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ABSTRACT
Memory systems play a key role in the performance of FPGA appli-
cations. As FPGA deployments move towards design entry points
that are more serial, memory latency has become a serious design
consideration. For these applications, memory network optimization
is essential in improving performance. In this paper, we examine the
automatic, program-optimized construction of low-latency memory
networks. We design a feedback-driven network compiler, which
constructs an optimized memory network based on the target pro-
gram’s memory access behavior measured via a newly designed
network profiler. In our test applications, the compiler-optimized
networks provide a 45% performance gain on average over baseline
memory networks by minimizing the impact of network latency on
program performance.

1. INTRODUCTION
FPGA-based accelerators have great potential to achieve better

performance and energy-efficiency compared to general-purpose
solutions because the FPGA permits the tailoring of hardware to a
particular application. However, as FPGAs and FPGA-based sys-
tems have grown, traditional approaches such as low-level hardware
development and system-level hand-tuning have strained in the face
of design complexity. To address FPGA programmability challenges,
recent work has focused on raising the level of design abstraction by
providing high-level programming models [1][2][3][4] as well as
offering optimized and reusable service implementations [5][6][7].
However, high-level abstractions and productivity sometimes come
at the expense of intelligent control and performance, resulting in
a performance gap between a generated system and a manually
optimized design. To construct high-performance designs while
maintaining high productivity, it is essential to have a compiler that
automatically optimizes the abstract service implementations in an
application-specific manner on behalf of programmers.

In this work, we focus on FPGA memory systems, the perfor-
mance of which is critical to the overall program performance for
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a broad class of applications. Unlike general purpose processors,
where the memory system is fixed at design time, FPGAs offer the
opportunity to intelligently customize the complete memory sys-
tem; for example, the number, properties, and topology of cache
hierarchies can be selected based on the behavior of a particular
program. Furthermore, a specific optimization on FPGA does not
need to provide a large average benefit (as is required in processors)
because the optimization can be applied only when it can benefit the
target application, avoiding unnecessary overhead.

Previous work on multi-level FPGA memory hierarchies has gen-
erally focused on the microarchitecture and optimization of on-chip
caches to achieve higher cache bandwidth and hit rate [8][9][10].
However, with the rise of serial design entry points for FPGAs,
such as C-based kernels compiled through high-level synthesis
(HLS), memory latency has become a first-class design considera-
tion. Though parallel, HLS programs are sometimes less parallel
than conventional designs written at register transfer level (RTL),
making them more sensitive to latency in the memory subsystem.
In this work, we focus on the construction of low-latency memory
networks. We aim to improve program performance by customiz-
ing networks connecting different levels of caches in the memory
hierarchy for each target application. Memory network customiza-
tion is especially valuable when the memory clients of the target
program have asymmetric memory access behavior. For example, a
memory client that is more latency-sensitive, possibly due to lower
data locality or lower request-level parallelism, should be granted a
faster network path. Constructing a program-optimized cache net-
work requires the evaluation of cost-performance tradeoffs on a
per-application basis. Since the design space of network topologies
is quite large, manual exploration is unattractive, and an automated
solution is desirable.

In order to automate the design space exploration, we first propose
a new communication abstraction for centralized services to sepa-
rate the functionality of the service network from physical topolo-
gies, allowing compilers to optimize the memory network under
the proposed abstraction without changing other components in the
memory system. To construct a program-optimized network imple-
mentation, we need a systematic way of evaluating the performance
impact of different network configurations and characterizing the
memory access behavior of the program. We therefore introduce a
dynamically-configurable network profiler, which can be used to
emulate different network topologies for the target application with-
out reconstructing the hardware. In the network profiler, program
instrumentation logic is inserted at each memory client in order to
measure the client’s latency and bandwidth demands.
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interface MEM_IFC#(type t_ADDR, type t_DATA);
method void readRequest(t_ADDR addr);
method t_DATA readResponse();
method void write(t_ADDR addr, t_DATA data);

endinterface

Figure 1: LEAP memory interface

Armed with an abstraction and a means of program introspec-
tion, the final step is to develop algorithms for selecting an optimal
network topology. We present an integer linear programming (ILP)
formulation to determine an optimized tree-based network that mini-
mizes the network latency impact on program performance. We also
propose an efficient approximation algorithm that solves this opti-
mization problem in polynomial time using dynamic programming
(DP). To implement the optimized physical network, we extend the
LEAP Memory Compiler (LMC) proposed in [11]. The compiler
takes the profiling results obtained from the network profiler and
uses the above optimization techniques to automatically construct
an optimized network for the target application.

To test the scalability and robustness of our algorithms, we also
consider an emerging class of FPGA workloads: multi-program
applications, which we view as representative of future FPGA de-
ployments, especially in the data center context. To support the needs
of such deployments and to help amortize large FPGAs, FPGA vir-
tualization has been proposed [12], allowing several user programs
to be simultaneously mapped to the same FPGA. On a virtualized
FPGA platform, it is common to have a large number of memory
clients sharing memory system resources. In order to balance the
performance across competing applications, we introduce some
quality-of-service controls into the compiler-generated memory net-
work to control fairness among multiple programs.

We evaluate the performance of our automatically-generated
cache networks on both single-program and multi-program appli-
cations. The single-program applications we target contain HLS-
compiled computational kernels that are sensitive to memory latency.
For these applications, on average, the program-optimized tree net-
works achieve a 45% performance gain over the baseline memory
networks and a 17% performance gain over the partitioned ring-
based networks constructed by the original LMC. For multi-program
applications, the tree network with bandwidth control also achieves
better fairness by preventing throughput-oriented applications from
saturating the memory system bandwidth.

2. BACKGROUND
Our exploration of program-optimized memory network construc-

tion builds upon prior work in the automatic synthesis of FPGA
memory subsystems: LEAP memories [13][14] and the LEAP Mem-
ory Compiler (LMC) [11].

LEAP private memories [13] provide FPGA programs a gen-
eral, in-fabric memory abstraction with a simple read-request, read-
response, write interface as shown in Figure 1. Programmers can
instantiate as many memories as needed to store arbitrary data types,
and each instantiated memory represents a logically private address
space. LEAP memories also support arbitrary address space sizes,
which may be larger than the total capacity of FPGA physical mem-
ories. To provide the illusion of large address spaces, LEAP exploits
the host virtual memory as a backing store and uses FPGA physi-
cal memories, including both on-chip and on-board memories, as
caches to maintain high performance. LEAP coherent memories [14]
extend the private memory abstraction to maintain coherency and
consistency of accesses to a shared memory space. A program may
declare multiple, independent coherent address spaces.

Similar to the load-store interface of memory systems on general-
purpose machines, the abstract interfaces of LEAP memories do not
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Figure 3: A partitioned ring-based memory network created by LMC

imply any implementation details of the underlying memory system,
such as how many levels of cache are in the memory hierarchy or
the topology of cache networks. This ambiguity provides compil-
ers significant freedom to construct memory hierarchies based on
properties of the target application and the target platform.

Figure 2 shows an example of a typical LEAP memory hierarchy
which integrates one private memory and three coherent memories
instantiated in the user program. LEAP coherent memories are built
on top of the private memory hierarchy: the coherence controller of
each shared memory space uses two private memories as data and
coherence ownership stores. In each memory client, a local cache
can be optionally constructed using on-chip SRAMs. As a baseline,
all private memory clients are connected to a single, centralized
controller hierarchy, which manages accesses to a central cache
implemented with aggregated FPGA board-level memories. Within
the central cache, each private and shared memory space is uniquely
tagged, enforcing a physical separation.

The LEAP compilation flow is shown in Figure 4. The com-
piler gathers various LEAP memories instantiated in the user pro-
gram and assembles them into a memory hierarchy, as in Figure 2.
To efficiently utilize the bandwidth of multiple board-level mem-
ories on modern FPGAs, instead of building a single large central
cache, LMC [11] treats each board-level memory resource as an
independent cache managed by a separate controller hierarchy and
assigns memory clients to the controller hierarchies in an application-
specific fashion. Specifically, LMC measures the traffic sent from
each memory client via program instrumentation and uses the mea-
surement as feedback to construct a partitioned memory network,
which balances the traffic across controllers. Figure 3 shows an
example of the partitioned memory network constructed by LMC.

In both the baseline (Figure 2) and LMC-optimized memory
hierarchies (Figure 3), various memory components are connected
via LEAP rings [7]. LEAP originally opted for ring-based topologies
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Figure 4: The LEAP compilation flow [15][11], with our augmenta-
tions highlighted in blue. We extend the memory optimization phase
introduced in LMC to construct more complicated cache networks.

because they are lightweight, largely symmetric, reasonably fair,
and easy to assemble. However, as FPGAs and FPGA applications
have scaled with Moore’s law, the main flaw of ring-based memory
networks has been increasingly exposed: latency.

In this work, we seek to alleviate the latency issue present in scaled
out FPGA memory systems through the construction of program-
optimized tree-based networks. Unlike ring-based networks, tree-
based networks can be asymmetric: the compiler can choose both
the radix of each interior node and the depth of a given memory
client within the network. We extend LMC with algorithms that
can synthesize tree-based networks tailored to the latency and band-
width requirements of a program’s memory clients, as measured by
program instrumentation. Since the design space is large, we also
introduce a network profiler to help explore our algorithmic choices.

3. RELATED WORK
Memory is fundamental to the performance of almost all computa-

tional systems. As such, memory systems have long been a focus of
intense academic and industrial study. In general-purpose systems,
memory architecture is usually determined through human imple-
mentation effort due to the high production volume of these systems
and their symmetry. However, in lower volume architectures, like
embedded SoCs, which have asymmetric use cases, design automa-
tion is often employed to optimize the memory system topology.

In the embedded domain, multiple accelerator devices are used
to meet performance and energy targets. Multiple automated meth-
ods [16][17][18] for building memory networks incorporating such
accelerators have been developed. These works propose the gen-
eration of custom memory topologies, generally consisting of a
combination of shared buses and crossbars of various types based on
communication patterns among the accelerators. As with our work,
mixed-integer linear formulations have been used to optimize these
topologies, given some performance characteristics and goals of the
accelerators in the target system. Other works have considered the
implementation of SoC-style memory networks in the context of
FPGAs [19][20], in which optimization techniques are used to build
custom crossbar and bus cascades. None of these works consider
the construction of performance-optimized memory topologies for
FPGA-based compute accelerators, in particular the case in which a
single application may have many simultaneously active memory
interfaces that must be balanced to achieve high performance.

A second major difference between our work and prior network
synthesis studies lies in the choice of network topologies. Prior
works focus almost exclusively on constructing SoC-style networks,
which are intended to support memory accesses by a single accel-
erator and memory-mapped communications between accelerators
ganged together to perform some task. This requirement results in
very general communication topologies: shared buses and crossbars.
We remark that, in FPGA-based compute accelerators, the tasks of
communication and memory are usually separated. Communica-
tions are typically implemented directly and within the accelerator,
while memory systems are confined to state storage. Leveraging
this observation, we satisfy the memory needs of accelerators using
simpler memory networks than contemplated in prior work, in turn
improving key metrics such as area, frequency, and energy.

As FPGAs have grown in their capability as accelerators, several
FPGA-specific memory system architectures have been proposed.
In this paper, we adopt the LEAP memory and compiler as a base,
but we believe most other architectures are sufficiently abstract to
be compatible with our approach. CoRAM [6] advocates memory
interaction using control threads programmed with a C-like lan-
guage. CoRAM does not define the memory subsystem backing
its programmer interface, and therefore could make use of our opti-
mized memory networks. More traditional FPGA-based processor
infrastructures [21][22][23], could also benefit from our work in
low-latency memory networks as processors, and especially soft
processors, are typically sensitive to memory access latencies. How-
ever, the processor memory behavior, as noted above, is typically
symmetric when viewed across many workloads. Thus, this class of
FPGA programs might not benefit from our optimizations.

Beyond these architectural efforts, researchers have also explored
cache microarchitectures and multiple-level memory hierarchies
on FPGAs [13][8][24][25]. These works generally assume a fixed,
program-invariant memory topology, while our work focuses on
optimizing the memory topology on a per-application basis.

4. MOTIVATING EXAMPLE
The advantage of customized memory networks is most salient

for applications with a large number of asymmetric memory clients.
One example is a high-performance hardware implementation of
a filtering algorithm [26] for K-means clustering, a widely used
machine learning technique for unsupervised partitioning of a data
set. K-means clustering partitions a data set into K clusters such
that each point belongs to the cluster with the nearest mean. The
filtering algorithm prunes the search space of the nearest centers by
organizing the data points in a binary search tree (a ‘kd-tree’ [26])
and finding nearest centers using a tree traversal.

In each iteration, the filtering algorithm traverses the tree starting
from the root. Each tree node represents a subset of input data
points and the algorithm propagates several candidates for the closest
center to each subset down the tree. Our implementation uses three
data structures: (i) A kd-tree that is built up from the data points
and implemented as a pointer-linked binary tree. (ii) A stack that
manages the tree traversal and is implemented as a pointer-linked list,
whose head is modified by ‘push’ and ‘pop’ operations. (iii) Multiple
sets of candidates for the closest center to a data subset. These
candidate sets are of variable size and are created and disposed at
runtime. The accesses to these data structures are essentially pointer
chasing, which makes the execution time of the algorithm very
sensitive to the memory access latency.

We parallelize the implementation by splitting the tree and the
stack into P = 8 partitions and each partition maintains its own
center sets. The computational kernels are implemented through
high-level synthesis and connected to the LEAP memory system.
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interface SERVICE_CLIENT_IFC#(type t_REQ, type t_RESP);
method void sendRequest(t_REQ req);
method t_RESP receiveResponse();
method Bool requestNotFull();
method Bool responseNotEmpty();

endinterface

interface SERVICE_SERVER_IFC#(type t_REQ, type t_RESP,
type t_ID);

method void sendResponse(t_ID client, t_RESP resp);
method t_REQ receiveRequest();
method Bool responseNotFull();
method Bool requestNotEmpty();

endinterface

Figure 5: The abstract interfaces of service connections

We instantiate a LEAP private memory for each partition and data
structure type, resulting in 24 LEAP memories to store the three
different types of data structures. In the baseline LEAP memory
hierarchy, all 24 memory clients are connected on a single ring,
introducing long network latency. Even if we apply client partition-
ing mechanisms introduced in LMC on an FPGA with multiple
on-board memories, the network latency impact is still significant.
To improve performance we need to build a cache network with
better scalability.

In addition, we observe that memory clients in the filtering algo-
rithm have different behavior and some are more sensitive to latency
than others. For example, stack accesses have very high data locality
and all hit in a small first-level cache. Since none of stack access re-
quests reaches the memory network, performance for stack accesses
is insensitive to network latency and topology. On the other hand,
the LEAP memories storing tree nodes send many read requests
to the memory network, because the tree node structures are large,
have low data locality, and do not fit in first-level caches. As a result,
these memory clients are sensitive to the network latency increase.
Increasing network latency for these clients has a significant impact
on program performance. To achieve high performance, a program-
optimized cache network should provide shorter network latency
to the memory clients storing tree nodes by placing these clients
closer to the memory controller. In Section 8, we will show that our
optimized cache network provides a 44% performance gain over the
baseline LEAP memory hierarchy and a 18% performance gain over
the partitioned network generated by LMC.

5. COMMUNICATION ABSTRACTION
To automate the construction of program-optimized cache net-

works, we first introduce a new communication abstraction enabling
a clean separation between the functionality of the cache network
and physical topologies. This abstraction, which we call a service
connection, is designed for centralized services in which a controller
takes requests from multiple clients and replies, if necessary.

The service connection abstraction provides clients and servers
with request-response-based interfaces as shown in Figure 5. The
abstract interfaces allow compilers to construct various network
topologies underneath. Figure 6 shows an example of a connected
service with three clients and a server, which are instantiated by
specifying a service name ("MEM" for example). Semantically,
each client is connected to a server with a matched service name via
two in-order channels: one for requests, and the other for responses.
At compile time, the compiler gathers clients and servers with the
same service name, assigns each client with a unique ID, and then
constructs an optimized physical network. Requests sent from each
client are tagged with the client’s ID. The server receives requests
from clients, processes the requests, and then sends responses back
to the requester by specifying the requester’s ID.

Service Server
Name: “MEM”

Service Controller
 mkServiceServer(“MEM”);

Compiler-Generated

        

Request
Response

Module C
mkServiceClient(“MEM”);

Service Client 
Name: “MEM”, ID:3

Module B
mkServiceClient(“MEM”);

Service Client 
Name: “MEM”, ID:2

Module A
mkServiceClient(“MEM”);

Service Client 
Name: “MEM”, ID:1

Arbiter

Arbiter

Figure 6: Communication abstraction for centralized services
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Figure 7: Examples of compiler-generated network topologies

This network construction strategy can also be applied to ser-
vices with multiple servers. For example, the LEAP private memory
service may have multiple private memory controllers to manage
accesses to multiple on-board memories [11]. In this case, the com-
piler constructs a separate network for each server and each memory
client can be connected to one or multiple servers.

6. NETWORK TOPOLOGIES
With the service connection abstraction, which merely defines the

endpoint interfaces, the compiler is free to construct any network
topology that connects service clients to their servers. To explore the
design tradeoffs, we design the compiler to construct three different
types of network topologies: a single-ring, a hierarchical-ring, and
a tree network, as shown in Figure 7. Figure 7a is an example
of a single-ring network, which works the same as the original
LEAP rings. Physically, this network consists of two linear networks:
one delivers requests from clients to the controller, and the other
delivers responses from the controller to clients. Ring nodes check
the requester ID of every incoming response packet and then decide
whether to forward the packet to the local client or on the ring.
Figure 7b shows an example of a hierarchical-ring network, which
consists of multiple levels of rings and ring connectors. Similar
to a ring node, a ring connector decides which ring to forward
responses by checking the requester ID tagged with the response.
The ID of each client is carefully assigned by the compiler in a
sequential order, which makes response forwarding much easier at
ring connectors. In both single-ring and hierarchical-ring networks,
request and response packets are routed in a way so that clients on
the same ring observe the same round-trip delay.

Figure 7c is a tree network. Each client is a leaf node and the con-
troller connects to the tree root. The root node and the interior nodes
of the tree are tree routers. A tree router forwards requests from its
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Algorithm 1 Arbiter with Bandwidth Control

1: procedure REQUESTSCHEDULING(childList, bandwidthList)
2: histList← 0 � Initialize each child’s history bits to be zero
3: while True do
4: activeChildren← ∅ � Children with requests ready
5: hungryChildren← ∅ � Children with unmet bandwidth targets
6: priorityChildren← ∅ � Children without bandwidth limits
7: for i = 1, 2, . . . , LENGTH(childList) do
8: c← childList[i]
9: if c has requests ready to send then

10: activeChildren← activeChildren ∪ {c}

11: � hist: number of requests forwarded in the past period
12: hist← GETNUMOFONES(histList[i])
13: if hist < bandwidthList[i].value then
14: hungryChildren← hungryChildren ∪ {c}

15: if bandwidthList[i].limit �= True then
16: priorityChildren← priorityChildren ∪ {c}

17: if activeChildren ∩ hungryChildren �= ∅ then
18: candidates← activeChildren ∩ hungryChildren
19: else if activeChildren ∩ priorityChildren �= ∅ then
20: candidates← activeChildren ∩ priorityChildren
21: � Select the winner from candidates using round-robin
22: winner← ROUNDROBIN(candidates)
23: Forward a request from winner to the output port
24: for i = 1, 2, . . . , LENGTH(childList) do � Update history bits
25: if childList[i] is winner then
26: histList[i]← histList[i]� 1 + 1
27: else
28: histList[i]← histList[i]� 1

29: end procedure

children to its parent node using an arbiter, which is a K-to-1 MUX
with bandwidth control, where K is the number of children. Algo-
rithm 1 describes how the arbiter schedules requests from multiple
children to the parent node given the bandwidth allocation informa-
tion of each child. The bandwidth allocation information contains
the bandwidth target, which is the number of requests that need to be
served within a fixed period of time, and the bandwidth upper limit,
which indicates whether the arbiter is allowed to forward requests
from the child after its bandwidth target is met. The arbiter first
forwards requests from hungry children whose bandwidth targets
have not been met yet. If there are no hungry children, the arbiter
then forwards requests from children which do not have bandwidth
upper limits. If there are multiple candidates, a round-robin algo-
rithm is used to select a winner. The tree router is also responsible
for forwarding responses from the parent node to its children based
on the requester ID tagged with the response.

The three kinds of network topologies shown in Figure 7 imple-
ment different cost-performance tradeoffs. The single-ring network
has low design complexity but introduces long network latency when
there is a large number of clients. Compared to the single-ring, the
hierarchical-ring network has better network scalability with slightly
more area overhead introduced by ring connectors. The tree network
has the lowest network latency among the three networks but a tree
router is much more complicated than a ring connector, especially
when the tree router has a large number of children.

Constructing an optimized memory network usually involves the
exploration of cost-performance tradeoffs, which may vary from
application to application. For example, a program with high data lo-
cality may only require a simple cache network, since most memory
requests are served in first-level caches, while a program with lower
data locality and more memory clients may prefer a tree-based cache
network, which has better scalability. In addition, even if a topol-
ogy has been selected, placing memory clients in the network may
still be challenging when the memory clients of the target program

have different latency and bandwidth demands due to asymmetric
memory access behavior. A deeply-pipelined client may be able to
tolerate longer network latency but have larger bandwidth demands,
while a latency-oriented client may be more sensitive to network la-
tency but have smaller bandwidth demands. Therefore, it is essential
to develop mechanisms to automate the design space exploration.

7. COMPILER OPTIMIZATION
To automate the construction of memory networks optimized for

a particular application, we extend LMC with more detailed program
introspection and optimization algorithms for selecting an optimal
cache network. Figure 4 shows the extended LEAP compilation
flow, which optionally includes profiling compilation to explore the
network design tradeoffs on a per-application basis. During profiling
compilation, a network profiler is constructed with program instru-
mentation hardware. The target program is then run with several
test configurations to obtain the runtime information of memory
access behavior for each memory client. Finally, the target program
is recompiled and an optimized memory network is constructed
based on the program instrumentation results. Section 7.1 describes
the proposed network profiler and how we characterize the memory
access behavior for each memory client. Section 7.2 introduces the
algorithms by which the compiler synthesizes an optimized network.

7.1 Program Introspection
The goal of a profiling compilation is to understand the memory

access behavior of each memory client and to examine the network
design tradeoffs for the target application. To evaluate the perfor-
mance impact of various network configurations, we could build
the system several times, each with a different network implemen-
tation. However, this approach is very time consuming since each
compilation requires full FPGA synthesis, placement, and routing.
To facilitate the design space exploration, we design a dynamically-
configurable, application-specific network profiler to emulate dif-
ferent network configurations in a single compilation. This network
profiler needs not offer optimal performance. It is a measurement
tool and can be used to characterize the latency and bandwidth
requirements of each memory client in the target application.

Figure 8 shows an example of the application-specific network
profiler, which is automatically constructed during profiling compi-
lation. Program instrumentation logic is inserted at each memory
client to monitor various runtime memory access properties, includ-
ing the total number of requests sent from the client, the average
request rate, and the average request queueing delay. The request
and response ports of each memory client are connected with FIFOs
that can be dynamically configured to delay requests/responses for a
certain number of cycles. These latency FIFOs can be used to mea-
sure each client’s network latency sensitivity as well as to emulate
different network topologies. To configure the delay of the latency
FIFOs at runtime, we utilize the LEAP dynamic parameter service,
which allows parameter values to be overwritten at runtime through
command-line switches.

In the network profiler, each on-board memory is managed by a
separate controller hierarchy, and each memory client is connected to
all controllers via memory interleaver logic. A memory interleaver
partitions a single private memory’s address space into multiple
interleaved regions [11]. The size of each interleaved region is also
dynamically configurable. Each memory client can be assigned to
one of the controllers or to multiple controllers with variable-sized
interleaved regions at runtime, enabling the performance evaluation
of different partitioning algorithms.

The network profiler represents an ideal network with single-
cycle latency by directly connecting each memory client to each
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Figure 8: An application-specific network profiler with instrumen-
tation logic and latency FIFOs inserted at each memory client to
characterize the client’s bandwidth and latency properties.

controller through N -to-1 tree routers, where N is the number of
memory clients in the system. For each tree router in the profiler,
the assigned bandwidth allocation information, which contains the
bandwidth target and the bandwidth upper limit for each client as
described in Section 6, is also dynamically configurable, enabling
the evaluation of different bandwidth allocation strategies.

The latency FIFOs, the tree routers, and the memory interleavers
in the network profiler are all dynamically configurable, enabling the
profiler to emulate the performance of different network topologies,
such as a singe ring, hierarchical rings, and tree-based networks.
For example, to emulate a tree-based network, the delay of latency
FIFOs for each client is configured based on the distance between
the client and the controller in the target tree network.

This network profiler is a measurement tool that characterizes
the network requirements for a particular application and therefore
does not need to hit the application’s target frequency. Instead, the
profiler is usually constructed at a much lower frequency, making
the construction of large single-cycle tree routers feasible. In theory,
if the network delay and bandwidth allocation for each client are
correctly modeled and if the frequency of the profiler is properly
scaled down from the application’s target frequency, the profiler can
achieve very high accuracy. This means the runtime cycle count
obtained from the profiling system can be very close to that from the
final system with actual network implementation running at target
frequency. However, we find that it is difficult to slow down the
DRAM operating frequency in the profiling system, resulting in
inaccurate performance emulation. To resolve this issue, for each
DRAM bank we insert a DRAM performance controller that matches
the DRAM latency and throughput to the profiled network.

7.2 Optimized Tree Networks
Armed with the knowledge of program behavior obtained from the

network profiler, we can proceed to build a program-optimized cache
network. Unless the target program is insensitive to network latency
or requires very high operating frequency, the compiler prefers a
low-latency tree-based network. The compiler constructs optimized
cache networks through three stages: client partitioning, tree topol-
ogy selection with client placement, and bandwidth allocation.

The compiler first determines the partitioning of the memory
clients by passing the profiling results to the partitioning algorithm
developed in LMC, which balances the total traffic across controller

networks. After partitioning, the next step is to determine the best
tree topology of each controller network.

The goal is to construct a tree network that minimizes the network
latency impact on program performance. In a tree network, each
client is viewed as a tree leaf node, and the controller is the tree root.
Ideally, the best solution is to construct a depth-one tree, where the
root directly connects to all leaf nodes. However, the complexity of
the tree router may result in frequency degradation when there is a
large number of leaves. Therefore, to maintain the target frequency,
the number of children per tree node is constrained to be no greater
than K. To construct an optimal tree network, we need to model
the importance of each client, i.e., the impact of placing each leaf
node on the overall program performance. This importance factor,
which we refer to as latency sensitivity, may be affected by various
memory access characteristics of the target client, such as the hit
rate of the first-level cache, the memory request rate, or the depth
of the computational pipelines. Instead of building a complicated
performance model, we define a weight function wnd to be the
performance impact introduced by the nth leaf node if placed at tree
depth d. This weight function is measured using the network profiler
with the following expression:

wnd =
runtime(tree with leaf n at depth d and rest at depth 1)

runtime(depth-one tree)

With this weight function, the original performance maximiza-
tion problem can be modeled as an optimization problem in which
the total tree weight is minimized. Given a leaf node, its weight
values are non-decreasing as the tree depth increases. This sets an
upper bound for the maximum tree depth given K and the number
of leaf nodes. To facilitate problem formulation without the loss
of generality, we assume all non-leaf nodes must have exactly K
children based on the following two observations: (i) A tree with
maximum tree depth D is never optimal if any of the non-leaf nodes
at depth d < (D − 1) has fewer than K children, because the total
tree weight can be decreased by moving a leaf at larger depth to be
the child of that node. (ii) We can add dummy leaf nodes with zero
weight values so that the non-leaf nodes at depth D − 1 also have
K children, and the dummy leaves would be placed at depth D.

Suppose we are given the number of leaf nodes N , the maximum
number of children per node K, the maximum tree depth D, and
the weight wnd of placing the nth leaf node at depth d for each n =
1, . . . , N, d = 1, . . . , D. We can formulate the topology synthesis
problem as an integer linear programming (ILP) problem with the
following decision variables for each n = 1, . . . , N, d = 1, . . . , D:

λnd ∈ {0, 1} : whether the nth leaf is at depth d

xd ∈ Z≥0 : number of leaf nodes at depth d

yd ∈ Z≥0 : number of non-leaf nodes at depth d

where Z≥0 is the set of nonnegative integers. The problem can be
stated formally as:

minimize

N∑

n=1

D∑

d=1

wnd · λnd

subject to:

D∑

d=1

λnd = 1 (n = 1, 2, . . . , N )

xd =
N∑

n=1

λnd (d = 1, 2, . . . , D)

y0 = 1, yd + xd = K · yd−1 (d = 1, . . . , D)

λnd ∈ {0, 1} (n = 1, . . . , N ; d = 1, . . . , D)

xd ∈ Z≥0, yd ∈ Z≥0 (d = 1, . . . , D)
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Algorithm 2 Construct a Minimum Weight Tree using DP

1: procedure TREECONSTRUCTION(N,D,K, {an})
2: Sort {an} so that a1 ≤ a2 ≤ · · · ≤ aN
3: V ← inf � V [d][b][m]: costs
4: for d = D,D − 1, . . . , 1 do � Base case: d = D
5: for b = K, 2K, . . . ,min(	N

K

,(K − 1)d) ·K do

6: for m = 1, 2, . . . , N do
7: if b ≥ m then � Place all m leaves at depth d

8: V [d][b][m]← d ·
m∑

n=1
an

9: else if d �= D then
10: V [d][b][m]← FINDMIN(V,K, {an}, d, b,m)

11: end procedure
12: function FINDMIN(V,K, {an}, d, b,m)

13: return min
x=0,1,..,b-1

(d ·
m∑

n=m-x+1
an + V [d+1][(b-x)·K][m-x])

14: end function

For each leaf node n, if its weight values can be approximated
as an affine function of depth d: wnd = an · d + cn, an ≥ 0,
the tree topology synthesis problem can be solved using dynamic
programming (DP), reducing the problem complexity to polynomial
time. We first sort and re-index the leaf nodes so that a1 ≤ a2 ≤
· · · ≤ aN . Under this assumption, there exists an optimal tree
in which the depth of node n is nondecreasing in n. Indeed, it is
straightforward to verify that if there exists a pair of nodes whose
depths are out of order, switching the positions of these nodes would
result in a tree with a smaller total weight. This optimality condition
allows us to decompose the problem into subproblems at each depth
d. Let V (d, b,m) denote the total weight of nodes at depth d or
greater in the optimal tree that has m leaf nodes at depth d or greater,
and b nodes (including leaf and non-leaf nodes) at depth d. The
subproblems can be solved recursively as described in Algorithm 2,
and the optimal number of leaf nodes at each depth can be found
easily by backtracking the optimal solutions of each subproblem.

After the compiler constructs the optimal tree topology, which
minimizes the network latency impact on performance, the final step
is to determine the bandwidth allocation for each tree router. The
compiler sets each leaf node’s bandwidth target based on the client’s
request rate, which is measured by the program instrumentation
logic, and the maximum request rate allowed by the central cache
controller and the on-board DRAM. The bandwidth target for a non-
root tree router is the sum of the targets of its children. When running
multi-program applications, the bandwidth upper limits are set for
leaves with large bandwidth demands, in order to control the fairness
and prevent throughput-oriented applications from saturating the
DRAM bandwidth and slowing latency-oriented applications.

8. EVALUATION
To evaluate the performance of our automatically-generated cache

networks, we target a set of single-program and multi-program appli-
cations, on the Xilinx VC709 platform, which has two board-level
4GB DDR3 memories. We utilize Vivado HLS to transform HLS
benchmarks into RTL implementations and employ Xilinx Vivado
2015.1 for all synthesis and physical implementation work. Also,
we use the Gurobi optimizer [27] to solve the ILP problems. All
resource utilization and clock rate results in this section are post-
place-and-route results.

We examine the following single-program applications, which
have a large number of asymmetric memory clients:

Filter: An HLS kernel that implements a filtering algorithm as
described in Section 4. The implementation has 8 partitions (P = 8)
to process independent subtrees and each partition uses 3 LEAP
private memories to store different data structures.

Reflect-Tree: An HLS kernel that traverses a binary tree, heap-
allocated data structure and swaps the left and right child pointers at
each node, producing a mirrored tree in the memory. Similar to filter,
the tree traversal is managed with a stack, which is implemented
with a pointer-linked list. Each list node contains a pointer to a sub-
tree. The head of the list is modified by push and pop operations,
which ensures that the tree is traversed in a pre-order fashion. The
program visits every node of the tree. Because of its pointer-chasing
nature, the execution time of the benchmark is very sensitive to
memory access latency. The implementation we target is split into 8
partitions and has 16 LEAP private memories in total.

We also set up the following multi-program applications to evalu-
ate our bandwidth-controllable tree networks:

Cryptosorter-Filter: A multi-program application in which 4
cryptosorters [28] are constructed and scheduled to run with 8-
partition filter (P = 8) at the same time. Each cryptosorter engine
sorts an encrypted memory array, which is stored in a single LEAP
private memory, using highly parallel merge-sort engines. It loads
a large number of partially ordered lists then merges them using a
high-radix sort tree. Cryptosorter is throughput-oriented and can
consume almost as much bandwidth as the memory system provides.
This multi-program application has 28 LEAP private memories: 4
from cryptosorters and 24 from filter.

Heat-Filter: A multi-program application that includes heat and
filter. Heat is a two-dimensional stencil code modeling heat transfer
across a surface. Heat can be split into multiple worker engines,
each of which accesses a LEAP coherent memory. Heat is largely
throughput-oriented. Workers traverse the shared two-dimensional
space in fixed rectangular patterns. In this multi-program applica-
tion, we construct filter with 4 partitions (P = 4), and the heat
implementation has 8 worker engines. The shared memory space
for heat is interleaved using techniques provided in [11] and is man-
aged by dual coherence controllers. Each controller uses two private
memories. This multi-program application has 16 LEAP private
memories: 4 from heat and 12 from filter.

To show the performance benefit of program-optimized cache
networks, we compare the performance of the compiler-generated
networks with two previous solutions: (i) A baseline LEAP memory
hierarchy with a single controller hierarchy to manage accesses
to dual DRAMs. All memory clients are connected with a single
ring. We refer to this implementation as baseline. (ii) A partitioned
ring network constructed using LMC. This implementation has two
controller hierarchies, and each controller connects to its clients via
a single ring. We refer to it as the single-ring network configuration
in this section. All of our implementations with compiler-generated
networks have dual controller hierarchies and the memory clients are
partitioned into two groups using the same partitioning mechanism
as in the single-ring configuration.

8.1 Resource Utilization
Table 1 shows the resource utilization and maximum achievable

frequency for different network primitives, including a ring node,
which can also be used as a ring connector in hierarchical-ring net-
works, and K-to-1 bandwidth-controllable tree routers with varying
K. As the number of input channels increases, the tree router com-
plexity increases, resulting in larger frequency degradation. In order
to maintain the operating frequency of the target application, the
compiler needs to set an upper bound of K, limiting the maximum
number of children for each interior node in the tree network.

To study the cost-performance tradeoffs of different network
topologies, we extract the source code of the compiler-generated
network from the target program and build the physical network
alone with a standard FPGA tool flow. Table 2 shows the resource
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Table 1: Resource utilization for various network primitives

Primitive Slice LUTS Slice Registers fmax (MHz)
Ring Node/Connector 626 680 400

Tree Router

K = 3 437 577 179

K = 5 826 811 143

K = 8 1337 951 132

K = 16 4501 2840 91

K = 32 19390 11866 71

Table 2: Resource utilization for the cache network in filter

Configuration Slice LUTS Slice Registers fmax (MHz)
Single Ring 17321 22968 400

Hierarchical Ring 18187 24811 400

Tree (K = 3, ILP) 9992 12914 179

Tree (K = 6, ILP) 7990 10760 139

utilization and frequency comparison of different network config-
urations for the cache network in filter. Given a fixed number of
clients, compared to tree-based networks, ring-based networks can
achieve much higher frequency but are less area efficient due to mul-
tiple message buffers in each ring node. If programs require high
operating frequencies, hierarchical-ring networks, which trade area
for maintaining high frequency and improving network scalability,
are preferred; otherwise, the compiler would construct tree-based
networks, which have lower latency and introduce less area over-
head. Since the applications we study all run at a frequency below
130 MHz, as we will show in Section 8.2, tree-based networks with
a smaller K are able to maintain the target frequency and provide
better performance compared to ring-based networks.

8.2 Single-Program Applications
To construct a tree-based network that minimizes the network

latency impact on program performance given an upper bound of K,
the compiler first measures the latency sensitivity of each memory
client using the network profiler. Figure 9 shows the latency sensi-
tivity measurement of memory clients in filter. The data points are
client weight values wnd used in the ILP solution as described in
Section 7.2. For each memory client in filter, its weight values form a
straight line and therefore can be approximated as an affine function
of tree depth, allowing the compiler to solve the tree construction
problem using DP. The slope of each line represents the latency
sensitivity, which is an in the DP solution described in Section 7.2.
The memory clients that store stack data structures are not shown in
Figure 9 because they have 100% hit rate in the first-level caches and
therefore have zero latency sensitivity. The memory clients storing
tree nodes have larger latency sensitivity due to a large number of
nonparallel read misses, while the memory clients storing sets of
center candidates have higher data locality and thus have latency
sensitivity close to zero.

To show the effectiveness of our tree construction algorithms, we
first compare the ILP and DP solutions with two other approaches
in which a balanced tree with a minimum number of interior nodes
is constructed. In a balanced tree, the sum of each leaf’s depth is
minimized, forming an optimal solution if clients have identical
weights. Balanced-tree (random) first constructs a balanced tree
and then randomly assigns clients to leaves. This approach is also
used by our compiler when the profiling compilation is disabled and
latency sensitivity of each client is unknown. Balanced-tree (sorted)
is a greedy approach: it first determines a balanced tree topology and
sorts the clients based on their latency sensitivity; then, it assigns
latency-sensitive clients to leaves with a smaller tree depth.

Figure 10 shows the simulated performance of filter built with the
four tree construction algorithms at a varying tree radix K. Since the
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Figure 10: Simulated performance of filter with various tree construc-
tion algorithms. Performance speedup is calculated by comparing
the runtime cycles measured from the network profiler to the runtime
of the actual baseline implementation.

weight functions of filter clients are very close to affine functions,
the tree constructed using DP is identical to that using ILP. As shown
in Figure 10, these two solutions achieve good performance even
when K is small. When K is larger than 4, the performance of
the tree network constructed by DP and ILP is very close to the
ideal network (where K = Max). The performance of balanced-
tree (sorted) increases fast as K increases and reaches a nearly
optimal value when K = 6, while the performance of balanced-tree
(random) only slightly increases as K increases from 3 to 6.

We verify the simulated network performance by comparing it to
the actual, physical implementation. Since the compiler-generated
network module (with K less than 8 for tree-based networks) is not a
frequency-limiting module for our test applications, we run all actual,
physical implementations at the same frequency to make runtime
cycles comparable. Figure 11 shows both the simulated performance
and the actual performance of various network configurations for
single-program applications. For each network topology, the network
profiler is shown to have high accuracy: the performance difference
is 1.1%, on average.

In addition, compared to other network topologies, our compiler-
optimized tree networks achieve the best performance. For filter, the
optimized tree network provides a 44% performance gain over the
baseline and a 18% performance gain over the single-ring configu-
ration. For reflect-tree, the tree network provides 47% speedup over
the baseline and 16% speedup over the single-ring configuration.
We also include a hierarchical-ring configuration, in which the com-
piler constructs a three-level hierarchical ring based on the latency
sensitivity of each client. The hierarchical-ring solution achieves a
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Figure 11: Performance comparison of various network configu-
rations for single-program applications. Performance speedup is
calculated by comparing the runtime cycles measured from the pro-
filer and from the actual, physical implementations to the runtime
of the actual baseline implementation.

12% performance gain over the single-ring configuration for filter
and a 14% gain for reflect-tree, representing an effective approach
to reduce the network latency impact at lower complexity.

8.3 Multi-Program Applications
We evaluate the performance of our compiler-optimized cache net-

works for multi-program applications by comparing the performance
slowdown caused by resource sharing. We define the performance
ratio r for each program as follows:

r =
PerformanceMP

PerformanceSP

where PerformanceMP is the program performance when executing
with other programs and PerformanceSP is the performance mea-
sured when executing alone. We also adopt the following fairness
metric proposed in [29]:

Fairness =
n

n∑
i=1

1
ri

where n is the number of programs and ri is the performance ratio
of the ith program. This fairness metric, which ranges from zero to
one, is the harmonic mean of performance ratios.

Figure 12 shows the performance comparison of various network
configurations when filer and cryptosorter are scheduled to run si-
multaneously. To make a fair comparison, we control the number
of iterations filter executes so that filter and cryptosorter start and
finish at the same time. The performance of filter is defined as the
number of iterations executed in a fixed period of time. As shown
in Figure 12a, filter performance slows down a little for baseline
and single-ring configurations when cryptosorter is constructed on
FPGA due to the increased network latency introduced by 4 addi-
tional clients. When filter is executing with cryptosorter, if without
bandwidth control, the performance slowdown is over 50% because
cryptosorter saturates the memory bandwidth, while our bandwidth-
controllable tree network reduces the performance slowdown to 5%
by limiting the bandwidth consumption of cryptosorter clients.

As shown in Figure 12b, when filter is constructed, the cryp-
tosorter performance slowdown caused by 24 additional clients
is larger for the baseline and single-ring configurations, while the
performance of tree-based networks is much less sensitive to the
increase of memory clients. When executing with filter, if without
limitation on bandwidth consumption, cryptosorter performance
does not slow down because filter only consumes little memory
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Figure 13: Performance comparison for the heat-filter application.

bandwidth. Adding bandwidth limitation to cryptosorter clients de-
grades the cryptosorter performance by 13% but achieves much
better fairness as shown in Figure 12c.

We also evaluate the performance ratios and fairness for heat-filter
with different network configurations, as shown in Figure 13. Similar
to cryptosorter, if without bandwidth limitation, heat does not slow
down when executing with filter, which only has little bandwidth
consumption. With partitioned networks, which provide larger mem-
ory bandwidth to the clients, the performance slowdown of filter is
less than 15% when executing with heat, even without bandwidth
control. The bandwidth consumption of heat is smaller than that of
cryptosorter because of the higher data locality in coherent caches,
resulting in a smaller memory bandwidth pressure. Therefore, all
partitioned networks can achieve good fairness (above 0.9) when
simultaneously executing heat and filter. Adding bandwidth limita-
tion to heat clients in the tree network degrades heat performance
by 4% and improves filter performance by 2%, achieving similar
fairness as the tree network without bandwidth control.

9. CONCLUSION
We have presented a feedback-driven compiler that automatically

constructs memory networks optimized for the target application.
In order to facilitate the design space exploration, we propose a
dynamically-configurable network profiler that can be used to char-
acterize the latency and bandwidth requirements of each memory
client as well as to evaluate the performance impact introduced by
different network topologies. Based on the profiling measurements,
the compiler constructs an optimized cache network that minimizes
the network latency impact on program performance. Experimen-
tal results show that our compiler-optimized network significantly
improves the performance of applications that have a large number
memory clients with asymmetric memory behavior: it provides a
45% performance gain over the baseline memory network and a 17%
gain over the partitioned, ring-based network constructed by LMC,
on average. In addition to single-program applications, we also ex-
amine a new set of workloads: multi-program applications, which we
view as representative of future FPGA deployments. When multiple
user programs are executing simultaneously, our compiler-generated
network is shown to achieve good cross-application fairness through
application-specific bandwidth control.

In this paper, we have demonstrated that applications with asym-
metric memory clients can benefit from program-optimized mem-
ory networks. As modern FPGA platforms have begun to include
asymmetric on-board memory controllers [30][12], one direction
for future work is to explore resource-aware memory network opti-
mizations for asymmetric memory controllers with different latency
and bandwidth characteristics.
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Figure 12: Performance comparison of various network configurations for the cryptosorter-filter application. (a) and (b) show the performance
of filter and cryptosorter under different program configuration settings, where C indicates the program hardware is constructed on FPGA and
E indicates the program is executed. For each program, the performance is normalized to the performance of the implementation where the
program is constructed alone with the baseline memory network.
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