
Abstract—Increasing transistor density enables adding more on-die
cache real-estate. However, devoting more space to the shared last-
level-cache (LLC) causes the memory latency bottleneck to move
from memory access latency to shared cache access latency. As
such, applications whose working set is larger than the smaller
caches spend a large fraction of their execution time on shared
cache access latency. To address this problem, this paper
investigates increasing the size of smaller private caches in the
hierarchy as opposed to increasing the shared LLC. Doing so
improves average cache access latency for workloads whose
working set fits into the larger private cache while retaining the
benefits of a shared LLC. The consequence of increasing the size of
private caches is to relax inclusion and build exclusive hierarchies.
Thus, for the same total caching capacity, an exclusive cache
hierarchy provides better cache access latency. 

We observe that server workloads benefit tremendously from
an exclusive hierarchy with large private caches. This is primarily
because large private caches accommodate the large code working-
sets of server workloads. For a 16-core CMP, an exclusive cache
hierarchy improves server workload performance by 5-12% as
compared to an equal capacity inclusive cache hierarchy. The
paper also presents directions for further research to maximize
performance of exclusive cache hierarchies.

Keywords—commercial workloads, server cache hierarchy,
cache replacement, inclusive, exclusive

I.  INTRODUCTION
As the gap between processor and memory speeds continues
to grow, processor architects face several important decisions
when designing the on-chip cache hierarchy. These design
choices are heavily influenced by the memory access
characteristics of commonly executing applications. Server
workloads, such as databases, transaction processing, and web
servers, are an important class of applications commonly
executing on multi-core servers. However, cache hierarchies
of multi-core servers are not necessarily targeted for server
applications [8]. This paper focuses on designing a high
performing cache hierarchy that is applicable towards a wide
variety of workloads. 

Modern day multi-core processors, such as the Intel Core
i7 [2], consist of a three-level cache hierarchy with small L1
and L2 caches and a large shared last-level cache (LLC) with
as many banks as cores in the system (see Figure 1) [1, 2]. The
small L1 and L2 caches are designed for fast cache access
latency. The shared LLC on the other hand has slower cache
access latency because of its large size (multi-megabytes) and
also because of the on-chip network (e.g. ring) that

interconnects cores and LLC banks. The design choice for a
large shared LLC is to accommodate varying cache capacity
demands of workloads concurrently executing on a CMP. 

In a three-level hierarchy, small private L2 caches are a
good design choice if the application working set fits into the
available L2 cache. Unfortunately, small L2 caches degrade
performance of server workloads that have an intermediate
working set that is a few multiples (e.g. 2-4x) larger than the
L2 cache size. In such situations, server workloads spend a
large fraction of their execution time waiting on shared cache
access latency, most of which is on-chip interconnect latency. 

The interconnect latency can be tackled by removing the
interconnection network entirely and designing private LLCs
or a hybrid of private and shared LLC [9, 10, 30, 12, 28].
While hybrid LLCs provide the capacity benefits of a shared
cache with the latency benefits of a private cache, they still
suffer from the added L2 miss latency when the application
working set is larger than the available L2 cache. 

Alternatively, prefetching can be used to hide L2 miss
latency. However, the access patterns of server workloads are
hard to predict [34, 35]. Existing prefetching techniques
targeted for server workloads [13, 14, 34, 35] either do not
perform well across a broad range of workloads [5] or the
prefetching techniques are too complex to be adopted by
industry. Since server workloads represent an important class
of workloads across various market segments, it is imperative
to design a general purpose cache hierarchy that performs well
across a wide variety of workload categories. 

A straightforward mechanism to reduce the overhead of
shared LLC access latency in a three-level hierarchy would be
to build large L2 caches. For example, AMD processors use
exclusive cache hierarchies with large L2 caches ranging from
512KB to 1MB [18, 11] as compared to Intel processors that
use inclusive cache hierarchies with small 256KB L2s. To-
date there exists no comprehensive published study on the
benefits of one cache hierarchy over the other. We conduct a
detailed simulation-based server workload study on a 16-core
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Figure 1:  CMP with Three-Level Cache Hierarchy. 
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CMP using a three-level inclusive cache hierarchy (similar to
Intel Core i7 [2]). Corroborating prior work [17], we find that
server workloads spend a large fraction of their execution time
waiting on LLC access latency. To minimize the impact of
shared LLC latency, we make the following contributions:
   • We find front-end instruction fetch unit misses in the L2

cache to constitute a non-negligible portion of total
execution time. We propose simple techniques like
Code Line Preservation (CLIP) to dynamically preserve
latency critical code lines in the L2 cache over data
lines. For server workloads, CLIP performs nearly the
same as doubling the available L2 cache size. We
advocate further research for practical code prefetching
and cache management techniques to improve front-end
performance of server workloads. 

   • Since server workloads benefit from large L2 cache
sizes, we show that changing the baseline inclusive
hierarchy to an exclusive cache hierarchy improves
performance. This change also retains design constraints
on total on-chip die space devoted to cache. We show
that exclusive cache hierarchies provide benefit by
improving average cache access latency.

   • We show that exclusive cache hierarchies functionally
break recent high performing replacement policies
proposed for inclusive and non-inclusive caches [20, 21,
29, 36, 37]. We re-visit the Re-Reference Interval
Prediction (RRIP) cache replacement policy used in
commercial LLCs today [3, 4]. For an exclusive cache
hierarchy, we show that adding support in the L2 cache
(a single bit per L2 cache line) to remember re-reference
information in the LLC restores RRIP functionality to
provide high cache performance.

II.  MOTIVATION
Figure 2 illustrates the normalized CPI stack of SPEC
CPU2006 (a commonly used representative set of scientific
and engineering workloads) and server workloads simulated
on a processor and cache hierarchy configuration similar to
the Intel Core i7. The study is evaluated by enabling only a
single core1 in a 16-core CMP with a 32MB shared LLC. The

normalized CPI stack denotes the fraction of total execution
time spent waiting on different cache hit/miss events in the
processor pipeline. We separate the CPI stack into cycles spent
doing compute, cycles where the front-end (FE) (i.e.
instruction fetch unit) is stalled waiting for an L1 miss and L2
hit response (FE-L2), cycles where the back-end (BE) (i.e.
load-store unit) is stalled waiting for an L1 miss and L2 hit
response (BE-L2), cycles where the front-end is stalled
waiting for an L1/L2 miss and LLC hit response (FE-L3),
cycles where the back-end is stalled waiting for an L1/L2 miss
and LLC hit response (BE-L3), cycles where the front-end is
stalled waiting for an LLC miss response (FE-Mem), and
finally cycles where the back-end is stalled waiting for an
LLC miss response (BE-Mem). Note that FE-L3 and BE-L3
components of the CPI stack correspond to stalls attributed to
shared LLC hit latency (which includes the interconnection
network latency). Workload behavior is presented with and
without aggressive hardware prefetching. Per benchmark
behavior of SPEC CPU2006 and server workloads and
average behavior of the two workload categories is shown. 

The figure shows that several workloads spend a
significant fraction of total execution time stalled on shared
LLC access latency. These stalls correspond to both code and
data misses in the private L1 and L2 caches. For example, the
figure shows that server workloads can spend 10-30% of total
execution time waiting on shared LLC access latency (e.g.
server workloads ibuy, sap, sjap, sjbb, sweb and tpcc). This
implies that the workload working-set size is larger than the
available L2 cache. Specifically, the large code working set
size corresponds to high front-end stalls due to shared LLC
access latency. Similarly, the large data working set sizes of
both server and SPEC workloads contribute to the back-end
stalls related to shared LLC access latency. Furthermore, note
that hardware prefetching does not completely hide the shared
LLC access latency.

Figure 2 illustrates that even though shared LLCs provide
capacity benefits, they move the memory latency bottleneck
from main memory access latency to shared cache access
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Figure 2: Performance Profile of SPEC CPU2006 and Server Workloads. 
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1. Details on experimental methodology is in Section V. We illustrate a
single core study here for motivation purposes. 



latency. This occurs when the working set size is larger than
the available L2 cache but smaller than the available shared
LLC size. Furthermore, the figure also shows that code misses
in server workloads contribute to a significant fraction of
overall execution time. Since L2 caches are typically designed
to reduce average cache access latency and avoid shared cache
accesses, Figure 2 motivates revisiting L2 cache design. 

III.  SERVER CACHE HIERARCHY ANALYSIS
To minimize stalls due to shared cache access latency, a
natural step is to simply increase the L2 cache size to
accommodate more of the application working set. Doing so
enables more of the workload working set to be serviced at L2
cache hit latency as opposed to shared cache access latency.
This section provides detailed cache hierarchy analysis for
server workloads. Specifically, we analyze the tradeoffs of
different sized L2 caches and manufacturing constrains of
increasing on-chip cache sizes. While our conclusions confirm
with existing trends observed in modern microprocessors from
AMD and Intel, to the best of our knowledge, this is the first
documented study of its kind. 

A.  Performance Benefits of Increasing L2 Cache Size
Simply increasing the L2 cache has several ramifications on
the organization of the processor cache hierarchy. For example
increasing L2 cache size can affect the L2 cache access
latency and design choices on whether or not to enforce
inclusion. Without going into these ramifications, we first
investigate the performance potential of simply increasing the
L2 cache size. To study these effects, we investigate the
performance of increasing the L2 cache size assuming no
impact on L2 cache access latency. Furthermore, to avoid
inclusion side effects, we assume a large 32MB LLC.

Figure 3 illustrates the performance of increasing the L2
cache size for the server workloads. The x-axis presents the
workloads while the y-axis presents the performance
compared to a 256KB L2 cache. The first three bars represent
three different L2 cache sizes: 512KB, 1MB, and 2MB. We
omit showing performance behavior of the entire SPEC suite
because across all 55 SPEC workloads we observed 2.5%
average performance improvement when increasing the L2

cache to 2MB2. From the figure, we observe that seven of the
12 server workloads observe more than 5% performance
improvements with a larger L2 cache both in the presence and
absence of prefetching. Furthermore, the results suggest that a
1MB L2 cache provides bulk of performance improvement. 

Increasing the L2 cache size naturally yields performance
improvement because more requests are serviced at L2 access
latency due to the higher L2 cache hit rate. Since the unified
L2 cache holds both code and data cache lines, we raise the
following question: Which of the two requests (code or data)
serviced at L2 cache latency provides the majority of
performance improvements of increasing the L2 cache size? 

To answer this question we designed a sensitivity study in
the baseline 256KB MLC. Specifically, for requests that miss
in the L2 cache but hit in the LLC, we evaluate the following:
(a) code requests always serviced at MLC hit latency (i.e.
assume zero LLC hit latency) labeled as i-Ideal (b) data
requests always serviced at L2 hit latency (labeled as d-Ideal)
and (c) both code and data requests serviced at L2 hit latency
(labeled as id-Ideal). In all configurations, both code and data
requests are inserted into all levels of the hierarchy. Also, note
that this sensitivity study is not a perfect L2 cache study. The
sensitivity study accounts for latency due to misses to memory
and only measures latency sensitivity for those requests that
miss in the L2 cache but hit in the LLC. 

Figure 3 shows that servicing code requests at L2 hit
latency has much better performance than always servicing
data requests at L2 hit latency (ncpr and sjbb are exceptions
because of their small code footprints). In fact, always
servicing code requests at L2 hit latency has performance
similar to a 1MB L2 cache. This suggests that increasing the
L2 cache size to 1MB effectively captures the large instruction
working set of these applications. These results confirm with
instruction working set sizes ranging between 512KB and
1MB (see Figure 8). 

Figure 3:  Performance Sensitivity of Server Workloads. 
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2. Two SPEC CPU2006 workloads, calculix and bzip2 (liberty input),
observe 30% and 7% performance improvement from a large 2MB L2
cache. This is because the larger L2 cache fits the entire working set of
each application. The remaining SPEC CPU2006 workloads experience
less than 3% performance improvement with larger L2 caches. 



Thus, Figure 3 suggests significant opportunity to improve
server workload performance by increasing the L2 cache size.
Furthermore, we observe that the majority of performance
improvement from a large L2 cache size is due to servicing
code requests at L2 cache hit latency. This also suggests
opportunities to improve L2 cache management by preserving
latency critical code lines over data lines. 

B.  Consequences of Increasing L2 Cache Size
Though increasing the L2 cache improves performance of
server workloads, a number of tradeoffs must be considered. 

B.1 Longer L2 Cache Latency
Increasing L2 cache size can potentially increase the cache
access latency. While increasing the L2 cache size reduces
average cache access latency for workloads whose working
set fits into the larger L2 cache, the increased L2 cache access
latency can potentially hurt the performance of workloads
whose working set already fit into the existing smaller L2
cache. We analyzed the impact on cache access latency using
industry tools (and CACTI [6]) for the cache sizes studied in
the previous section: 256KB, 512KB, 1MB, and 2MB. Our
analysis with both methods showed that increasing the L2
cache size causes a cache latency increase of one and two
clock cycles for a 1MB and 2MB L2 cache respectively, while
a 512KB L2 cache has no access latency impact. Our studies
showed that performance impact due to increasing the L2
cache latency is minimal (less than 1% on average).

B.2 On-Die Area Limitations for Cache Space
While caches have the potential to significantly improve
performance, manufacturing and design constraints usually
impose a pre-defined on-chip area budget for cache. Thus, any
changes in cache size must conform to these area constraints.
Furthermore, any changes in cache sizes of a hierarchy must
also conform to the design properties of the cache hierarchy.
For example, increasing the L2 cache of the baseline inclusive
cache hierarchy requires increasing the shared LLC size to
maintain the inclusion property [22]. Thus, increasing the L2
cache size by a factor of four would require a similar increase
in the shared LLC size to avoid inclusion overheads [22, 15]. 

Consider a processor with a baseline inclusive three-level
cache hierarchy that has a 256KB L2 cache and a 2MB LLC.
Increasing the L2 cache size to 512KB while retaining a 2MB
inclusive LLC causes the L2:LLC ratio to change from 1:8 to
1:4. The new L2:LLC cache ratio not only wastes cache
capacity due to duplication but also creates negative effects of
inclusion [22, 15]. To avoid the negative effects of inclusion,
the LLC must be increased to 4MB to maintain the original
L2:LLC ratio. Similarly, if the L2 were to be increased to
1MB, then the LLC would need to be increased to 8MB to
maintain the original L2:LLC ratio. Clearly, increasing both
the L2 cache size and the LLC is not a scalable technique.

Alternatively, the L2 cache size can be increased by
physically stealing cache space from other on-chip caches.
The most logical place to physically steal cache space is the
LLC. Consequently, increasing the L2 cache size effectively
reduces the shared LLC size and requires re-visiting design
decisions on whether or not to enforce inclusion. 

B.3 Relaxing Inclusion Requirements
An alternative approach to increase the L2 cache size, while
meeting manufacturing constraints, is to relax inclusion
requirements and design an exclusive or non-inclusive cache
hierarchy instead. Unlike an inclusive cache hierarchy that
duplicates lines in the core caches and the LLC, an exclusive
cache hierarchy maximizes the caching capacity of the
hierarchy by disallowing duplication altogether [22]. An
exclusive hierarchy is designed by first inserting lines into the
smaller levels of the hierarchy. Lines are inserted into larger
caches only when they are evicted from smaller caches. 

A non-inclusive hierarchy, on the other hand, provides no
guarantees on data duplication [22]. A non-inclusive hierarchy
is designed by inserting lines into all (or some) levels of the
hierarchy and lines evicted from the LLC need not be
invalidated from the core caches (if present). 

The capacity of an inclusive hierarchy is the size of the
LLC while the capacity of an exclusive hierarchy is the sum of
all the levels in the cache hierarchy. The capacity of a non-
inclusive hierarchy depends on the amount of duplication and
can range between the size of an inclusive and exclusive
hierarchy. While exclusive hierarchies can fully utilize total
on-chip caching capacity, they can observe reduced effective
caching capacity due to duplication of data in the larger
private caches. Nonetheless, we focus on transitioning from an
inclusive hierarchy to an exclusive cache hierarchy. 

Relaxing inclusion and designing an exclusive cache
hierarchy enables increasing the L2 size while maintaining the
constraints on total on-chip real-estate devoted to cache space.
Note that our reasoning to transition from an inclusive cache
hierarchy to an exclusive cache hierarchy differs significantly
from prior work. Specifically, prior work promotes exclusive
hierarchies to increase the effective caching capacity of the
hierarchy [7, 11, 27, 24, 38, 40]. Instead, we focus on
reorganizing the cache hierarchy and show that transitioning
from our baseline inclusive hierarchy to an exclusive
hierarchy maintains the effective caching capacity of the
hierarchy while improving overall average cache access
latency (by growing the size of smaller caches). 

Let us revisit our example cache hierarchy with a 256KB
L2 cache and inclusive 2MB LLC. As illustrated in Figure 4,
this hierarchy can be reorganized as an exclusive hierarchy
with 512KB L2 cache and a 1.5 MB LLC. An alternative
design point is a 1MB L2 and a 1MB exclusive LLC. Note
that both exclusive hierarchies maintain a total 2MB caching
capacity like the baseline inclusive hierarchy. However,
depending on the application working set sizes, these cache
hierarchies can provide different average cache access latency. 

iL1 dL1

256KB L2

2MB/core LLC

iL1 dL1

512KB L2

1.5 MB /core LLC

iL1 dL1

1MB L2

1MB/core LLC

(a) (b) (c) 
Figure 4: Cache Hierarchy Choices. (a) Baseline Inclusive Hierarchy with
256KB L2 (b) Exclusive Hierarchy with 512KB L2 (c) Exclusive
Hierarchy with 1MB L2. 



B.4 Tradeoffs of Relaxing Inclusion
We first discuss the performance tradeoffs and design
considerations of relaxing inclusion: 
   • LLC Capacity: Increasing the size of the private L2

cache reduces the observed shared LLC capacity. The
smaller LLC capacity can degrade performance of
workloads whose working set exceeds the size of the
smaller shared LLC but would have fit into the baseline
shared LLC. 

   • Shared Data: Frequent accesses to read-only or read-
write shared data require special consideration.
Disallowing duplication of shared data in an exclusive
cache hierarchy can incur long access latency to service
data from a remote private L2 cache. This problem is
usually addressed by allowing shared data to be
duplicated in the LLC (like in inclusive caches) [11].
Doing so enables shared data to be serviced at LLC
access latency. The amount of shared data replication in
an exclusive hierarchy can directly impact the effective
caching capacity of the hierarchy. We refer to a
hierarchy that is exclusive for private data and inclusive
for shared data as a weak-exclusive hierarchy. For
brevity, here on, the terms weak-exclusive and exclusive
are used synonymously. 

We now discuss the storage and implementation complexities
of relaxing inclusion:
   • Unlike an inclusive hierarchy, clean cache lines that are

evicted from smaller cache levels must be installed in
the larger cache levels of an exclusive hierarchy. This
strategy may require additional bandwidth support on
the on-chip interconnection network. 

   • An exclusive hierarchy breaks snoop filtering benefits
that naturally exists in an inclusive hierarchy [22].
Processor architects address this problem by devoting
extra storage overhead for snoop filters [11, 38]. 

Despite these tradeoffs, the results from Figure 3 show that
there is significant performance potential for commercial
workloads with an exclusive cache hierarchy. We now focus
on high performance policies for exclusive hierarchies. 

IV.  POLICIES FOR EXCLUSIVE HIERARCHIES
Having established that larger L2 caches and an exclusive
LLC improve server workload performance, we now discuss
mechanisms for a high performing exclusive cache hierarchy. 

A.  Exclusive Cache Management
Unlike inclusive caches where new lines are generally inserted
in all levels of the cache hierarchy [22], an exclusive cache
effectively acts like a victim cache [25, 24]. New lines are first
inserted into the smaller levels of the cache hierarchy and are
only inserted into the exclusive LLC upon eviction from the
smaller cache levels. If a private cache line receives a hit in the
exclusive LLC, the line is invalidated from the LLC to avoid
duplication and make room for newly evicted cache lines from
the smaller levels of the cache hierarchy. However, if a shared
cache line receives a hit in the exclusive LLC, the line is not
invalidated and the replacement state is updated instead (as in
conventional inclusive LLCs). Shared cache lines are not

invalidated in an exclusive LLC to enable fast access to
subsequent requests by other cores sharing the same line. 

The act of invalidating lines on cache hits in an exclusive
hierarchy poses an interesting challenge for cache replacement
policies. In general, the goal of cache replacement policies is
to preserve lines that receive cache hits. Since cache hits
discard cache lines from an exclusive LLC, simply applying
recent state-of-the-art cache replacement policies [29, 21, 20,
36, 37] proposed for inclusive LLCs provide no performance
benefits for exclusive LLCs. In an inclusive LLC, the LLC
replacement state keeps track of all re-reference information.
However, in an exclusive LLC, the re-reference information is
lost on cache hits (due to invalidation). Thus, an exclusive
LLC is unable to preserve cache lines that have been re-
referenced. To improve exclusive cache performance, our key
insight is that the LLC re-reference information must be
preserved somewhere and the re-reference information be
used upon re-insertion into the exclusive LLC (upon eviction
from the smaller caches). 

A natural place to store the LLC re-reference information
in an exclusive hierarchy is the L2 cache. We propose a single
bit per L2 cache line called the Serviced From LLC (SFL) bit.
The SFL-bit tracks whether a cache line was serviced by main
memory or by the LLC. If the line was serviced by the LLC,
the line is inserted into the L2 cache with the SFL-bit set to
one, otherwise the SFL-bit is set to zero. Upon eviction from
the L2 cache, the SFL-bit can be used to restore functionality
to recent state-of-the-art cache replacement policies. 

To illustrate this, we use the simple and high performing
Re-Reference Interval Prediction (RRIP) [20] replacement
policy. Like LRU which holds the LRU position with each
cache line, RRIP replaces the notion of the “LRU” position
with a prediction of the likely re-reference interval of a cache
line (see Figure 5). For example, with 2-bit RRIP, there are
four possible re-reference intervals. If a line has re-reference
interval of ‘0’, it implies the line will most likely be re-
referenced in the immediate future. If a line has re-reference
interval of ‘3’, it implies the line will be re-referenced in the
distant future. In between distant and immediate re-reference
intervals there are intermediate and far re-reference intervals.
When selecting a victim, RRIP always selects a line with a
distant re-reference interval for eviction. If no line is found,
the re-reference interval of all lines in the set is increased until
a line with distant re-reference interval is found. When
inserting new lines in the cache, RRIP dynamically tries to
learn the re-reference interval of a line by initially inserting
ALL lines with far re-reference interval. This is done to

Figure 5: Dynamic Re-Reference Interval Prediction (DRRIP) Replacement 
for Inclusive LLCs. 
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dynamically learn the blocks re-reference interval. If the line
has no locality, it will be quickly discarded. However, if the
line has locality, the next re-reference to the line causes the
line to have immediate state, hence preserving it in the cache. 

Directly applying RRIP to an exclusive cache LLC
removes RRIP functionality entirely by limiting RRIP to only
50% of the state-machine (as illustrated by the red dashed
lines in Figure 6). To restore full RRIP functionality, we take
advantage of the SFL-bit stored in the L2 cache and apply re-
reference prediction on cache fills instead of cache hits.
Specifically, if the line was originally serviced from memory
(SFL-bit of L2 evicted line is zero), we predict the
conventional far re-reference interval on cache insertion.
However, if the line evicted from the L2 cache was originally
serviced from the LLC (SFL-bit is one) we predict immediate
re-reference interval on cache insertion. Doing so is equivalent
to updating the re-reference interval to immediate on re-
references in an inclusive LLC. 

To illustrate this, assume a two-level hierarchy with a 1-
entry L2 and 4-entry LLC, and the following access pattern:

... a, b, c, a, b, c, w, x, y, a, b, c,... 
In an inclusive LLC, RRIP successfully preserves cache lines
a, b, and c in the cache and incurs a 50% cache hit-rate at the
end of the sequence above. However, in an exclusive LLC,
simply applying RRIP is unable to preserve lines a, b, and c in
the LLC and incurs a reduced 25% hit-rate. However, using
the SFL-bit in the L2 cache restores RRIP functionality to
exclusive caches and improves cache hit-rate to 50%. Note
that the hit-rate is identical to RRIP on inclusive LLCs. 

B.  L2 Cache Management for Server Workloads
A unified L2 cache allocates both processor front-end code
and back-end data requests. Conventional state-of-the-art
cache management policies do not distinguish between code
and data requests. However, front-end code request misses can
tend to be more expensive than back-end data misses because
out-of-order execution can overlap the latency effects of back-
end data misses with independent work. Though decoupled
front-end architectures hide the latency effects of code misses,
the unpredictable nature of instruction streams in server
workloads causes frequent front-end pipeline hiccups and
limits instruction supply to the processor back-end. Since
server workloads spend a significant fraction of their total
execution time waiting for code misses to be serviced by the
shared LLC, we investigate a novel opportunity to preserve
latency critical code lines in the L2 cache over data lines. 

A natural way of preserving (or prioritizing) lines in a
cache is by taking advantage of the underlying cache
replacement policy. We propose Code Line Preservation
(CLIP) for the L2 cache. The goal of CLIP is to service the
majority of L1 instruction cache misses by the L2 cache. This
is accomplished by modifying the re-reference predictions of
code and data requests on cache insertion and cache re-
reference (see Figure 7). Specifically, CLIP always inserts
code requests with far re-reference interval while data
requests with distant re-reference interval. On L2 re-
references (i.e. cache hit), CLIP updates code requests to
immediate while it does not update any re-reference
predictions on data requests. 

While CLIP enables preservation of code lines in the L2
cache, blindly following CLIP can degrade performance when
the instruction working set does not contend for the L2 cache
(e.g. SPEC workloads). To address this, CLIP dynamically
decides the re-reference prediction of data requests using Set
Sampling [29]. CLIP samples a few sets of the cache (32 in
our study) to always follow the baseline RRIP replacement
policy. The sampled sets track the number of code and data
misses in the L2 cache. Furthermore, CLIP also tracks the
number of code and data accesses to the L2 cache. If the ratio
of code accesses and misses to total accesses and misses
exceeds a given threshold, θ, CLIP dynamically modifies the
re-reference interval for data requests. Specifically, if the ratio
of L2 code accesses and misses exceeds θ (25% in our studies)
the L2 cache follows CLIP for the non-sampled sets. If not,
CLIP follows the baseline RRIP policy. In doing so, CLIP
dynamically learns the code working set of workloads and
allocates L2 capacity accordingly. 

Note that CLIP sacrifices allocating data cache lines in the
L2 cache and relies on out-of-order execution to overlap the
increased cache latency with useful work. Applying CLIP at
the LLC can be catastrophic since data requests would need to
be serviced from main memory. We advocate CLIP for caches
smaller than the LLC.

V.  EXPERIMENTAL METHODOLOGY

A.  Performance Simulator
We use CMP$im [19] a trace-based, detailed event-driven x86
simulator for our performance studies. The core parameters,
cache hierarchy organization and latencies are loosely based
on the Intel Core i7 processor [2]. We assume a 16-core
system with a three-level cache hierarchy consisting of a
shared LLC. Each core in our CMP is a 2.8 GHz 4-way out-
of-order (OoO) processor with a 128-entry reorder buffer and

Figure 6: Dynamic Re-Reference Interval Prediction (DRRIP) Replacement 
for Exclusive LLCs. 
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a decoupled front-end instruction fetch unit [32]. We assume
single-threaded cores with the L1 and L2 caches private to
each core. The baseline L1 instruction and data caches are 8-
way 32KB each. The L1 cache sizes are kept constant in our
study. We model two L1 read ports and one L1 write port on
the data cache. We assume a banked LLC with as many banks
as cores in the system. All caches in the hierarchy use a 64B
line size. For replacement decisions, the L1 cache follows the
Not Recently Used3 (NRU) replacement policy while the L2
and LLC follow the RRIP replacement policy [20]. The cache
lookup latencies for the L1, L2, and LLC bank are 3, 10, and
14 cycles respectively. Note that these are individual cache
lookup latencies only and do not account for queuing delays
and any network latency (e.g. load-to-use latency for the L2 is
13 cycles plus queuing delay while for the LLC is 27 cycles
plus on-chip network latency and any queuing delay). On
average, the LLC load-to-use latency is roughly 40 cycles.

We model multiple prefetchers in our system. First, a next
line instruction prefetcher at the L1 instruction cache that
prefetches the next sequential instruction cache line on both
hits and misses. We also model a decoupled front-end that also
enables branch-directed instruction prefetching. Next, we
model a stream prefetcher which is configured to have 16
stream detectors. The stream prefetcher is located at the L2
cache and trains on L2 cache misses and prefetches lines
directly into the L2 cache. We also model an adjacent line
prefetcher (also located at the L2 cache) that trains on L2
cache misses and prefetches the corresponding adjacent line of
a 128B cache block into the L2 cache. All three prefetchers
are private to each core and are based on the Intel Core i7[2]. 

We assume a ring-based interconnect that connects the 16
cores and LLC banks on individual ring stops. We assume a
single cycle between two successive ring stops. Bandwidth
onto the interconnect is modeled using a fixed number of
MSHRs. Contention for the MSHRs models the increase in
latency due to additional traffic introduced into the system.
We model 16 outstanding misses per core to main memory.
We assume 16GB of memory distributed across four memory
channels (12.8GB/s per channel). We model a virtual memory
system with 4K pages and a random page mapping policy. We
use a detailed DRAM model with DDR3-1600 11-11-11-28
timing parameters. Finally, we also assume a MESI cache
coherence protocol and a snoop filter that is 4X the capacity of
the smaller levels in the hierarchy. 

B.  CMP Configurations Under Study
For all of our studies, we assume a 16-core CMP with a three-
level cache hierarchy and a 16-bank shared LLC. The L1 and
L2 caches are private to each core. We assume that
manufacturing constraints only allow 2MB effective capacity
per core. Under these assumptions we study the following
cache hierarchy configurations:
   • 256KB L2 (Baseline): Like the Core i7 [2], we evaluate

a 256KB L2 cache and a 32MB inclusive shared LLC.
The effective on-chip caching capacity here is 32MB.

   • 512KB L2: Like the AMD Athlon [18, 11], we evaluate
a 512KB L2 cache with an exclusive LLC. We reduce
the LLC size to 24MB (1.5MB / core). Effectively, the
on-chip capacity is still 32MB when the system is fully
utilized. However, note that a single core can directly
access and store data in the 24MB shared LLC but
cannot store data in the 7.5MB of cache distributed into
the private L2 caches of the other 15 cores. Based on
CACTI measurements, we assume no latency impact of
increasing the L2 cache. 

   • 1MB L2: Like the AMD Opteron [1], we evaluate a
1MB L2 cache with an exclusive LLC. We reduce the
LLC size to 16MB (1MB / core). Effectively, the on-
chip capacity is still 32MB when the system is fully
utilized. However, note that a single core can directly
access and store data in the 16MB shared LLC but
cannot store data in the other 15MB of cache distributed
into the private L2 caches of the other 15 cores. Based
on CACTI measurements, we assume a one cycle load-
to-use latency increase for the larger 1MB L2 cache. 

C.  Workloads
For our study, we use all benchmarks from the SPEC
CPU2006 suite and 12 server workloads. The SPEC
benchmark was compiled using the ICC compiler with full
optimization flags. Representative regions for the SPEC
benchmarks were all collected using PinPoints [31]. A
detailed cache sensitivity study of the SPEC benchmarks used
in this study is available here [23]. 

The server workloads were collected using a hardware
tracing platform on both Linux and Windows operating
systems. The server workloads include both user level and
system level activity. Table I lists the 12 server workloads and
their misses per 1000 instructions (MPKI) in the L1, L2, and
LLC when run in isolation. To illustrate application cache
utility, the MPKI numbers are reported in the absence of a
prefetcher. Furthermore, to provide insights on the working set
of the server workloads, Figure 8 illustrates cache misses as a

3. NRU is a hardware approximation for LRU replacement that uses one
bit per cache line and performs similar to LRU [20].

TABLE I.      MPKI of Server Workloads In the Absence of Prefetching (Baseline Inclusive Cache Hierarchy)

Code Name
Actual Benchmark

mgs tpch gidx ibuy ncpr ncps sap sas sjap sjbb sweb tpcc

IL1 MPKI (64KB) 3.37 2.53 0.05 12.16 1.32 5.22 12.60 0.01 15.46 6.51 6.08 27.35

DL1 MPKI (64KB) 3.02 0.91 2.21 5.71 7.32 6.00 7.23 47.96 5.18 11.27 4.43 17.34

UL2 iMPKI (256KB) 0.86 0.92 0.04 6.80 0.57 0.07 4.51 0.06 5.96 1.51 1.69 8.91

UL2 dMPKI (256KB) 1.44 0.31 2.07 3.47 5.26 0.30 4.19 18.26 3.27 8.58 1.63 9.11

UL3 iMPKI (32MB) 0.13 0.26 0.02 0.29 0.05 0.01 0.53 0.01 0.33 0.04 0.15 0.12

UL3 dMPKI (32MB) 0.62 0.17 2.05 0.46 0.54 0.08 1.66 16.70 0.66 2.51 0.56 1.28



function of cache size for both code and data (both
appropriately labeled). The figure shows server workloads
have large code working set sizes. 

To simulate a multi-core environment, we use multiple
traces corresponding to different regions of the application.
When the number of cores exceeds the number of traces, we
replicate the traces across all cores in the system (offset by 1M
instructions each). To simulate the sharing behavior of the
instruction code footprint, we physically map code references
into a shared memory region. The data footprint of each trace
is physically mapped to a private memory region. While this
approach ignores data sharing behavior, our methodology is
limited by the absence of a full system infrastructure. 

We simulate 500 million instructions for each benchmark.
Our baseline 16-core study effectively evaluates the cache

hierarchy over eight billion instructions. We verified that the
simulated instruction count warms up all levels of the cache
hierarchy. For the multi-core studies, simulations continue to
execute until all benchmarks in the workload mix execute the
required 500 million instructions. If a faster thread finishes its
required instructions, it continues to execute to compete for
cache resources. We only collect statistics for the first 500
million instructions committed by each application. This
methodology is similar to existing work on shared cache
management [20, 21]. 

VI.  RESULTS AND ANALYSIS

A.  Restoring RRIP Functionality 
We showed that transitioning from inclusive to exclusive
caches breaks RRIP functionality. Figure 9 illustrates the
performance improvements of restoring RRIP functionality by
introducing the SFL-bit in the L2 caches. For a set of cache
sensitive 1-core, 2-core, 4-core, 8-core, and 16-core
workloads comprised of SPEC CPU2006 and server
workloads, we show the performance improvements of using
the SFL-bit. The figure shows two graphs, the top graph for a
512KB L2/core and 24MB shared LLC exclusive hierarchy
while the bottom graph is for a 1MB L2/core and 16MB
shared LLC exclusive hierarchy. The x-axis represents the
workloads while the y-axis illustrates performance compared
to the baseline exclusive hierarchy that does not use the SFL-
bit. Using the SFL-bit restores RRIP performance by as much
as 30% with as little as 5% performance degradation. The
performance degradations are due RRIP side-effects of
incorrectly predicting cache line re-reference interval [20]. 
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Figure 8: Cache Sensitivity Behavior of Server Workloads. 
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B.  Single-Core Study
We now compare our baseline inclusive cache hierarchy to
CLIP and the two exclusive hierarchies with 512KB and 1MB
L2 caches. In this subsection, we assume only one active core
in our baseline 16-core processor system (the remaining are 15
assumed idle). Furthermore, we assume that the cache access
latencies in all three cache hierarchies are identical. 

B.1 System Performance
Figure 10 illustrates the performance of the three hierarchies
both in the presence and absence of CLIP in the L2 cache. The
x-axis shows the different workloads and the y-axis illustrates
the performance compared to our baseline inclusive hierarchy
with a 256KB L2 cache. The figure shows that simply
applying CLIP to the baseline 256KB L2 cache improves
performance of five of the 12 server workloads by 5-10% both
in the presence and absence of prefetching. The benefits of
CLIP reduce in the presence of prefetching because useful
code prefetches hide latency. Where CLIP helps, we see that
CLIP provides nearly the same performance as doubling the
L2 cache size. This clearly indicates the criticality of code
lines compared to data lines in the L2 caches. However, for
many workloads (e.g., mgs, ibuy, sap, sjap, sjbb, sweb, tpcc),
256KB+CLIP still leaves significant performance potential
compared to a 512KB or 1MB L2. This suggests opportunity

for further research to identify critical code cache lines and
preserve them in a small (e.g. 256KB) L2 cache. 

B.2 L2 Cache Performance
To correlate the performance improvements of CLIP and
increasing L2 cache size, Figure 11 presents the misses per
1000 instructions (MPKI) for the server workloads. For the
remainder of the paper, we only illustrate system behavior in
the presence of prefetching and observe similar behavior
without prefetching. Figure 11a illustrates the front-end
misses in the L2 cache while Figure 11b illustrates the total
misses in the L2 cache (i.e., combined front-end and back-end
misses). As expected, the figure shows that the server
workloads with the largest front-end MPKI benefit the most
from CLIP and increasing L2 cache sizes. From Figure 11a,
CLIP performance can be correlated directly to the large
reductions in L2 front-end MPKI. Note that while CLIP helps
reduce front-end cache misses, it does so at the expense of
increasing L2 cache misses (see Figure 11b). This is to be
expected because CLIP prioritizes front-end code requests
over data requests. Note that even though CLIP increases total
L2 cache misses, overall system performance improves
significantly. This clearly illustrates the criticality of code
requests over data requests and the importance of avoiding
hiccups in the processor front-end. 

Figure 10:  Single-Core Performance of Server Workloads. 
(a) Without Prefetching (b) With Prefetching
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C.  Multi-Core Study
Increasing the private L2 cache size impacts system
performance and cache hierarchy performance. 

C.1 System Performance
Figure 12 characterizes the performance of CLIP and the two
exclusive hierarchies for server and SPEC CPU2006
workloads. The x-axis shows the different workloads while
the y-axis shows performance compared to the baseline
inclusive hierarchy with 256KB L2 cache. The server
workloads represent a 16-core configuration while the SPEC
benchmarks are a combination of single-core, two-core, four-
core, eight-core and 16-core workload mixes. The figure
shows an “s-curve” with the workloads sorted based on 1MB
L2+CLIP performance.

The figure shows that increasing the L2 cache and
reducing the LLC has both positive and negative outliers for
SPEC CPU2006 workloads. The positive outliers are for
workloads that benefit from improved L2 cache access latency
when the working set fits in the L2 cache. The negative
outliers are for those workloads whose working set fits in the
baseline large shared LLC but no longer fit in the exclusive
hierarchy with smaller shared LLC. The outliers can be as
significant as 30% performance degradation for a single-core
run of libquantum. This is to be expected as libquantum has a
32MB working-set that fit nicely in the baseline inclusive
hierarchy. On the other hand, calculix observes a 30%
performance improvement because its working set was larger
than the baseline 256KB L2 cache but fits nicely into a 1MB
L2 cache. The bimodal performance behavior of SPEC
CPU2006 workloads provides no clear indication on whether
or not to increase the L2 cache size. However, server
workloads clearly show the need for a larger L2 cache. Thus,
this provides avenue for academic research work on a general
solution that would be applicable to both workload categories.

C.2 Cache Hierarchy Performance
In a multi-core system, instruction working set duplication in
private caches can reduce the effective caching capacity of an
exclusive cache hierarchy (relative to the baseline inclusive

cache hierarchy). Assuming a shared code working set of
1MB, an exclusive hierarchy with 1MB private L2 caches and
16MB LLC devotes only 15MB of the total 32MB cache
hierarchy capacity for the data working set4. The baseline
inclusive hierarchy on the other hand devotes 31MB of cache
hierarchy capacity for the data working set and 1MB for the
instruction working-set (preserved in the LLC)5. This
reduction in effective caching capacity in the hierarchy for the
data working can increase data traffic to memory. In fact, we
see that server workloads such as mgs, ibuy, sap, sjap, sjbb,
sweb, and tpcc observe a 10-20% increase in memory traffic
(data not shown due to space constraints). This excess in
memory traffic does not degrade memory performance since
the processor front-end enables the back-end to exploit
memory-level parallelism without too many front-end stalls.
Nonetheless, we present yet another avenue for academic
research work to improve exclusive cache hierarchy
performance by reducing duplication in the private L2 caches.

VII.  RELATED WORK
Several studies have focused on improving the memory
system performance of commercial workloads. Barroso et al.
presented a detailed characterization of commercial workloads
and showed that they have different requirements than
scientific and engineering workloads [8, 17]. Hardavellas et al.
performed a similar study of database workloads and confirm
our findings for a two-level cache hierarchy [17]. Other
commercial workload studies have looked at improving
prefetching. Ferdman et al. focused on improving instruction
cache performance of commercial workloads by improving
instruction prefetchers [13, 14]. Wenisch et al. focus on
improving data cache performance by improving data
prefetchers [34, 35]. Our studies do not include these high
performing prefetchers because of their design complexity to
be adopted into commercial processors. 

A number of studies have attempted to address the
overheads of shared cache latency by advocating private cache
implementations [9, 10, 30, 12, 28]. A number of these studies
recognize that private caches can significantly degrade
performance compared to shared caches. As such there have
been proposals to spill lines into neighboring private caches to
achieve the capacity benefits of shared caches [9, 10, 30]. In a
three-level hierarchy, these techniques still suffer from private
cache access latency when the working set is larger than the
L2 cache. Furthermore, the proposed spill techniques incur
replication overhead for shared data in the private LLCs. Our
proposals allow room for avoiding replication overhead
because of the shared LLC. 

Several studies advocate exclusive caches to increase the
effective caching capacity of the hierarchy. Jouppi et al first
proposed exclusive caches to reduce LLC conflict misses and
to also increase the effective cache capacity of the hierarchy
by not replicating lines in the LLC [24, 25]. Others show that

Figure 12: Multi-Core Performance of CLIP and Exclusive Caches. 
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exclusive hierarchies are useful when the core caches are not
significantly larger than the size of the LLC [22, 33, 40]. In
addition to increasing caching capacity, we also note that
exclusive caches can improve average cache access latency by
using larger private L2 caches and smaller shared LLCs. 

There has been extensive research on cache management
[16, 20, 21, 29, 36, 37, 39] and improving the performance of
cache hierarchies [26, 38, 15, 33, 22, 39]. The work most
related to our exclusive cache management work is by Gaur et
al [16]. The SFL-bit proposal simplifies the implementation
complexity of Gaur et al while providing nearly identical
performance. The work most relevant to our Code Line
Preservation (CLIP) proposal is PACMan [37]. PACMan
distinguishes between prefetch and demand requests while
CLIP distinguishes between code and data requests. 

VIII.  SUMMARY AND FUTURE WORK
Process scaling and increasing transistor density have enabled
a significant fraction of on-die real estate to be devoted to
caches. The widening gap between processor and memory
speeds has forced processor architects to devote more on-die
space to the shared last-level cache (LLC). As a result, the
memory latency bottleneck has shifted from memory access
latency to shared cache access latency. As such, server
workloads whose working set is larger than the smaller caches
in the hierarchy spend a large fraction of their execution time
on shared cache access latency. 

To address the shared cache latency problem, this paper
proposes to improve server workload performance by
increasing the size of the smaller private caches in the
hierarchy as opposed to increasing the shared LLC. Doing so
improves average cache access latency for workloads whose
working set fits into the larger private cache while retaining
the benefits of a shared LLC. The trade-off requires relaxing
the inclusion requirements and transition to an exclusive
hierarchy. For the same caching capacity, the exclusive
hierarchy provides better cache access latency than an
inclusive hierarchy with a large shared LLC. 

Exclusive hierarchies relax the cache design space and
provide opportunity to explore cache hierarchies that can
range from a private cache only hierarchy [28] to small shared
LLC clusters. However, exclusive hierarchies must efficiently
manage and utilize total on-die cache space. We observed that
shared data duplication in private caches can significantly
reduce the effective caching capacity of the proposed
exclusive hierarchy relative to the baseline inclusive cache
hierarchy. Continued research to improve exclusive cache
hierarchy performance would greatly benefit industry. 
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