

A Fast and Accurate Analytical Technique to

Compute the AVF of Sequential Bits in a Processor

Steven Raasch
Intel

Hudson, MA

steven.e.raasch@intel.com

Arijit Biswas
Intel

Hudson, MA

arijit.biswas@intel.com

Jon Stephan
Intel

Hudson, MA

jon.stephan@intel.com

Paul Racunas
Nvidia

Westford, MA

pracunas@nvidia.com

Joel Emer
Nvidia / MIT

Westford, MA / Cambridge, MA

emer@csail.mit.edu

Abstract

The rate of particle induced soft errors in a processor increases

in proportion to the number of bits. This soft error rate (SER) can

limit the performance of a system by placing an effective limit on

the number of cores, nodes or clusters. The vulnerability of bits in

a processor to soft errors can be represented by their architectural

vulnerability factor (AVF), defined as the probability that a bit

corruption results in a user-visible error. Analytical models such

as architecturally correct execution (ACE) lifetime analysis enable

AVF estimation at high speed by operating at a level of abstraction

well above that of RTL. However, sequential elements do not lend

themselves to this type of analysis because these bits are not

typically included in the abstracted ACE model. Brute force

methods, such as statistical fault injection (SFI), enable register

level detail but at the expense of computation speed. We have

developed a novel approach that marries the computational speed

of the analytical approach with the level of detail of the brute force

approach. Our methodology introduces the concept of “port

AVFs” computed by ACE analysis on a performance model and

applies these values to a node graph extracted from RTL. We

employ rules derived from set theory that let us propagate these

port AVFs throughout the node graph using an iterative relaxation

technique. This enables us to generate statistically significant

AVFs for all sequential nodes in a given processor design in a fast

and accurate manner. We use this approach to compute the

sequential AVF for all nodes in a modern microprocessor and

show good correlation with beam test measurements on silicon.

Categories & Subject Descriptors

B.8 [Performance and Reliability]: B.8.1 Reliability, Testing,

and Fault-Tolerance

Keywords

Reliability, soft error, sequentials, fault injection, fault

simulation, AVF, ACE analysis

1 Introduction

Soft errors induced by alpha particles from packaging or from

atmospheric neutrons are a significant source of transient

errors in modern microprocessors. The rate of occurrence of

these soft errors increases as bit counts increase, posing a

significant risk for multi-core processors and systems-on-

chip. Soft errors have become a core-limiting problem in

modern multi-core server processors used for data centers,

high performance computing, and other safety-conscious and

mission critical compute segments. Accurate characterization

of these errors is required to effectively deploy mitigation

techniques.

Product soft error rates (SER) are generally given in terms

of FIT or ‘Failures In Time’ (1 FIT equals 1 failure in 1

billion hours). Equation 1 shows that the FIT rate for a

structure is a product of the intrinsic error rate of a bit in a

storage structure (determined by the physical and electrical

characteristics of the manufacturing process and circuit

topologies), the total number of bits in the structure, and the

architectural vulnerability factor (AVF). The ability to

accurately compute each of the components of the FIT

equation is essential to computing an accurate SER.

Architectural vulnerability factor (AVF) is the probability

that a fault in a bit becomes a user-visible error. AVF has a

significant impact on the overall SER. As a result, tools and

methodologies to compute accurate AVFs for various

components of the processor have been developed by both

industry and academia. The addition of Architecturally

SER FIT = (AVFbit) x (# Bits) x (Intrinsic Error Ratebit)

Equation 1: Error Rate (FIT) Calculation

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from
Permissions@acm.org.

MICRO-48, December 05 - 09, 2015, Waikiki, HI, USA

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 978-1-4503-4034-2/15/12…$15.00

DOI: http://dx.doi.org/10.1145/2830772.2830829

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2830772.2830829

Correct Execution (ACE) modeling into performance models

has proven very effective at computing statistically

significant AVFs for high-level micro-architectural array

structures [1][2]. Determination of AVF is a statistical

process that requires the simulation of hundreds to thousands

of workloads for tens of millions of instructions. Accurate

assessment of the overall AVF of a microprocessor requires

comprehension of the AVF not only of arrays, but also flops

and latches (referred to as sequentials), and combinational

logic.

While ACE analysis is largely limited to array structures,

Statistical Fault Injection (SFI) into register transfer level

(RTL) models can compute AVFs for sequentials, but at a

high computation cost [7]. Due to the required number of

workloads and instructions, the low speed of RTL simulation

has prevented computation of high-quality AVF values for

sequentials. RTL emulation provides some relief due to the

substantial speedup this enables, but emulation can be costly

to set up and maintain and still falls short of the speedup

needed to provide statistically significant AVFs across

multiple workloads for every sequential node in a processor.

The technique described in this paper addresses this gap.

There are essentially two types of SER that are computed.

One is silent data corruption (SDC), which measures the SER

of components that do not have SER detection or mitigation.

The second is detected uncorrectable error (DUE), which

measures the SER of components that have error detection

capability such as arrays protected with parity. In some

instances, a third category of SER type that may be computed

is detected corrected errors (DCE) which is the rate of errors

on structures that have both detection and correction

capabilities. The first two types however, are the most

critical from a design, mitigation and specification

standpoint.

In a typical modern microprocessor from Intel, about half

of the processor’s total SDC SER comes from sequentials [4].

In addition, as more and more register files and arrays are

protected by techniques such as parity and ECC, the relative

SDC SER contribution of sequentials will continue to

increase even as the absolute SDC SER of the entire part

decreases. Sequentials are much more difficult to protect than

arrays with schemes such as parity. Instead, circuit

techniques such as SEUT [3], BISER [4] or other Low-SER

circuits [5] [6] are used to reduce the intrinsic FIT rate of the

bits. Other methods include providing end-to-end protection

[10] [11]. All of these approaches can introduce costs in terms

of power, area, and performance. Another growing source of

SDC is combinational logic. This logic most often is driven

by and/or feeds sequentials. Hence, an accurate sequential

AVF is also helpful in determining the true vulnerability of

these combinational logic paths.

A fast and accurate means of determining the most

vulnerable sequentials is required to determine the most

efficient use of low-SER circuit and other SER mitigation

techniques for these bits. In order to compute accurate AVFs

for sequentials we need a technique that incorporates the level

of detail of the RTL model with the simulation speed of the

performance model.

We introduce a technique that accomplishes this goal. We

have developed a tool flow based on this methodology that

uses port AVF values (generated from ACE analysis in the

performance model) with a node graph extracted from the

RTL model. We use this flow to generate statistically

significant AVFs for all sequentials in the RTL model in a

fast and accurate manner. Computation times for our

technique are on the order of a week to compute the AVF

over thousands of workloads for 10s of millions of

instructions for a modern processor core such as an Intel

Xeon® CPU core. Additionally, our technique does not use

statistical sampling, but actually generates AVFs for each and

every functional sequential in the entire design in a single run.

We use a modern Intel Xeon® CPU core as our proof of

concept, computing an average sequential AVF of 14% for a

large variety of workloads. We also show ~66%

improvement to the overall SER FIT correlation between

modeled and measured values as a result of applying the

sequential AVFs.

This paper makes the following contributions:

 Describes a novel methodology to compute

statistically significant AVFs for all sequentials in a

design by combining ACE analysis from a

performance model with detail from RTL. This

allows AVF computation for all sequentials in a

design without the need for RTL level simulations.

 Develops and details a tool flow to implement the

methodology, and describes the challenges at each

stage.

 Describes the results of executing our tool flow on

an Intel Xeon® CPU core as a proof of concept. We

show, for the first time, accurate AVFs for

sequentials across thousands of traces and tens of

millions of simulation cycles. We show that these

AVFs result in a significantly better correlation with

silicon measurements for a few tested workloads.

This paper is organized as follows: Section 2 discusses a

selection of related prior work in this area. Section 3 provides

an overview of the two main established techniques for AVF

computation and explains why neither is adequate for

computing effective sequential AVFs as-is. Section 4

describes our novel sequential AVF computation

methodology and the key concepts that enable it. Section 5

describes the implementation of this methodology as well as

the tool flow. Section 6 shows the results of executing this

tool flow using the Intel Xeon® core model as a proof-of-

concept. Section 7 concludes this paper.

2 Related Work

There is a substantial body of related work around error

modeling and the determination of AVF, We briefly review a

few of the most relevant of those prior works here and show

that none of the previous work addresses the problem being

solved by this work.

The prior work can be categorized into two areas: on-line

techniques and off-line techniques

2.1 On-Line Error Analysis

Two works that represent on-line techniques include the

work by Li, et al. [17] that proposes adding physical design

features to silicon in order to estimate AVFs on-line and

Quantized AVF [20]. Unlike this work, these techniques can

only provide AVFs for aggregate portions of a chip, not

individual flops and latches.

These techniques are very different from accurate

simulation of AVFs prior to silicon availability. Adding

hardware for AVF estimation is a costly prospect for a

commercial processor. Hence, accurate modeling, backed up

by empirical testing, is essential. Our work specifically

targets off-line analysis during the pre-silicon stage of design

since the main idea is to identify SER vulnerable portions of

the design to target for mitigation later in the design process.

2.2 Off-Line Error Analysis

Our work falls into the category of off-line techniques,

which targets analysis during the pre-silicon stage of design.

This category be further divided into pure SER

characterizations, architectural modeling of soft errors, and

techniques to apply fault injection methods.

There are several works that involve characterization of

SER for low level circuits including work by Asad, et al.

which builds on their previous work that uses signal

probabilities to estimate SER rates [12]. They derive the

probability of a “system failure” at some future time based on

the fault location and the probability of a system failure ever

occurring because of a fault in that location. Holcomb, et al

performed circuit simulation over fixed workloads [13]. This

work characterizes electrical, timing, and logical masking

only. Both these techniques provide no sense of AVF, which

is important for understanding the engineering tradeoffs for

reducing SDC.

Architectural techniques, such as ACE analysis, can be

applied at the pre-silicon design stage. For sequential AVF,

however, we need detail that only the RTL-level model

provides in order to compute the AVF for every individual

state bit, and ACE analysis uses a performance model that

does not provide that level of detail. The SoftArch technique

developed by Li, et al. [16] is another architectural level tool

for modeling soft errors. While SoftArch techniques could be

applied at the RTL level, it would likely result in excessive

runtimes that our technique avoids.

Much of the most relevant related work focuses on fault

injection as the key technique to compute AVFs for flops and

latches. Fault injection at the RTL level is extremely time

consuming and much of the work to compute AVFs for flops

and latches revolves around enhancing the speed of fault

injection. Cho, et al. focused on the need to do fault injection

at a sufficiently low level of detail such that flops/latches

exist and can be characterized [19]. Saggese, et al. computed

AVFs via fault injection into two workloads [14]. Blome, et

al. performed fault injection into RTL for an actual ARM core

[15]. Their analysis of error fanout and propagation behavior

allowed them to derive logical and temporal masking rates.

Hari, et al developed the GangES error simulation technique

[18] to speed up fault injection by nearly 2x. While these

techniques claim significant speedups for fault injection, they

are still 3 to 4 orders of magnitude slower than what is

required for a general-purpose commercial processor.

Our technique operates at a similar level of detail as fault

injection (RTL model) but instead of injecting faults, we

extend a well-known analytical technique in a novel new way

to compute the AVFs of low-level structures, enabling a

substantially faster and more comprehensive analysis. Our

analytical method can compute the AVFs of thousands of

workloads spanning tens of millions of cycles of execution

for each workload in the course of hours to days. We show

that there is no need to choose a low or high level of

abstraction but can marry the strengths of both.

3 Established AVF Computation Techniques

There are two main accepted techniques to compute AVF

pre-silicon. The first method is statistical fault injection (SFI)

into an RTL model. The second method is known as ACE

lifetime analysis (which is performed on an architectural

performance model). Neither technique is adequate as-is to

compute accurate, statistically significant AVFs for

sequentials. Our technique therefore combines the best

aspects of both: the analytical approach and simulation speed

of ACE analysis with the level of detail (primarily state and

connectivity information) of the RTL model.

3.1 SFI on RTL

Statistical fault injection, or SFI, works by running two

copies of the RTL simulation. A fault is injected into one

copy by artificially flipping a random bit at a random time-

step. The simulations are then run for some number of cycles,

usually 10,000 to 50,000. If a state mismatch occurs at a point

that impacts correct program operation, the fault is

considered to have propagated to an error. Faults resulting in

errors contribute toward the AVF for that node. This process

is repeated by injecting faults across a large number of state

nodes and cycles. The sequential AVF is computed as the

number of errors seen at the observation points divided by the

number of injected faults. There is also an additional

unknown component that is a result of injected faults that

may still be resident in the system but have not propagated to

the observation points by the time the simulation ends. The

quality of the results depends directly on the number of

injections that can be simulated and the number of cycles

after the injection in which faults can propagate to the

observation points. Equation 2 gives the AVF formula for the

SFI technique.

RTL models are very slow due to the high level of detail.

This lack of speed means that long simulations cannot be

completed within a reasonable amount of time. Sequential

AVFs can be computed using many short simulations (since

the lifetime of data in a pipeline latch or flop is generally

short), but this can increase the size of the unknown

component significantly.

The AVFs for SDC and DUE must be computed

separately, since the observability points for faults will be

different. For SDC, the observability points are at the

program outputs, while for DUE those points occur at the

error detection logic for the structure/latch. Determining both

SDC and DUE AVF potentially doubles the number of

simulations, making the SFI technique even more costly.

As an example, a processor with 100,000 sequentials

running a 10,000 cycle simulation would require 1,000,000

RTL simulations to inject into every potential fault for

complete coverage of the solution space (100,000 sequentials

x 10,000 cycles). Usually only a small sample set of the

solution space is simulated. Appropriate guardbands are then

applied to compensate for the partial coverage. However, to

perform this operation for even a dozen or so workloads can

easily result in more than a billion simulations to achieve

statistically significant AVFs for those workloads. Typically,

this can take months to years of simulation time on a modern

microprocessor for just a few workloads.

For these reasons, computing sequential AVFs using SFI

into RTL is not realistically feasible for any modern design

with millions of sequentials or for hundreds to thousands of

workloads. Although the level of detail lends itself to

computing sequential AVF well, the compute cost of doing

so is prohibitive. We should point out however, that SFI into

RTL is still the best way to compute limited AVFs for a

handful of data or control paths on a few specific workloads.

Since all state and masking effects are fully modeled, this is

appropriate either to validate analytically modeled results or

to compute precise AVFs for very specific conditions.

3.2 ACE Lifetime Analysis on Performance Models

ACE Lifetime analysis [1] [2] is an analytical method to

compute AVF values for processor storage structures. ACE

stands for architecturally correct execution and introduces the

notions of ACE (necessary for architecturally correct

execution) and un-ACE (un-necessary for architecturally

correct execution) instructions and data. ACE lifetime

analysis and hamming-distance-1 analysis [2] are performed

using an ACE-instrumented performance model.

ACE lifetime analysis is a completely analytical

technique that does not rely on fault injection. ACE analysis

monitors read/write events to compute the residency time of

ACE bits in a structure during that structure’s lifetime, where

structure refers to micro-architectural storage elements such

as buffers, register files, queues, caches and other types of

storage arrays. The AVF for a structure is calculated by

dividing the average ACE lifetime for all bits in the structure

by the total simulation time. This technique is extremely well

suited for computing structure AVFs since structure behavior

must be tracked over long periods of time due to potentially

long fault latencies.

To compute structure AVFs, one copy of the model is run

for each benchmark for tens of millions of cycles. Since the

performance model is 100X-1000X faster than RTL, it is

possible to run hundreds to thousands of traces for tens of

millions of cycles in just a few days or weeks. This allows for

a very robust and broad sampling of the average behavior of

any particular structure. It also allows the structure AVFs to

be targeted to specific workloads and/or application suites.

The final structure AVF is simply the fraction of cycles that

the structure contains ACE state (see Equation 3).

Using this method, SDC and DUE AVFs can be

computed in a single run. Disadvantages of this methodology

are primarily associated with the fact that performance

models do not have a high level of detail. As a result, only

structures that exist in the performance model can be

analyzed and their AVF computed. Many high AVF

structures not required for typical performance studies, such

as microcode registers, scratchpads, and control registers, and

therefore may not be modeled. Additionally, none of the

millions of sequentials that make up the random logic state,

the data path and control path pipelines, nor any of the staging

logic found in modern processors is modeled in sufficient

detail to compute AVFs.

ACE analysis has been used effectively on recent

processor designs to compute the AVFs for most high-level

micro-architectural structures. While specific sequentials and

data paths can be modeled in a performance model and have

AVFs computed, to do so for all sequentials would render the

performance model no faster than the RTL model, thus

defeating the purpose of having a higher level model.

Due to the reasons stated in this section, while ACE

analysis provides a more analytical approach to computing

AVF than SFI, it does so using a performance model. The

performance model must be used to provide enough

simulation speed to compute AVFs across enough workloads

and cycles to be statistically significant. This precludes the

ability to provide the low-level detail necessary to model all

the millions of sequentials in the actual design.

4 Computation Methodology

Our technique to compute Sequential AVF applies a

hybrid approach that uses data obtained from the ACE

analysis in the performance model along with detailed signal

flow information taken from the RTL design. ACE data rates

from the performance model are propagated through the RTL

node graph to obtain AVF information for each node. This

Structure AVF =
∑ residence time of all ACE+unknown bits in a structure

(# bits in structure) x (total simulation cycles)

Equation 3: Calculating Structure AVF Using ACE Analysis

Sequential AVF = (# Errors + # Unknown) / # Injected

Equation 2: Calculating Sequential AVF using SFI

approach allows us to obtain RTL-level detail without having

to run lengthy RTL simulations.

The key piece of data required is the port AVF (pAVF) of

each ACE-evaluated structure. The pAVF of a bit in a

structure’s port or interface is the probability that ACE data

will be transmitted to or from the structure through that bit.

For a read port, pAVFR is calculated by dividing the number

of ACE reads from the structure by the total number of cycles

simulated. For a write port, we divide the number of ACE

writes to the structure by the number of simulated cycles to

compute pAVFW. The ACE-read and ACE-write count

values for each structure are reported by the ACE model.

These values represent the ACE data rate of the circuits

immediately adjacent to the structure (essentially the logic

that represents the read/write ports of the structure). While

both structure AVF and pAVF measure the same

characteristic of a bit, we use pAVF for this discussion to

avoid confusion with structural AVF as well as to describe

how the value is calculated. A pAVF value can be calculated

for all nodes (both combinational and sequential) in a design.

It is important to note that when discussing an ACE

structure within the RTL, we are referring only to the set of

storage elements used to hold structure values and not to the

logic associated with those elements. AVF can be

approximated under certain conditions using Little’s Law.

Prior work has shown that AVF can be computed as the

product of the average ACE latency and the average ACE

throughput [1] [2]. One major difference between array

structure AVFs and port AVFs is that the array structures’

AVF is usually dominated by ACE latency while the AVF of

the ports are dominated by the ACE throughput.

The remainder of this section describes the details of the

methodology used to calculate the AVF of these sequential

circuits. As discussed above, this methodology involves

propagating pAVF values through a node graph generated

from RTL. At each step during this propagation, the pAVF

estimate for the current node is computed and the node is

annotated with that value.

In order to limit the scope of the initial implementation of

the sequential AVF methodology, it was necessary to make

three simplifying assumptions. They are made in such a way

as to ensure that our final results are conservative. Several of

these assumptions provide an opportunity to refine the

estimate if one is able to use additional information to

perform the analysis.

First, we note that values that are stored for more than one

cycle makes it impossible to reason about the ACE data rates

around that storage element. Since we are focusing on the

sequentials such as those found in pipeline latches, our

analysis assumes that any data stored for more than one cycle

is stored in an ACE-instrumented structure or an identifiable

control register. Our implementation automatically identifies

most control registers and treats them as ACE structures with

100% read-port pAVF (pAVFR). Similarly, our

implementation identifies sequentials that behave as ACE

structures (data is read/written via enable/enabled clock

signals) and these are then modeled in the ACE performance

model.

Second, since our analysis does not simulate the logic

represented by the RTL, we are not able to identify when

logical masking of ACE values occurs. We conservatively

assume that there is no logical masking beyond the

microarchitectural-level logical masking analysis already

accounted for in the ACE model.

Third, we assume that most design debug and

instrumentation logic in production RTL that do not play a

role in normal product operation are eliminated from the

processed RTL either by compilation settings or by the

sequential AVF computation tool via naming conventions.

We intentionally leave certain debug control code in place

since faults in these nodes can result in improper operation of

the final product.

4.1 Propagating pAVF Values

The process of propagating pAVF values through RTL

involves taking each known pAVF value and traversing the

associated RTL node graph. To simplify this discussion we

will split these traversals into two phases: walks propagating

down from structure read-ports (forward propagation of

pAVFR), and walks propagating up from structure write-ports

(backward propagation of pAVFW). A walk is terminated

when all of its paths have reached an ACE structure, an RTL

boundary, or a node already visited during this walk.

A walk terminates when it reaches a structure because the

pAVF values for the structure are measured values that will

be more accurate than the estimated values arriving via the

walk (in this way ACE-modeled structures are treated as

“sources” and “sinks”). In the case where a walk reaches a

node that it has already visited (the walk has encountered a

loop), continuing the walk does not add new information, and

can be terminated.

During this discussion, it is important to remember that

the flow of ACE bits is independent of the logic function

within the circuit. While a circuit element may be depicted as

a NOR gate, the function is not of consequence. Further, care

must be taken to avoid thinking in terms of a bits ‘1’ or ‘0’

state, and remember that the only factor to consider is

whether the bits being discussed are ACE or un-ACE. It is

also useful to think of the pAVF values as representing the

ACE data-rate.

4.1.1 Forward Propagation of pAVFR

We begin this discussion with the observation that any

data path can be broken down into a set of interconnected

subsections made up of simple pipelines, logical join points

(fan-ins), and distribution split points (fan-outs). This section

will discuss how pAVF values are propagated through each

of these topologies, and how signals are annotated along the

way. First, we will discuss the general approach to

propagating pAVF values from structure outputs to structure

inputs.

The simplest case is that the path between two structures

with known port AVFs is a straight-line series of pipeline

sequentials with no logical joins or distribution splits. This

case is illustrated in Figure 1. The figure shows a structure

S1, for which a pAVFR has been calculated by performance

model analysis. A second structure S2 is connected to S1 by

a series of sequentials. We wish to calculate the AVF of each

of the intervening sequentials. In this example, each value

that enters the pipeline from the read port of structure S1 will

eventually enter the write port of structure S2. Any ACE

value entering the pipeline will still be ACE at the pipeline

output. Thus, each sequential in this simple pipeline will have

the same AVF value, equivalent to the pAVF of structure

S1’s read port given by Equation 4.

Figure 2 shows a circuit containing a logical join point.

Here the read ports of two evaluated structures, S1 and S2

feed a circuit that drives the write port of S3. The NOR gate

G1 combines the output signal of S1 with the output signal of

S2. To determine whether the output of G1 is ACE, we

consider the possible combinations, focusing on a single

cycle. One possibility is that the values held in Q1a and Q1b

are both unACE. In this case, we can be certain that the output

of G1 is also unACE, as a value that is not necessary for

architecturally correct execution cannot create a result that is

necessary for correct execution in a single fault model. A

second possibility is that Q1a holds an ACE value while Q1b

holds an unACE value, or vice versa. When these values are

combined, the result may or may not be ACE. In this case, we

make the conservative assumption that the result is also ACE.

The final possibility is that both Q1a and Q1b hold an ACE

value. In this case, the output of G1 will be ACE. The pAVF

of the output of a logical join point (Q2a in Figure 2) is

conservatively considered to be the union of the pAVF values

of the inputs to the join point. If we further assume that there

is no overlap between the pAVFs of S1 and S2 then the union

simplifies to the sum of the pAVFR of S1 and S2. This is

shown in Equation 5.

Figure 3 shows a circuit containing a distribution split

point. Here the read port of one evaluated structure, S1, feeds

a branching circuit that ends at the write ports of S2 and S3.

Since the values held in sequentials Q2a and Q2b will always

be generated from the value in Q1a, the AVFs of all three

sequentials are equal as shown in Equation 6.

The process of estimating node pAVF values requires that

the known pAVF values from each ACE-instrumented

structure be propagated throughout the RTL. We begin the

process by examining the known pAVF values of the

structure outputs and walk these values through the RTL

node-graph, annotating each visited node with the

appropriate pAVF value. Since each bit of each structure will

have different connectivity, it is necessary to perform the

node-walk for each bit of the structure.

Each pAVF walk continues until it encounters either the

boundary of the RTL under analysis or a structure input.

Since each structure has a known AVF and pAVFW, the

portion of the walk that encounters the structure will

terminate at that point. A walk will also stop when it

encounters a node that it has already visited, since continuing

would be redundant. An advantage of this approach is that

loops in the node-graph (e.g. from an FSM) are automatically

broken.

All nodes conservatively start with a pAVF of 1.0. As the

walk visits each node, the walk pAVF value is compared to

the node’s current pAVF. If the walk pAVF value is less than

the node pAVF, then the node is updated to use the walk

pAVF. This is shown in Equation 7.

4.1.2 Backward Propagation of pAVFW

Note that while the structure pAVFR (Read port pAVF)

values we have annotated are conservative estimates, the

structure pAVFW (Write port pAVF) values are available to

AVF(Q1a) = pAVFR(S1)
AVF(Q1b) = pAVFR(S2)

AVF(Q2a) = pAVFR(S1) U pAVFR(S2)
 AVF(Q2a) = pAVFR(S1) + pAVFR(S2)

Equation 5: Forward Sequential AVF of Logical Join

S1

S2
G1

Q

Q
SET

CLR

D

Q1a

Q

Q
SET

CLR

D

Q1b

Q

Q
SET

CLR

D

Q2a

S3

pAVF_1 = 0.10

pAVF_2 = 0.02

0.12

Figure 2: pAVF logical join propagation

AVF(Q1a) = AVF(Q2a) = AVF(Q3a) = pAVFR(S1)

Equation 4: Forward Sequential AVF of Simple Pipeline

S1 S2
Q

Q
SET

CLR

D

Q1a

Q

Q
SET

CLR

D

Q2a

Q

Q
SET

CLR

D

Q3a

pAVF_1 = 0.10 0.10 0.10

Figure 1: pAVF simple pipeline propagation

AVF(Q1a) = AVF(Q2a) = AVF(Q2b) = pAVFR(S1)

Equation 6: Forward Sequential AVF of Distribution Split

Node pAVF starts at 1.0
New Node pAVF = MIN(Node pAVF, Walk pAVF)

Equation 7: Node Update Rule

refine the results. We know that (because each node estimate

is conservatively based on the previous node) the farther the

walk is from the source of the pAVF value, the less likely it

is to be accurate. Walking backwards through the node-graph

from a structure’s write-port the average distance between an

annotated node and the source of its pAVF value will be

reduced, increasing the overall accuracy of the estimate. We

refer to the walk from structure inputs to outputs as a walk

“up” the node graph.

Remember that what we are propagating is essentially a

signal probability (the probability of an ACE bit instead of

the probability of a one or zero), not a data item. Given this,

we can reason about the pAVF of a set of inputs given the

output of a circuit. We break down the RTL into the three

topologies discussed earlier.

Referring to Figure 4, the simple pipeline does not create

or destroy ACE data, so the pAVF of the pipeline input must

be equal to the pAVF of the output. It should be noted that

since S1’s read port pAVF is computed independently of S2’s

write port pAVF in the performance model and both

estimates are conservative, their calculated values may not

necessarily match. The backward AVF equation is shown in

Equation 8.

Walking up through a logical join operation (Figure 5)

requires that we determine the pAVF of two or more inputs

from the pAVF of the output. Regardless of the operation

performed, the worst-case pAVF of an input can be no larger

than the pAVF of the output, so we conservatively assign the

output pAVF value to both input signals. This is given by

Equation 9.

For a distribution split point where there are likely two or

more different pAVF values at the outputs as shown in Figure

6, as with the case of propagating down through a logical join

point, we do not know the relationship between the two

pAVF values. Therefore, we conservatively assign the union

of output pAVF values to the distribution point’s input. In

Figure 6, we again assume that there is no overlap in the

pAVFW for S2 and S3 so the union is simply a sum capped at

1.0. This is given in Equation 10.

These rules are all that is required to propagate pAVF

values through the circuits being analyzed. We proceed to

walk pAVF vales from each bit of each structure’s write-port.

The walks update each visited node, annotating the node with

the calculated pAVF value, until it reaches an ACE-structure,

an RTL boundary, or a node that it has already visited. Since

each walk makes use of only the assignment and addition

operations, the walks can be done in any order.

4.2 Final pAVF Computation and Propagation

Example

After completing both the “up” and “down” walks, most

nodes are annotated with two pAVF values. For the nodes

that have pAVF values computed by the ACE model, the

estimate value is discarded in favor of the computed value.

For the remaining nodes, the smaller of the two estimates can

be used since both values are obtained conservatively. The

fact that we can use the minimum of the two values is a key

point in this technique and is the main reason why the node

AVF values do not simply saturate to 100%.

Table 1 shows the final AVF equations for the node types

based on reconciling the pAVF values for the previous

examples.

AVF(Q1a) = AVF(Q2a) = AVF(Q3a) = pAVFW(S2))

Equation 8: Backward Sequential AVF of Simple Pipeline

 AVF(Q1a) = AVF(Q1b) = AVF(Q2a) = pAVFW(S2)

Equation 9: Backward Sequential AVF of Logical Join

AVF(Q2a) = pAVFW(S2)
AVF(Q2b) = pAVFW(S3)

AVF(Q1a) = pAVFW(S2) U pAVFW(S3)
 AVF(Q1a) = pAVFW(S2) + pAVFW(S3)

Equation 10: Backward Sequential AVF of Distribution Split

S1

S2

S3
Q

Q
SET

CLR

D

Q1a

Q

Q
SET

CLR

D

Q2a

Q

Q
SET

CLR

D

Q2b

0.12

0.12

pAVF_1 = 0.12

Figure 3: pAVF distribution split propagation

S1 S2
Q

Q
SET

CLR

D

Q1a

Q

Q
SET

CLR

D

Q2a

Q

Q
SET

CLR

D

Q3a

pAVF_1 = 0.10 0.08 pAVF_2 = 0.08 0.08

Figure 4: pAVF propagating up through a simple pipeline

S1

S2
G1

Q

Q
SET

CLR

D

Q1a

Q

Q
SET

CLR

D

Q1b

Q

Q
SET

CLR

D

Q2a

S3

0.18

0.18

pAVF_3 = 0.18

Figure 5: pAVF propagation up a logical join

The example shown in Figure 7 illustrates the pAVF

propagation process based on the rules in Table 1. Blocks S1-

S4 represent ACE structures. Note that the pAVF values for

the structure read and write port signals are provided in the

figure (in practice these values are computed from the ACE

model).

The first phase of the pAVF walk begins with the walk

from the S1 read-port (pAVF_1). This pAVF is applied to the

output of Q1a and Q2a. Both of these signals are annotated

with 0.10 since they form a simple pipeline. The pAVF for

G1 and G2 cannot be determined without further information,

so the walk ends here.

Next, the S2 read-port pAVF (pAVF_2) is walked

forward to the output of Q1b, which is annotated with 0.02.

Gate G1 forms a logical join-point, so its output is annotated

as the union of the pAVFR values from S1 and S2 (pAVF_1

U pAVF_2). Remembering that we calculate the sum of

pAVF values for the union, the output is annotated with a

pAVF value of 0.12. This value is then propagated forward

through Q3b. Additionally, this value is applied to the second

input of gate G2.

Gate G2 forms a logical join-point, with input values

pAVF_1 and (pAVF_1 U pAVF_2). The union of these

values is (pAVF_1 U (pAVF_1 U pAVF_2)), which

simplifies to just (pAVF_1 U pAVF_2). As before, the result

of the union is applied to the output. The outputs of both G2

and Q3a are annotated with a pAVF value of 0.12 (0.10 +

0.02). This concludes the first phase of the pAVF walk.

The second phase of the pAVF walk begins with the

write-port pAVF values for structures S3 and S4, and

continues until the walks reach S1 and S2. The mechanics of

these walks are identical to the first phase walks, with the

exception that the computation for logical join points and

distribution split points are performed as discussed in Section

3.1.2.

The values are then resolved using the rules in Table 1

resulting in a final AVF for each sequential.

4.3 Accounting for Loops

One of the key challenges we faced was how to deal with

loops, such as those created by state machine feedback paths.

Examples of such loops are abundant in modern

microprocessors including stall loops, head and tail pointer

update loops and so forth.

Loops, even though they are made from sequentials,

behave like structures. That is, they can retain state and

therefore pAVF values cannot simply propagate through

them. Depending on the actual logic in the loop, values can

get “stuck”, remaining resident and breaking our 1-cycle

latency assumption. Therefore, loops can be dominated by

latency more than throughput, just like the structures modeled

in the ACE model.

A few different solutions exist to deal with loops.

1. They can be modeled in the ACE model and treated

as structures. However, this requires the ability to

extract all loops from the RTL and model them in the

performance model. This is not a simple task as some

loops can encompass dozens of pipe stages and even

incorporate other structures and even other loops

(nested loops).

2. RTL simulations can determine the probability of

loops retaining values versus passing values. This

probability can be the pAVF for the loop. Again,

loop identification can be an issue, especially with

nested loops. However, this defeats the purpose of

our technique by requiring RTL simulations.

3. Assume some static pAVF value for the loops. The

RTL node walker can easily find and break loops and

inject static pAVF values into those nodes.

Effectively this treats the loop nodes as a structure

S1

S2

S3
Q

Q
SET

CLR

D

Q1a

Q

Q
SET

CLR

D

Q2a

Q

Q
SET

CLR

D

Q2b

pAVF_2 = 0.08

pAVF_3 = 0.10
0.18

Figure 6: pAVF propagation up distribution split point

Node Type Final Sequential AVF Equation

Simple Pipe AVF(all nodes) = MIN(pAVFR(S1), pAVFW(S2))

Logical Join AVF(Q1a) = MIN(pAVFR(S1), pAVFW(S3))
AVF(Q1b) = MIN(pAVFR(S2), pAVFW(S3))
AVF(Q2a) = MIN((pAVFR(S1) + pAVFR(S2)),
 pAVFW(S3))

Distribution
Split

AVF(Q2a) = MIN(pAVFR(S1), pAVFW(S2))
AVF(Q2b) = MIN(pAVFR(S1), pAVFW(S3))
AVF(Q1a) = MIN(pAVFR(S1),
 (pAVFW(S2) + pAVFW(S3)))

Table 1: Final Sequential AVF Equations for All Node Types

S1

S2

S3

S4
G1

G2Q

Q
SET

CLR

D

Q1a

Q

Q
SET

CLR

D

Q1b

Q

Q
SET

CLR

D

Q2a

Q

Q
SET

CLR

D

Q2b

Q

Q
SET

CLR

D

Q3a

Q

Q
SET

CLR

D

Q3b

pAVF_1 = 0.10

pAVF_2 = 0.02

0.10

0.10

0.12 0.12

0.12

0.12

Figure 7: Circuit for pAVF Propagation Example
Arrows indicate forward propagation of pAVF values from S1 and S2.

and pAVF walks will start and stop at these nodes.

The challenge is in choosing a static value that is

conservative without causing the propagated pAVFs

to saturate to some very high value.

Solution 3 is clearly the simplest solution to implement.

However, the challenge is that, in order to be conservative,

the static value would likely need to be 100%. This may

cause the resulting sequential AVFs to be pessimistically

conservative. However, our studies have shown that there is

relatively little variation in the resulting average sequential

AVF across the entire design (see Figure 8) for different

values of loop-boundary pAVF. Interestingly, a 100% pAVF

applied to every loop boundary node did not cause the

sequential AVFs to saturate, nor was the effect linear. Lower

points showed a modest decrease but there appears to be a

heel in the curve around 30%. This value correlates well with

the typical conservative AVF value we derived from our

work on structure AVFs. These loop-structures can clearly

not be treated as simple logic, nor can they be analyzed as a

conventional storage structure.

Based on the results of the studies show in figure 8 for

different loop-boundary values, we chose 0.3 as an

appropriate value for our analysis.

Only about 2%-3% of sequentials are in loops. However,

the problem stems from the fact that the AVF used for loops

could have a ripple effect and propagate into sequentials fed

by, but not part of, the loop. Hence, deriving a less

conservative number for loop sequentials helps reduce the

overall conservatism.

The expectation is that other designs would behave in a

similar fashion. The other pAVFs as well as the MIN

functions do a very effective job keeping the AVFs from

saturating to 100%. Additionally, the complexities of the

node graph itself and the relaxation approach help refine high

AVFs even further. Other designs may have the heel of the

curve at a different point, but this is a simple study to run for

each design. Once chosen, this loop node pAVF value can be

applied to all such nodes.

Most applications of AVF look at higher granularities

than individual flops and latches. Usually they will be used

to target a functional block or data/control path. In that case

the law of averages will help smooth out perturbations

introduced by this sort of approach. If a deeper level of

accuracy is required, then one of the other 2 approaches may

be considered on a case by case basis.

5 Implementation and Tool Flow

This section describes the tool flow we developed to

integrate sequential AVF computation into our existing RTL

design flow. The tool flow includes a number of individual

programs involved in RTL translation, pAVF propagation,

intermediate data handling, and tool automation. The full

analysis process can be broken into four major steps:

1. Develop ACE model on detailed microarchitectural

performance model

2. Collect pAVF data from ACE model

3. Compile RTL

4. Map ACE structure bits to RTL bit names

5. Walk pAVF values through RTL

5.1 Tool Development and Flow

Most existing product design flows for modern

processors already include the development of a detailed

micro-architectural performance model as well as RTL. Our

tool flow leverages the existing collateral in order to simplify

implementation.

The first step in this regard is to develop an ACE model

on top of any existing performance model. This may include

adding additional detail into the performance model to

support the ACE modeling effort. Our ACE model includes

the standard ACE Lifetime analysis as detailed by

Mukherjee, et al [1] as well as the Hamming-Distance-1

analysis for address based structures as detailed by Biswas,

et al. [2].

Additionally, we noted that many structures, especially

control structures, tended to hold bits that were used in

different ways. This was exhibited by an entry being broken

into various bit fields representing different pre-coded

information. Not all the bit fields were ACE simultaneously,

but rather depended on the instruction, data type, or other

micro-architectural details. As a result, we modeled each bit

field of these structures as a separate ACE structure. This

process, which we called “Bit Field Analysis”, provided a

much more detailed level of ACE analysis for these control

structures than before. The resulting pAVFs can be much less

conservative as a result.

The standard RTL compilation process was invoked to

generate intermediate-format RTL files (called EXLIF files)

necessary for further processing. This compilation should be

invoked in such a way as to remove as much instrumentation

and Debug-only (DFX) logic as possible, leaving only the

logic that is susceptible to transient errors during normal

operation. DFX logic that can generate run-time errors (e.g.

debug-mode enables) will need to be processed, and should

be retained. The output of the compilation process is a group

of RTL module files that correspond almost exactly to design

functional blocks (FUBs). After compilation, the EXLIF files

are further processed by a new tool to fully expand each FUB

Figure 8: Avg. Seq. AVF for different Loop Boundary pAVFs

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.00 0.20 0.40 0.60 0.80 1.00

W
ei

gh
te

d
 A

ve
ra

ge
 S

eq
u

en
ti

al
 A

V
F

Loop Boundary pAVF

module by instantiating all sub-circuits within that module.

When complete, each EXLIF file contains a single model

statement that represents the original FUB with all hierarchy

removed.

The third step involved mapping between the high-level

structures found in the ACE model and the actual bits in the

RTL. Often an individual structure is composed of several

arrays. It is not uncommon for some of the arrays to be

contained in a different FUB. Each of these RTL bits has an

associated pAVFR and pAVFW values in a text file that tells

the next tool which RTL bits to treat as structure bits.

Circuits that lie outside of the RTL being analyzed are

grouped together into one or more pseudo-structures, with its

own pAVFR and pAVFW values.

The Sequential AVF Resolution Tool (SART) is the key

tool in the tool chain and is responsible for walking pAVF

values through the RTL in order to resolve the sequential

AVF for each node. As discussed in section 4, the tool runs

in three phases: (1) walking down from structure read-ports,

(2) walking up from structure write-ports, and (3) the final

resolution phase that chooses the estimated value from the

first two phases. The relaxation process runs SART

repeatedly until the values reach a sufficiently steady state.

SART attempts to identify configuration control-register

bits, usually by the RTL name or the driving clock. These bits

are assigned a pAVFR of 100%. Since writes to these control

registers are relatively rare, the pAVFW will approach 0%. As

a result, we can omit walks up from these write-ports.

5.2 RTL Challenges and Recommendations

RTL models for modern processors can be large,

consisting of hundreds of FUBs. Processing the entire RTL

model into a single node graph can be very expensive from a

compute resource standpoint, resulting in very large memory

footprints and slow node traversal as a result.

It may be advantageous to partition the RTL to be

processed in order to better fit available computing resources

or to parallelize the task. For our purposes, the natural

boundaries of the RTL are at the FUB boundaries.

The challenge we faced is related to the fact that each

RTL FUB cannot produce meaningful results without inputs

from the surrounding FUBs. We chose to deal with this

situation using a relaxation approach that calculates the AVF

for the entire design repeatedly over several iterations,

refining the AVF values each iteration.

The process requires that we maintain a global netlist of

connections between the FUBs that is annotated with the

pAVF values that need to be applied to each FUB (the FUBIO

values). For each FUB output node, the node’s pAVFR is

collected to be applied to consuming input nodes in other

FUBs. Similarly, for each FUB input node, the nodes pAVFW

is collected for use by producing nodes in other FUBs. The

same rule previously discussed for internal logic (smallest

conservative value is used) is applied to the FUB

interconnects. This “merge” step is completed at the end of

each iteration, after all FUB’s have been analyzed.

During subsequent analysis iterations (defined to be one

up and one down walk through the netlist for each FUB), the

merged FUBIO information is used as an input to the

analysis. In this way, pAVF values traverse from one FUB to

the next, adding their contribution to the nodes in the FUB,

until they reach a terminating node.

When processing partitioned RTL, it is important to note

that any walk can only cross one partition during each

iteration. In order for an individual pAVF value to be visible

on the partition boundary and then walk through a second

partition, requires two SART iterations. For each subsequent

walk through an adjacent partition requires another iteration.

As the number of iterations increases, the walked values

will eventually propagate to their final termination points,

and the change seen in pAVF values due to those values will

drop to zero. The number of executed iterations will vary with

the RTL being processed. A sequence of iterations can be

terminated either by limiting the number of iterations or

waiting for some measure of pAVF change to reach a

threshold. For our RTL, we found that 20 iterations was

sufficient to achieve convergence.

Another optimization made to the tool flow involved

propagating the pAVF values symbolically through the RTL

node graph. As the pAVFs propagate in this way, a closed

form equation is generated for each visited node in the netlist

with the terms of the equations being the structure pAVFs of

the ACE model plus any injected state (such as from control

registers or loop boundaries). Once the iterations complete

and the equations are no longer changing, we are left with a

closed form AVF equation for every node in the RTL netlist

such that each node’s AVF can be computed as a function of

injected and ACE structure pAVFs.

The benefit of this is that any subsequent sequential AVF

computations on this particular design simply needs to

generate new pAVFs from the ACE model then plug those

values into the closed form equations to compute new

sequential AVFs. No subsequent sequential AVF

computation needs to re-run the SART or relaxation stages of

the tool flow, saving considerable effort.

6 Results

To test the proof-of-concept tool chain, we analyzed the

RTL for an Intel Xeon® core processor design.

6.1 Experimental Setup and Modeling

We collected pAVF values from a set of 547 workloads

from a custom server benchmark suite. The suite includes

industry-standard benchmarks such as SPEC as well as traces

of actual server workloads such as transaction processing,

web benchmarks. The pAVF values were collected from over

100 ACE-modeled structures, and then mapped to over 200

latch arrays from the RTL. SART identified 6825 bits as

being configuration control register bits. Each of these

control registers was treated as a single structure with pAVFR

of 100%. The tool also identified 201,530 bits belonging to

loops. Loop AVF values were chosen as discussed in section

4.3.

The SART walks were executed with the design

partitioned into individual RTL modules, and the appropriate

FUBIO merging performed at the end of each iteration. The

results presented here required 20 iterations, with

intermediate data indicating that this was a sufficient number

of iterations for convergence. We evaluated convergence

here by plotting the average pAVF of sequentials for each

FUB over each iteration.

The SART analysis required about a day to run, and

visited more than 98% of all RTL nodes. Figure 9 plots the

average FUB sequential AVF for each RTL module after the

last iteration. The overall averages are weighted to account

for the actual number of sequentials in each FUB, indicating

that the vast majority of sequentials were actually in the lower

AVF FUBs. As expected, most FUBs have significantly

smaller pAVF values than the average structure AVF from

the ACE model. This represents a ~10% reduction in overall

modeled SDC FIT for the processor. For reference the

weighted average of both sequential pAVF and node pAVF

(representing combinatorial and sequential nodes) are

plotted.

Note that for any individual FUB, there is little correlation

between the total average node AVF and the average

sequential node AVF. This is due to the different circuit

configurations and the relative number of combinational

nodes versus sequential nodes. For example, a high-AVF

logic branch may have relatively few sequentials compared

to a low-AVF branch.

6.2 Correlation with Silicon

The final determination of success for any modeling

innovation is in how well it correlates (or improves

correlation) with actual measurement.

We selected two workloads for which we have good SER

data taken during accelerated SER testing of Intel Xeon®

processors. The selected workloads were:

 Lattice – this workload calculates the location of

a particle in a 3d lattice with inter-particle

forces. We modified it to be a 2d lattice.

 MD5Sum – this workload calculates 128-bit

MD5 hashes as per [9]. It was modified to

remove memory accesses (to reduce cache DUE

since memory errors can quickly overwhelm

SDC observability under the beam), and

therefore does not calculate a true MD5 hash,

though it does all the same calculations.

The accelerated conditions were created at the Indiana

University Cyclotron Facility using a 200 MeV proton beam

with variable flux.

The measurement setup was the same as that used for

prior work such as the SDC virus measurement testing [8],

and using the Direct Memory Load infrastructure to minimize

DUE.

Prior to the sequential AVF work, our model to

measurement correlation for SDC was off by nearly 100%

with the modeled SER being higher than the measured. In

this case, we were conservatively using structure AVFs as a

proxy for the sequential AVF. The expectation was that,

since the sequential AVFs value should be dominated by

throughput rather than latency, the modeled SER should

decrease when we began computing sequential AVF values.

While this provided us with a very conservative modeled

estimate for the SDC SER, the level of miscorrelation made

it difficult to justify design changes to mitigate SER without

a more accurate correlation.

The new modeled sequential AVF for these benchmarks

were 63% lower than the conservative values we had been

using. As a result, the model/experimental correlation

improved by ~66%, which is within the statistical error of the

measured value, as shown in figure 10. Note that due to the

sensitive nature of the actual FIT values we normalize the

values to Arbitrary Units (AU).

7 Conclusion

We have demonstrated that it is possible to obtain a much

tighter AVF bound for miscellaneous sequentials using a

Figure 10: Beam test correlation results with model

Figure 9: Per-FUB Average Sequential AVF Results

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
ve

ra
ge

 F
U

B
 S

eq
u

en
ti

al
 A

V
F

Functional Blocks (FUBs)

Node AVF

Seq AVF

Avg Seq AVF (Weighted by Sequential Counts)

Avg Node AVF (Weighted by Sequential Counts)

purely analytical technique. We presented a hybrid approach

which uses structures’ “port AVFs” computed by the

performance model and applies them to an extracted node

graph from RTL. This technique marries the detail level of

the RTL with the speed of the high-level analytical model,

providing a feasible way to compute accurate sequential AVF

values. The values of millions of sequentials are calculated

based on inputs from thousands of workloads in a very

reasonable amount of time. We presented our tool flow

implementation as well as detailed some of the specific

challenges and recommendations that helped us simplify tool

development and implementation.

We used this methodology and tool flow to generate the

sequential AVFs for every functional sequential in an Intel

Xeon® core design, showing an average sequential AVF of

14% averaged over a variety of server workloads. This

resulted in a ~10% reduction to the modeled overall processor

SDC SER. Finally, we showed that the modeled results using

the computed sequential AVFs improved our model

correlation to silicon measurement by ~66% for a couple of

workloads which brought the modeled SER well within the

statistical range indicated by the measured values.

Bibliography/References

[1] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, T. Austin, “A

Systematic Methodology to Compute the Architectural Vulnerability

Factors for a High-Performance Microprocessor”, 36th Annual

International Symposium on Microarchitecture (MICRO),

December 2003

[2] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S.S. Mukherjee, R.

Rangan, “Computing Architectural Vulnerability Factors for

Address-Based Structures”, 32nd Annual International Symposium

on Computer Architecture (ISCA), 2005

[3] P. Hazucha, T. Karnik, S. Walstra, B. A. Bloechel, J. W. Tschanz, J.

Maiz, K. Soumyanath, G. E. Dermer, S. Narendra, V. De, and S.

Borkar, “Measurements and analysis of SER-tolerant latch in a 90-

nm dual-Vt CMOS process”, IEEE Journal of Solid-State Circuits,

vol. 39, no. 9, pp. 1536–1543, September 2004

[4] S. Mitra, N. Seifert, M. Zhang, Q. Shi, K.S. Kim, “Robust system

design with built-in soft-error resilience”, Computer, Volume 38,

Issue 2, Feb. 2005 Page(s):43 – 52

[5] N. Seifert, V. Ambrose, B. Gill, Q. Shi, R. Allmon, C. Recchia, S.

Mukherjee, N. Nassif, J. Krause, J. Pickholtz, A. Balasubramanian ,

“On the Radiation-induced Soft Error Performance of Hardened

Sequential Elements in Advanced Bulk CMOS Technologies”,

invited paper, proceedings of the IEEE International Reliability

Physics Symposium (IRPS), pp. 188 - 197, 2010

[6] N. Seifert, B. Gill, S. Jahinuzzaman, J. Basile, V. Ambrose, Q. Shi,

R. Allmon, A. Bramnik, “Soft Error Susceptibilities of 22nm Tri-

Gate Devices”, , IEEE Transactions on Nuclear Science, Volume 59,

Issue 6, pp. 2666 - 2673, 2012

[7] N. Wang, J. Quek, T.M. Rafacz, S. Patel, “Characterizing the Effects

of Transient Faults on a High-Performance Processor Pipeline”,

International Conference on Dependable Systems and Networks,

June 2004

[8] T. Dey, S. Raasch, J. Stephan, A. Biswas, “SDC Virus: An

Application for SER Model Validation”, Workshop on Silicon Errors

in Logic - System Effects (SELSE), Stanford, California, April 2014

[9] http://en.wikipedia.org/wiki/Md5sum

[10] R. Nathan, D. Sorin. "Nostradamus: Low-Cost Hardware-Only

Error Detection for Processor Cores." Design, Automation & Test in

Europe (DATE), March 2014

[11] A. Avizienis. “Arithmetic error codes: Cost and effectiveness studies

for application in digital system design.” IEEE Trans. on Computers,

C-20(II):1322–1331, 1971.

[12] H. Asadi, M. Tahoori, "Soft error modeling and protection for

sequential elements," Defect and Fault Tolerance in VLSI Systems,

2005. DFT 2005. 20th IEEE International Symposium on , vol., no.,

pp.463,471, 3-5 Oct. 2005

[13] D. Holcomb, L. Wenchao, S. Seshia, "Design as you see FIT:

System-level soft error analysis of sequential circuits," Design,

Automation & Test in Europe Conference & Exhibition, 2009.

DATE '09. , vol., no., pp.785,790, 20-24 April 2009

[14] G. Saggese, A. Vetteth, Z. Kalbarczyk, R. Iyer, "Microprocessor

sensitivity to failures: control vs. execution and combinational vs.

sequential logic,"Dependable Systems and Networks, 2005. DSN

2005. Proceedings. International Conference on , vol., no.,

pp.760,769, 28 June-1 July 2005

[15] J. Blome, S. Mahlke, D. Bradley, and K. Flautner, "A

Microarchitectural Analysis of Soft Error Propagation in a

Production-Level Embedded Microprocessor," Proceedings of the

1st Workshop on Architectural Reliability, 38th International

Symposium on Microarchitecture, Barcelona, Spain, 2005

[16] X. Li, S. Adve, P. Bose, J. Rivers, “SoftArch: An Architecture-Level

Tool for Modeling and Analyzing Soft Errors”, DSN 2005

[17] X. Li, S. Adve, P. Bose, J. Rivers, “Online Estimation of

Architectural Vulnerability Factor for Soft Errors”, ISCA 2008

[18] S. Hari, R. Venkatagiri, S. Adve, H. Naeimi, “GangES: Gang Error

Simulation for Hardware Resiliency Evaluation”, ISCA 2014

[19] H. Cho, S. Mirkhani, C. Cher, J. Abraham, S. Mitra, “Quantitative

Evaluation of Soft Error Injection Techniques for Robust System

Design”, DAC 2013

[20] A. Biswas, N. Soundararajan, S. Mukherjee, S. Gurumurthi,

“Quantized AVF: A Means of Capturing Vulnerability Variations

over Small Windows of Time”, Proceedings of the 5th Workshop on

Silicon Errors in Logic – System Effects (SELSE) 2009

http://en.wikipedia.org/wiki/Md5sum

