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High-level abstractions separate algorithm design from platform implementation, allowing programmers
to focus on algorithms while building complex systems. This separation also provides system programmers
and compilers an opportunity to optimize platform services on an application-by-application basis. In field-
programmable gate arrays (FPGAs), platform-level malleability extends to the memory system: Unlike
general-purpose processors, in which memory hardware is fixed at design time, the capacity, associativity, and
topology of FPGA memory systems may all be tuned to improve application performance. Since application
kernels may only explicitly use few memory resources, substantial memory capacity may be available to the
platform for use on behalf of the user program. In this work, we present Scavenger, which utilizes spare
resources to construct program-optimized memories, and we also perform an initial exploration of methods
for automating the construction of these application-specific memory hierarchies. Although exploiting spare
resources can be beneficial, naively consuming all memory resources may cause frequency degradation. To
relieve timing pressure in large block RAM (BRAM) structures, we provide microarchitectural techniques
to trade memory latency for design frequency. We demonstrate, by examining a set of benchmarks, that our
scalable cache microarchitecture achieves performance gains of 7% to 74% (with a 26% geometric mean on
average) over the baseline cache microarchitecture when scaling the size of first-level caches to the maximum.
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1. INTRODUCTION

Field-programmable gate arrays (FPGAs) have great potential to improve the
performance and power efficiency of applications that traditionally run on general-
purpose processors. However, the difficulty of designing hardware at register transfer
level (RTL) has inhibited the wide adoption of FPGA-based solutions. To reduce
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programmers’ design efforts and to decrease the development time, recent research
has focused on automating the transformation from high-level languages (such as
C/C++) to RTL implementations [Villarreal et al. 2010; Cong et al. 2011; Canis
et al. 2013; viv 2012] as well as providing high-level communication and memory
abstractions [Chung et al. 2011; Adler et al. 2011; Yang et al. 2014; Fleming et al. 2014].

Among its many benefits, high-level abstraction separates algorithm design from the
implementation details of the FPGA platform, such as memory, communications, and
other ancillary service layers. FPGA programmers can therefore concentrate on algo-
rithm design while programming against a fixed interface layer. Underneath this layer,
system developers and compilers have enormous flexibility to generate platform ser-
vice implementations optimized for the target application. In addition, as FPGAs have
grown in size and capacity, FPGA programs do not usually consume all the resources
available on a given FPGA, partly due to design difficulty such as cache scalability and
partly due to design reuse, especially when the design is ported from an older, smaller
FPGA to a newer, larger FPGA. There is significant opportunity for compilers to exploit
the unused resources to optimize the underlying platform implementation. For exam-
ple, a compiler might increase the amount of buffering in communication channels or
increase the size of the on-chip storage to improve throughput.

In both processors and FPGAs, the memory system is usually critical to overall ap-
plication performance. While the memory system on a specific conventional processor
is fixed, cache algorithms and memory hierarchies on FPGAs can be tailored for differ-
ent applications at compile time. For example, a well-pipelined, throughput-oriented
program might not need a cache at all, while a latency-oriented program, like a soft-
processor or a graph algorithm implementation, might prefer a low-latency first-level
cache. Construction of program-optimized memory systems has three requirements.
First, we need a memory abstraction that separates the user program from details
of the memory system implementation, thus enabling changes in the memory system
without requiring modifications in the user code. Second, we need a rich set of memory
building blocks, such as caches with different latency, capacity, and associativity, from
which a compiler can construct a tuned implementation. Finally, we need intelligent
algorithms to analyze the program’s memory access characteristics and automatically
compose a hierarchy from the available building blocks.

Recent research has provided a number of abstract memory interfaces that enable
compilers to assist in the construction of a program’s memory system. For example,
the Connected RAM (CoRAM) architecture [Chung et al. 2011] defines an application
environment that separates computation from memory accesses managed by control
threads, which fetch data from off-chip memory to on-chip buffers using a C-like lan-
guage. LEAP (Latency-insensitive Environment for Application Programming) private
memories [Adler et al. 2011] provide a memory abstraction with a simple request-
response interface and manage a memory hierarchy from on-chip block RAMs (BRAMs)
to the host memory. We adopt the LEAP private memory abstraction as the base of our
work, because it provides a simple user interface, while giving us enough flexibility to
construct a diverse set of memory hierarchies.

In this work, we present Scavenger, which targets one aspect of constructing
program-optimized memories. Scavenger aims to improve program performance by
utilizing spare memory resources left by the user program when building on-chip
caches in the memory hierarchy. A key contribution of Scavenger is the exploration
of microarchitectures for large on-chip caches on FPGAs. FPGA-based on-chip caches
are built by aggregating distributed on-die BRAMs, which are typically assumed to
have single-cycle access latency. As these caches scale across the chip, the wire delay
between the BRAM resources increases, eventually causing operating frequency to
drop and potentially decreasing program performance. To build on-chip caches with
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large capacity, we provide a scalable on-chip storage primitive by splitting a large
BRAM structure into multiple BRAM banks, trading additional access latency for
maintenance of high operating frequency. In addition, we extend LEAP’s memory
hierarchy to include an on-chip shared cache that, for typical designs, can consume
most unused BRAMs remaining after the construction of user kernels and other
memory hierarchy components. This shared cache is built to reduce the miss latency
of the first level caches as well as to enable dynamic resource sharing among multiple
memory requesters. We also evaluate a multi-word, set-associative structure for the
shared cache, which can take advantage of spatial locality and reduce conflict misses
among sharers at the cost of additional latency. To facilitate application-specific
cache microarchitecture exploration, Scavenger provides a framework that enables
programmers to easily configure multiple levels of caches through parameters. For
example, programmers can easily enable cache banking, control the associativity of the
shared cache, or disable some level of cache in the on-chip cache hierarchy if necessary.

Given this rich set of memory building blocks, the final step is to construct a hierarchy
that is optimized for a particular program. Although Scavenger allows programmers
to customize a memory hierarchy, we make some steps in the direction of automating
this construction process. In specific, we introduce a two-phase memory system com-
pilation flow into LEAP. The compiler first estimates the BRAM usage of the target
user program and then automatically constructs a memory hierarchy tuned to use the
remaining on-chip resources while maintaining the design frequency.

We evaluate the performance of our customized memory hierarchies in differ-
ent workloads, including applications assembled by hand and applications compiled
through high-level synthesis (HLS). We also study the cache design tradeoffs for each
application. Compared to HLS-compiled applications, hand-assembled applications are
well pipelined and thus less sensitive to memory latency, while HLS-compiled applica-
tions are more latency sensitive and benefit more from memory system improvements.
We find that using banked BRAM structures to scale private caches provides 7% to 74%
performance improvement (with a 26% geometric mean), over the baseline cache mi-
croarchitecture. Compared to the implementation with a minimal cache configuration,
constructing maximal scalable caches achieves a 2.63 x performance gain on average.

This manuscript is an extended version of the work published in Yang et al. [2015].
Our contributions in Yang et al. [2015] can be summarized as follows:

—We proposed a multi-cycle banked BRAM structure to construct scalable caches
(Section 4.2).

—We designed an on-chip shared cache (Section 4.1), which can be automatically added
to the memory hierarchy during compilation to consume most of the unused BRAM
resources (Section 5.2).

—We provided a framework that allows programmers to configure a multi-level on-chip
cache hierarchy through parameters, facilitating the exploration of cache microar-
chitectures.

—We evaluated the performance of our scalable cache microarchitectures and the on-
chip shared cache across a set of benchmarks (Section 6).

In this article, we extend the previous work in the following ways:

—We propose a new cache indexing mechanism to support caches with non-power-
of-two sizes, enabling our cache implementations to maximize resource utilization
(Section 4.3).

—We apply our scalable BRAM structures to caches in LEAP coherent memories [Yang
et al. 2014] and evaluate the performance of our scalable coherent caches with a
shared memory application (Section 6).
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interface MEM_IFC# (type t_ADDR, type t_DATA);
method void readRequest (t_ADDR addr) ;
method t_DATA readResponse () ;
method void write (t_ADDR addr, t_DATA data);
endinterface

Fig. 1. A general memory interface for hardware designs.

—We examine the impact of large on-chip caches on power and energy efficiency by mea-
suring the power consumption on the FPGA and on the on-board dynamic random-
access memory (DRAM) (Section 6).

2. BACKGROUND

Our exploration of memory system architecture builds on prior work in the development
of FPGA memory systems: LEAP private memories [Adler et al. 2011] and coherent
memories [Yang et al. 2014].

LEAP private memories provide a general, in-fabric memory abstraction for FPGA
programs. Programmers instantiate private memories with a simple read-request,
read-response, write interface, shown in Figure 1. Each memory represents a logically
private address space, and a program may instantiate as many memories as needed.
Memories may store arbitrary data types and support arbitrary address space sizes,
even if the target FPGA does not have sufficient physical memory to cover the entire re-
quested memory space. To provide the illusion of large address spaces, LEAP backs the
FPGA memory with host virtual memory, while FPGA physical memories, including
on-chip and on-board memories, are used as caches to maintain high performance.

LEAP coherent memories [Yang et al. 2014] extend the baseline LEAP memory inter-
face to support shared memory. Similarly to LEAP private memories, LEAP coherent
memories provide a simple memory interface and the illusion of unlimited virtual
storage. In addition, LEAP coherent memories permit applications to declare multi-
ple, independent coherent address spaces using a compile-time specified domain name.
LEAP coherent memories that share the same address space maintain cache coherence
and provide a week consistency model. Fence operations are used to provide stronger
consistency guarantees.

LEAP’s memory system resembles that of general-purpose machines, both in terms of
its abstract interface and its hierarchical construction. Like the load-store interface of
general-purpose machines, LEAP’s abstract memory interfaces do not specify or imply
any details of the underlying memory system implementation, such as how many oper-
ations can be in flight or the topology of the memory. LEAP memory interfaces are also
latency insensitive, which means it may take an arbitrary number of cycles to receive
a memory response. This ambiguity provides significant freedom of implementation
to the compiler. For example, a small memory could be implemented as a local static
random-access memory (SRAM), while a larger memory could be backed by a cache
hierarchy and host virtual memory. Any FPGA programs in which memory latency can
only affect performance but not functionality can use LEAP memories. LEAP exploits
abstraction to build complex, optimized memory architectures on behalf of the user,
bridging the simple user interface and complex physical hardware.

At compile time, LEAP gathers various memory primitives in the user program
and instantiates a memory hierarchy with multiple levels of cache. Like memory hi-
erarchies in general-purpose computers, the LEAP memory organization provides the
appearance of fast memory to programs with good locality. Figure 2 shows an example
of a typical LEAP memory hierarchy that integrates one private memory and three co-
herent memories instantiated in the user program. LEAP coherent memories are built
on top of LEAP private memories both literally and figuratively: Each LEAP shared
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Fig. 2. An example of LEAP memory hierarchy.

address space is backed by two LEAP private memories as data and coherence owner-
ship stores. As a result of this layering, both types of memories share large portions of
the memory hierarchy.

LEAP memory clients optionally receive a local cache, which is direct mapped and
implemented using on-chip SRAMs. For coherent memory clients in the same coherence
domain, a snoopy-based coherence protocol is implemented to maintain cache coherency
among their local caches. The board-level memory, which is typically an off-chip SRAM
or DRAM, is used as a shared cache or central cache. The central cache controller
manages access to a multi-word, set-associative board-level cache with a configurable
replacement policy. Within the cache, each private memory space and shared mem-
ory domain is uniquely tagged, enforcing a physical separation. The program-facing
caches are connected by way of a compiler-synthesized interconnect network. The main
memory of an attached host processor backs this synthesized cache hierarchy.

Scavenger extends the scope of the LEAP memory system to enable better generation
of program-optimized memory systems. The LEAP memory hierarchy provides a basic
configuration interface that enables programmers to manipulate various parameters
in the cache hierarchy. For example, the programmer may change the size of the cache
or aspects of the cache allocation policy, within the scope of a two-level cache hierar-
chy. We add several new cache implementations, mostly targeting the construction of
very large BRAM caches and introduce a second-level on-chip shared cache. We also
extend the LEAP memory control interface, allowing programmers to configure a multi-
level on-chip cache hierarchy and explore design tradeoffs for both private and shared
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on-chip caches. Finally, we extend the LEAP compilation flow to include some limited
automation for program-specific cache construction.

3. RELATED WORK

Much recent work has gone into the microarchitecture of shared caches on FP-
GAs [Dessouky et al. 2014; Choi et al. 2012] and the construction of FPGA-based
multiple-level memory hierarchies [Adler et al. 2011; Choi et al. 2012; Goéhringer et al.
2011; Matthews et al. 2015], all of which use off-chip storage for the second-level mem-
ory. Unfortunately, none of these works explore the design space of large or second-level
on-chip caches, even though this is a common technique in processor architecture.

Large on-chip cache architectures have been extensively studied in the field of pro-
cessor architectures [Kim et al. 2002; Agarwal et al. 2003]. Kim et al. [2002] explore the
design space for wire-delay dominated on-chip caches and propose large on-chip cache
architectures with multiple banks and non-uniform access latencies. Agarwal et al.
[2003] reduce cache access delay to meet target frequency by pipelining and aggres-
sively banking the cache. In Scavenger, we use similar pipelining and banking tech-
niques on top of BRAM primitives to construct large on-chip storage. Memory banking
techniques have been used in existing FPGA-based architectures for higher bandwidth
instead of reducing wire delays. In addition, we leverage the freedom of constructing
FPGA-based caches tailored to the target application and study the application-specific
cache design tradeoffs, which have not been well explored in the processor related re-
search. For example, an application might benefit more from a small cache with shorter
access latency than from a large banked cache with longer access latency, or vice versa.
We study cache design tradeoffs among access latency, operating frequency, and cache
capacity for several FPGA applications with different memory access behavior. We
are also not aware of any work that explores the microarchitectural tradeoffs of large
on-chip caches on the FPGA.

Dessouky et al. [2014] propose DOMMU, an alternative means for constructing large
storage elements on the FPGA. The work facilitates the dynamic sharing of on-chip
memory among several processing elements (PEs), according to their dynamic memory
requirements. In DOMMU, PEs interface to the memory subsystem by requesting
and subsequently freeing memory regions. Like Scavenger, client regions are disjoint
among the processing elements. A key difference between Scavenger and DOMMU
is that DOMMU maintains the single-cycle BRAM interface. Single-cycle response
latency requires that DOMMU implement an expensive internal crossbar between
the PEs and the BRAM store, fundamentally limiting the scalability of DOMMU in
terms of both the number of PEs and BRAMs it can support and operating frequency.
Scavenger can support at least an order of magnitude larger memory systems, at the
cost of a slightly different program-facing interface and a slightly longer access latency.

Choi et al. [2012] incorporates the multiporting approach of LaForest and Steffan
[2010] into a cache hierarchy composed of a shared, multiported L1 cache backed by
an off-chip RAM. Although the multiporting technique of LaForest is excellent for
implementing small and low-latency storage structures, it exhibits limited scalability
in terms of cache capacity and the number of clients due to the complexity of managing
operation ordering among the ports. Scavenger’s high-level architecture is similar to
Choi, but Scavenger adopts a more scalable microarchitecture for its caches. Matthews
et al. [2015] also explores L1 cache microarchitecture, focusing on set associativity and
replacement policy in addition to multiporting. Like Scavenger, Matthews finds that
increasing cache complexity, especially with respect to cache sizing, tends to decrease
operating frequency, although the relative decline reported is smaller than the decline
in large Scavenger caches.
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We also explore indexing algorithms in Scavenger for caches with non-power-of-
two sizes. Existing non-power-of-two indexing algorithms, such as the prime number
indexing schemes [Lawrie and Vora 1982; Gao 1993] and Arbitrary Modulus Indexing
[Diamond et al. 2014], are proposed to reduce the number of address mapping conflicts.
Software memory access strides usually have power-of-two divisors; therefore, using a
non-power-of-two modulus (especially a prime modulus) for indexing effectively reduces
the number of common divisors of the index modulus and memory strides and thus
reduces the number of conflicts. In Scavenger, we construct caches with non-power-of-
two sizes for the purpose of maximizing BRAM utilization instead of minimizing cache
conflict misses. We target cache sizes that are products of a small integer and a power-
of-two number and provide an indexing scheme that can be implemented with a lookup
table and bitwise operations, eliminating the needs to use any adders, multipliers, or
dividers.

Our work presupposes the existence of a basic memory abstraction for FPGAs. We
build on the LEAP memory framework, but there are other frameworks to which our
work is equally applicable. CORAM [Chung et al. 2011] advocates memory interaction
using control threads programmed with a C-like language. CORAM does not define the
memory hierarchy backing its programmer interface and therefore could make use of
our cache infrastructure. Similarly, FPGA-based processor infrastructures [Matthews
et al. 2012; Lange et al. 2011; Mirian and Chow 2012] could also make use of our
memory hierarchy.

4. SCALABLE MEMORY PRIMITIVES

In general-purpose processors, architects must fix the memory system parameters at
design time. Parameters like the cache size, the number of ways, and the hierarchy
of caches are chosen based on an expected set of workloads. For FPGAs, the situation
differs. Memory system designers can choose a memory system per application. Al-
though FPGA programmers have always had this freedom of choice, it is generally not
used because a sufficiently rich set of primitives for memory system construction is not
available and designing a memory system from scratch is too time-consuming.

The first goal of this work is to provide a richer set of memory primitives from which
memory systems may be constructed. The second goal is to automate the construction of
application-optimized memory systems from this richer set of primitives. This section
describes the scalable memory primitives we provide. In Section 5, we will discuss how
we use these primitives to construct memory systems.

To motivate our microarchitectural extensions, we develop a simple, classical per-
formance model to estimate the performance of a target user program running on top
of LEAP memories. In this model, we assume that the user program’s computations
are perfectly overlapped with memory operations, and the memory operations are se-
rialized. The program performance is proportional to the system frequency over the
maximum of two average latencies: the average computation latency and the average
memory access latency, which is modeled by the hit latency of the first-level cache plus
the product of the cache miss rate and its miss penalty.

The following formula describes this simple performance model:

]l‘

max (n0a Npit + 1 - nmiss) '

performance o (1)
where [ denotes the design frequency and r denotes the miss rate of the first-level
cache. n., ny;;, and n,,;ss are the average latencies (in terms of cycles) for computation,
first-level cache hit, and cache miss, respectively.

To improve program performance, we propose two different approaches that utilize
extra BRAM resources: (1) scaling the size of the first-level caches to decrease the miss
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Fig. 3. LEAP private memory hierarchy extended by Scavenger, including scalable BRAM caches and a
shared on-chip cache. Our modifications are highlighted.

rate (r) and (2) adding a large mid-level shared BRAM cache sitting on top of the off-chip
cache to reduce the miss penalty (n,,s) of the first-level caches. We observe that naively
scaling the size of caches usually leads to frequency degradation and thus may have
negative impact on performance. We will discuss how we overcome this scalability issue
in Section 4.2. In addition, to completely exploit BRAM resources, Section 4.3 describes
how we construct caches with non-power-of-two sizes.

4.1. On-chip Shared Cache

In LEAP’s baseline memory hierarchy, as shown in Figure 2, BRAM resources are
consumed by the first-level caches in LEAP private memories and coherent memo-
ries. If there are multiple memory clients, then partitioning and distributing on-chip
memory optimally can be challenging. Consider a program containing different types
of processing engines and each connected to a LEAP private memory. Constructing
symmetric first-level caches may result in inefficient memory utilization, because each
sub-program may have a dynamically variable working set size or different runtime
memory footprint. To improve the efficiency of memory utilization, we may prefer to
use extra BRAM resources to build a shared cache, enabling dynamic resource sharing
among processing engines.

Figure 3 shows the extended private memory hierarchy with a shared BRAM cache
sitting on top of the off-chip cache. Since LEAP coherent memories are built on top of
LEAP private memories, shared-memory applications that use LEAP coherent memo-
ries can also benefit from this on-chip shared cache. Similarly to the off-chip cache, each
private memory space and shared memory domain is uniquely tagged and separated,
so there is no need to handle coherence in the shared cache.

In order to reduce conflict misses, the on-chip shared cache is set associative. In the
case that multiple LEAP memories share the memory hierarchy, a set associative cache
with multiple ways can preserve multiple memory footprints simultaneously. The cache
configuration parameters, including the number of sets and the number of ways, can
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Fig. 4. Set associative cache microarchitecture.

be controlled by either the programmer or by the compiler. Building caches on FPGAs
is a complex balance of area and performance. While the baseline first-level cache,
which is direct-mapped, has one word per cacheline to reduce the area utilization of a
replicated structure, the on-chip shared cache stores multiple words per cacheline to
take advantage of spatial locality and to better utilize backing store bandwidth, since
theses stores usually have larger line sizes.

Figure 4 shows the microarchitecture of the set associative cache. Following the
common design choices for building last-level caches in processors, we store metadata
and actual data values separately and read them serially for power and timing opti-
mization. The data store is divided into a set of BRAM stores, and each BRAM stores
a single word for all cachelines, enabling faster word-sized writes. We implement a
least-recently-used (LRU) replacement mechanism to select a victim way on a cache
miss. When constructing a cache with high associativity, to maintain high frequency, a
deeper pipeline is used to relieve the timing pressure introduced by tag comparisons,
and BRAM banks of the cache data store are further divided into smaller banks, each
storing a single word for cachelines from a particular way. To compensate the extra
access latencies introduced by deeper pipelining, the cache can be optionally configured
to read data values from the target cache set in parallel with metadata.

Since the control logic and the BRAM stores in the on-chip shared cache are separa-
ble, as shown in Figure 4, this cache structure can be built with our scalable BRAM store
described in Section 4.2. Although we have introduced set-associativity as a primary
mechanism for supporting shared caches, we note that this set associative structure
can also be used in first-level private caches.

4.2, Cache Scalability

As Moore’s law has delivered more transistors, the amount of memory available on
die has increased. Processor caches have grown larger, and FPGAs have more BRAMs.
Unlike general-purpose processors, where applications can make use of these new
resources through the abstraction of the memory hierarchy, FPGA programs often can-
not. This difficulty arises because FPGA programs are explicit in their use of memory:
If a program asks for a physical 8KB memory, then there is little utility in scaling
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this memory to consume more BRAMs. However, even more abstract FPGA programs
have difficulty in utilizing new memory resources in part because simply scaling up
BRAM-based structures may have a negative impact on operating frequency and thus
reduce overall design performance.

To improve BRAM scalability, we propose a multi-cycle banked BRAM structure,
trading increased access latency for maintenance of frequency at higher capacity. Fig-
ure 5 shows the resulting banked BRAM microarchitecture. We split a large BRAM
structure into multiple banks and add pipeline buffers at the input and output of each
bank, relieving the timing pressure on cross-chip routing paths for requests and re-
sponses. A separate in-flight request queue is used to track the bank information for
each request so the responses from each bank can be reordered for return to the client.

Similarly to the on-chip shared cache described in Section 4.1, the first-level caches
in LEAP-coherent and private memories are designed with separable cache control
logic and BRAM stores. Therefore, we are free to replace the original BRAM stores in
an existing cache implementation with the banked BRAM stores and form a new cache
implementation with better scalability.

4.3. Non-Power-of-Two Caches

In general-purpose processors, it is common to build caches with power-of-two sets (for
set-associative caches) or sizes (for direct-mapped caches) because of hardware imple-
mentation efficiency concerns. However, following the power-of-two sizing rules when
constructing BRAM-based FPGA caches may cause inefficient resource utilization, be-
cause the amount of BRAM resources on FPGA is fixed. As we will show in Section 6.1
and Table I, for many benchmarks we studied, there are around 35% BRAM resources
left unused when building first-level caches with maximal sizes under power-of-two
sizing limitations.

To completely utilize available BRAM resources, we need to eliminate power-of-two
sizing restrictions. Constructing set-associative caches (as described in Section 4.1)
with non-power-of-two ways is one option. However, set associative structures may
not always be suitable for building fast first-level caches due to higher complexity
introduced by multiple tag comparisons and replacement policy management as well
as extra access latency introduced by deeper pipelining. To build fast, non-power-of-two,
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Fig. 6. Cache indexing mechanisms for power-of-two and non-power-of-two caches.

first-level caches, we instead modify the existing cache indexing mechanism for direct-
mapped caches.

Figure 6 shows the two cache indexing mechanisms we use in power-of-two and
non-power-of-two direct-mapped caches. To reduce the number of conflict misses
introduced by power-of-two memory access strides, a classical bit hash function based
on a cyclic redundancy check (CRC) is applied to the target address before the cache
lookup is performed. We use CRC as the hashing function because it requires only
exclusive-OR operations and thus is simple to implement. We choose an m-bit CRC
function, where m is not smaller than the bit length of the cache address, so the CRC
hash function performs a one-to-one mapping and is reversible. A reversible hash
function is valuable for tag comparison to reduce storage. For power-of-two caches with
2k cachelines, % of the low-order bits in the hashed address are used as the cache index,
while the rest of the bits are used as the tag. Since the hash function is reversible,
only the cache tag needs to be stored in the cache as metadata and the original cache
address can be recovered when performing cache write-back operations.

For non-power-of-two caches, we propose a simple non-power-of-two indexing scheme.
Consider a non-power-of-two cache with M - 2" cachelines where M is an odd number
and M -2" < 2¢. We use r of the low-order bits in the hashed address as the cache index
base (IB) and the rest of the bits are used as the tag. Then, we take £ — r + n of the
low-order bits in the tag as the cache index range (IR), where n is a small fixed constant
(n is fixed as 4 in our cache design). We take additional n bits to compute modulus for
load-balancing purposes, preventing the case where most of the addresses get mapped
to some of the cache ranges. Finally, the cache index is calculated as follows:

Index = (IR mod M) « r + IB. (2)

To reduce the latency of cache index computation, the modulus results are stored in
a pre-configured lookup table, which has 2¥7+" entries. As a result, the cache index
computation becomes simply concatenating the value obtained from a table lookup with
the index obtained from a normal power-of-two indexing scheme. The target cache size
is under constraints so £ —r is not larger than 4, and thus the lookup table would
contain no more than 256 entries. Since our goal of constructing non-power-of-two
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caches is to improve resource utilization, having such sizing constraints would only
limit the potential performance gains.

5. DESIGN TRADEOFF AND COMPILE TIME OPTIMIZATION
5.1. Design Tradeoff

As described in Equation (1), while having large caches can potentially increase the
cache hit rate and improve program performance, the decrease in frequency or the
increase in cache latency (if using the proposed banked BRAM structures) may cause
performance degradation. Therefore, consuming all the available resources and build-
ing the largest caches that are physically possible may not be an optimal choice. Dif-
ferent programs may have different memory access and computation characteristics
and thus have different sensitivity to changes in frequency, cache hit rate, and cache
latency. Even if we have a wide variety of memory building blocks, picking an optimal
memory is a challenging problem and requires intense characterization of different
memory parameterizations and topologies.

The following are four options to design caches based on the tradeoff among fre-
quency, cache capacity, and latency, where f; is the target frequency and f;, is the
achievable frequency in the memory system.

(1) If £, > f;, then increase the cache capacity until it hits the frequency limitation.

(2) If f,, = f;, then adopt the banked BRAM structure with longer cache latency and
then increase the cache capacity until it hits the frequency limitation.

(3) If £, < fi, then decrease the frequency to f; (where f; < f;,) in exchange for larger
cache capacity.

(4) If f, < f;, then decrease the frequency to f; (where f; < fi» < f) and increase
the cache latency (using banked BRAM) in exchange for larger cache capacity.

Option 1 preserves performance but has limited scalability. This method can be
adopted for programs that do not benefit from large caches. Option 2 can be used
for programs that are less sensitive to cache hit latency but more sensitive to cache
capacity. For some cases where FPGA programs are highly sensitive to cache capacity,
options 3 and 4 can be used if the performance gain from large caches is enough to
compensate the loss due to frequency degradation. For user programs that need to run
at a fixed clock frequency, options 1 and 2 are preferred or multiple clock domains are
required.

In Section 6, we will show that there is no single option that provides maximum
performance improvement for all the benchmarks. Although it is not possible to make
an optimal decision without sophisticated program analysis, having the compiler make
greedy decisions may still provide performance gains over the baseline memory system.

5.2. Compile Time Optimization

To automatically utilize the BRAM resources that are not consumed by user designs,
we design a compiler that decides whether to construct an on-chip shared cache as
well as the capacity and associativity of the shared cache during compilation. We
first run a cache parameter sweep study to build a database that stores the maximum
achievable frequency and BRAM resource usage for each cache configuration, including
the number of sets, the number of ways, and the type of BRAM storage. This database
provides us with implementation feasibility information so our program modifications
minimize the impact on user operating frequency.

With the parameter database, we build target programs through a two-phase compi-
lation flow. Figure 7 shows an example of a program using LEAP private memories and
built with the two-phase compilation. Programs using LEAP coherent memories can
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Fig. 7. An example of LEAP-based program built with the two-phase compilation flow.

be treated similarly. During the first phase of compilation, the user program and the
memory hierarchy excluding the on-chip shared cache are built through RTL genera-
tion and synthesis. The memory hierarchy is constructed based on the user’s parameter
choices, such as first-level cache sizes, or default settings if no choices have been made.

After the first phase, the compiler gathers the BRAM usage information from RTL
synthesis. If the amount of remaining BRAM resources is sufficient to construct an
on-chip shared cache with a reasonable size, then the compiler will use the pre-built
database to greedily select the largest cache that can be implemented while using
the remaining BRAM at the target frequency. If there are multiple candidates with
the same cache capacity, then the one with the highest associativity will be chosen.
During the second-phase of compilation, the compiler then constructs the selected on-
chip shared cache and the connections to the rest of the memory hierarchy. On the
other hand, if there are no sufficient BRAM resources left, then the compiler will
directly connect the private memory controller with the central cache controller, which
manages the accesses to the off-chip memory. Finally, the compiler passes the design
to a standard FPGA tool flow to produce the final FPGA image while reusing most of
the synthesis results obtained in the first phase.

6. EVALUATION

We evaluate all of our test programs on the Xilinx VC707 platform. Our VC707 deploy-
ment includes a 1GB DDR3 memory, which we use to implement the off-chip cache.
For HLS benchmarks [Winterstein et al. 2014], we utilize Vivado HLS [Vivado 2012].
We make use of Synplify 2014.03 for synthesis work and Xilinx Vivado 2015.1 for rest
physical implementation work. All resource utilization and clock rate results in this
section are post-place-and-route results.
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We examine a set of benchmarks ranging from kernels to large programs that nearly
fill the VC707:

Memperf: A kernel measuring performance of the LEAP memory hierarchy by
testing various data strides and working set sizes on a single private memory.

Heat: A two-dimensional stencil code that models heat transfer across a surface.
Heat is embarrassingly parallel and can be divided among as many work engines
as can be fit on the FPGA. Heat is also very regular: Workers march over the
shared two-dimensional space in fixed rectangular patterns. In the single-worker
implementation, the worker accesses a single private memory. In multi-worker
implementations, each heat worker accesses a single coherent memory.

HAsim: HAsim [Pellauer et al. 2011] is a framework for constructing cycle-
accurate simulators of multi-core processors. To model multiple cores, HAsim
time-multiplexes components of a single processor, sharing these components
among all modeled processors. Unlike processors, which are often sensitive to
latency, HAsim’s time multiplexed implementation makes it very latency toler-
ant. HAsim uses multiple LEAP private memories to model various structures of
the processor: caches, branch prediction tables, and virtual-address translation
buffers. The largest private memory used by HAsim captures the virtual memory
state of the modeled processors. The HAsim results in this section are obtained
by scaling the first-level cache in this largest private memory.

Merger: An HLS kernel that merges several linked lists together to form a sorted
list. Merger forms four linked lists in parallel from streams of random integers.
After a constant number of inputs have been received, it repeatedly deletes the
smallest head node among the lists until all lists are empty, producing a sorted
output sequence. Merger uses four LEAP private memories.

Prio: An HLS kernel implementing a priority queue using a sorted, doubly linked
list. The application performs a sorted insertion for each new entry. Unlike merger,
prio maintains a single queue and uses one private memory, allowing us to observe
the effect of a single cache on memory access latency.

Filter: An HLS kernel that implements a filtering algorithm for 2-means cluster-
ing [Kanungo et al. 2002]. £2-means clustering partitions a data set of points into 2
clusters, such that each point belongs to the cluster with the nearest mean. Filter
first builds a binary tree structure from the input data set and then traverses the
tree in several iterations. Our implementation splits the tree into eight indepen-
dently processed sub-trees. Each partition tracks its tree traversal using a stack
and maintains several sets of candidates for the best cluster centers. Filter uses
24 LEAP private memories: eight each for the sub-trees, stacks, and candidate
center sets. The filter results in this section are obtained by scaling all first-level
caches in the system. Although filter uses many LEAP memories, only the work-
ing set of tree nodes is large, and only these memories benefit from cache capacity
scaling.

6.1. BRAM Utilization

One of the central premises of this work is that many FPGA programs do not make use
of all available on-die FPGA memory resources. Table I lists the BRAM utilization for
the various benchmarks examined in this study. Generally, the BRAM utilization for
the user program is quite low: Most of the applications that we study are computational
kernels. Even HAsim, which is a heavy consumer of logic resources for larger core-count
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Table |. Post-Place-and-Route BRAM Utilization and Frequency Results

User- Scavenger
Kernel Total BRAM Usage (%) Post P&R fiae (MHz)
BRAM max (2F) max
Program Usage (%) | min | max (2®) | max | min | banked | monolithic | banked | monolithic
Memperf 0 4 61 90 150 140 80 140 70
HAsim (16 cores) 6 11 73 91 110 110 75 110 75
Heat (1 worker) 0 4 61 95 150 140 80 140 70
Heat (8 workers) 0 7 69 69 125 110 100 110 100
Merger 17 19 75 75 140 140 90 140 90
Prio 19 25 80 96 140 135 90 130 80
Filter 7 18 90 90 140 140 110 140 110

Note: BRAM utilization results are reported as a fraction of the total BRAM resources for the VC707. For
each application, we report the user-kernel BRAM usage to give an idea of the amount of BRAMs available
for platform optimizations in Scavenger. To show the impact large caches have on operating frequency,
we report the total area utilization and maximum achievable frequency when building with minimal and
maximal first-level cache size configurations, where max (2%) denotes the maximal cache size configuration
limited by the power-of-two sizing rule.
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Fig. 8. L1 cache performance with various microarchitectures. Flat lines indicate that target frequency is
not met.

models, uses relatively little BRAM. Abundant, unused resources permit us to build
very large memory systems on behalf of the user program. For each application we
studied, we could use more than 50% of the available BRAM in support of the memory
hierarchy. Under the power-of-two cache sizing limitation, there are still some BRAMs
left after the caches are scaled to the maximal sizes, especially for single-memory
applications, such as memperf, single-worker heat, and prio. Without the cache sizing
limitation, Scavenger can utilize more than 90% BRAMs for many applications.

6.2. Large First-Level Private Caches (L1 Caches)

In order to make use of the BRAM resources available on a large FPGA, we need to
construct large caches. Figure 8 shows a study of cache size and microarchitecture
using memperf with the stride equal to 1 and with the working set equivalent to
cache capacity. In this figure, the throughput of memperf is reported for various cache
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implementations running at frequencies ranging from 75MHz to 150MHz, and flat
lines indicate a failure to meet timing at a given target frequency.

The chief advantage of our banked cache microarchitecture is its ability to scale
to very large capacities while largely maintaining frequency. As shown in Figure 8,
a monolithic 2MB cache, which uses more than 60% of the BRAM available on the
VC707, runs at 75MHz, while a four-way banked cache can achieve around 1.8x of
that frequency. The timing relaxation afforded by our buffered architecture enables
individual banks to clock faster than similarly sized monolithic caches.

In theory, all of our caches running at the same frequency should have the same per-
formance for memperf. In practice, cache performance is variable within a small range.
Because we use a bit-hashing scheme to reduce the number of cache lookup conflicts
and to improve overall cache performance, the number of conflict misses is nearly uni-
form but varies with working set size. Banked caches have slightly lower performance
than monolithic caches at frequency and capacity parity, due to the pipeline latency in
the banked architecture.

The preservation of user operating frequency is a key challenge in implementing
large memory systems. Figure 8 shows that we can maintain frequency for a small
kernel. In general, our large banked caches do not incur a significant frequency penalty.
Table I lists the operating frequency for each application with minimal and maximal
cache size configurations. The table includes the frequencies of the maximal memory
system configurations implemented with monolithic and banked BRAM stores. With
banked stores, even when using most of the on-chip BRAM resources, we suffer a
frequency penalty no larger than 20%. Compared to monolithic BRAM stores, banked
BRAM stores achieve up to 100% frequency gain when building large caches.

6.3. Application Performance with Large L1 Caches

To evaluate the performance impact of building large first-level caches, for each appli-
cation, we build the program with various cache sizes and microarchitecture configura-
tions and compare the runtime performance when running at the maximal achievable
frequency. We will show that maximal memory configurations do not always deliver
the best performance.

HAsim: Intuitively, a processor model should obtain performance gains from larger
caches, just as processors do. Figure 9(b) bears this intuition out: The number of
HAsim’s cache misses drops dramatically as we scale the cache size and capture larger
portions of the model working set. However, this improvement in the cache miss rate
does not translate into absolute performance. Rather, HAsim’s performance with re-
spect to the cache size rises until the cache reaches a medium size and then plateaus,
rising by a maximum of 4%, as shown in Figure 9(a). This limited gain is a result of
the deep pipelining of the HAsim model. Once a small first-level cache filters enough
requests to reduce the bandwidth of requests to backing caches, HAsim is able to tol-
erate round-trip latency to DRAM without loss of performance. For less-well-pipelined
systems, like soft processors, the performance gains from our approach would be larger.

Because HAsim is latency tolerant, trading any frequency for cache capacity is a loss
on the VC707 (thus options 1 and 2 in Section 5.1 are preferred). HAsim’s maximum
operating frequency tops out at 110MHz, enabling us to use our largest banked cache.
Thus, although our banked caches do not help HAsim much, they do not harm it either.
On the other hand, large, monolithic caches degrade HAsim’s performance by up to 30%.

Heat: Figure 10 shows the performance of single-worker and multi-worker heat with
various cache configurations and problem sizes. Generally, the performance of the heat
stencil is determined by the block size that can be fit into cache. If the problem size is
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Fig. 10. Performance comparison for Heat with various cache configurations.

too large to fit into cache, then heat will always miss to the nearest memory sufficient
to hold its working set. As we scale our caches, the larger heat problems see large per-
formance improvements. In the single-worker implementation, when building a very
large cache, our banked microarchitecture outperforms the baseline monolithic cache
by 74% on average across a set of problem sizes, due to high operating frequency. In the
8-worker implementation, since the maximal cache size is much smaller compared
to the single-worker version, the frequency penalty of monolithic microarchitecture
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Fig. 11. Performance comparison for HLS kernels with various L1 cache sizes. Performance results are
normalized to the performance of the smallest monolithic cache.

is lower, causing a smaller performance difference between banked and monolithic
caches. With our banked microarchitecture, the maximum operating frequency of
single-worker heat declines less than 10%, even when implementing a two megabyte
cache. Due to complicated data paths in coherent cache implementations, multi-worker
heat runs at slightly lower frequencies and the frequency penalties of large caches are
higher. Heat is fairly sensitive to latency in the memory system: When building small
caches, monolithic caches slightly outperform banked caches. For smaller problem sizes,
having smaller, but fast, caches is preferred (option 1 in Section 5.1); for large problem
sizes, having large banked cache and slightly downgrading the frequency (option 4 in
Section 5.1) achieves the best performance gain.

HLS Kernels: In Figure 11, we explore scaling the capacity of the L1 caches for our
HLS kernels. These applications use BRAM internally but use less than 20% of the
resources on chip. Our cache structures enable these applications to gain some benefit
from the remaining on-die resources. Using our approach, prio is able to use 96% of the
on-chip BRAM resources.

All of our HLS kernel applications involve pointer chasing and are, therefore, sen-
sitive to memory latency. Increased capacity helps these kernels to the extent that
they avoid long latency misses. For example, merger obtains a 5.5x performance im-
provement as its cache scales. At the same time, larger cache latency results in lower
performance. With merger, for small cache sizes, banking results in performance degra-
dation due to increased latency. However, as the cache size scales, the superior oper-
ating frequency of the banked cache results in a 23% absolute performance gain over
the monolithic cache. In addition, without the power-of-two cache sizing limitation, the
performance improvement of prio increases from 1.75x to 2.39x with BRAM utiliza-
tion increased from 80% to 96%. Since our HLS kernels are sensitive to cache capacity,
the cycle performance gain is enough to cover the loss due to frequency degradation
(option 4 in Section 5.1).

Summary: Figure 12 summarizes the performance improvement achieved by building
largest L1 caches with the banked BRAM structure. When constructing L1 caches with
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Fig. 13. Implementation space of L2 caches.

maximal sizes, our banked cache, which runs at higher frequencies, provides 7% to 74%
performance gains (with a 26% geometric mean) over the baseline monolithic cache.

6.4. Constructing Large On-Chip Shared Caches (L2 Caches)

In optimizing application memory systems, our goal is to consume all unused BRAM
resources without negatively impacting program frequency. We therefore introduce
a second-level on-chip shared cache into our memory hierarchy and then size it to
achieve the user frequency target (Options 1 and 2 in Section 5.1). Figure 13 describes
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Fig. 14. Relative throughput gain for memperf.

Table II. L2 Cache Performance Gain for Merger

BRAM Usage (%) Runtime (s)
Total L1 Cache Size (KB) | L1Only | L1+ L2 | L1Only | L1+ L2 | Performance Gain (%)
32 18.7 52.3 803.8 601.1 33.7
512 32.5 64.5 642.1 534.4 20.2
1024 46.8 80.8 433.2 362.4 19.5
2048 75.1 93.3 145.9 136.9 6.6

how we choose the size of this L2 cache. By exploiting set associativity, we are able
to cover a broad swath of the frequency-utilization space. Like our large L1 caches,
our set-associative caches obtain frequency scalability by using our banked storage
element.

Figure 14(a) shows the result of running our L2 cache selection algorithm on mem-
perf. For this benchmark, our algorithm selects a four-way cache with 8,192 sets,
utilizing about 33% of the BRAM available on the chip. For those working sets that fit
in the L2 cache, performance improves by about 25%. For completeness, in Figure 14(b),
we compare our algorithm against a direct-mapped L1 with equal area (128K words).
The large L1 handily outperforms our L2 for those sizes that fit in the L1. This is not
a complete surprise, since in a single-memory-user case, the latency penalty of L2 can
only lower performance. We imagine that in situations with more diversity of memory
use, the L2 will be more beneficial. Interestingly, the L2 implementation outperforms
the L1 implementation for working sets that do not fit in the cache. This is because the
L2 captures some spatial locality within the stride sets.

Table II shows the result of introducing an on-chip L2 cache in merger. When the L1
cache size is fixed, adding an L2 cache always improves performance, although merger
prefers large private caches to a large shared cache. Yet, even when building largest
feasible L1 caches, there remains 25% unused BRAM resources, which can be used
to implement a four-way L2 cache with 4,096 sets, improving performance by 6.6%.
The performance gain comes from higher associativity and multi-word cachelines that
capture a degree of spatial locality in the L1 miss stream.

6.5. Energy Consumption

The goal of Scavenger is to utilize spare BRAM resources for constructing application-
specific cache hierarchies that are optimized for minimum program execution latency.
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Table Il. Power and Energy Measurements for HLS Applications
‘ Total L1 Cache Size (KB) ‘ Performance Speedup ‘ Ppray (W) ‘ Prpga (W) ‘ Erorar (J) ‘

Merger (Input: 479990 random non-negative integers)

32 1.00 1.75 1.89 2,926

512 1.25 1.75 2.36 2,643
1,024 1.86 1.55 2.67 1,827
2,048 5.51 1.03 3.84 711

Prio (Input: 327676 random non-negative integers)

32 1.00 1.18 1.74 37,074

512 1.18 1.16 2.25 36,660
2,560 2.39 1.01 3.53 24,134

Filter (32759 tree nodes, 128 clusters, 256 iterations)

192 1.00 1.00 2.38 54

768 1.05 1.01 2.84 59
1,536 1.08 1.02 3.83 71
3,072 1.40 1.01 5.17 70

Note: For a given cache size, we choose the cache microarchitecture that achieves better runtime
performance and report the performance speedup against the performance of the system with a
minimal cache size. For each test, we also record the average power consumption of the FPGA
(Prpga) and the DRAM (Ppgrays) as well as the total energy consumption (E7orar,).

In Section 6.3 and Section 6.4, we have shown that Scavenger is able to achieve up to
5.9x speedup by constructing scalable caches. However, these performance-optimized
solutions may not always achieve the best energy efficiency.

To evaluate the impact of our scalable caches on power and energy efficiency, we
measure the power consumption on the FPGA and on the board-level DRAM using
the Fusion Digital Power Designer package provided by Texas Instruments. Table I1I
shows the average FPGA and DRAM power consumption as well as the total energy
consumption for each HLS benchmark with various first-level cache sizes. The table
also includes the performance speedup against the performance of the program with a
minimal cache size. As shown in Table III, scaling up first-level caches always increases
the power consumption on the FPGA. For merger and prio, large caches effectively
reduce the DRAM power, and the performance gains are large enough to compensate the
increase in the FPGA power, resulting in higher energy efficiency. For filter, on the other
hand, although large caches provide better runtime performance, they are less energy
efficient compared to small caches. For applications that have energy constraints, the
tradeoff between performance and energy needs to be considered when constructing
the cache hierarchy.

7. CONCLUSION

High-level abstractions provide FPGA compilers flexibility to customize platform
implementations for different applications without perturbing the user program.
Scavenger demonstrates that it is possible to exploit unutilized resources to construct
memory system implementations that accelerate the user program. The space of
potential memory hierarchies is large and the problem of deciding how to build
application-optimized memory hierarchies is difficult. By providing a large set of
memory building blocks and a framework for integrating them, Scavenger enables
experimentation in both of these spaces. In this work, we have focused primarily on
the exploration of the memory hierarchy space, while making a small step toward au-
tomating the construction memory hierarchies based on program resource utilization
and frequency requirements.
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Since many programs leave large amounts of memory resources unused, our memory
building blocks tend to be quite large. We propose microarchitecture changes for large
on-chip caches to run at high frequency. We had good success in building large first-
level caches. Across our benchmark suite, we obtained performance gains of 7% to 74%
(with a 26% geometric mean) over the baseline cache microarchitecture.

In addition, we provide a set-associative shared cache structure that can be auto-
matically constructed by the compiler. Although inclusion of a shared L2 cache does
benefit real programs, our results suggest that allocating resources to a large shared
cache is less beneficial than allocating them to large first-level private caches, at least
for the applications that we have studied. In general-purpose processors, where the
memory implementation is fixed, caches cannot be too large, because this negatively
impacts frequency, slowing all applications, whether they benefit from the cache or not.
On the other hand, the memory system on FPGA can be customized with large first-
level caches for specific applications, and the decision to trade frequency for capacity
and latency can be made on a case-by-case basis. For many well-pipelined, throughput-
oriented applications, a shared cache, even if implemented with otherwise unutilized
resources, may have limited performance benefit. However, we believe that FPGA ap-
plications that have multiple memory requesters with dynamically variable working
set sizes such as object tracking/labeling algorithms and multi-core soft processors can
benefit from having a large shared cache. A future work is to explore these applications.

The distribution of unused on-chip resources across a memory hierarchy to opti-
mize program performance likely requires sophisticated program analysis. Our simple,
greedy shared-cache allocator yielded limited gains in part due to its simplicity and in
part due to the ineffectiveness of the shared cache on our applications. In this work,
we make no claim of finding optimal solutions for the cache topology and sizing. A
main contribution is to provide beneficial directions in the design space exploration
and to provide a framework that facilitates such microarchitectural exploration. Fu-
ture work will use both static and dynamic program analysis to optimize the resource
distribution in the memory hierarchy. We also expect to be able to make decisions
about cache associativity, cache replacement policy, and the inclusion of advanced mi-
croarchitectural features like prefetching. In addition, we intend to further experiment
with cache microarchitecture, for example, placing caches in separate clock domains to
alleviate timing pressure. We also plan to investigate our caching scheme in the con-
text of power consumption and consider energy-performance tradeoffs when deciding
program-optimized cache hierarchies.
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