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Abstract 

The rate of particle induced soft errors in a processor increases 

in proportion to the number of bits.  This soft error rate (SER) can 

limit the performance of a system by placing an effective limit on 

the number of cores, nodes or clusters. The vulnerability of bits in 

a processor to soft errors can be represented by their architectural 

vulnerability factor (AVF), defined as the probability that a bit 

corruption results in a user-visible error.  Analytical models such 

as architecturally correct execution (ACE) lifetime analysis enable 

AVF estimation at high speed by operating at a level of abstraction 

well above that of RTL.  However, sequential elements do not lend 

themselves to this type of analysis because these bits are not 

typically included in the abstracted ACE model. Brute force 

methods, such as statistical fault injection (SFI), enable register 

level detail but at the expense of computation speed. We have 

developed a novel approach that marries the computational speed 

of the analytical approach with the level of detail of the brute force 

approach. Our methodology introduces the concept of “port 

AVFs” computed by ACE analysis on a performance model and 

applies these values to a node graph extracted from RTL. We 

employ rules derived from set theory that let us propagate these 

port AVFs throughout the node graph using an iterative relaxation 

technique.  This enables us to generate statistically significant 

AVFs for all sequential nodes in a given processor design in a fast 

and accurate manner. We use this approach to compute the 

sequential AVF for all nodes in a modern microprocessor and 

show good correlation with beam test measurements on silicon. 

Categories & Subject Descriptors 

B.8 [Performance and Reliability]: B.8.1 Reliability, Testing, 

and Fault-Tolerance 

Keywords 

Reliability, soft error, sequentials, fault injection, fault 

simulation, AVF, ACE analysis 

1 Introduction 

Soft errors induced by alpha particles from packaging or from 

atmospheric neutrons are a significant source of transient 

errors in modern microprocessors. The rate of occurrence of 

these soft errors increases as bit counts increase, posing a 

significant risk for multi-core processors and systems-on-

chip. Soft errors have become a core-limiting problem in 

modern multi-core server processors used for data centers, 

high performance computing, and other safety-conscious and 

mission critical compute segments. Accurate characterization 

of these errors is required to effectively deploy mitigation 

techniques.  

Product soft error rates (SER) are generally given in terms 

of FIT or ‘Failures In Time’ (1 FIT equals 1 failure in 1 

billion hours). Equation 1 shows that the FIT rate for a 

structure is a product of the intrinsic error rate of a bit in a 

storage structure (determined by the physical and electrical 

characteristics of the manufacturing process and circuit 

topologies), the total number of bits in the structure, and the 

architectural vulnerability factor (AVF). The ability to 

accurately compute each of the components of the FIT 

equation is essential to computing an accurate SER.  

Architectural vulnerability factor (AVF) is the probability 

that a fault in a bit becomes a user-visible error. AVF has a 

significant impact on the overall SER. As a result, tools and 

methodologies to compute accurate AVFs for various 

components of the processor have been developed by both 

industry and academia. The addition of Architecturally 

SER FIT = (AVFbit) x (# Bits) x (Intrinsic Error Ratebit) 

Equation 1: Error Rate (FIT) Calculation 
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Correct Execution (ACE) modeling into performance models 

has proven very effective at computing statistically 

significant AVFs for high-level micro-architectural array 

structures [1][2]. Determination of AVF is a statistical 

process that requires the simulation of hundreds to thousands 

of workloads for tens of millions of instructions. Accurate 

assessment of the overall AVF of a microprocessor requires 

comprehension of the AVF not only of arrays, but also flops 

and latches (referred to as sequentials), and combinational 

logic. 

While ACE analysis is largely limited to array structures, 

Statistical Fault Injection (SFI) into register transfer level 

(RTL) models can compute AVFs for sequentials, but at a 

high computation cost [7]. Due to the required number of 

workloads and instructions, the low speed of RTL simulation 

has prevented computation of high-quality AVF values for 

sequentials. RTL emulation provides some relief due to the 

substantial speedup this enables, but emulation can be costly 

to set up and maintain and still falls short of the speedup 

needed to provide statistically significant AVFs across 

multiple workloads for every sequential node in a processor. 

The technique described in this paper addresses this gap. 

There are essentially two types of SER that are computed.  

One is silent data corruption (SDC), which measures the SER 

of components that do not have SER detection or mitigation.  

The second is detected uncorrectable error (DUE), which 

measures the SER of components that have error detection 

capability such as arrays protected with parity.  In some 

instances, a third category of SER type that may be computed 

is detected corrected errors (DCE) which is the rate of errors 

on structures that have both detection and correction 

capabilities.  The first two types however, are the most 

critical from a design, mitigation and specification 

standpoint. 

In a typical modern microprocessor from Intel, about half 

of the processor’s total SDC SER comes from sequentials [4]. 

In addition, as more and more register files and arrays are 

protected by techniques such as parity and ECC, the relative 

SDC SER contribution of sequentials will continue to 

increase even as the absolute SDC SER of the entire part 

decreases. Sequentials are much more difficult to protect than 

arrays with schemes such as parity. Instead, circuit 

techniques such as SEUT [3], BISER [4] or other Low-SER 

circuits [5] [6] are used to reduce the intrinsic FIT rate of the 

bits. Other methods include providing end-to-end protection 

[10] [11]. All of these approaches can introduce costs in terms 

of power, area, and performance. Another growing source of 

SDC is combinational logic.  This logic most often is driven 

by and/or feeds sequentials.  Hence, an accurate sequential 

AVF is also helpful in determining the true vulnerability of 

these combinational logic paths. 

A fast and accurate means of determining the most 

vulnerable sequentials is required to determine the most 

efficient use of low-SER circuit and other SER mitigation 

techniques for these bits. In order to compute accurate AVFs 

for sequentials we need a technique that incorporates the level 

of detail of the RTL model with the simulation speed of the 

performance model. 

We introduce a technique that accomplishes this goal. We 

have developed a tool flow based on this methodology that 

uses port AVF values (generated from ACE analysis in the 

performance model) with a node graph extracted from the 

RTL model. We use this flow to generate statistically 

significant AVFs for all sequentials in the RTL model in a 

fast and accurate manner. Computation times for our 

technique are on the order of a week to compute the AVF 

over thousands of workloads for 10s of millions of 

instructions for a modern processor core such as an Intel 

Xeon® CPU core. Additionally, our technique does not use 

statistical sampling, but actually generates AVFs for each and 

every functional sequential in the entire design in a single run. 

We use a modern Intel Xeon® CPU core as our proof of 

concept, computing an average sequential AVF of 14% for a 

large variety of workloads.  We also show ~66% 

improvement to the overall SER FIT correlation between 

modeled and measured values as a result of applying the 

sequential AVFs. 

This paper makes the following contributions: 

 Describes a novel methodology to compute 

statistically significant AVFs for all sequentials in a 

design by combining ACE analysis from a 

performance model with detail from RTL. This 

allows AVF computation for all sequentials in a 

design without the need for RTL level simulations. 

 Develops and details a tool flow to implement the 

methodology, and describes the challenges at each 

stage. 

 Describes the results of executing our tool flow on 

an Intel Xeon® CPU core as a proof of concept. We 

show, for the first time, accurate AVFs for 

sequentials across thousands of traces and tens of 

millions of simulation cycles. We show that these 

AVFs result in a significantly better correlation with 

silicon measurements for a few tested workloads. 

This paper is organized as follows: Section 2 discusses a 

selection of related prior work in this area.  Section 3 provides 

an overview of the two main established techniques for AVF 

computation and explains why neither is adequate for 

computing effective sequential AVFs as-is. Section 4 

describes our novel sequential AVF computation 

methodology and the key concepts that enable it. Section 5 

describes the implementation of this methodology as well as 

the tool flow. Section 6 shows the results of executing this 

tool flow using the Intel Xeon® core model as a proof-of-

concept. Section 7 concludes this paper.  

2 Related Work 

There is a substantial body of related work around error 

modeling and the determination of AVF, We briefly review a 

few of the most relevant of those prior works here and show 

that none of the previous work addresses the problem being 

solved by this work. 



 

The prior work can be categorized into two areas: on-line 

techniques and off-line techniques 

2.1 On-Line Error Analysis  

Two works that represent on-line techniques include the 

work by Li, et al. [17] that proposes adding physical design 

features to silicon in order to estimate AVFs on-line and 

Quantized AVF [20]. Unlike this work, these techniques can 

only provide AVFs for aggregate portions of a chip, not 

individual flops and latches. 

These techniques are very different from accurate 

simulation of AVFs prior to silicon availability.  Adding 

hardware for AVF estimation is a costly prospect for a 

commercial processor.  Hence, accurate modeling, backed up 

by empirical testing, is essential. Our work specifically 

targets off-line analysis during the pre-silicon stage of design 

since the main idea is to identify SER vulnerable portions of 

the design to target for mitigation later in the design process. 

2.2 Off-Line Error Analysis 

Our work falls into the category of off-line techniques, 

which targets analysis during the pre-silicon stage of design. 

This category be further divided into pure SER 

characterizations, architectural modeling of soft errors, and 

techniques to apply fault injection methods.  

There are several works that involve characterization of 

SER for low level circuits including work by Asad, et al. 

which builds on their previous work that uses signal 

probabilities to estimate SER rates [12]. They derive the 

probability of a “system failure” at some future time based on 

the fault location and the probability of a system failure ever 

occurring because of a fault in that location. Holcomb, et al 

performed circuit simulation over fixed workloads [13]. This 

work characterizes electrical, timing, and logical masking 

only.  Both these techniques provide no sense of AVF, which 

is important for understanding the engineering tradeoffs for 

reducing SDC.   

Architectural techniques, such as ACE analysis, can be 

applied at the pre-silicon design stage. For sequential AVF, 

however, we need detail that only the RTL-level model 

provides in order to compute the AVF for every individual 

state bit, and ACE analysis uses a performance model that 

does not provide that level of detail. The SoftArch technique 

developed by Li, et al. [16] is another architectural level tool 

for modeling soft errors. While SoftArch techniques could be 

applied at the RTL level, it would likely result in excessive 

runtimes that our technique avoids.   

Much of the most relevant related work focuses on fault 

injection as the key technique to compute AVFs for flops and 

latches.  Fault injection at the RTL level is extremely time 

consuming and much of the work to compute AVFs for flops 

and latches revolves around enhancing the speed of fault 

injection. Cho, et al. focused on the need to do fault injection 

at a sufficiently low level of detail such that flops/latches 

exist and can be characterized [19].  Saggese, et al. computed 

AVFs via fault injection into two workloads [14].  Blome, et 

al. performed fault injection into RTL for an actual ARM core 

[15].  Their analysis of error fanout and propagation behavior 

allowed them to derive logical and temporal masking rates.  

Hari, et al developed the GangES error simulation technique 

[18] to speed up fault injection by nearly 2x. While these 

techniques claim significant speedups for fault injection, they 

are still 3 to 4 orders of magnitude slower than what is 

required for a general-purpose commercial processor. 

Our technique operates at a similar level of detail as fault 

injection (RTL model) but instead of injecting faults, we 

extend a well-known analytical technique in a novel new way 

to compute the AVFs of low-level structures, enabling a 

substantially faster and more comprehensive analysis. Our 

analytical method can compute the AVFs of thousands of 

workloads spanning tens of millions of cycles of execution 

for each workload in the course of hours to days. We show 

that there is no need to choose a low or high level of 

abstraction but can marry the strengths of both. 

3 Established AVF Computation Techniques 

There are two main accepted techniques to compute AVF 

pre-silicon. The first method is statistical fault injection (SFI) 

into an RTL model. The second method is known as ACE 

lifetime analysis (which is performed on an architectural 

performance model). Neither technique is adequate as-is to 

compute accurate, statistically significant AVFs for 

sequentials. Our technique therefore combines the best 

aspects of both: the analytical approach and simulation speed 

of ACE analysis with the level of detail (primarily state and 

connectivity information) of the RTL model. 

3.1 SFI on RTL 

Statistical fault injection, or SFI, works by running two 

copies of the RTL simulation. A fault is injected into one 

copy by artificially flipping a random bit at a random time-

step. The simulations are then run for some number of cycles, 

usually 10,000 to 50,000. If a state mismatch occurs at a point 

that impacts correct program operation, the fault is 

considered to have propagated to an error. Faults resulting in 

errors contribute toward the AVF for that node. This process 

is repeated by injecting faults across a large number of state 

nodes and cycles. The sequential AVF is computed as the 

number of errors seen at the observation points divided by the 

number of injected faults. There is also an additional 

unknown component that is a result of injected faults that 

may still be resident in the system but have not propagated to 

the observation points by the time the simulation ends. The 

quality of the results depends directly on the number of 

injections that can be simulated and the number of cycles 

after the injection in which faults can propagate to the 

observation points. Equation 2 gives the AVF formula for the 

SFI technique. 

RTL models are very slow due to the high level of detail. 

This lack of speed means that long simulations cannot be 



 

completed within a reasonable amount of time. Sequential 

AVFs can be computed using many short simulations (since 

the lifetime of data in a pipeline latch or flop is generally 

short), but this can increase the size of the unknown 

component significantly.  

The AVFs for SDC and DUE must be computed 

separately, since the observability points for faults will be 

different. For SDC, the observability points are at the 

program outputs, while for DUE those points occur at the 

error detection logic for the structure/latch. Determining both 

SDC and DUE AVF potentially doubles the number of 

simulations, making the SFI technique even more costly. 

As an example, a processor with 100,000 sequentials 

running a 10,000 cycle simulation would require 1,000,000 

RTL simulations to inject into every potential fault for 

complete coverage of the solution space (100,000 sequentials 

x 10,000 cycles).  Usually only a small sample set of the 

solution space is simulated. Appropriate guardbands are then 

applied to compensate for the partial coverage.  However, to 

perform this operation for even a dozen or so workloads can 

easily result in more than a billion simulations to achieve 

statistically significant AVFs for those workloads.  Typically, 

this can take months to years of simulation time on a modern 

microprocessor for just a few workloads. 

For these reasons, computing sequential AVFs using SFI 

into RTL is not realistically feasible for any modern design 

with millions of sequentials or for hundreds to thousands of 

workloads. Although the level of detail lends itself to 

computing sequential AVF well, the compute cost of doing 

so is prohibitive. We should point out however, that SFI into 

RTL is still the best way to compute limited AVFs for a 

handful of data or control paths on a few specific workloads. 

Since all state and masking effects are fully modeled, this is 

appropriate either to validate analytically modeled results or 

to compute precise AVFs for very specific conditions. 

3.2 ACE Lifetime Analysis on Performance Models 

ACE Lifetime analysis [1] [2] is an analytical method to 

compute AVF values for processor storage structures. ACE 

stands for architecturally correct execution and introduces the 

notions of ACE (necessary for architecturally correct 

execution) and un-ACE (un-necessary for architecturally 

correct execution) instructions and data. ACE lifetime 

analysis and hamming-distance-1 analysis [2] are performed 

using an ACE-instrumented performance model. 

ACE lifetime analysis is a completely analytical 

technique that does not rely on fault injection. ACE analysis 

monitors read/write events to compute the residency time of 

ACE bits in a structure during that structure’s lifetime, where 

structure refers to micro-architectural storage elements such 

as buffers, register files, queues, caches and other types of 

storage arrays. The AVF for a structure is calculated by 

dividing the average ACE lifetime for all bits in the structure 

by the total simulation time. This technique is extremely well 

suited for computing structure AVFs since structure behavior 

must be tracked over long periods of time due to potentially 

long fault latencies. 

To compute structure AVFs, one copy of the model is run 

for each benchmark for tens of millions of cycles. Since the 

performance model is 100X-1000X faster than RTL, it is 

possible to run hundreds to thousands of traces for tens of 

millions of cycles in just a few days or weeks. This allows for 

a very robust and broad sampling of the average behavior of 

any particular structure. It also allows the structure AVFs to 

be targeted to specific workloads and/or application suites. 

The final structure AVF is simply the fraction of cycles that 

the structure contains ACE state (see Equation 3).  

Using this method, SDC and DUE AVFs can be 

computed in a single run. Disadvantages of this methodology 

are primarily associated with the fact that performance 

models do not have a high level of detail. As a result, only 

structures that exist in the performance model can be 

analyzed and their AVF computed. Many high AVF 

structures not required for typical performance studies, such 

as microcode registers, scratchpads, and control registers, and 

therefore may not be modeled. Additionally, none of the 

millions of sequentials that make up the random logic state, 

the data path and control path pipelines, nor any of the staging 

logic found in modern processors is modeled in sufficient 

detail to compute AVFs. 

ACE analysis has been used effectively on recent 

processor designs to compute the AVFs for most high-level 

micro-architectural structures. While specific sequentials and 

data paths can be modeled in a performance model and have 

AVFs computed, to do so for all sequentials would render the 

performance model no faster than the RTL model, thus 

defeating the purpose of having a higher level model. 

Due to the reasons stated in this section, while ACE 

analysis provides a more analytical approach to computing 

AVF than SFI, it does so using a performance model.  The 

performance model must be used to provide enough 

simulation speed to compute AVFs across enough workloads 

and cycles to be statistically significant.  This precludes the 

ability to provide the low-level detail necessary to model all 

the millions of sequentials in the actual design. 

4 Computation Methodology 

Our technique to compute Sequential AVF applies a 

hybrid approach that uses data obtained from the ACE 

analysis in the performance model along with detailed signal 

flow information taken from the RTL design. ACE data rates 

from the performance model are propagated through the RTL 

node graph to obtain AVF information for each node. This 

Structure AVF = 
∑ residence time of all ACE+unknown bits in a structure 

(# bits in structure) x (total simulation cycles) 

Equation 3: Calculating Structure AVF Using ACE Analysis 

 

Sequential AVF = (# Errors + # Unknown) / # Injected 

Equation 2: Calculating Sequential AVF using SFI 



 

approach allows us to obtain RTL-level detail without having 

to run lengthy RTL simulations. 

The key piece of data required is the port AVF (pAVF) of 

each ACE-evaluated structure. The pAVF of a bit in a 

structure’s port or interface is the probability that ACE data 

will be transmitted to or from the structure through that bit. 

For a read port, pAVFR is calculated by dividing the number 

of ACE reads from the structure by the total number of cycles 

simulated. For a write port, we divide the number of ACE 

writes to the structure by the number of simulated cycles to 

compute pAVFW. The ACE-read and ACE-write count 

values for each structure are reported by the ACE model. 

These values represent the ACE data rate of the circuits 

immediately adjacent to the structure (essentially the logic 

that represents the read/write ports of the structure). While 

both structure AVF and pAVF measure the same 

characteristic of a bit, we use pAVF for this discussion to 

avoid confusion with structural AVF as well as to describe 

how the value is calculated. A pAVF value can be calculated 

for all nodes (both combinational and sequential) in a design. 

It is important to note that when discussing an ACE 

structure within the RTL, we are referring only to the set of 

storage elements used to hold structure values and not to the 

logic associated with those elements.  AVF can be 

approximated under certain conditions using Little’s Law.  

Prior work has shown that AVF can be computed as the 

product of the average ACE latency and the average ACE 

throughput [1] [2]. One major difference between array 

structure AVFs and port AVFs is that the array structures’ 

AVF is usually dominated by ACE latency while the AVF of 

the ports are dominated by the ACE throughput. 

The remainder of this section describes the details of the 

methodology used to calculate the AVF of these sequential 

circuits. As discussed above, this methodology involves 

propagating pAVF values through a node graph generated 

from RTL. At each step during this propagation, the pAVF 

estimate for the current node is computed and the node is 

annotated with that value. 

In order to limit the scope of the initial implementation of 

the sequential AVF methodology, it was necessary to make 

three simplifying assumptions. They are made in such a way 

as to ensure that our final results are conservative. Several of 

these assumptions provide an opportunity to refine the 

estimate if one is able to use additional information to 

perform the analysis. 

First, we note that values that are stored for more than one 

cycle makes it impossible to reason about the ACE data rates 

around that storage element. Since we are focusing on the 

sequentials such as those found in pipeline latches, our 

analysis assumes that any data stored for more than one cycle 

is stored in an ACE-instrumented structure or an identifiable 

control register. Our implementation automatically identifies 

most control registers and treats them as ACE structures with 

100% read-port pAVF (pAVFR).  Similarly, our 

implementation identifies sequentials that behave as ACE 

structures (data is read/written via enable/enabled clock 

signals) and these are then modeled in the ACE performance 

model. 

Second, since our analysis does not simulate the logic 

represented by the RTL, we are not able to identify when 

logical masking of ACE values occurs. We conservatively 

assume that there is no logical masking beyond the 

microarchitectural-level logical masking analysis already 

accounted for in the ACE model. 

Third, we assume that most design debug and 

instrumentation logic in production RTL that do not play a 

role in normal product operation are eliminated from the 

processed RTL either by compilation settings or by the 

sequential AVF computation tool via naming conventions. 

We intentionally leave certain debug control code in place 

since faults in these nodes can result in improper operation of 

the final product. 

4.1 Propagating pAVF Values 

The process of propagating pAVF values through RTL 

involves taking each known pAVF value and traversing the 

associated RTL node graph. To simplify this discussion we 

will split these traversals into two phases: walks propagating 

down from structure read-ports (forward propagation of 

pAVFR), and walks propagating up from structure write-ports 

(backward propagation of pAVFW). A walk is terminated 

when all of its paths have reached an ACE structure, an RTL 

boundary, or a node already visited during this walk.  

A walk terminates when it reaches a structure because the 

pAVF values for the structure are measured values that will 

be more accurate than the estimated values arriving via the 

walk (in this way ACE-modeled structures are treated as 

“sources” and “sinks”). In the case where a walk reaches a 

node that it has already visited (the walk has encountered a 

loop), continuing the walk does not add new information, and 

can be terminated. 

During this discussion, it is important to remember that 

the flow of ACE bits is independent of the logic function 

within the circuit. While a circuit element may be depicted as 

a NOR gate, the function is not of consequence. Further, care 

must be taken to avoid thinking in terms of a bits ‘1’ or ‘0’ 

state, and remember that the only factor to consider is 

whether the bits being discussed are ACE or un-ACE. It is 

also useful to think of the pAVF values as representing the 

ACE data-rate. 

4.1.1 Forward Propagation of pAVFR 

We begin this discussion with the observation that any 

data path can be broken down into a set of interconnected 

subsections made up of simple pipelines, logical join points 

(fan-ins), and distribution split points (fan-outs). This section 

will discuss how pAVF values are propagated through each 

of these topologies, and how signals are annotated along the 

way. First, we will discuss the general approach to 

propagating pAVF values from structure outputs to structure 

inputs. 



 

The simplest case is that the path between two structures 

with known port AVFs is a straight-line series of pipeline 

sequentials with no logical joins or distribution splits. This 

case is illustrated in Figure 1. The figure shows a structure 

S1, for which a pAVFR has been calculated by performance 

model analysis. A second structure S2 is connected to S1 by 

a series of sequentials. We wish to calculate the AVF of each 

of the intervening sequentials. In this example, each value 

that enters the pipeline from the read port of structure S1 will 

eventually enter the write port of structure S2. Any ACE 

value entering the pipeline will still be ACE at the pipeline 

output. Thus, each sequential in this simple pipeline will have 

the same AVF value, equivalent to the pAVF of structure 

S1’s read port given by Equation 4.  

Figure 2 shows a circuit containing a logical join point. 

Here the read ports of two evaluated structures, S1 and S2 

feed a circuit that drives the write port of S3. The NOR gate 

G1 combines the output signal of S1 with the output signal of 

S2. To determine whether the output of G1 is ACE, we 

consider the possible combinations, focusing on a single 

cycle. One possibility is that the values held in Q1a and Q1b 

are both unACE. In this case, we can be certain that the output 

of G1 is also unACE, as a value that is not necessary for 

architecturally correct execution cannot create a result that is 

necessary for correct execution in a single fault model. A 

second possibility is that Q1a holds an ACE value while Q1b 

holds an unACE value, or vice versa. When these values are 

combined, the result may or may not be ACE. In this case, we 

make the conservative assumption that the result is also ACE. 

The final possibility is that both Q1a and Q1b hold an ACE 

value. In this case, the output of G1 will be ACE. The pAVF 

of the output of a logical join point (Q2a in Figure 2) is 

conservatively considered to be the union of the pAVF values 

of the inputs to the join point.  If we further assume that there 

is no overlap between the pAVFs of S1 and S2 then the union 

simplifies to the sum of the pAVFR of S1 and S2.  This is 

shown in Equation 5.  

Figure 3 shows a circuit containing a distribution split 

point. Here the read port of one evaluated structure, S1, feeds 

a branching circuit that ends at the write ports of S2 and S3.  

Since the values held in sequentials Q2a and Q2b will always 

be generated from the value in Q1a, the AVFs of all three 

sequentials are equal as shown in Equation 6. 

The process of estimating node pAVF values requires that 

the known pAVF values from each ACE-instrumented 

structure be propagated throughout the RTL. We begin the 

process by examining the known pAVF values of the 

structure outputs and walk these values through the RTL 

node-graph, annotating each visited node with the 

appropriate pAVF value. Since each bit of each structure will 

have different connectivity, it is necessary to perform the 

node-walk for each bit of the structure. 

Each pAVF walk continues until it encounters either the 

boundary of the RTL under analysis or a structure input. 

Since each structure has a known AVF and pAVFW, the 

portion of the walk that encounters the structure will 

terminate at that point. A walk will also stop when it 

encounters a node that it has already visited, since continuing 

would be redundant. An advantage of this approach is that 

loops in the node-graph (e.g. from an FSM) are automatically 

broken. 

All nodes conservatively start with a pAVF of 1.0.  As the 

walk visits each node, the walk pAVF value is compared to 

the node’s current pAVF. If the walk pAVF value is less than 

the node pAVF, then the node is updated to use the walk 

pAVF. This is shown in Equation 7.  

4.1.2 Backward Propagation of pAVFW 

Note that while the structure pAVFR (Read port pAVF) 

values we have annotated are conservative estimates, the 

structure pAVFW (Write port pAVF) values are available to 

AVF(Q1a) = pAVFR(S1) 
AVF(Q1b) = pAVFR(S2) 

AVF(Q2a) = pAVFR(S1) U pAVFR(S2) 
 AVF(Q2a) = pAVFR(S1) + pAVFR(S2) 

Equation 5: Forward Sequential AVF of Logical Join 
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Figure 2: pAVF logical join propagation 

AVF(Q1a) = AVF(Q2a) = AVF(Q3a) = pAVFR(S1) 

Equation 4: Forward Sequential AVF of Simple Pipeline 
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AVF(Q1a) = AVF(Q2a) = AVF(Q2b) = pAVFR(S1) 

Equation 6: Forward Sequential AVF of Distribution Split 

 

Node pAVF starts at 1.0 
New Node pAVF = MIN(Node pAVF, Walk pAVF) 

Equation 7: Node Update Rule 

 



 

refine the results. We know that (because each node estimate 

is conservatively based on the previous node) the farther the 

walk is from the source of the pAVF value, the less likely it 

is to be accurate. Walking backwards through the node-graph 

from a structure’s write-port the average distance between an 

annotated node and the source of its pAVF value will be 

reduced, increasing the overall accuracy of the estimate. We 

refer to the walk from structure inputs to outputs as a walk 

“up” the node graph. 

Remember that what we are propagating is essentially a 

signal probability (the probability of an ACE bit instead of 

the probability of a one or zero), not a data item. Given this, 

we can reason about the pAVF of a set of inputs given the 

output of a circuit. We break down the RTL into the three 

topologies discussed earlier.  

Referring to Figure 4, the simple pipeline does not create 

or destroy ACE data, so the pAVF of the pipeline input must 

be equal to the pAVF of the output. It should be noted that 

since S1’s read port pAVF is computed independently of S2’s 

write port pAVF in the performance model and both 

estimates are conservative, their calculated values may not 

necessarily match. The backward AVF equation is shown in 

Equation 8. 

Walking up through a logical join operation (Figure 5) 

requires that we determine the pAVF of two or more inputs 

from the pAVF of the output. Regardless of the operation 

performed, the worst-case pAVF of an input can be no larger 

than the pAVF of the output, so we conservatively assign the 

output pAVF value to both input signals.  This is given by 

Equation 9. 

For a distribution split point where there are likely two or 

more different pAVF values at the outputs as shown in Figure 

6, as with the case of propagating down through a logical join 

point, we do not know the relationship between the two 

pAVF values. Therefore, we conservatively assign the union 

of output pAVF values to the distribution point’s input.  In 

Figure 6, we again assume that there is no overlap in the 

pAVFW for S2 and S3 so the union is simply a sum capped at 

1.0.  This is given in Equation 10. 

These rules are all that is required to propagate pAVF 

values through the circuits being analyzed. We proceed to 

walk pAVF vales from each bit of each structure’s write-port. 

The walks update each visited node, annotating the node with 

the calculated pAVF value, until it reaches an ACE-structure, 

an RTL boundary, or a node that it has already visited. Since 

each walk makes use of only the assignment and addition 

operations, the walks can be done in any order. 

4.2 Final pAVF Computation and Propagation 

Example 

After completing both the “up” and “down” walks, most 

nodes are annotated with two pAVF values. For the nodes 

that have pAVF values computed by the ACE model, the 

estimate value is discarded in favor of the computed value. 

For the remaining nodes, the smaller of the two estimates can 

be used since both values are obtained conservatively.  The 

fact that we can use the minimum of the two values is a key 

point in this technique and is the main reason why the node 

AVF values do not simply saturate to 100%. 

Table 1 shows the final AVF equations for the node types 

based on reconciling the pAVF values for the previous 

examples. 

AVF(Q1a) = AVF(Q2a) = AVF(Q3a) = pAVFW(S2)) 

Equation 8: Backward Sequential AVF of Simple Pipeline 

 AVF(Q1a) = AVF(Q1b) = AVF(Q2a) = pAVFW(S2) 

Equation 9: Backward Sequential AVF of Logical Join 

 
AVF(Q2a) = pAVFW(S2) 
AVF(Q2b) = pAVFW(S3) 

AVF(Q1a) = pAVFW(S2) U pAVFW(S3) 
 AVF(Q1a) = pAVFW(S2) + pAVFW(S3) 

Equation 10: Backward Sequential AVF of Distribution Split 
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Figure 4: pAVF propagating up through a simple pipeline 
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Figure 5: pAVF propagation up a logical join  



 

The example shown in Figure 7 illustrates the pAVF 

propagation process based on the rules in Table 1. Blocks S1-

S4 represent ACE structures. Note that the pAVF values for 

the structure read and write port signals are provided in the 

figure (in practice these values are computed from the ACE 

model). 

The first phase of the pAVF walk begins with the walk 

from the S1 read-port (pAVF_1). This pAVF is applied to the 

output of Q1a and Q2a. Both of these signals are annotated 

with 0.10 since they form a simple pipeline. The pAVF for 

G1 and G2 cannot be determined without further information, 

so the walk ends here. 

Next, the S2 read-port pAVF (pAVF_2) is walked 

forward to the output of Q1b, which is annotated with 0.02. 

Gate G1 forms a logical join-point, so its output is annotated 

as the union of the pAVFR values from S1 and S2 (pAVF_1 

U pAVF_2). Remembering that we calculate the sum of 

pAVF values for the union, the output is annotated with a 

pAVF value of 0.12. This value is then propagated forward 

through Q3b. Additionally, this value is applied to the second 

input of gate G2. 

Gate G2 forms a logical join-point, with input values 

pAVF_1 and (pAVF_1 U pAVF_2). The union of these 

values is (pAVF_1 U (pAVF_1 U pAVF_2)), which 

simplifies to just (pAVF_1 U pAVF_2). As before, the result 

of the union is applied to the output. The outputs of both G2 

and Q3a are annotated with a pAVF value of 0.12 (0.10 + 

0.02). This concludes the first phase of the pAVF walk. 

The second phase of the pAVF walk begins with the 

write-port pAVF values for structures S3 and S4, and 

continues until the walks reach S1 and S2. The mechanics of 

these walks are identical to the first phase walks, with the 

exception that the computation for logical join points and 

distribution split points are performed as discussed in Section 

3.1.2. 

The values are then resolved using the rules in Table 1 

resulting in a final AVF for each sequential. 

4.3 Accounting for Loops 

One of the key challenges we faced was how to deal with 

loops, such as those created by state machine feedback paths.  

Examples of such loops are abundant in modern 

microprocessors including stall loops, head and tail pointer 

update loops and so forth.  

Loops, even though they are made from sequentials, 

behave like structures.  That is, they can retain state and 

therefore pAVF values cannot simply propagate through 

them.  Depending on the actual logic in the loop, values can 

get “stuck”, remaining resident and breaking our 1-cycle 

latency assumption.  Therefore, loops can be dominated by 

latency more than throughput, just like the structures modeled 

in the ACE model. 

A few different solutions exist to deal with loops.   

1. They can be modeled in the ACE model and treated 

as structures.  However, this requires the ability to 

extract all loops from the RTL and model them in the 

performance model.  This is not a simple task as some 

loops can encompass dozens of pipe stages and even 

incorporate other structures and even other loops 

(nested loops). 

2. RTL simulations can determine the probability of 

loops retaining values versus passing values.  This 

probability can be the pAVF for the loop.  Again, 

loop identification can be an issue, especially with 

nested loops.  However, this defeats the purpose of 

our technique by requiring RTL simulations. 

3. Assume some static pAVF value for the loops.  The 

RTL node walker can easily find and break loops and 

inject static pAVF values into those nodes.  

Effectively this treats the loop nodes as a structure 
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Figure 6: pAVF propagation up distribution split point 

Node Type Final Sequential AVF Equation 

Simple Pipe AVF(all nodes) = MIN(pAVFR(S1), pAVFW(S2)) 

Logical Join AVF(Q1a) = MIN(pAVFR(S1), pAVFW(S3)) 
AVF(Q1b) = MIN(pAVFR(S2), pAVFW(S3)) 
AVF(Q2a) = MIN((pAVFR(S1) + pAVFR(S2)), 
                             pAVFW(S3)) 

Distribution 
Split 

AVF(Q2a) = MIN(pAVFR(S1), pAVFW(S2)) 
AVF(Q2b) = MIN(pAVFR(S1), pAVFW(S3)) 
AVF(Q1a) = MIN(pAVFR(S1),  
                           (pAVFW(S2) + pAVFW(S3))) 

Table 1: Final Sequential AVF Equations for All Node Types 
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Figure 7: Circuit for pAVF Propagation Example 
Arrows indicate forward propagation of pAVF values from S1 and S2. 



 

and pAVF walks will start and stop at these nodes.  

The challenge is in choosing a static value that is 

conservative without causing the propagated pAVFs 

to saturate to some very high value. 

Solution 3 is clearly the simplest solution to implement.  

However, the challenge is that, in order to be conservative, 

the static value would likely need to be 100%.  This may 

cause the resulting sequential AVFs to be pessimistically 

conservative.  However, our studies have shown that there is 

relatively little variation in the resulting average sequential 

AVF across the entire design (see Figure 8) for different 

values of loop-boundary pAVF. Interestingly, a 100% pAVF 

applied to every loop boundary node did not cause the 

sequential AVFs to saturate, nor was the effect linear.  Lower 

points showed a modest decrease but there appears to be a 

heel in the curve around 30%.  This value correlates well with 

the typical conservative AVF value we derived from our 

work on structure AVFs. These loop-structures can clearly 

not be treated as simple logic, nor can they be analyzed as a 

conventional storage structure. 

Based on the results of the studies show in figure 8 for 

different loop-boundary values, we chose 0.3 as an 

appropriate value for our analysis. 

Only about 2%-3% of sequentials are in loops.  However, 

the problem stems from the fact that the AVF used for loops 

could have a ripple effect and propagate into sequentials fed 

by, but not part of, the loop.  Hence, deriving a less 

conservative number for loop sequentials helps reduce the 

overall conservatism. 

The expectation is that other designs would behave in a 

similar fashion.  The other pAVFs as well as the MIN 

functions do a very effective job keeping the AVFs from 

saturating to 100%.  Additionally, the complexities of the 

node graph itself and the relaxation approach help refine high 

AVFs even further.  Other designs may have the heel of the 

curve at a different point, but this is a simple study to run for 

each design. Once chosen, this loop node pAVF value can be 

applied to all such nodes.   

Most applications of AVF look at higher granularities 

than individual flops and latches.  Usually they will be used 

to target a functional block or data/control path.  In that case 

the law of averages will help smooth out perturbations 

introduced by this sort of approach.  If a deeper level of 

accuracy is required, then one of the other 2 approaches may 

be considered on a case by case basis. 

5 Implementation and Tool Flow 

This section describes the tool flow we developed to 

integrate sequential AVF computation into our existing RTL 

design flow. The tool flow includes a number of individual 

programs involved in RTL translation, pAVF propagation, 

intermediate data handling, and tool automation. The full 

analysis process can be broken into four major steps: 

1. Develop ACE model on detailed microarchitectural 

performance model 

2. Collect pAVF data from ACE model 

3. Compile RTL 

4. Map ACE structure bits to RTL bit names 

5. Walk pAVF values through RTL 

5.1 Tool Development and Flow 

Most existing product design flows for modern 

processors already include the development of a detailed 

micro-architectural performance model as well as RTL.  Our 

tool flow leverages the existing collateral in order to simplify 

implementation.   

The first step in this regard is to develop an ACE model 

on top of any existing performance model.  This may include 

adding additional detail into the performance model to 

support the ACE modeling effort.  Our ACE model includes 

the standard ACE Lifetime analysis as detailed by 

Mukherjee, et al [1] as well as the Hamming-Distance-1 

analysis for address based structures as detailed by Biswas, 

et al. [2].  

Additionally, we noted that many structures, especially 

control structures, tended to hold bits that were used in 

different ways.  This was exhibited by an entry being broken 

into various bit fields representing different pre-coded 

information.  Not all the bit fields were ACE simultaneously, 

but rather depended on the instruction, data type, or other 

micro-architectural details.  As a result, we modeled each bit 

field of these structures as a separate ACE structure.  This 

process, which we called “Bit Field Analysis”, provided a 

much more detailed level of ACE analysis for these control 

structures than before.  The resulting pAVFs can be much less 

conservative as a result. 

The standard RTL compilation process was invoked to 

generate intermediate-format RTL files (called EXLIF files) 

necessary for further processing. This compilation should be 

invoked in such a way as to remove as much instrumentation 

and Debug-only (DFX) logic as possible, leaving only the 

logic that is susceptible to transient errors during normal 

operation. DFX logic that can generate run-time errors (e.g. 

debug-mode enables) will need to be processed, and should 

be retained. The output of the compilation process is a group 

of RTL module files that correspond almost exactly to design 

functional blocks (FUBs). After compilation, the EXLIF files 

are further processed by a new tool to fully expand each FUB 

 

Figure 8: Avg. Seq. AVF for different Loop Boundary pAVFs 
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module by instantiating all sub-circuits within that module. 

When complete, each EXLIF file contains a single model 

statement that represents the original FUB with all hierarchy 

removed. 

The third step involved mapping between the high-level 

structures found in the ACE model and the actual bits in the 

RTL. Often an individual structure is composed of several 

arrays. It is not uncommon for some of the arrays to be 

contained in a different FUB. Each of these RTL bits has an 

associated pAVFR and pAVFW values in a text file that tells 

the next tool which RTL bits to treat as structure bits. 

Circuits that lie outside of the RTL being analyzed are 

grouped together into one or more pseudo-structures, with its 

own pAVFR and pAVFW values. 

The Sequential AVF Resolution Tool (SART) is the key 

tool in the tool chain and is responsible for walking pAVF 

values through the RTL in order to resolve the sequential 

AVF for each node. As discussed in section 4, the tool runs 

in three phases: (1) walking down from structure read-ports, 

(2) walking up from structure write-ports, and (3) the final 

resolution phase that chooses the estimated value from the 

first two phases.  The relaxation process runs SART 

repeatedly until the values reach a sufficiently steady state. 

SART attempts to identify configuration control-register 

bits, usually by the RTL name or the driving clock. These bits 

are assigned a pAVFR of 100%. Since writes to these control 

registers are relatively rare, the pAVFW will approach 0%. As 

a result, we can omit walks up from these write-ports. 

5.2 RTL Challenges and Recommendations 

RTL models for modern processors can be large, 

consisting of hundreds of FUBs.  Processing the entire RTL 

model into a single node graph can be very expensive from a 

compute resource standpoint, resulting in very large memory 

footprints and slow node traversal as a result. 

It may be advantageous to partition the RTL to be 

processed in order to better fit available computing resources 

or to parallelize the task. For our purposes, the natural 

boundaries of the RTL are at the FUB boundaries. 

The challenge we faced is related to the fact that each 

RTL FUB cannot produce meaningful results without inputs 

from the surrounding FUBs. We chose to deal with this 

situation using a relaxation approach that calculates the AVF 

for the entire design repeatedly over several iterations, 

refining the AVF values each iteration. 

The process requires that we maintain a global netlist of 

connections between the FUBs that is annotated with the 

pAVF values that need to be applied to each FUB (the FUBIO 

values). For each FUB output node, the node’s pAVFR is 

collected to be applied to consuming input nodes in other 

FUBs. Similarly, for each FUB input node, the nodes pAVFW 

is collected for use by producing nodes in other FUBs. The 

same rule previously discussed for internal logic (smallest 

conservative value is used) is applied to the FUB 

interconnects. This “merge” step is completed at the end of 

each iteration, after all FUB’s have been analyzed. 

During subsequent analysis iterations (defined to be one 

up and one down walk through the netlist for each FUB), the 

merged FUBIO information is used as an input to the 

analysis. In this way, pAVF values traverse from one FUB to 

the next, adding their contribution to the nodes in the FUB, 

until they reach a terminating node. 

When processing partitioned RTL, it is important to note 

that any walk can only cross one partition during each 

iteration. In order for an individual pAVF value to be visible 

on the partition boundary and then walk through a second 

partition, requires two SART iterations. For each subsequent 

walk through an adjacent partition requires another iteration. 

As the number of iterations increases, the walked values 

will eventually propagate to their final termination points, 

and the change seen in pAVF values due to those values will 

drop to zero. The number of executed iterations will vary with 

the RTL being processed. A sequence of iterations can be 

terminated either by limiting the number of iterations or 

waiting for some measure of pAVF change to reach a 

threshold. For our RTL, we found that 20 iterations was 

sufficient to achieve convergence. 

Another optimization made to the tool flow involved 

propagating the pAVF values symbolically through the RTL 

node graph.  As the pAVFs propagate in this way, a closed 

form equation is generated for each visited node in the netlist 

with the terms of the equations being the structure pAVFs of 

the ACE model plus any injected state (such as from control 

registers or loop boundaries).  Once the iterations complete 

and the equations are no longer changing, we are left with a 

closed form AVF equation for every node in the RTL netlist 

such that each node’s AVF can be computed as a function of 

injected and ACE structure pAVFs.   

The benefit of this is that any subsequent sequential AVF 

computations on this particular design simply needs to 

generate new pAVFs from the ACE model then plug those 

values into the closed form equations to compute new 

sequential AVFs.  No subsequent sequential AVF 

computation needs to re-run the SART or relaxation stages of 

the tool flow, saving considerable effort. 

6 Results 

To test the proof-of-concept tool chain, we analyzed the 

RTL for an Intel Xeon® core processor design.  

6.1 Experimental Setup and Modeling 

We collected pAVF values from a set of 547 workloads 

from a custom server benchmark suite. The suite includes 

industry-standard benchmarks such as SPEC as well as traces 

of actual server workloads such as transaction processing, 

web benchmarks. The pAVF values were collected from over 

100 ACE-modeled structures, and then mapped to over 200 

latch arrays from the RTL. SART identified 6825 bits as 

being configuration control register bits. Each of these 

control registers was treated as a single structure with pAVFR 

of 100%.  The tool also identified 201,530 bits belonging to 



 

loops. Loop AVF values were chosen as discussed in section 

4.3. 

The SART walks were executed with the design 

partitioned into individual RTL modules, and the appropriate 

FUBIO merging performed at the end of each iteration. The 

results presented here required 20 iterations, with 

intermediate data indicating that this was a sufficient number 

of iterations for convergence. We evaluated convergence 

here by plotting the average pAVF of sequentials for each 

FUB over each iteration. 

The SART analysis required about a day to run, and 

visited more than 98% of all RTL nodes. Figure 9 plots the 

average FUB sequential AVF for each RTL module after the 

last iteration. The overall averages are weighted to account 

for the actual number of sequentials in each FUB, indicating 

that the vast majority of sequentials were actually in the lower 

AVF FUBs. As expected, most FUBs have significantly 

smaller pAVF values than the average structure AVF from 

the ACE model. This represents a ~10% reduction in overall 

modeled SDC FIT for the processor. For reference the 

weighted average of both sequential pAVF and node pAVF 

(representing combinatorial and sequential nodes) are 

plotted. 

Note that for any individual FUB, there is little correlation 

between the total average node AVF and the average 

sequential node AVF. This is due to the different circuit 

configurations and the relative number of combinational 

nodes versus sequential nodes. For example, a high-AVF 

logic branch may have relatively few sequentials compared 

to a low-AVF branch.  

6.2 Correlation with Silicon 

The final determination of success for any modeling 

innovation is in how well it correlates (or improves 

correlation) with actual measurement.   

We selected two workloads for which we have good SER 

data taken during accelerated SER testing of Intel Xeon® 

processors. The selected workloads were: 

 Lattice – this workload calculates the location of 

a particle in a 3d lattice with inter-particle 

forces.  We modified it to be a 2d lattice. 

 MD5Sum – this workload calculates 128-bit 

MD5 hashes as per [9].  It was modified to 

remove memory accesses (to reduce cache DUE 

since memory errors can quickly overwhelm 

SDC observability under the beam), and 

therefore does not calculate a true MD5 hash, 

though it does all the same calculations. 

The accelerated conditions were created at the Indiana 

University Cyclotron Facility using a 200 MeV proton beam 

with variable flux. 

The measurement setup was the same as that used for 

prior work such as the SDC virus measurement testing [8], 

and using the Direct Memory Load infrastructure to minimize 

DUE. 

Prior to the sequential AVF work, our model to 

measurement correlation for SDC was off by nearly 100% 

with the modeled SER being higher than the measured.  In 

this case, we were conservatively using structure AVFs as a 

proxy for the sequential AVF.  The expectation was that, 

since the sequential AVFs value should be dominated by 

throughput rather than latency, the modeled SER should 

decrease when we began computing sequential AVF values.  

While this provided us with a very conservative modeled 

estimate for the SDC SER, the level of miscorrelation made 

it difficult to justify design changes to mitigate SER without 

a more accurate correlation.  

The new modeled sequential AVF for these benchmarks 

were 63% lower than the conservative values we had been 

using.  As a result, the model/experimental correlation 

improved by ~66%, which is within the statistical error of the 

measured value, as shown in figure 10.  Note that due to the 

sensitive nature of the actual FIT values we normalize the 

values to Arbitrary Units (AU).   

7 Conclusion 

We have demonstrated that it is possible to obtain a much 

tighter AVF bound for miscellaneous sequentials using a 

 
Figure 10: Beam test correlation results with model 

 

Figure 9: Per-FUB Average Sequential AVF Results  
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purely analytical technique. We presented a hybrid approach 

which uses structures’ “port AVFs” computed by the 

performance model and applies them to an extracted node 

graph from RTL. This technique marries the detail level of 

the RTL with the speed of the high-level analytical model, 

providing a feasible way to compute accurate sequential AVF 

values. The values of millions of sequentials are calculated 

based on inputs from thousands of workloads in a very 

reasonable amount of time. We presented our tool flow 

implementation as well as detailed some of the specific 

challenges and recommendations that helped us simplify tool 

development and implementation. 

We used this methodology and tool flow to generate the 

sequential AVFs for every functional sequential in an Intel 

Xeon® core design, showing an average sequential AVF of 

14% averaged over a variety of server workloads. This 

resulted in a ~10% reduction to the modeled overall processor 

SDC SER.  Finally, we showed that the modeled results using 

the computed sequential AVFs improved our model 

correlation to silicon measurement by ~66% for a couple of 

workloads which brought the modeled SER well within the 

statistical range indicated by the measured values. 
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