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Deep learning using convolutional neural networks (CNN) gives state-of-the-art
accuracy on many computer vision tasks (e.g. object detection, recognition,
segmentation).  Convolutions account for over 90% of the processing in CNNs
for both inference/testing and training, and fully convolutional networks are
increasingly being used. To achieve state-of-the-art accuracy requires CNNs with
not only a larger number of layers, but also millions of filters weights, and varying
shapes (i.e. filter sizes, number of filters, number of channels) as shown in Fig.
14.5.1.  For instance, AlexNet [1] uses 2.3 million weights (4.6MB of storage) and
requires 666 million MACs per 227×227 image (13kMACs/pixel). VGG16 [2] uses
14.7 million weights (29.4MB of storage) and requires 15.3 billion MACs per
224×224 image (306kMACs/pixel). The large number of filter weights and
channels results in substantial data movement, which consumes significant
energy. 

Existing accelerators do not support the configurability necessary to efficiently
support large CNNs with different shapes [3], and using mobile GPUs can be
expensive [4].  This paper describes an accelerator that can deliver state-of-the-
art accuracy with minimum energy consumption in the system (including DRAM)
in real-time, by using two key methods: (1) efficient dataflow and supporting
hardware (spatial array, memory hierarchy and on-chip network) that minimize
data movement by exploiting data reuse and support different shapes; (2) exploit
data statistics to minimize energy through zeros skipping/gating to avoid
unnecessary reads and computations; and data compression to reduce off-chip
memory bandwidth, which is the most expensive data movement.

Figure 14.5.2 shows the top-level architecture and memory hierarchy of the
accelerator. Data movement is optimized by buffering input image data (Img),
filter weights (Filt) and partial sums (Psum) in a shared 108KB SRAM buffer,
which facilitates temporal reuse of loaded data. Image data and filter weights are
read from DRAM to the buffer and streamed into the spatial computation array
allowing for overlap of memory traffic and computation. The streaming and reuse
allows the system to achieve high computational efficiency even when running
the memory link at a lower clock frequency than the spatial array. The spatial array
computes inner products between the image and filter weights, generating partial
sums that are returned from the array to the buffer and then, optionally rectified
(ReLU) and compressed, to the DRAM. Run-length-based compression reduces
the average image bandwidth by 2×. Configurable support for image and filter
sizes that do not fit completely into the spatial array is achieved by saving partial
sums in the buffer and later restoring them to the spatial array. The sizes of the
spatial array and buffer determine the number of such ‘passes’ needed to do the
calculations for a specific layer. Unused PEs are clock gated.

Figure 14.5.3 shows the dataflow within the array for filter weights, image values
and partial sums. If the filter height (R) equals the number of rows in the array
(in our case 12), the logical dataflow would be as follows: (1) filter weights are
fed from the buffer into the left column of the array (one filter row per PE) and
the filter weights move from left to right within the array; (2) image values are fed
into the left column and bottom row of the array (one image row per PE) and the
image values move up diagonally; (3) partial sums for each output row move up
vertically, and can be read out of the top row at the end of the computational pass.
If the partial sums are used in the next pass, they are fed into the bottom row of
the array from the buffer at the beginning of the next computational pass.

In order to maximize utilization of a fixed-size array for different shapes, the
mapping may require either folding or replication if the shape size is larger or
smaller than the array dimension, respectively. Replication results in increased
throughput as compared to the purely logical dataflow described above. Cases II,
III, IV, and V in Fig. 14.5.3 illustrate the replication and folding of image values
for various layers of AlexNet. The same data values are shown in the same color.
Across the six example cases, which include physical mapping of filter weights,
image values and partial sums onto the fixed-size spatial array, we see the logical
dataflow patterns translating to myriad physical dataflow patterns that need to be

supported. Furthermore, the same data value is often needed by multiple PEs,
whose physical location in the array depends on the data type (filter, image or
partial sum) and layer.

Since different layers have different shapes and hence different mappings, a
design-time fixed interconnect topology will not work. Every PE can potentially
be a destination for a piece of data in some particular configuration, and so a
Network-on-Chip (NoC) is needed to support address based data delivery.
However, traditional NoC designs with switches at every PE to buffer/forward data
to one or multiple targets would result in multi-cycle delays. A full-chip broadcast
to every PE could work, but would consume enormous power. 

To optimize data movement, it is important to exploit spatial reuse, where a single
buffer read can be used by multiple PEs (i.e. multicast). Fig. 14.5.4 shows our
NoC that supports configurable data patterns, and provides an energy-efficient
multicast to a variable number of PEs within a single-cycle. The NoC comprises
one Global Y bus, and 12 Global X buses (one per row).  Each PE is configured
with a (row, col) ID at the beginning of processing via a scan chain. Multicast to
any subset of PEs is achieved by assigning the same ID to multiple PEs. Data
from the buffer is tagged with the target PEs’ (row, col) ID, and multicast
controllers at the input of each X bus and each PE deliver data only to those X
buses and PEs, respectively, that match the target ID to avoid unnecessary
switching.  Data is sent on the buses only if all target PEs are ready (i.e., have an
empty buffer) to receive. To support high bandwidth, we use separate input NoCs
for filter, image, and partial sums. The partial sum NoC has a separate set of
output links to the buffer to write the final partial sums. The NoC data delivery for
four of the cases from Fig. 14.5.3 is shown in Fig. 14.5.4.

Each processing engine, shown in Fig. 14.5.5, is a three-stage pipeline responsible
for calculating the inner product of the input image and filter weights for a single
row of the filter. The sequence of partial sums for the sliding filter window is
computed sequentially. The partial sums for the row are passed on a local link to
the neighboring PE (see Fig. 14.5.4), where the cross-row partial sums are
computed. Local scratch pads allow for energy-efficient temporal reuse of input
image and filter weights by recirculating values needed by different windows. A
partial sum scratch pad allows for temporal reuse of partial sums being generated
for different images and/or channels and filters. Data gating is achieved by
recording the input image values of zero in a ‘zero buffer’ and skipping filter reads
and computation for those values resulting in a 45% power savings in the PE. 

The test chip is implemented in 65nm CMOS. It operates at 200MHz core clock
and 60MHz link clock, which results in a frame rate of 34.7fps on the five
convolutional layers in AlexNet and a measured power of 278mW at 1V. The PE
array, NoC and on-chip buffer consume 77.8%, 15.6% and 2.7% of the total
power, respectively. The core and link clocks can scale up to 250MHz and 90MHz,
respectively. This enables us to achieve a throughput of 44.8fps at 1.17V. Fig.
14.5.6 shows the performance at each layer, including compression ratio, power
consumption, PE utilization, and memory access to highlight the reduction in
DRAM bandwidth, efficiency of the reconfigurable mapping and reduced data
access due to data reuse, respectively.  A die photo of the chip and the range of
the shapes it can support natively are shown in Fig. 14.5.7.
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Figure 14.5.1: Deep CNNs are large with varying shapes. Figure 14.5.2: Top-level architecture with 168 PEs.

Figure 14.5.3: Logical and physical dataflows.

Figure 14.5.5: 3-stage pipelined processing engine. Figure 14.5.6: Performance of AlexNet convolutional layers.

Figure 14.5.4: Network-on-Chip (NoC) for multicasting.
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Figure 14.5.7: Chip specifications and die photo.
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