1 to T of length j − 1. The second
sub-problem is to insert the last character of T (T [j]) at the end
of S, and then recursively find the edit distance of converting
S of length i to T of length j − 1. The third sub-problem
is to delete the last character of S(S[i]), and then recursively
find the edit distance of converting S of length i− 1 to T of
length j.

S
tr

in
g
 S

String T

M[i-1][j-1] M[i-1][j]

M[i][j-1]
 M[i][j]

S[i]

T[j]

Cost Matrix M

Fig. 4: Data flow dependences for calculating a cell in edit
distance. Dependences are found along the row and column of
the cost matrix, which limits the ability to vectorize.

The costs of match, substitute, delete and insert are user-
defined and can vary depending upon the application. In the
most general edit distance problem, all costs are assumed to be
the same (typically 1, except a cost of 0 for a match). The three
base cases for the recurrence are enumerated in Recurrence 1:

• Converting a string S of length 0 to another string T
of length 0 is a cost of 0.

• To convert a string S of length 0 to any string T of any
length j, we insert all j characters of T which incurs
a total cost of the sum of inserting each character from
T of length j.

• To convert a string S of length i to a string T of length
0, we delete all characters from S which incurs a total
cost of the sum of deleting each character from S of
length i.

In the rest of the paper, we assume that the cost of a single
insertion, deletion, and substitution is 1.

It is inefficient to use recursion to solve the edit dis-
tance problem due to the large number of sub-problem re-
computation required. Therefore, dynamic programming prin-
ciples are typically used to solve the problem in a bottom-
up manner. The dynamic programming approach saves the
result of each sub-problem in a table, enabling reuse rather
than requiring recomputation. To find the required number
of edits to convert a source string S to the target string
T , a two-dimensional m × n cost matrix “M” is allocated,
where m and n are the lengths of the two strings S and
T , respectively. Each cell of the matrix M(i, j) gives us the
minimum number of edits to convert S[1 : i] to T [1 : j].
We first populate the matrix with the base case solutions, and
then compute the remaining cells row by row following the
same recursive formula. Figure 3 shows the filled out cost
matrix after executing the dynamic programming algorithm on
S = “sort” and T = “sport” where cell M [m][n] gives the
final edit distance.

2) Exploitation of Pipeline Parallelism: In the dynamic
programming approach to the edit distance problem, the matrix
cells have local dependencies. Figure 4 presents the data
dependences for calculating a single cell M [i][j]. Observe that
the value of a cell M [i][j] depends on its top cell (M [i−1][j]),
left cell (M [i][j − 1]) and diagonal cell (M [i − 1][j − 1]).
Because of these dependencies, this computation is not vec-
torizable along the row or the column of the 2D cost matrix.
While it is possible to vectorize along the diagonal by reshap-
ing the cost matrix into a diamond, such an implementation

3

(a)

Cell

Worker

S[i]

T[j]

Top

Left

Diag

Score

Path

(b)

Row

Worker

S[i]

T[j]

Top

Left

Diag

Score

Path

TopOut

Fig. 5: a) A simple cell worker that computes a single cell of
the cost matrix, b) An optimized row worker.

requires dummy computations and frequent communication
between cells must still be facilitated using expensive memory
accesses. Conversely, the data dependencies found in edit
distance naturally compose into pipeline parallelism: values
produced by a worker responsible for computing a cell of
the cost matrix can be consumed by workers computing
adjacent cells. It is possible to get very efficient cell-level
parallelism for edit distance in a spatial architecture because
spatial architectures have the benefit of small efficient PEs and
direct PE-to-PE communication capability. Note that cell-level
parallelism is not feasible on multicore machines at all because
of the prohibitive overhead of communication and scheduling.

III. EDIT DISTANCE ON SPATIAL ARCHITECTURES

In this section, we discuss how the edit distance problem
maps down to spatial architectures. We start by describing the
basic unit of computation, a worker, and utilize that worker to
develop an initial naı̈ve implementation. We analyze that naı̈ve
implementation and describe several possible optimizations.
We also explain how a spatial implementation of edit distance
makes more efficient use of memory.

A. Designing a Worker

To implement edit distance, we first create a core module
that incorporates the data flow and state transitions needed to
compute the value of a single cell of the cost matrix M . Part of
this process is deciding which inputs and outputs are required
for cell computation, and the relationship between the inputs
and outputs of a cell with its neighboring cells. Figure 5(a)
depicts an abstract worker which implements the core module
and its inputs and outputs. As shown in Figure 4, the score of
a cell M [i][j] of the cost matrix depends primarily on its top
(M [i− 1][j]), left (M [i][j− 1]) and diagonal (M [i− 1][j−
1]) cells, as well as the string characters S[i] and T [j]. The
score of the current cell M [i][j] is determined by calculating
the minimum of insert cost (left + CostOfInsert(T [j])), delete
cost (top + CostOfDelete(S[i])) and match/substitution cost
(diagonal + MatchOrSub(S[i], T [j])), where S[i] and T [j] is
the ith character of S and jth character of T , respectively.
The path chosen for each cell, or the edit that resulted in the
minimum score, can also be stored in a separate path array,
where path[i][j] = (delete, insert, match/substitute). The data
stored in the path array can later be used to reconstruct the
actual edits used to convert S to T in linear time. Therefore, in
this initial approach we need 5 memory reads (S[i], T [j], Top,
Left, Diagonal), 2 memory writes (score, path), 3 additions
and 3 subtractions to compute the value for each cell.

Figure 6 shows simplified pseudo-code for a single
cell computation of M [i][j]. First, the insert, delete, and

CalculateCell(row i, column j)

{

 insert_cost = M[i][j-1] + CostOfInsert (T[j])

 delete_cost = M[i-1][j] + CostOfDelete (S[i])

 match_substitute_cost = M[i-1][j-1] + MatchOrSub (S[i], T[j])

 [score, path] = Min (insert_cost, delete_cost, match_substitute_cost)

 M[i][j] = score;

 Path[i][j] = path;

}

Fig. 6: Pseudo-code for the calculation of a single cell.

match/substitute costs are computed using values from M [][],
S[i], and T [j]. Next, the minimum between the three costs is
chosen, returning both the score and the path values. Finally,
the score and path values are written out to memory. In
practice, we find that we can split this core module into two
other smaller modules, each of which can be mapped onto a
PE, in order to reduce the length of critical path. We define a
worker as the unit of these two PEs that implements the core
module. A collection of these workers is used to compute the
score values of the entire cost matrix.

1) Optimization: One possible implementation of edit dis-
tance on a spatial architecture would be to use distinct workers
to calculate the value of each cell M [i][j]. However, the
scalability of such an approach to large problem sizes is quite
limited considering that the requirement for O(mn) workers
would require at least O(mn) PEs. Spatial architectures have
finite physical resources by definition, and thus a scalable im-
plementation needs to be able to map to those finite resources
regardless of m and n. Therefore, we need to find an alternative
solution to compute all the mn cells using only a limited
number of workers, w. For example, if we consider assigning
one worker to compute all the cells of a row of the cost matrix,
we can observe the following patterns in the inputs and outputs
of that row worker (see Figure 5(b)):

• Top (M [i − 1][j]) at current cell position M [i][j]
becomes the diagonal for the next cell M [i][j + 1].

• The current computed score M [i][j] becomes left for
the next cell M [i][j + 1].

• S[i] needs to be read only once from memory for the
entire ith row.

• T [j] and top need to be read for each cell from
memory.

Therefore, if we can reuse the values already read from
memory and produced by the same row worker, that will save
O(3n) memory reads (S[i], left, diagonal) for each row (i.e.,
saves around 3mn reads out of 5mn reads in total).

Figure 7 presents a flow chart for the control path of the
two row worker modules mapped to PEs. First, the delete
and insert costs are computed and the minimum between the
two is chosen, while in parallel the match-substitute cost is
also computed and communicated. Then the minimum of the
three costs is chosen, and the final score and path values are
determined.

If we consider two consecutive row workers working on
two consecutive rows of the score/cost matrix M , it is possible
to observe some further memory access optimizations. A row
worker working on the ith row can send its current computed

4

Compare S[i], T[j]

Forward T[j] to Next Worker

Calculate MatchSub Cost

Compute Delete Cost

(Top + Delete_Cost)

Compute Insert Cost

(Left + Insert_cost)

Min2= minimum of

Delete and Insert Cost

Pass Top as Next Diagonal

Find minimum of Min2 &

MatchSub cost and send Min3

le
ft

Send Path

Check for end

Check for end

Module 1 Module 2

Compare Insert & Delete

Cost

Fig. 7: Flow chart for the control flow paths of a single worker.
Blue arrows show state transitions, green arrows show self-
feedback, and red arrows show communication with other PEs.

score, M [i][j] as the top value to the row worker working on
the (i + 1)th row. Similarly, T [j] can also be reused by other
row workers working on the jth column of the score matrix
by propagating T [j] using local PE communication channels.
Once a character T [j] has been read from memory by row
worker 1, row worker 1 can forward T [j] to row worker 2, row
worker 2 can forward it to row worker 3, and so on. Therefore,
if we use w row workers to compute w consecutive rows of the
cost matrix, any row worker k for 1 < k ≤ w, does not need
to read T [j] from memory. Similarly, each kth row worker
(1 < k ≤ w) receives its top value from row worker k − 1’s
computed scores. Hence, only the first row worker of a strip of
w rows (strip: w consecutive rows of the cost matrix) needs
to read the top and T [j] values from memory. As a result,
nearly all memory read operations remaining are removed and
converted into less expensive local PE-to-PE communication,
saving both memory bandwidth and energy consumption.

2) Mapping: Note that the row workers here proceed as a
diagonal wave front. For example, when row worker k works
on cell M [i][j], row worker k+1 works on cell M [i+1][j−1]
and row worker k + 2 works on cell M [i + 2][j − 2] and so
on, in a pipelined manner. Figure 8 shows the interconnection
between two consecutive row workers and a possible layout
of the row workers on a spatial architecture made with a
serpentine grid of PEs where row worker Wk receives input
from row worker Wk−1 and sends output to row worker Wk+1.

Based on these observations and the resulting optimized
row worker (Figure 8), we have designed three different
algorithms to solve the edit distance problem, namely: naı̈ve,
strip mining, and tiling. For each of these algorithms, we
primarily focus on computing the score, as prior work has
shown that the edits can be reconstructed by recomputing the
required subsections of the cost matrix while tracing in the
backward direction [12], [13], [14], [15]. Hence, showing that
our algorithms do better in computing the score should mean
that they will also perform better in computing the edits. In
each of these algorithms we use w row workers to compute
the scores and paths of the first w consecutive rows from 1
to w, and then compute rows from 1 + w to 1 + 2w, and so

(a)

Row Worker

at Row i

T[j] Top

Score

Row Worker

at Row i + 1

Top

Score

T[j] Out
T[j]

T[j] Out

(b)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

W1 W2 W3 W4

W8 W7 W6 W5

W9
W
10

W
11

W
12

W
16

W
15

W
14

W
13

Fig. 8: a) Two row workers working on two consecutive rows
and connected together using communication channels. b) A
possible layout of the row workers on a grid of PEs.

on until the entire cost matrix has been computed. Note that
string S is padded (and T for the tiled version), as needed to
make the length divisible by w (or tile height).

B. Naı̈ve Implementation

In the naı̈ve approach, we use O(mn) memory space to
store the scores of the cost matrix (and path), and each row
worker stores the score (and path) value to memory for each
cell it computes. We connect a row worker’s output to its
own input and to other row workers as shown in Figures 5(b)
and 8. These optimizations remove most of the memory reads
otherwise required. However, O(mn) memory writes are still
required to store the O(mn) score values for all cells in the
resulting cost matrix.

C. Optimization: Use of Linear Memory Space

“Quadratic space kills before quadratic time”. In the stan-
dard edit distance problem, the two-dimensional cost matrix
M consumes O(mn) memory space. However, this quadratic
use of memory space becomes infeasible for large strings.
Fortunately, it is possible to use linear memory space (O(n))
to store the cost matrix. Observe that for edit distance, the
resulting output data is the final cost of converting S to T
which can be found in cell M [m,n]. Therefore, we do not
need to maintain data storage for other cells when they are
no longer actively being used. To compute the score/cost for
the ith row, we only need the (i − 1)th row as input. Rows
before (i−1) can be forgotten. Therefore, it is possible to use
a cost matrix of linear size n + 1, from which the first row
worker (from the set of w row workers) reads its top inputs,
and the last row worker writes its computed cost values which
can be used as input for the next set of rows (computed on
the same w row workers). We use this linear memory space
optimization in our strip mining and tiling based algorithms.

5

R
o

w
s

 s
a
v
e

d
 b

y

 t
h

e
 l
a

s
t

w
o

rk
e
r

Initial

input row

Strip of

W workers

--
--

--
--

--
--

--
--

--
--

--
m

+
1
--

--
--

--
--

--
--

--
--

-------------------n+1------------------

Final

output row

Fig. 9: Strip mining using memory and scratchpad memory.
Initial and final rows are read from and written to memory,
while the intermediate rows use either memory or scratchpad
memory.

Although it is sufficient to use linear memory space (O(n))
to store the cost matrix, use of a two-dimensional cost matrix
can aid in the reconstruction of actual edits/path in linear time.
It is also possible use a separate two-dimensional path matrix
while using linear memory space for the cost matrix, which
allows linear time reconstruction of edits. Finally, it is also
possible to use only linear memory space for the cost matrix,
and reconstruct the edits in quadratic time without saving any
path matrix [14], [15] which is discussed later in this section.

D. Strip Mining

The strip mining technique involves computing the two
dimensional cost matrix in a strip-by-strip manner (strips of
w consecutive rows from the cost matrix). In this approach
we virtually divide the two-dimensional cost matrix into strips
of size w × n, where w denote the number of row workers
and n denote the width of the cost matrix. In the strip mining
approach we use a linear cost matrix array of size n+1, from
which the first row worker reads its top inputs and the last
row worker writes its computed cost values which are used as
input for the next strip. As before, we use the optimized row
worker for this algorithm. We use two different strategies for
the strip mining algorithm as described below:

1) Strip Mining using Memory: In the strip mining using
memory algorithm, only the first row worker of a strip of size
w reads the score values from cost matrix and string T from
memory, and only the last row worker stores the computed
score values to memory (Figure 9). This organization reduces
the total number of memory writes to the cost matrix to
O

(
m
w n

)
from O(mn) in addition to the reduction in memory

reads as described before. Furthermore, the number of memory
reads of string T as well as the cost matrix reduces to O

(
m
w n

)
.

To optimize this approach further, each row worker starts
computing from the 0th column instead of the 1st column of
the cost matrix. Note that in a typical edit distance algorithm,
computation occurs starting from the 1st column while using
the 0th column as input. If we had started computing from
the 1st column, we would need to read the left and diagonal
cells from memory. However, if we start from the 0th column,
we can use the top value to compute the left and diagonal
by adding 1 to the top value (which comes from memory for

the first row worker and from the previous row worker for
all other row workers). This approach reduces the number of
memory reads by 2m. Figure 9 shows how the strip mining
algorithm works. The hash-patterned cells in the cost matrix
are stored in memory by the last row worker and read by the
first row worker m

w times, while the white colored cells are
not stored to memory and are instead communicated directly
between row workers.

2) Strip Mining using PEs’ scratchpad memory: Note that
memory accesses can be expensive and involve various levels
of the cache hierarchy and main memory. As an alternative, we
can leverage the scratchpad memory of the PEs (Figure 2) to
store intermediate cost matrix values. In the strip mining using
scratchpad memory algorithm, the first row worker reads the
cost matrix from memory only during the first iteration (i.e.,
only for the first strip of the algorithm). Similarly, the last row
worker stores the scores to the linear space cost matrix M in
memory only in the last iteration (last strip of the algorithm).
In all other intermediate iterations, the first row worker reads
the cost matrix values from scratchpad memory, where the
last row worker has saved its computed cost matrix values in
previous iteration. This reduces the number of memory reads
and writes for the cost matrix to O(n). The scratchpad memory
based algorithm operates similarly to the memory based strip
mining algorithm. The key difference is that only the initial and
final rows are read from or written to memory. In Figure 9, the
hash-patterned cells of the cost matrix are stored in internal
PE scratchpad memory by the last row worker and read by the
first row worker m

w times.

One drawback of this approach is that the amount of
scratchpad memory on spatial architectures is limited and
therefore can limit the maximum length of T . Note that
although use of scratchpad reduces the number of memory
reads and writes from/to the linear cost matrix from O

(
m
w n

)
to O (n), O

(
m
w n

)
reads of string T are required in both strip

mining approaches. The tiling based computation as discussed
in the next subsection provides a way to deal with this limited
amount of storage, and can reduce the number of memory
reads and writes even further if a proper tile size is chosen.

Memory Loads/Stores and Time Complexity:

For the strip mining algorithm using memory, the total
number of memory reads and writes is O

(
(3(m

w n) + m
)
. This

cost comes from O
(

m
w

)
memory reads of the cost matrix and

string T of length n, and m
w memory writes to cost matrix of

the same size. String S of size m must also be read once for the
entire computation. Similarly, for the strip mining algorithm
that uses scratchpad memory to store and read the cost matrix
values, the total number of memory reads and writes is
O

(
(m

w n) + 2n + m
)

where (m
w n) comes from reading T , 2n

comes from reading and writing to linear space cost matrix and
m comes from reading S. The running time of this algorithm
with w row workers is: Tw = Θ((m

w n)+w m
w) = Θ((m

w n)+m)
where the second term comes from the synchronization cost
of w row workers at the end of each strip. Hence, the running
time with infinite number of row workers (as well as m row
workers) is: T∞ = Θ(m + n).

6

R
o

w
s
 s

a
v
e
d

 b
y

th
e
 l

a
s
t

w
o

rk
e
r

Initial input

row

Tile width, D

--------------------n+1----------------------

--
--

--
--

--
--

--
--

-m
+

1
--

--
--

--
--

--
--

--
- Strip of

W workers

Columns saved to memory

Column Strip

Final

output row

Fig. 10: Tiled approach. Computation occurs on a column
strip of tiles. Initial and final rows are read from and written
to memory, while intermediate rows use scratchpad memory.
Column results are saved in memory.

E. Tiling

In the tiling algorithm, we virtually divide the two-
dimensional cost matrix into tiles of size w × D, where w
denote the number of row workers (also height of the tiles in
this case), and D denote the width of the tiles. We solve the
column of tiles (column strips) one by one starting from the
leftmost column of tiles, ending with the rightmost column
of tiles. For the tiling algorithm we use linear O(n) memory
space to store the cost matrix values from which the first row
worker reads its top inputs and the last row worker writes its
computed cost values. Additionally we use two other O(m)
sized memory arrays to store the left most column of a column
strip and the right most column of a column strip. These
two arrays work as input and output in alternative iterations
(column strips). All w row workers first compute values for
the first column strip of m

w tiles of size w×D, each of which
ends at the column D+1 of the original cost matrix M . Then
the row workers compute the next column strip consisted of
m
w tiles as shown in Figure 10 and so on.

The computation for a single column of tiles (column
strip) is similar to the strip mining algorithm using scratchpad
memory with a few exceptions.

• Each row worker starts from the 1st column, instead of
the 0th column. Therefore, each row worker needs to
read left and diagonal cells for the very first column
of each tile from memory.

• Each row worker of a tile needs to store the last value
of its row to memory, so that they can be used as input
(left and diagonal cells) for the next column strip.

• Only the first row worker of a column strip reads a
segment of string T from memory at the beginning of
that column strip, and all other row workers receive
T from the previous row worker and forward T to the
next row worker. The last row worker stores T in local
scratchpad memory, so that for the next tile the first
row worker does not need to read T from memory.

Therefore, over all the tiles, T needs to be read only once (cost
(O(n)) to compute all O(mn) cells of the cost matrix.

Figure 10 shows how the tiling based algorithm works.
The two-dimensional cost matrix has been divided into
tiles where the hash-patterned cells along the rows are
stored in scratchpad memory and the checkerboard-patterned
cells along the columns are stored in memory and are
used as input (left, diagonal) for the next column of
tiles. Note that we have a choice on whether the inter-
mediate rows, intermediate columns, or both dimensions
should be saved in scratchpad memory based upon each
dimension’s size and the amount of available scratchpad
memory. In general the maximum tile width Dmax =
min(Total Scratchpad Memory Size/2, n/2).

Memory Loads/Stores and Time Complexity:

To show that the tiling approach has better theoretical
memory bandwidth utilization than that of the strip mining
approach, we count total number of memory reads and writes
required by the tiled approach. The total number of mem-
ory reads in this approach is O(

(
3(nm

D)
)

+ 2n), where the
O

(
3(nm

D)
)

comes from reading S, left and diagonal cells at
the beginning of each tile. There are m memory reads for each
column strip, and in total we have n

D column strips/iterations.
On the other hand, the 2n term comes from reading T and
the cost matrix of size n from memory. In addition, there
are O(n) writes to memory for writing the final cost values
(hashed-patterned cells in Figure 10) and O

(
nm

D

)
writes for

writing the end cells (rightmost column) for each column
strip (checkerboard-patterned cells in Figure 10). Therefore, in
the tiled approach, we have

(
4nm

D + 3n
)

memory operations.
Clearly, the tiled based approach will perform better than
the strip mining with scratchpad memory based approach
iff

(
4nm

D + 3n
)

<
(
(nm

w) + 2n + m
)

=⇒ Dmin > 4w
(considering n = m). As w is constrained by the number
of PEs in the spatial architecture and D is constrained by
the total aggregated scratchpad memory for all PEs, D will
satisfy the condition trivially. The running time for this algo-
rithm with w row workers is Tw = Θ

(
n
D (mD

w + w m
w)

)
=

Θ(mn/w + mn/D).

F. Linear Memory Space Trace Back Path

In both of our strip-mining and tiled algorithms we use
linear memory space for computing the score. In addition
to that, we reduce the number of actual memory reads and
writes in the spatial architecture by utilizing direct PE-to-
PE communication, something not possible in a general-
purpose processor architecture. However, the specific edits
required to achieve the minimum edit distance are often needed
alongside the scores. Storing the edits for each cell in the
cost matrix often requires quadratic memory space which is
very expensive for large string inputs. Fortunately, there are
algorithms that can reproduce the edits without storing the edits
initially (Hirschberg [12] and Chowdhury [14]) and without
the requirement for quadratic memory space. However, such
algorithms require extra O(mn) work to do so. The algorithm
in [14] is a divide and conquer based recursive algorithm which
executes the edit distance algorithm in two passes: the forward
pass and the backward pass. The algorithm assumes that it is
given input boundaries (the 1st row and 1st column of the
cost matrix) and at the end it will produce output boundaries
(rightmost column and bottommost row). In the forward pass,
the algorithm computes the score by recursively dividing a

7

PEs 32 Total - Each with 16 Instructions
8 local registers, 8 predicates

Network Mesh (1 cycle link latency)
Scratchpad 8KB (distributed)
L1 Cache 4KB (4 banks, 1KB/bank)
L2 Cache 24 KB shared slice
DRAM 200 cycle latency

Estimated Clock Rate 3.4 GHz

TABLE I: Block Architectural Parameters

virtual two-dimensional cost matrix into four quadrants and
keeps dividing until it reaches a small base case size when it
solves for edit distance using the standard dynamic program-
ming algorithm using linear memory space. During the forward
pass, the algorithm saves additional information about where
the path from each cell of the output boundary (rightmost
column and bottommost row) intersects the input boundary
(leftmost column and topmost row). In the backward pass, it
recursively executes the edit distance in backward direction to
reconstruct the path information. The algorithm decides which
quadrant to explore based on where the path from the bottom-
right point intersects the input boundaries and hence solves
only those segments required to reconstruct the edits/paths.

As we have theoretically shown that use of spatial archi-
tecture reduces the total memory footprint by several times,
it is easy to predict that all the traditional linear memory
space algorithms (Hirschberg’s or Chowdhury’s) can realize a
huge performance boost by using our optimized linear memory
space edit distance row workers to compute the cost as well
as the required edits on spatial architectures.

IV. EXPERIMENTAL SETUP

A. Spatial Architecture Performance and Power Modeling

We evaluate our edit distance implementations on a cycle-
accurate performance model that simulates the triggered
instruction-based scalable spatial architecture (TIA) in [3].
The performance model is developed using Asim, an estab-
lished performance modeling infrastructure [16]. We model
the detailed microarchitecture of each TIA PE in the array, the
mesh interconnection network, L1 and L2 caches, and DRAM.
The architectural organization of our evaluation architecture
is found in Figure 2. The architecture is built from an array
of TIA PEs organized into blocks. Each block contains a
grid of interconnected PEs, a set of scratchpad memory slices
distributed across the block, a private L1 cache, and a slice
of a shared L2 cache that scales with the number of blocks
on the fabric. Table I provides the parameters that we use
in our evaluation. The TIA PEs use 32-bit integer/fixed-point
datapaths, and do not include hardware floating point units.
As a reference, 12 blocks (each including PEs, caches, etc.)
are about the same size as our baseline Intel R©CoreTMi7-3770
core (including L1 and L2 caches), normalized to the same
technology node. Also note that the length of a clock cycle
of both a high-end x86 core and TIA are estimated to be
the same [3]. We used one block of PEs (32 PEs in total)
to conduct all our experiments, and then extrapolated the
results to 12 blocks. As in other accelerators, a general-purpose
processor is used as the host device responsible for setup of the
kernel on the TIA architecture. The interface between the two
devices is shared memory managed using cache coherence to
transfer data, eliminating much of the communication overhead

Module MatchCost()

{

 predicate match;

 predicate p0 = false, p1 = false;

 doCMP_Si_Tj:

 when (!p0 && !p1 && %Si_In.tag != EOL && %Tj_In.tag != EOL) do

 cmp.ge match, %Si_In.data, %Tj_In.data (deq % Si_In, p0:=1)

 Forward_Tj:

 when (p0 && !p1) do

 enq %TjOut, % Tj_In.data (deq % Tj_In, p1:=1)

 Write_Match_Cost:

 when (p0 && p1 && match && %diag.tag != EOL) do

 enq %score, % diag.data (deq % diag, p0 := 0, p1=0)

 Write_Substitute_Cost:

 when (p0 && p1 && !match && %diag.tag != EOL) do

 enq %score, ADD(% diag.data, 1) (deq % diag, p0 := 0, p1=0)

}

Fig. 11: Sample code for a module that matches S[i] with T[j]
and computes the cost of cell M[i][j] based on the diagonal
cell M[i-1][j-1].

to transfer the initial strings as input and the path and score
as output.

We modeled energy consumption on the TIA-based spatial
architecture using synthesis and CACTI with a CMOS 22nm
manufacturing process and a 0.8 Volt operating voltage [17].
CACTI is used to model memory structures including in-
struction memory, scratchpad memory, the caches (L1, L2),
while synthesized Verilog is used for all other major PE
structures such as local registers, functional units, pipeline
latches, and scheduling logic. We leverage ITRS reports on
22nm to develop our wiring model. We leverage area and
physical dimension estimates for a TIA PE, and we use
those dimensions to find wire lengths for local connections
between PEs and between PEs and memory, assuming global
wiring tracks. In addition to generating the runtime of each
benchmark, the performance model also outputs the activity
for each component model in the block, measured by counting
the number of accesses performed to the structure. Reads and
writes are counted for storage structures, while the number
of active cycles is counted for functional units. We then link
the energy costs derived from CACTI and synthesis with
architectural activity factors to generate the total dynamic
energy consumption. Total energy consumption is calculated
by combining this dynamic energy value with leakage energy
based upon the runtime.

B. Spatial Edit Distance Implementation

We translate the data flow diagram of the row worker to
triggered instruction code by mapping each step of the data
flow diagram to one or more rules and their corresponding
guard conditions that fire those rules. A sample code snippet
that calculates the match/substitute cost is shown in Figure 11
that follows a similar convention to code in [3]. In this exam-
ple, the predicates help to define states and guard conditions
that determine relevant program state transitions and enable
specific instructions to fire. For example, a PE first checks
whether it is in state 0 and both the channels Si In (S[i]) and
Tj In (T[j]) have inputs, then the PE compares Si In with
Tj In, decides whether there is a match, dequeues the Si In
channel, and moves to state 1 (p1=0, p0=1). In state 1 the

8

PE forwards Tj In to the next row worker through its Tj Out
channel, dequeues the Tj In channel and moves to state 3
(p1=1, p0=1). Finally, based on whether the PE found a match
or mismatch in state 0, it computes the match/substitute cost
from either diagonal or (diagonal + 1) and again moves to
state 0.

For integration with the host processor, we set up the input
and output datasets and leverage control registers within the
TIA architecture. The host sets up the memory space for the
cost matrix and writes the memory pointers of the cost matrix
and input strings into the TIA architecture registers, then the
host signals the TIA architecture to start computation. The host
waits for the TIA to signal that the row workers have finished
their computation before leveraging cache coherence hardware
to collect the resultant data.

C. x86 Comparison

For our comparisons to a general-purpose processor, we
performed real runtime and power measurements using an
Intel R©CoreTMi7-3770. The i7-3770 is four-core, eight-thread
processor which operates at a 3.4 GHz frequency (3.9 GHz
Turbo Boost) and is manufactured in 22nm technology. To
capture runtime for each experiment, we looped over the
computation with enough iterations so that the caches were
properly warmed up and so that execution took on the order
of seconds in wall time, which enabled us to use operating
system timers. To capture energy consumption, we utilized
the LIKWID tool set which reads registers included in the
Intel R©CoreTMi7-3770 processor to read energy consumption
and power [18]. Note that while we do not model power for
DRAM accesses, we eliminated most DRAM accesses using
code optimizations.

For our x86 software version, we started with a C++ naı̈ve
implementation of edit distance and progressively applied
both source-level and compiler-level optimizations to improve
performance and energy consumption. We evaluate the per-
formance and energy benefit of each of these optimizations
in detail in the next section. To enable parallelization of the
x86 implementation of edit distance to multiple threads, we
tiled computation and used OpenMP. Tiling divides the two-
dimensional cost matrix into blocks, and then uses multiple
threads to compute blocks of cells along a diagonal starting
from the top-left diagonal and ending to the bottom-right diag-
onal. Each diagonal wavefront of blocks can be computed in
parallel, with synchronization occurring between wavefronts.
To improve scalability of our x86 implementation for edit
distance to larger string sizes, we performed an additional
source-level transformation to our tiled version to enable
the use of linear memory space and reduce the size of the
cost matrix [14]. In practical terms, this often reduces the
memory footprint requirements from gigabytes of memory to
kilobytes, which further improves cache behavior and avoids
energy expensive DRAM accesses. For the final source-level
transformation, we transformed each tile computation to enable
vectorization by the compiler. As parallelism is found along
the diagonals, we transformed each tile into the shape of a
diamond so that parallel work exists horizontally in memory.
For our compiler, we used the Intel R©icc compiler version 14.0
and experimented with optimization levels −O0 through −O3
and AVX vectorization.

Algorithm Platform W
or

ke
rs

/
PE

s
pe

r
B

lo
ck

C
el

ls
/

cy
cl

e

Sp
ee

du
p

ov
er

x8
6

A
re

a-
N

or
m

al
iz

ed
Sp

ee
du

p
ov

er
x8

6

Score and Path x86 Optimized – 0.36 1.0 1.0
TIA StripMem 16 : 32 1.11 3.08 37.0

TIA StripSP 14 : 30 1.53 4.25 51.0
TIA Tiled 10 : 22 1.12 3.11 37.3

Score Only x86 Optimized – 0.48 1.00 1.00
TIA StripMem 16 : 32 2.14 4.45 53.5

TIA StripSP 14 : 30 1.80 3.75 45.0
TIA Tiled 14 : 30 1.88 3.92 47.0

TABLE II: Performance of Edit distance on the spatial archi-
tecture and a comparison with a typical modern processor

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Overview of Performance Results

Table II presents the overview of the performance results
for a fixed input string size of 1024 for both S and T. While
in this paper we focus on computing the score matrix, the
results for computing the score and path edits together are also
presented. Scores are calculated using O(n) memory space
and edits are saved using O(nm) memory space. Recall that
it is possible to reconstruct the edits by recomputing a smaller
subset of the scores in the backward direction. Therefore,
showing that computing the scores on TIA is significantly
faster than computing the score on x86 is still of great interest.
The x86 implementation presented uses all the optimizations
previously mentioned. Though the TIA implementations are
scalable with the total number of PEs available, we limit the
computation fabric to a single block and normalize to the area
of an x86 core by multiplying by a factor of 12 (approximately
12 blocks consume the area of an Intel R©CoreTMi7-3770 core).

From Table II we can see that strip mining using scratchpad
memory is the fastest (achieves a 51 times speedup with respect
to x86) among the algorithms that compute both score and
path. We were only able to use 10 row workers (22 PEs) for the
tiled based approach as we were resource constrained by the
number of communication channels used by the row workers
to read to and write from memory. Despite these constraints,
the tile-based approach was slightly better than strip mining
using memory in this case. For algorithms that only compute
the score, the performance of all algorithms improved because
the overall computational work was reduced by not saving
O(nm) edits to memory. When computing the score only,
all our algorithms on TIA also performed at least 45 times
faster than the x86 based version. Note that our extrapolated
performance when scaling TIA to 12 blocks is conservative,
as we assume the number of row workers is kept constant
for each block. For example, strip mining using scratchpad
memory requires two control PEs to work as a multiplexer
and de-multiplexer attached to the first and last row workers,
effectively limiting the maximum number of row workers to
14 instead of 16. However, this control overhead need not be
replicated when scaling to 12 blocks, and performance would
therefore be better than our extrapolated number.

B. Analysis of x86 optimizations

Before comparing the two platforms in detail with each
other, we first seek to understand the impact of the coding

9

0

0.1

0.2

0.3

0.4

0.5

0.6
C

e
ll

s
 C

o
m

p
u

te
d

 p
e

r
C

lo
c

k
 C

y
c

le

String Size

Naïve

+icc -O3

+blocking

+linear space

+vectorization

Fig. 12: Throughput performance for x86 optimizations.

0

50

100

150

200

250

n
a

n
o

jo
u

le
s

 C
o

n
s

u
m

e
d

 p
e

r
C

e
ll

String Size

Naïve

+icc -O3

+blocking

+linear space

+vectorization

Fig. 13: Energy consumption for x86 optimizations.

effort to optimize the x86 version of edit distance. For each
of the optimizations mentioned in Section IV, we analyzed the
performance and energy consumption properties of progres-
sively adding compiler optimizations, blocking, linear memory
space, and vectorization. Figure 12 presents the performance
improvement using the throughput metric cells/cycle while
Figure 13 presents the energy consumption in nanoJoules per
cell computation.

Overall, we find that the icc compiler −O3 optimization
pass provides a 4.8× performance improvement by reducing a
substantial amount of dynamic instructions required, increasing
the number of cells calculated per clock cycle from 0.03 to
0.16. Similarly, the −O3 optimization pass provided a 5.1×
reduction in energy consumption. The blocking and linear
memory space optimizations are required to enable multi-
threaded parallelization (evaluated later in this section) and
reduce the memory footprint needed for the cost matrix. We
find that the overhead required for each of these optimizations
is sufficiently large to reduce performance at string lengths less
than 256. Vectorization provides a substantial improvement,
as performance is increased over the prior optimizations by
2.8×, while energy consumption is reduced by 2.6×. Fur-
thermore, we find that given our vectorization strategy, larger
input strings more readily take advantage of the performance
improvement potential, with performance leveling off at string
lengths above 256. Finally, our best performing single-threaded
x86 implementation with all optimizations considered is able
to calculate 0.48 cells per cycle, while consuming 13.1 nano-
Joules of energy per cell.

C. Comparison of TIA to x86

We compare our TIA edit distance implementations to
the best x86 implementation. Leveraging our blocking opti-
mization, we compare from one to four OpenMP x86 threads

0

0.5

1

1.5

2

2.5

C
e
ll
s
 C

o
m

p
u

te
d

p

e
r

C
lo

c
k
 C

y
c
le

String Size

x86_opt_1T

x86_opt_2T

x86_opt_4T

TIA_StripMem

TIA_Tiled

Fig. 14: Throughput performance comparison. Results are
not area normalized. Presented are 1-, 2-, and 4- core x86
configurations and a TIA Block (1/12 area of x86 core).

1

10

100

1000

10000

100000

1000000

p
ic

o
J

o
u

le
s

/C
e

ll
 (

lo
g

 s
c

a
le

)

String Size

x86_opt_1T

x86_opt_2T

x86_opt_4T

TIA_StripMem

TIA_Tiled

Fig. 15: Energy consumption comparison.

working together on a single edit distance problem. Each
thread is bound to a separate core, enabling the private use
of both the L1 and L2 caches. Note that the TIA versions are
implemented on a single block, which is approximately 1/12
the area of a single x86 core.

Figure 14 illustrates that our TIA implementations have
much better performance than the optimized x86 implementa-
tion. When compared to a single x86 thread, our one block TIA
implementation (in 1/12 the area) has 4.9× better throughput,
0.48 cells per cycle versus 2.2 cells per cycle. Note that
because our implementation works on a single edit distance
problem, this performance also translates to a 4.9× reduction
in runtime. Even when compared to a four-core x86 implemen-
tation (single thread per core), we find that the one block TIA
implementation maintains a 39% advantage. Scaling TIA to the
same area as four x86 cores results in a TIA performance that
is more than 58× better than the x86 implementation. Overall,
TIA and spatial architectures in general are able to express
and exploit significant amounts of fine-grained parallelism
unavailable to non-spatial architectures.

The energy efficiency advantage of the TIA implementation
is nearly twice the performance advantage. Figure 15 shows
that the energy consumption per cell calculation of our TIA
implementations is more than two orders of magnitude less
than the x86 version. This significant benefit corresponds both
to the low complexity of a PE relative to an x86 core, which
results in much lower energy cost per operation, and the
aggressive conversion from expensive memory operations into
inexpensive local communication.

10

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

4,500,000

5,000,000

x86_opt_1T TIA_StripMem TIA_Tiled

N
u

m
b

e
r

o
f

T
o

ta
l
O

p
e
ra

ti
o

n
s

PE_Scratchpad

PE_Local

Mem_Write

Mem_Read

Fig. 16: Comparison of memory, local communication, and
scratchpad memory accesses between x86 and TIA. While
register file activity is not shown, TIA local communication
numbers include what would be register file accesses on x86.

D. Memory References and Communication

Figure 16 compares the number of memory accesses, local
communication between PEs, and scratchpad memory accesses
between x86 and TIA. In this analysis, we compare our fully-
optimized single-threaded x86 implementation with two of
our TIA implementations on a dataset where strings S and
T are both of length 1024. Activity numbers for TIA were
gathered from the performance model, while the number of
memory accesses on x86 were gathered using cachegrind, a
performance instrumentation tool from Linux [19]. We find
that over 95.2% and 97.3% of memory accesses in both TIA
implementations are successfully converted into less expensive
local communication between PEs and scratchpad memory
accesses. The dramatic reduction in memory accesses is a key
benefit in accelerating applications using spatial architectures.
Note that the amount of local communication is on the
order of the number of memory accesses in the x86 version.
While register file accesses are not explicitly shown, the TIA
local communication numbers include accesses that would be
facilitated on x86 using the register file. This conversion of
memory accesses to local communication corroborates well
with the organization of our TIA implementations, where local
communication is primarily used to send scores between PEs.

E. Coding Effort Analysis

To further compare the two platforms, we analyzed the
code footprint of the x86 and TIA kernels. Performing this
analysis provides further insight into the natural mapping of
edit distance onto spatial architectures. Table III presents the
lines of source code for x86 (C++) and TIA (Assembly).
For this analysis, we only included lines in each kernel
containing real work, and excluded lines entirely devoted to
comments, whitespace characters, and control characters such
as braces {}. For the C++ x86 version, we further optimized
code footprint by aggressively modularizing code into reusable
functions that could be inlined by the compiler.

We find that the number of lines of TIA assembly is nearly
on the order of the fully optimized C++ x86 version. This is
an interesting result, given the superior expressibility of C++
for computation. However, the effort required to optimize the
x86 version for scalability and performance adds significant
code complexity. While scaling the number of row workers is
trivial in TIA, x86 must change the algorithm and implement

Platform Version Lines of source code
x86 (C++) Naive 10

+blocking 65
+linear memory space 144
+vectorization 168

TIA (Assembly) StripMem 222
Tiled 313

TABLE III: Coding effort for edit distance (code footprint)

blocking and OpenMP support to facilitate parallelization.
Similarly, implementing vectorization on x86 results in an
algorithmic change and corner cases that must be handled with
additional code. Overall, we feel that this data analysis reflects
the natural mapping of edit distance onto TIA.

VI. RELATED WORK

There is much prior research in developing and optimiz-
ing edit distance and its several variants on general-purpose
processors such as x86. Hirschberg [12] first discovered a
linear-space algorithm for sequence alignment, which was then
popularized and extended by Myers and Miller [13]. There are
also several multicore based implementations of edit distance
as well as sequence alignment. In [14] the authors present a
cache-oblivious divide-and-conquer algorithm for multicores,
where the cost matrix is divided into four quadrants to be
solved recursively, and the diagonal quadrants are solved in
parallel. Other prior research on edit distance has focused
on parallelization targeting both MIMD [20] and SIMD [21]
architectures. Vectorization of the sequence alignment problem
by reshaping the cost matrix has been described in [22].

With the recent surge of research on accelerator architec-
tures, edit distance and its variants have also been mapped
to GPUs, FPGAs, and reconfigurable hardware. This prior
research focuses on mapping to the data-parallel nature of the
architectures, with optimization utilizing inter- and intra- task
parallelism, tiling, pruning, and approximate solutions. Given
the difficulty in vectorizing edit distance, much of this prior
research finds parallelism by performing computation across
multiple sets of small gene sequences [23], [24]. However,
there exists some research which focuses on improving per-
formance for a single large sequence alignment problem [25].
Some FPGA and reconfigurable hardware research leverage
the strong dataflow properties within the algorithm in order to
exploit parallelism [26], [27], [28]. While much of this research
focuses on improving throughput performance, some work also
emphasizes reducing logic footprint [29].

In contrast to this paper, no prior research focuses on
analyzing energy or power consumption of edit distance, or
compares fully-optimized implementations on two platforms
with different architectural properties. We develop edit dis-
tance algorithms for the emerging class of coarse-grained
spatial architectures, and leverage best-known techniques to
develop an optimized x86 implementation of edit distance.
We concentrate on developing a scalable implementation for
spatial architectures that operates on arbitrarily large source
and target strings while minimizing memory bandwidth by
optimizing communication among the PEs. We also optimize
for a single instance of edit distance operating on a single
pair of strings, rather than gaining parallelism through multiple
computations. Finally, both x86 and TIA implementations are
evaluated on high-end evaluation platforms to further ensure a
fair comparison.

11

VII. CONCLUSION

In this paper we demonstrate the ability of a triggered
instruction-based spatial architecture to solve the edit distance
problem, a broadly used dynamic programming problem. We
exploit inherent dataflow properties and pipelined parallelism
to implement edit distance on a previously proposed spatial
architecture. We show that it is possible to get more that 50×
performance improvement in runtime and a 100× reduction
in energy consumption compared to a highly optimized x86
based implementation run on a high-end Intel R©x86 processor.
This huge acceleration essentially comes from the exploitation
of very fine-grained parallelism and the dramatic reduction
of memory reads and writes. Our experiments show that
this proposed spatial architecture has a tremendous potential
for providing high performance for applications with local
communications. We conclude that for applications where vec-
torization is not straightforward or inefficient due to horizontal
and vertical dependencies between the computation elements,
it is possible to map them to a spatial architecture more
efficiently than an x86 processor.

ACKNOWLEDGMENTS

We greatly appreciated the suggestions of Michael Pellauer,
Angshuman Parashar, Mohit Gambhir, and Matthew Frank
during development of the edit distance implementations used
in this paper. We thank the VSSAD team for their gracious
feedback on experimental results and early versions of this
paper. Finally, we thank the anonymous reviewers for the
useful comments in developing the final version of the paper.

REFERENCES

[1] G. E. Blelloch and M. Reid-Miller, “Pipelining with futures,” in Pro-
ceedings of the Symposium on Parallel Algorithms and Architectures,
1997, pp. 249–259.

[2] I.-T. A. Lee, C. E. Leiserson, T. B. Schardl, J. Sukha, and Z. Zhang,
“On-the-fly pipeline parallelism,” in Proceedings of the Symposium on
Parallel Algorithms and Architectures, 2013, pp. 140–151.

[3] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lustig,
V. Pavlov, A. Zhai, M. Gambhir, A. Jaleel, R. Allmon, R. Rayess,
S. Maresh, and J. Emer, “Triggered instructions: a control paradigm for
spatially-programmed architectures,” in Proceedings of the International
Symposium on Computer Architecture, 2013, pp. 142–153.

[4] K. Compton and S. Hauck, “Reconfigurable Computing: A Survey Of
Systems and Software,” ACM Computer Survey, vol. 34, no. 2, pp.
171–210, 2002.

[5] A. Marquardt, V. Betz, and J. Rose, “Speed and Area Tradeoffs in
Cluster-Based FPGA Architectures,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 8, no. 1, pp. 84 –93, Feb. 2000.

[6] E. Mirsky and A. DeHon, “MATRIX: A Reconfigurable Computing
Architecture with Configurable Instruction Distribution and Deploy-
able Resources,” in Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, 1996, pp. 157–166.

[7] J. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with a Re-
configurable Coprocessor,” in Proceedings of the IEEE Symposium on
Field-Programmable Custom Computing Machines, 1997, pp. 12–21.

[8] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins,
“ADRES: An Architecture with Tightly Coupled VLIW Processor and
Coarse-Grained Reconfigurable Matrix,” in Proceedings of the Inter-
national Conference on Field-Programmable Logic and Applications,
2003, pp. 61–70.

[9] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. Taylor,
“PipeRench: A Virtualized Programmable Datapath in 0.18 Micron
Technology,” in Proceedings of the IEEE Custom Integrated Circuits
Conference, May 2002, pp. 63–66.

[10] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically Spe-
cialized Datapaths for Energy Efficient Computing,” in Proceedings of
the International Symposium on High Performance Computer Architec-
ture, 2011.

[11] S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen, A. Putnam,
K. Michelson, M. Oskin, and S. J. Eggers, “The WaveScalar Archi-
tecture,” ACM Transactions on Computer Systems, vol. 25, no. 2, pp.
4:1–4:54, May 2007.

[12] D. S. Hirschberg, “A linear space algorithm for computing maximal
common subsequences,” Communications of the ACM, vol. 18, no. 6,
pp. 341–343, 1975.

[13] E. W. Myers and W. Miller, “Optimal alignments in linear space,”
Computer Applications in the Biosciences, vol. 4, no. 1, pp. 11–17,
1988.

[14] R. A. Chowdhury, H.-S. Le, and V. Ramachandran, “Cache-oblivious
dynamic programming for bioinformatics,” Transactions on Computa-
tional Biology and Bioinformatics, vol. 7, no. 3, pp. 495–510, 2010.

[15] R. A. Chowdhury and V. Ramachandran, “Cache-oblivious dynamic
programming,” in Proceedings of the Annual ACM-SIAM Symposium
on Discrete algorithm, 2006, pp. 591–600.

[16] J. S. Emer, P. S. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S. Manne,
S. S. Mukherjee, H. Patil, S. Wallace, N. L. Binkert, R. Espasa, and
T. Juan, “Asim: A performance model framework.” IEEE Computer,
vol. 35, no. 2, pp. 68–76, 2002.

[17] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
NUCA organizations and wiring alternatives for large caches with
CACTI 6.0,” in Proceedings of the International Symposium on Mi-
croarchitecture, 2007, pp. 3–14.

[18] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,” in
Proceedings of the International Conference on Parallel Processing
Workshops, 2010, pp. 207–216.

[19] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2007, pp. 89–100.

[20] X. Huang, W. Miller, S. Schwartz, and R. C. Hardison, “Paralleliza-
tion of a local similarity algorithm,” Computer applications in the
biosciences: CABIOS, vol. 8, no. 2, pp. 155–165, 1992.

[21] J. A. Grice, R. Hughey, and D. Speck, “Parallel sequence alignment
in limited space.” in Proceedings of Intelligent Systems for Molecular
Biology, 1995, pp. 145–153.

[22] A. Heilper and D. Markman, “Vectorization of sequence alignment
computation using distance matrix reshaping,” no. US Patent 7343249,
2008.

[23] R. Farivar, H. Kharbanda, S. Venkataraman, and R. H. Campbell, “An
algorithm for fast edit distance computation on gpus,” in Proceeding of
Innovative Parallel Computing, 2012, pp. 1–9.

[24] E. F. de O.Sandes and A. C. M. de Melo, “Retrieving smith-waterman
alignments with optimizations for megabase biological sequences using
gpu,” IEEE Transactions on Parallel and Distributed Systems, vol. 24,
no. 5, pp. 1009–1021, 2013.

[25] M. Korpar and M. Sikic, “Sw# - gpu enabled exact alignments on
genome scale,” Bioinformatics, vol. 29, no. 19, pp. 2494–2495, 2013.

[26] S. Dydel and P. Bała, “Large scale protein sequence alignment using
fpga reprogrammable logic devices,” in Proceedings of the International
Conference on Field-Programmable Logic and Applications. Springer,
2004, pp. 23–32.

[27] K. Puttegowda, W. Worek, N. Pappas, A. Dandapani, P. Athanas, and
A. Dickerman, “A run-time reconfigurable system for gene-sequence
searching,” in Proceedings of the 16th Annual VLSI, 2003, pp. 561–
566.

[28] B. Sahoo, T. Swarnkar, and S. Padhy, “Implementation of parallel edit
distance algorithm for protein sequences using reconfigurable acceler-
ator,” in Proceedings of the International Conference on Advances in
Computing, Communication and Control, 2009, pp. 26–29.

[29] K. B. Kent, R. B. Proudfoot, and Y. Zhao, “Parameter-specific fpga
implementation of edit-distance calculation,” in Proceedings of the
IEEE International Workshop on Rapid System Prototyping, 2006, pp.
209–215.

12

