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Abstract—This work studies the interplay between multi-
threaded cores and speculative parallelism (e.g., transactional
memory or thread-level speculation). These techniques are often
used together, yet they have been developed independently. This
disconnect causes major performance pathologies: increasing the
number of threads per core adds conflicts and wasted work,
and puts pressure on speculative execution resources. These
pathologies often squander the benefits of multithreading.

We present speculation-aware multithreading (SAM), a sim-
ple policy that addresses these pathologies. By coordinating
instruction dispatch and conflict resolution priorities, SAM fo-
cuses execution resources on work that is more likely to commit,
avoiding aborts and using speculation resources more efficiently.
We design SAM variants for in-order and out-of-order cores.
SAM is cheap to implement and makes multithreaded cores
much more beneficial on speculative parallel programs.

We evaluate SAM on systems with up to 64 SMT cores.
With SAM, 8-threaded cores outperform single-threaded cores
by 2.33× on average, while a speculation-oblivious policy yields
a 1.85× speedup. SAM also reduces wasted work by 52%.
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I. INTRODUCTION

Hardware support for speculative parallelism is now per-

vasive. Several new processors already implement hardware

transactional memory (HTM) [16, 35, 36, 88, 91], and many

other research proposals, such as thread-level speculation

(TLS) [76, 77] and deterministic multithreading [22], rely on

hardware support for speculative execution of atomic regions.

Likewise, commercial processors often use multithreaded

cores to improve performance [73, 82]. Although speculative

parallelism and multithreading are often used together—for

example, three of the four commercial HTMs (Intel TSX, IBM

POWER8, and BlueGene/Q) use multithreaded cores [52]—

little work has explored the interplay between these tech-

niques [27, 59]. In this paper, we show that this sacrifices

significant performance, as multithreading policies have a

large effect on the performance of speculative parallelism.

We first analyze the effect of conventional multithreading

on speculative parallelism (Sec. II). Two key problems arise

as the number of threads per core increases: the amount of

conflicts and aborted work grows, and the time spent holding

speculation resources increases, causing more stalls. Both

problems have the same root cause: since the multithreading

policy is oblivious to speculation, unlikely-to-commit tasks

consume scarce resources and hurt the throughput of likely-to-

commit ones. On many applications, these effects squander the

benefits of multithreading, motivating the need for speculation-

aware multithreading policies.

Most prior work does not consider the effect of multi-

threading policies on speculative parallelism. While prior

work has proposed TLS and HTM systems for simultaneous

multithreading (SMT) cores [3, 59] and GPUs [26, 27], they

focus on the versioning and conflict detection mechanisms,

not the multithreading policy. Meanwhile, prior multithreading

policies for SMT cores [74, 82] and GPUs [43, 48, 68] seek to

maximize pipeline and memory efficiency in non-speculative

systems. But maximizing instructions per cycle is not the

key concern in speculative systems—these systems should

maximize the execution rate of instructions that ultimately

commit.

Our key insight is that tasks should be prioritized according

to how speculative they are. For TLS and other schemes that

support ordered parallelism [31, 40, 76, 78, 93], where the

program dictates the execution order of speculative tasks,

this order directly determines how speculative each task

is. For HTM and other schemes that support unordered

parallelism [18, 32, 35, 51, 62], where any execution order is

valid, it is less clear how speculative each task is. However,

we observe that HTM conflict resolution policies often enforce

an order among transactions on the fly. We can leverage this

order to prioritize tasks.

We present speculation-aware multithreading (SAM), a

simple policy that exploits this insight. SAM modifies a

multithreaded processor pipeline to prioritize instructions

from less-speculative tasks (Sec. III). SAM avoids pipeline

interference from more- to less-speculative tasks, reducing

wasted work. And since less-speculative tasks commit earlier,

SAM also makes more effective use of speculation resources.

We design SAM variants for in-order and out-of-order

cores. We find that SAM is much more effective than prior

SMT policies that aim to maximize pipeline efficiency, like

ICount [82]. We also present a simple adaptive policy that

achieves SAM’s low aborts when contention is high, and

ICount’s high pipeline efficiency when contention is low.

In summary, this paper makes the following contributions:

• An analysis that shows why conventional multithreading

causes performance pathologies on speculative workloads.

• A basic SAM policy that addresses the pathologies of

speculation-oblivious multithreading by always prioritizing

instructions from likely-to-commit tasks at the issue stage.

• An adaptive SAM policy that further improves performance

by balancing speculation efficiency and pipeline efficiency.

SAM improves the performance benefit of multithreaded

cores on speculative parallel programs. We demonstrate
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SAM on an architecture that supports ordered and unordered

speculative parallelism (Sec. IV). On a 64-core system with

2-wide issue in-order SMT cores, with SAM, 8-threaded cores

outperform single-threaded cores by 2.33× on average, while

speculation-oblivious round-robin achieves a 1.85× speedup.

SAM also reduces wasted work by 52%, making speculative

execution more efficient. With out-of-order execution, 8-

threaded cores improve performance over single-threaded cores

by 1.52× with SAM vs only 1.11× with ICount, and SAM

reduces wasted work by 2× (Sec. VI).

II. BACKGROUND AND MOTIVATION

A. Speculative Parallelism

Prior work has investigated two main types of architectural

support to exploit speculative parallelism. First, thread-level

speculation (TLS) schemes seek to parallelize sequential

programs [24, 28, 31, 66, 67, 76, 78, 93]. TLS schemes

ship tasks from function calls or loop iterations to different

cores, run them speculatively, and commit them in program

order. Second, hardware transactional memory (HTM) schemes

support optimistic synchronization in explicitly-parallel pro-

grams [19, 32, 35, 51, 62]. HTM guarantees that certain tasks,

called transactions, execute atomically and in isolation. Unlike

TLS’s ordered tasks, HTM transactions are unordered.

We demonstrate the benefits of speculation-aware mul-

tithreading on Swarm [40, 41], a recent architecture for

speculative parallelization. We choose Swarm as a baseline

for two key reasons. First, Swarm’s task-based execution

model is general: it supports ordered and unordered parallelism,

subsuming TLS and HTM, and allows more ordered programs

to be expressed than TLS. This lets us test SAM with

a broader range of speculative programs than alternative

baselines. Second, Swarm’s microarchitecture enables scalable

speculative execution of fine-grain tasks. This lets us test SAM

on large-scale systems with hundreds of threads.

Finally, prior work has also proposed software-only tech-

niques to exploit speculative parallelism [10, 58, 65, 72, 85].

These techniques do not need hardware changes, but are

limited by the overheads of version management, conflict

detection, and scheduling of speculative tasks. While our

evaluation focuses on hardware-accelerated techniques, SAM

should be equally applicable to software-only techniques.

B. Multithreaded Cores

Multithreaded cores improve pipeline utilization by execut-

ing multiple threads concurrently. Fine-grain multithreading

cores [73] can issue instructions from a single thread on each

cycle, while simultaneous multithreading (SMT) cores [83]

can issue instructions from multiple threads on each cycle.

Multithreading is crucial to achieve high performance with

simple in-order cores, where threads suffer frequent stalls due

to long-latency operations (e.g., cache misses). Simple and

highly-threaded cores are the building block of throughput-

optimized systems like HEP [73], Niagara [45], and GPUs [25].

Multithreading is also beneficial with out-of-order (OoO)

cores, although to a smaller degree than with in-order cores,

because OoO cores feature many complex techniques to

tolerate long-latency operations. Unlike in-order cores, OoO

cores are sensitive to the particular interleaving of instructions,

and require specialized issue policies like ICount [82] to

achieve high pipeline efficiency. As we will see, SAM can be

combined with these policies to achieve both high speculation

efficiency and high pipeline efficiency.

C. Pitfalls of Speculation-Oblivious Multithreading

We now explore the interplay between multithreaded cores

and speculative tasks by analyzing the behavior of a few

representative applications as the number of threads per core

increases. This analysis identifies the pitfalls of speculation-

oblivious multithreading and motivates the need for a specu-

lation-aware multithreading policy.

For these experiments, we use a baseline system that extends

Swarm with a state-of-the-art conflict resolution policy, Wait-n-

GoTM [37]. Upon a conflict, Wait-n-GoTM adaptively decides

whether to forward speculative data or to stall the requester,

and orders tasks lazily. This policy reduces aborts under

contention, especially for unordered benchmarks. Sec. IV

describes this system in detail, but in-depth knowledge is not

required to understand the following analysis.

The baseline uses 2-wide issue, in-order cores similar to

those of Cavium ThunderX [30]. Cores use SMT: at each

cycle, the core can issue up to two micro-ops from one or two

threads. When multiple threads have issuable micro-ops, a

speculation-oblivious round-robin policy selects among them.

Fig. 1 shows how the number of threads per core affects

performance on a 64-core system (Sec. V details our methodol-

ogy). Each 8-bar group reports results for a single application,

using from 1 to 8 threads per core. We consider an unordered

application, vacation, and two ordered applications, des and

astar. The height of each bar is execution time relative to

that of single-threaded cores (lower bars are better). Moreover,

each bar shows the breakdown of how cores spend cycles:

• Cycles where micro-ops are issued by tasks that:

– perform useful work that will be committed, or

– are performing work that will later be aborted.

• Cycles where no micro-op is issued, because:

– data or structural dependences among a thread’s instruc-

tions result in all micro-ops being not ready,

– an inter-task data-dependence conflict has stalled a

thread’s task,

– a thread is stalled because a speculation resource is full,

such as the task or commit queue, or

– a thread has no instructions because it has no task to run.

Among these categories, multithreading is aimed at reducing

not ready in order to increase the number of cycles where

micro-ops are issued. This is beneficial when the effect is an

increased rate of committed micro-ops. However, we will show
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Figure 1. Execution time and cycle breakdown of three representative apps
running on 64-core systems with 1 to 8 threads per core (lower is better).

that multithreading can also have the undesirable consequence

of increasing cycles spent in aborted, conflict, and queue.

Multithreading can be highly beneficial: vacation in Fig. 1

shows that multithreading can dramatically increase perfor-

mance. vacation has plentiful parallelism, but accesses main

memory frequently. As a result, its time is spent either issuing

instructions from tasks that later commit, or waiting (not ready)

on data dependences caused by long-latency loads. With a

single thread per core, not-ready stalls waste 75% of issue

slots. These stalls greatly decrease with multithreading. They

are still significant with four threads per core, but become

negligible at eight threads per core. With eight threads per

core, vacation is 3.9× faster than on a single thread.

This result shows that multithreading can improve per-

formance on speculative programs: these programs often

have much more parallelism than the system has cores, and

multithreading is a cheap way to put that parallelism to good

use. Supporting eight threads increases core area by about

30% [20] but nearly quadruples performance in vacation.

Though more threads yield diminishing returns, we find that the

most resource-efficient configuration is often highly threaded.

However, speculation introduces two deleterious pathologies

that can limit the benefits of multithreading:

Pathology 1—Increased aborts: des in Fig. 1 shows that

multithreading can increase wasted work to the point of hurting

performance. Like vacation, des with a single thread per

core loses many issue slots to dependences among instructions.

Unlike vacation, des has limited parallelism: with a single

thread per core, 7% of issue slots are wasted on tasks that

are later aborted. Aborts grow with the number of threads per

core: with eight threads per core, 40% of issue slots are lost to

aborted work. As a result, multithreading hurts performance

beyond four threads per core.

It is well known that, when speculative applications have

limited parallelism, increasing concurrency adds aborts and

may hurt performance. However, prior work has shown this

effect when increasing the number of cores [92], not the num-

ber of threads per core. This implies two critical differences.

First, with multithreading, wasted work hurts performance

much more quickly than when increasing the number of cores,

because tasks that will abort take execution resources away

from tasks that will commit, slowing them down. Second, with

multithreading, there is a simple way to affect how instructions

from different tasks share core resources: the issue policy. A

speculation-aware issue policy can prioritize instructions from

likely-to-commit tasks, improving their performance.

Pathology 2—Inefficient use of speculation resources: astar

in Fig. 1 shows that multithreading can degrade performance

by overloading speculation resources. Like the two previous

applications, single-threaded astar loses over half of issue

slots to instruction dependences, which multithreading could

address. However, astar is an ordered application that stresses

our baseline’s commit queues. Commit queues hold the

speculative state of tasks that finish execution but cannot

yet commit, so that the core can run another task. When these

commit queues fill up, however, cores cannot run more tasks,

and stall. Fig. 1 shows that these queue stalls increase with the

number of threads per core, and make multithreading degrade

performance beyond three threads.

In general, adding threads increases pressure on speculation

resources due to two compounding effects. First, more tasks

are active, demanding more speculation resources. Second,

multithreading increases the latency of individual tasks, so

tasks hold speculation resources for longer. This is not limited

to commit queues, e.g., BlueGene/Q runs out of transaction

IDs more frequently with multiple threads per core [88].

In summary, wasted work and inefficient use of speculation

resources have a substantial impact on the performance of

multithreading. These observations lead to speculation-aware

multithreading (SAM). SAM prioritizes the execution of tasks

with a higher conflict resolution priority. SAM reduces wasted

work because it focuses execution resources on tasks that

are more likely to commit. And SAM also reduces the time

speculation resources are held, because tasks with a higher

conflict resolution priority commit earlier. Though simple,

SAM is highly effective at addressing these pathologies.

III. SPECULATION-AWARE MULTITHREADING

The speculation-aware multithreading (SAM) policy priori-

tizes each thread according to the conflict resolution priority

of the speculative task that the thread is currently running.

We describe SAM’s mechanisms for a generic conflict

resolution policy (we discuss our baseline’s policy in Sec. IV).

A conflict resolution policy establishes an implicit or explicit

priority order among speculative tasks, and resolves conflicts

among tasks following this priority. For example, under most

policies, lower-priority tasks cannot abort higher-priority tasks.

There is a wide variety of conflict resolution policies [11,

37, 51, 70], both in terms of the information used to prioritize

tasks (age, work done so far, etc.) and the corrective actions

taken upon a conflict (stalling or aborting a task, or forwarding
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data). In general, two characteristics are relevant for SAM.

First, a task’s conflict resolution priority can change while the

task runs (e.g., upon a conflict with another task). Therefore,

SAM interfaces with the conflict resolution policy to receive

these frequent priority updates and immediately adjust thread

priorities. Second, two tasks may have the same priority (e.g.,

if they are unordered and have not encountered any conflicts).

Therefore, SAM breaks ties among same-priority threads using

a secondary policy, such as round-robin or ICount.

In the remainder of this section, we first describe SAM’s

implementation for in-order and out-of-order cores, then ana-

lyze why SAM effectively reduces multithreading pathologies

by comparing it with several other policies.

A. SAM on In-Order Cores

Fig. 2 shows the in-order core we use and the changes

needed to support SAM. Our implementation performs issue-

stage prioritization. Each cycle, the issue stage selects among

ready micro-ops from all threads. Priorities are absolute: ready

micro-ops from a higher-priority thread are always selected

over those of lower-priority threads. Ready micro-ops from

same-priority threads share slots using a round-robin policy.

SMT
IssueFetch Decode les

lesRegister
Files

Pipe 0
Pipe 1

Int ALU

FP ALU

Int ALU

Mem/DCache

Thread 
micro-op 
queues

Conflict resolution
priority updates
(from task unit)

SAM issue priorities
(higher is better)
2 3 2 1

Figure 2. In-order core with SAM modifications.

This prioritized issue scheme is simple and available in

commercial systems [12, 29]. The key problem that SAM

addresses is how to set thread priorities to maximize the

benefits of multithreaded cores on speculative systems. SAM

recomputes thread priorities when a thread starts executing a

new task and when the conflict resolution priority of a running

task is updated.

Fairness and forward progress: SAM is unfair by design—it

prioritizes one or a few threads rather than sharing resources

equitably among threads. While priorities may cause long-

term unfairness and even prevent forward progress in non-

speculative systems [14], SAM does not suffer from these

problems because conflict resolution policies always guarantee

that every task can eventually become the system’s highest-

priority task [5, 11, 51].

B. SAM on Out-of-Order Cores

SAM’s prioritized execution introduces more nuanced

tradeoffs on out-of-order (OoO) cores. On in-order cores,

priorities have little effect on pipeline efficiency. But priorities

can affect the throughput of OoO cores, for two reasons:

• Increased stalls: Threads in an OoO core share limited issue

buffer and reorder buffer (ROB) entries, as well as physical

(renamed) registers. These resources are acquired by micro-

ops before they are ready to issue. Therefore, prioritizing

one thread may clog these resources with dependent micro-

ops that will take a long time to become ready, causing stalls.

Prior OoO SMT issue policies like ICount [82] address this

pathology by prioritizing threads according to how well they

use these resources. This is not a problem on in-order cores

because prioritization is only done among ready micro-ops.

• Increased wrong-path execution: OoO cores can execute

micro-ops far past a mispredicted branch. These wrong-

path micro-ops waste execution resources. In SMT cores,

if resources are shared fairly among threads, wrong-path

execution becomes less frequent, because each thread has

fewer micro-ops in flight (and thus does not execute as

far past unresolved branches). But this reduction does not

materialize if we prioritize a particular thread rather than

sharing resources fairly. This is not a problem on in-order

cores because a non-issuable branch prevents subsequent

instructions from being issued (e.g., our in-order core

resolves branches at issue, so it avoids wrong-path issues,

though it does perform wrong-path fetches and decodes).

Despite these handicaps, we find that prioritizing instructions

from likely-to-commit tasks is the first-order constraint for

OoO cores. Therefore, our SAM implementation performs

aggressive prioritization. In fact, SAM is more effective when

backend structures (issue buffer, ROB, physical registers, and

load-store queues) are dynamically shared among threads

rather than statically partitioned. The reason is that shared

structures let SAM prioritize threads more aggressively. Sec. VI

presents experimental results to justify this selection.

SAM’s desire for prioritization makes our core deviate from

typical designs, which seek some amount of fairness among

threads. For example, dynamically shared ROBs are relatively

rare (e.g., the EV8 used a shared ROB [23], but modern Intel

cores use partitioned ROBs). And our results contradict prior

work by Raasch and Reinhardt [61], who find that partitioned

vs shared ROBs make little difference, because they implicitly

focused on fair policies.

Basic SAM policy: Fig. 3 shows our OoO core SAM imple-

mentation. Each cycle, if there are free issue buffer, ROB,

SMT
IssueFetch Decode

Thread 
micro-op 
queues

Issue 
Buffer

Physical 
Reg File

Pipe 0

Reorder 
Buffer

In-flight uops (for ICount)
3 9 4 2

Pipe 1

SAM priorities
3 4 2 1

Conflict resolution
priority updates
(from task unit)

Conflict res. priorities
2 3 2 1

Figure 3. Out-of-order core with SAM modifications.
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and renamed register entries, the issue stage injects up to two

decoded micro-ops into the unified issue buffer. SAM performs

prioritization at this point, always selecting micro-ops from

higher-priority threads. SAM breaks ties among same-priority

threads using ICount (i.e., it selects micro-ops from the thread

with the fewest micro-ops in flight). This way, SAM retains

ICount’s pipeline efficiency when tasks are undifferentiated.

Adaptive SAM policy: Although we find that prioritizing

aggressively is better on average, applications with rare

aborts and little contention can still benefit from ICount’s

higher pipeline efficiency. To this end, we implement a

simple policy that combines the benefits of SAM and ICount.

This policy keeps running counts of cycles lost to task-

level speculation (aborted + conflict + queue) and pipeline

inefficiencies (not ready + wrong path). If cycles lost to task-

level speculation dominate, the core uses SAM; if cycles

lost to pipeline inefficiencies dominate, the core uses ICount.

Sec. VI-C shows that this adaptive policy slightly improves

on the basic SAM policy at low thread counts.

C. SAM Analysis

We now analyze why SAM effectively reduces multithread-

ing pathologies. Fig. 4 compares SAM with several other

multithreading policies. Each bar shows the breakdown of

issue slots, following the same nomenclature as Sec. II-C.

These experiments use a system with 64 in-order cores with

8 threads per core (results do not qualitatively change with

OoO cores). We use five representative applications that cover

the full range of sensitivity to aborts, queue stalls, and conflict

stalls: vacation-high, des, and astar from Sec. II, as well

as kmeans-high and intruder.
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Figure 4. Execution time and cycle breakdown of different issue policies
across representative applications, on a system with 64 in-order cores and 8
threads per core (lower is better).

Fig. 4 shows that SAM significantly outperforms the baseline

round-robin policy (RR).1 SAM reduces aborts, queue stalls,

and conflicts. As we will see in Sec. VI, these benefits are

consistent across all applications.

1We have evaluated speculation-oblivious policies beyond RR, like ICount,
but they make nearly no difference on an in-order core (Sec. VI).

Two effects could explain SAM’s improvement over RR.

First, SAM prioritizes tasks that are more likely to commit.

Second, SAM, and in fact any prioritization policy, introduces

unfairness: most resources are devoted to the highest-priority

task, reducing the overlap among tasks in the same core.

Distinguishing these two effects is important: any priority

scheme causes unfairness, so simpler policies could perform

as well as SAM. To this end, Fig. 4 also includes two simple

prioritization policies: fixed-priority (FP), where each thread

in the core uses a fixed priority that is preserved across tasks;

and start-order (SO), which gives higher priority to older tasks.

FP performs worst, showing that prioritizing differently

than the conflict resolution priority is a poor strategy: FP

often gives resources to tasks that are likely to abort, wasting

much more work than any other policy. At 8 threads per core,

FP is 2.2× slower than RR. SO performs as well as RR on

average, but shows variance across applications. We observe

that SO performs better on the applications where start order

is close to conflict resolution order. These experiments show

that prioritizing likely-to-commit work is the dominant effect.

In summary, simpler prioritization policies perform worse

than directly enforcing conflict resolution priorities. One may

wonder whether a more sophisticated policy would perform

better, e.g., using prediction to better estimate how likely to

commit a task is. However, if such a predictor exists, we argue

that it should be used to alter the conflict resolution priority

directly.

IV. BASELINE SPECULATIVE ARCHITECTURE

We implement SAM on a baseline speculative architecture

that builds on Swarm [40, 41], a recent architecture that

performs well on both ordered and unordered programs. This

lets us evaluate SAM with a broader range of programs than

if we used a TLS or HTM baseline. To reduce aborts under

contention and make the system more efficient on unordered

benchmarks, we adopt the conflict resolution techniques from

Wait-n-GoTM [37]. Although we evaluate SAM within this

baseline, SAM solves a general problem and should benefit

any other HTM and TLS schemes that use multithreaded cores.

Further, SAM is not tied to a conflict resolution policy. We

use Wait-n-GoTM because it is a state-of-the-art policy.

Sec. IV-A and Sec. IV-B present Swarm’s main features (see

prior work [40, 41] for details). Sec. IV-C describes the Swarm

+ Wait-n-GoTM conflict resolution policy. Sec. IV-D extends

Swarm’s conflict detection mechanisms to cheaply support

multithreaded cores, in a way similar to BulkSMT [59].

A. Swarm Execution Model

Swarm programs consist of timestamped tasks. Each task

may access arbitrary data, and can create child tasks with any

timestamp greater than or equal to its own. Swarm guarantees

that tasks appear to run in timestamp order. If multiple tasks

have equal timestamp, Swarm chooses an order among them.
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Swarm exposes its execution model through a simple

API. Listing 1 illustrates this API by showing the Swarm

implementation of des, a discrete event simulator for digital

circuits adapted from Galois [34, 58].

void desTask(Timestamp ts, GateInput* input) {
Gate* g = input->gate();
bool toggledOutput = g.simulateToggle(input);
if (toggledOutput)
// Toggle all inputs connected to this gate
for (GateInput* i : g->connectedInputs())
swarm::enqueue(desTask, ts+delay(g,i), i);

}

void main() {
[...] // Set up gates and initial values
// Enqueue events for input waveforms
for (GateInput* i : externalInputs)
swarm::enqueue(inputWaveformTask , 0, i);

swarm::run(); // Start simulation
}

Listing 1. Swarm implementation of discrete event simulation for digital
circuits.

Each task runs a function that takes a timestamp and

an arbitrary number of additional arguments. Listing 1 de-

fines one task function, desTask, which simulates a signal

toggling at a gate input. Tasks can create child tasks by

calling swarm::enqueue with the appropriate task function,

timestamp, and arguments. In our example, if an input toggle

causes the gate output to toggle, desTask enqueues child

tasks for all the gates connected to this output. Finally, a

program invokes Swarm by enqueuing some initial tasks with

swarm::enqueue and calling swarm::run, which returns

control when all tasks finish. For example, Listing 1 enqueues

a task for each input waveform, then starts the simulation.

Swarm’s execution model supports both TLS-style ordered

speculation by choosing timestamps that reflect the serial order

as in prior work [67], and TM-style unordered speculation by

using an equal timestamp for all tasks. Moreover, Swarm’s

execution model generalizes TLS by decoupling task creation

and execution orders: whereas in TLS schemes a task can only

spawn speculative tasks that are immediate successors [31,

32, 67, 76, 77], a Swarm task can create child tasks with any

timestamp equal or higher than its own. This allows programs

to convey new work to hardware as soon as it is discovered

instead of in the order it needs to run, exposing a large amount

of parallelism for ordered irregular applications [40].

B. Swarm Microarchitecture

Swarm uncovers parallelism by executing tasks speculatively

and out of order. To uncover enough parallelism, Swarm

can speculate thousands of tasks ahead of the earliest active

(unfinished) task. Swarm introduces modest changes to a tiled,

cache-coherent multicore, shown in Fig. 5. Each tile has a

group of multithreaded cores, each with its own private L1

cache. All cores in a tile share an L2 cache, and each tile has

a slice of a fully-shared L3 cache. Every tile is augmented

with a task unit that queues, dispatches, and commits tasks.
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Figure 5. Swarm CMP and tile configuration.

Swarm hardware efficiently supports fine-grain tasks and

a large speculation window through four main mechanisms:

low-overhead hardware task management, large task queues,

scalable data-dependence speculation mechanisms, and high-

throughput ordered commits.

Hardware task management: Each tile’s task unit queues

runnable tasks and maintains the speculative state of finished

tasks that cannot yet commit. Swarm executes every task

speculatively, except the earliest active task. To uncover enough

parallelism, task units can dispatch any available task to cores,

no matter how distant in timestamp order. A task can run even

if its parent is still speculative.

Each task is represented by a task descriptor that contains its

function pointer, timestamp, and arguments. Threads dequeue

tasks for execution in timestamp order from the local task

unit. Successful dequeues initiate speculative execution at the

task’s function pointer and make the task’s timestamp and

arguments available in registers. A thread stalls if there is no

task to dequeue. Tasks create child tasks and enqueue them

to a tile for execution.

Large task queues: The task unit has two main structures: (i) a

task queue that holds task descriptors for every task in the

tile, and (ii) a commit queue that holds the speculative state

of tasks that have finished execution but cannot yet commit.

Together, these queues implement a task-level reorder buffer.

Task and commit queues support tens of speculative tasks

per core (e.g., 128 task queue entries and 32 commit queue

entries per core) to implement a large window of speculation

(e.g., 8192 tasks in the 64-core CMP in Fig. 5). Nevertheless,

because programs can enqueue tasks with arbitrary timestamps,

task and commit queues can fill up. This requires some simple

actions to ensure correct behavior. Tasks that have not been

dequeued and whose parent has committed are spilled to

memory to free task queue entries. For all other tasks, queue

resource exhaustion is handled by either stalling the enqueuer

or aborting higher-timestamp tasks to free space [40].

Scalable data-dependence speculation: Swarm performs eager

(undo log-based) version management and eager conflict

detection using Bloom filters, similar to LogTM-SE [90].

Swarm always forwards still-speculative data accessed by a

later task; on a conflict, Swarm aborts only descendants and

data-dependent tasks.
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High-throughput ordered commits: Finally, Swarm adapts the

virtual time algorithm [38] to achieve high-throughput ordered

commits. Tiles periodically communicate with an arbiter (e.g.,

every 200 cycles) to discover the earliest unfinished task in the

system. All tasks that precede this earliest unfinished task can

safely commit. This scheme achieves high commit rates, up

to multiple tasks per cycle on average. This allows fine-grain

ordered tasks, as short as a few tens of cycles.

C. Conflict Resolution Policy

Our key hypothesis is that thread issue priority and conflict

resolution ordering should be coordinated. Therefore, it is

important that we use a conflict resolution policy that does

not overly restrict task ordering. Unfortunately, Swarm as

proposed in prior work overly restricts conflict resolution order

among unordered tasks. Furthermore, since multithreading

often increases wasted work (Sec. II), we should use a policy

that minimizes aborts. Swarm also violates this principle

and causes more aborts than needed by always forwarding

speculative data. We solve both these problems by adapting

the key techniques from Wait-n-GoTM [37].

Lazy virtual time tiebreakers: Swarm’s conflict resolution

policy encodes task order using virtual time: the concatenation

of a task’s programmer-assigned timestamp and a tiebreaker.

Tiebreakers are unique and monotonically increasing, which

guarantees forward progress and preserves parent-before-child

order. A task’s virtual time determines both its commit order

and its conflict resolution order: on an access, the task aborts

all conflicting higher-virtual time tasks; conversely, the task

can be aborted by any lower-virtual time tasks.

The original Swarm protocol greedily assigns each task

a unique tiebreaker when the task begins execution. When

tasks have equal programmer-assigned timestamp, greedy

tiebreaking restricts order and causes needless aborts. Fig. 6(a)

shows such a needless abort: tasks A and B both have

timestamp 0, and are assigned tiebreakers 10 and 20 when

they start execution. Task B writes to address X first, then

task A issues a read request to X. Because B is ordered after

A, B must abort.

Drawing from Wait-n-GoTM [37], we instead assign

tiebreakers lazily. Tasks start running without a tiebreaker,

and are assigned one when they acquire a dependence with an

equal-timestamp task. Fig. 6(b) shows how this works in our

example: tasks A and B have no tiebreaker until task A requests

X. At that point, task B, which already wrote X, acquires a

tiebreaker and forwards X’s data to A. Among tasks with

the same timestamp, tasks without a tiebreaker are always

ordered after tasks with a tiebreaker (our implementation

accomplishes this by using the largest possible tiebreaker to

represent UNSET). To preserve parent-before-child order, a

parent acquires a tiebreaker when it creates its first equal-

timestamp child. To preserve commit order, if a task finishes

execution without a tiebreaker, it is assigned one. To guarantee

forward progress, a task retains its tiebreaker until it commits.

vtA=(0, 10)

write X 

Tim
e

read X 

vtB=(0, 20)

vtB > vtA
Abort

Task A
Task B vtA=(0, UNSET)

write X 

read X 

vtB=(0, UNSET)

Set vtB = (0,50)
vtB < vtA

Forward X

Task A
Task B

(a) Needless abort caused by 
eager virtual time tiebreakers

(b) Lazy tiebreakers order on 
first conflict, avoiding abort

Figure 6. Eager virtual time tiebreakers (used in original Swarm) vs lazy
tiebreakers (used here).

Wait-n-GoTM employs a more sophisticated scheme, Time-

Traveler [86], which uses lower and upper bounds that are

progressively restricted upon conflicts. One can construct

situations where TimeTraveler would avoid aborts that a

single tiebreaker cannot. However, these situations are rare

(e.g., they involve three or more tasks conflicting on different

addresses), and we observe the benefit would be marginal:

across all applications, 81% of accesses come from tasks

without tiebreakers. Therefore, we opt for this simpler scheme.

Adaptively stalling vs forwarding: Suppose an access from

task A conflicts with task B (e.g., A issues a read to a line

that B previously wrote). If B has higher virtual time than

A, B must be aborted. However, if B has a lower virtual

time than A, there are two options: the system could forward

B’s speculatively-written data to A, or it could stall A until

B finishes executing or commits. Forwarding can improve

performance, but makes A dependent on B, causing it to abort

on a cyclic dependence, i.e., if B writes the line again.

Most systems adopt a fixed policy: LogTM [51, 90] and

most early HTMs [19, 32, 63] always stall, while Swarm,

DATM [64], and most other conflict-serializable HTMs [5,

59, 60] always forward. Wait-n-GoTM improves on these

designs by detecting what conflicts are likely to cause cyclic

dependences and stalling only on those. We adopt Wait-n-

GoTM’s line-based predictor and training scheme, including

one predictor per tile. This predictor is checked before the tile

responds to a conflicting request. If the line is predicted to

cause a cyclic dependence, the tile NACKs the request, stalling

requester task A, and records the dependence in staller task B’s

log. When B finishes, the tile ACKs task A, which resumes

execution when all stalls have been cleared (multiple tasks may

stall a given request). This implements the Wait-n-GoTM-wait

variant [37].

SAM prioritization: In this system, the task’s virtual time

is its conflict resolution priority. Therefore, SAM prioritizes

each thread using its task’s virtual time. Tasks with a lower

virtual time are given higher priority, and tasks with equal

virtual time are given equal priority. The core recomputes

thread priorities when a thread dequeues a new task and when

a task’s virtual time is assigned a tiebreaker.
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D. Multithreaded Cores

Finally, we modify the Swarm L1 caches to support multiple

threads. We strive for simplicity, since L1 accesses must be

fast. Each line has a single safe bit per thread context. Safe

bits let multiple threads share the L1 without violating conflict

check rules. An L1 hit can only be served from the L1 if the

thread’s safe bit is set. If unset, the core issues an L2 access,

which causes a conflict check. When the request finishes, the

safe bit is set. If the request is a write, the line’s safe bits

of all other threads are cleared. When a thread dequeues a

new task, if its virtual time precedes the previous task’s, the

thread’s safe bits for all L1 lines are flash-cleared (safe bits

are kept otherwise, because conflict checks performed for a

given virtual time are also valid for higher ones [40]).

Safe bits are similar to BulkSMT-ORDER’s access bits [59].

Unlike BulkSMT, which can detect conflicts and order tasks

within the core, we defer all conflict detection to the tile for

simplicity. Because tiles are small, tile-level checks are fast.

V. EXPERIMENTAL METHODOLOGY

Modeled systems: We use a cycle-accurate, event-driven

simulator based on Pin [49, 56]. We use detailed core,

cache, network, and main memory models, and simulate all

speculative execution overheads (e.g., running mispeculating

tasks until they abort, simulating conflict check and rollback

delays and traffic, etc.). We model systems of up to 64 cores

and 8 threads per core, with parameters given in Table I.

We use 2-wide issue in-order and out-of-order cores, shown

in Figs. 2 and 3. Cores run the x86-64 ISA. We use the

instruction decoder and functional-unit latencies of zsim’s

core model, which have been validated against Nehalem [69].

Our in-order core is similar to Cavium ThunderX [30], while

out-of-order cores are similar to Knights Landing [75]. Cores

use SMT with up to 8 threads. Threads share the front-end and

execution units, but have separate micro-op queues before the

issue stage. The backend has two restricted execution ports:

both ports can execute integer micro-ops, but floating-point

micro-ops can run in port 0 only, and memory-access micro-

ops can run in port 1 only. In-order cores are scoreboarded and

stall-on-use, so even a single thread can have multiple memory

requests in flight. Out-of-order cores feature a 36-entry issue

buffer and a 72-entry ROB, both dynamically shared.

Benchmarks: We use a diverse set of ordered and unordered

benchmarks. Table II details their provenance, input sets, and

1-core run-times on an in-order core. Most benchmarks have

1-core run-times of over one billion cycles.

We use eight ordered benchmarks. Six are the graph analyt-

ics (bfs, sssp, astar, msf), simulation (des), and database

(silo) applications from the original Swarm paper [40], and

use the same inputs. The other two, color and nocsim, are

from [39] and use the same inputs. color performs graph

coloring using the largest-degree-first heuristic [89]. nocsim

is a detailed NoC simulator derived from GARNET [2].

TABLE I. CONFIGURATION OF THE 64-CORE CMP.

Cores
64 cores, 16 tiles, 2 GHz, x86-64 ISA, SMT with 1–8
threads

Frontend
8B-wide ifetch; 2-level bpred with 512×10-bit BHSRs +
1024×2-bit PHT; 16-entry per-thread micro-op queues

In-order
backend

2-way issue, scoreboarded, stall-on-use, functional units as
in Fig. 2, 16-entry load/store buffers

OoO
backend

2-way issue/rename/dispatch/commit, 36-entry issue buffer,
72-entry ROB, 16-entry load/store buffers

L1 caches 16 KB, per-core, split D/I, 8-way, 2-cycle latency

L2 caches
256 KB, per-tile, 4 banks (64 KB/bank), 8-way, hashed,
inclusive, 7-cycle latency

L3 cache
16 MB, shared, static NUCA [44] (1 MB slice/tile), 4
banks/tile, 16-way, hashed, inclusive, 9-cycle bank latency

Coherence MESI, 64 B lines, in-cache directories

NoC
4 4×4 meshes; 192-bit links, X-Y routing, 1-cycle routers,
1-cycle links

Main mem
8 controllers at chip edges, 120-cycle latency, 25.6 GB/s
per controller

Queues
128 task queue entries/core (8192 total),
32 commit queue entries/core (2048 total)

Instructions
5 cycles per enqueue/dequeue/finish task
instruction

Conflicts

2 Kbit 8-way Bloom filters, H3 hash functions [17]
Tile checks take 5 cycles (Bloom filters) + 1 cycle per
timestamp compared in the commit queue

Commits Tiles send updates to GVT arbiter every 200 cycles

Spills
Coalescers fire when a task queue is 87% full
Coalescers spill up to 15 tasks each

TABLE II. BENCHMARK INFORMATION: SOURCE IMPLEMENTATIONS,
INPUTS, AND EXECUTION TIME ON A SINGLE IN-ORDER CORE,

SINGLE-THREAD BASELINE SYSTEM.

Source Input 1-core cycles

bfs PBFS [46] hugetric-00020 [6, 21] 2.78 Bcycles
sssp Galois [58] East USA roads [1] 1.95 Bcycles

astar [40] Germany roads [54] 1.17 Bcycles
color [33] com-youtube [47] 0.78 Bcycles

msf PBBS [9] kron g500-logn16 [6, 21] 0.61 Bcycles
des Galois [58] csaArray32 1.30 Bcycles

nocsim GARNET [2] 16x16 mesh, tornado traffic 16.32 Bcycles
silo [81] TPC-C, 4 whs, 32 Ktxns 2.08 Bcycles

ssca2

STAMP [50]

-s15 -i1.0 -u1.0 -l6 -p6 9.93 Bcycles
vacation-l -n2 -q90 -u98 -r1048576 -t262144 2.56 Bcycles

vacation-h -n4 -q60 -u90 -r1048576 -t262144 3.48 Bcycles
kmeans-l -m40 -n40 -i rand-n16384-d24-c16 7.80 Bcycles

kmeans-h -m15 -n15 -i rand-n16384-d24-c16 3.08 Bcycles
genome -g4096 -s48 -n1048576 1.89 Bcycles

intruder -a10 -l64 -s32768 1.77 Bcycles
yada -a15 -i ttimeu100000.2 1.39 Bcycles

We use eight unordered, transactional memory benchmarks

from STAMP [50]. We implement transactions with tasks

of equal timestamp, so that they can commit in any order.

As in prior work in transaction scheduling [4, 92], we break

the original threaded code into tasks that can be scheduled

asynchronously and generate children tasks as they find more

work to do. The default “+” and “++” configurations are either

too short in our largest system (512 threads), or too long to be

simulated in reasonable time, respectively, so we use custom

configurations that interpolate between the default ones.

We use all STAMP applications except bayes and

labyrinth, which consist of few very long transactions that

conflict frequently and all but serialize execution, making
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Figure 7. Performance of single-threaded cores and 8-threaded SMT cores with Round-Robin and SAM on (a) ordered and (b) unordered (STAMP) benchmarks,
as the system scales from 1 to 64 cores. Speedups are relative to the 1-core single-thread system.

them unsuitable for a 512-thread system. (Extending Swarm

to exploit nested speculative parallelism allows bayes and

labyrinth to scale [79], but they stop being unordered appli-

cations.) We observe that intruder and yada use software

task scheduling data structures that limit their scalability.

We refactor both applications to use Swarm’s hardware task

scheduling instead, which makes them scale. We also modify

kmeans to avoid false sharing.

Metrics: We report average performance changes using har-

monic-mean speedups.

On issue slot breakdowns (e.g., Figs. 1 and 4), we account

for each stall reason in proportion to the number of threads

it prevents from issuing. For example, if an issue slot cannot

be used because 3 threads have no ready micro-ops and the

remaining 5 have no task, not ready is charged for 3/8 of

the slot, and no task for 5/8. If a thread uses the slot, stalled

threads are not charged.

For each benchmark, we fast-forward to the start of the

parallel region (skipping initialization), and report results for

the full parallel region. We perform enough runs to achieve

95% confidence intervals ≤ 1%.

VI. EVALUATION

A. Multithreaded Scalability

Fig. 7 compares the performance and scalability of systems

with 1 to 64 in-order cores, using three configurations: single-

threaded cores, and 8-threaded SMT cores with the Round-

Robin (RR) and SAM policies. As we scale the number of

cores, we keep per-core L2/L3 sizes and queue capacities

constant. This captures performance per unit area. Note that

this causes some super-linear speedups because the larger

shared L3 and hardware queues reduce memory pressure and

task spills, respectively. Each line shows the speedup of a

single configuration over the 1-core single-threaded system.

Overall, multithreading improves performance over the

single-threaded configuration, by 2.33× with SAM and by

1.85× with RR on average. Over all benchmarks, SAM

outperforms RR by 20% in harmonic speedup.

Four applications (ssca2, vacation-l, vacation-h, and

kmeans-l) do not suffer from any multithreading pathology:

they have negligible aborts and conflicts, and do not overload

commit queues. Thus, they are insensitive to the issue policy—

RR and SAM perform identically.

For all other applications, SAM consistently outperforms

RR. SAM’s benefits usually increase with the number of

cores, as application parallelism becomes more scarce, and

pathologies more frequent. SAM eliminates or ameliorates

these pathologies. On these applications, SAM outperforms

RR by 28% on average, and by up to 88% (intruder).

B. Analysis of SAM on In-Order Cores

To gain more insights into the differences between SAM and

RR, Fig. 8 reports the execution time and issue slot breakdown

at 64 cores. Similar to Fig. 1, it shows how increasing the

number of threads per core affects execution time. Each seven-

bar group reports results for one application, using single-

threaded cores as well as 2-, 4-, and 8-threaded cores with

both RR and SAM. Results are normalized to those of single-

threaded cores (lower bars are better).
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Figure 8. Execution times and breakdown of issue slots at 64 cores (in-order) for (a) ordered and (b) unordered (STAMP) benchmarks, under a single-threaded
configuration, and 2-, 4-, and 8-threaded configurations with Round-Robin and SAM (lower is better).

Overall, increasing the number of threads per core has three

dominant effects: (i) not-ready stalls decrease, (ii) conflict

stalls and issue slots lost to aborted tasks increase, and

(iii) queue stalls increase. By prioritizing the execution of

tasks that are more likely to commit, SAM mitigates the latter

two factors and improves on RR. We analyze how these factors

affect applications with different contention characteristics and

speculation requirements.

SAM has little effect when the pipeline is lightly loaded: Fig. 8

shows that SAM’s benefits over RR increase with larger thread

counts: SAM’s overall benefit is negligible at 2 threads/core,

6% at 4 threads/core, and 20% at 8 threads/core. This happens

because SAM, and in fact any issue prioritization policy, has

little effect when the number of threads is insufficient to cover

stalls (e.g., due to cache misses). In this situation, not-ready

stalls are common, and threads rarely compete for issue slots

in the same cycle. Fig. 8 shows that this is common with few

threads per core, where not-ready stalls are significant.

Nonetheless, multithreaded systems generally include

enough threads to hide stalls and saturate the pipeline in most

applications, and SAM is highly effective in this regime. Note

that the number of threads needed to saturate the pipeline is

implementation-dependent. Systems with simple in-order cores

need a large number of threads to cover stalls. For example,

Niagara [45] uses 8 threads/core. However, systems with more

complex cores that use aggressive (and expensive) intra-thread

stall-hiding mechanisms, such as out-of-order execution, need

fewer threads. Indeed, on out-of-order cores SAM delivers

significant gains with fewer threads per core (Sec. VI-C).

RR and SAM perform equally well on applications without

pathologies: Ordered bfs and unordered ssca2, vacation-l,

vacation-h, and kmeans-l have plentiful parallelism but

are memory-bound. With little contention, most time is spent

issuing instructions from tasks that commit, or stalled on

long-latency loads. RR and SAM perform equally well by

reducing not-ready stalls. However, even eight threads per

core cannot hide all memory latency in bfs and ssca2, and

some stalls remain. At eight threads per core, these applications

complete 2.9× (kmeans-l) to 5.2× (bfs) faster than with

single-threaded cores.
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Figure 9. Execution times and breakdown of issue slots with 64 out-of-order cores for selected benchmarks, under a single-threaded configuration, and 2-, 4-,
and 8-threaded configurations with ICount, SAM, and ADaptive policies.

SAM reduces wasted work and conflicts under contention:

color has occasional data dependences among tasks, so

adding threads increases aborts. With RR, aborts grow to the

point of overwhelming the benefit of reduced stalls. However,

since SAM prioritizes issues from tasks that are more likely

to commit, it tempers the performance loss caused by aborted

work. At eight threads per core, SAM is 49% faster than RR

on color, and 34% faster than with single-threaded cores.

msf, des, and silo exhibit similar behavior.

The STAMP benchmarks genome, intruder, and yada

also benefit from SAM. Though these applications are un-

ordered, transactions inherit an order from the dynamic

manifestation of dependences. Prioritization based on this

order reduces wasted work by as much as 3.1× (intruder).

On kmeans-high, conflict stalls, caused when the Wait-n-

GoTM protocol detects a likely cyclic dependence, negate the

reduction in not-ready stalls. SAM reduces the chance of such

dependences by reducing the overlap of transactions.

SAM reduces queue stalls on applications that need a large

speculation window: To find independent work, ordered

applications may speculate so far ahead that they fill their

commit and task queues, causing queue stalls. Queue stalls are

significant in many ordered benchmarks and astar exemplifies

this phenomenon. As we saw in Sec. II, in astar, increasing

threads per core with RR causes queue stalls to grow to the

point of negating the benefits of reduced not-ready stalls.

SAM reduces queue stalls by focusing execution resources on

tasks with a lower virtual time, which must commit earlier.

At eight threads per core, SAM is 27% faster than RR on

astar, and 68% faster than the single-threaded configuration.

sssp and silo exhibit similar effects; SAM improves their

performance by reducing both queue stalls and aborted issue

slots. nocsim’s queue stalls are significant, but do not grow

beyond two threads per core; SAM helps nocsim by reducing

aborted work, not queue stalls.

C. Analysis of SAM on Out-of-Order Cores

Compared to in-order cores, out-of-order cores are able to

cover more stalls, so the performance benefits of multithread-

ing are lower. However, a comparatively larger fraction of issue

slots are wasted to aborts, hence the need for SAM is higher.

On average, 8-threaded cores outperform single-threaded cores

by 1.52× with SAM vs only 1.11× with ICount (IC). Moreover,

at 8 threads, SAM reduces wasted work by 2× over IC. 2

To understand these differences, Fig. 9 reports the exe-

cution time and issue slot breakdown for six representative

applications. color, silo, and intruder show that aborts

and conflict/queue stalls are the first-order concern in OoO

cores. With IC, cycles lost to these pathologies make these

applications slower on 8-threaded cores than on single-

threaded cores. By contrast, SAM keeps cycles lost to aborts

and conflict/queue stalls nearly flat, outperforming IC by up to

4.4× (color). This happens even though IC reduces not-ready

stalls and wrong-path execution more than SAM.

sssp shows how the adaptive policy can be beneficial. With

2 and 4 threads per core, IC’s better pipeline utilization makes

IC outperform SAM. With SAM, a single thread grabs most

ROB entries, starving lower-priority threads. The adaptive

policy detects this situation (aborts < wrong path + not ready

stalls) and opts for the higher pipeline efficiency of IC. des

and silo show similar behavior.

Finally, intruder shows a case where the adaptive policy is

suboptimal. With 4 threads per core, SAM has more not-ready

stalls than IC but it more than makes up for it by reducing

aborts. Therefore, the basic SAM policy is 43% faster than IC.

However, the adaptive SAM policy, which by design tries to

equalize aborts and stalls, attains a middle ground, where it is

only 23% better than IC. Though they occur, these anomalies

are very rare, and adaptive SAM nearly always matches the

best of SAM and IC.

2We have also evaluated using RR instead of IC in OoO cores, but, like
prior work, we find that IC is consistently better.
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Sensitivity to resource sharing policies: As discussed in

Sec. III, we dynamically share backend OoO structures among

threads. Fig. 10 shows why this is a good idea by comparing

the performance of statically-partitioned and dynamically-

shared ROBs under IC and SAM. With more threads, IC

suffers more aborts and queue and conflict stalls. These hurt

performance with more threads, despite IC’s higher pipeline

utilization (fewer cycles lost to wrong-path or not-ready micro-

ops). Partitioned and shared ROBs show the same trend.
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Figure 10. Performance of ICount, basic SAM, and adaptive SAM with
statically-partitioned vs dynamically-shared ROBs.

SAM ameliorates these pathologies, but the type of ROB

impacts its effectiveness. With partitioned ROBs, as threads

grow SAM still suffers from increased aborts and queue/con-

flict stalls, although at a lower rate than ICount. This happens

because the highest-priority thread fills its ROB partition and

lets micro-ops from other, more speculative threads be issued.

With a shared ROB, however, SAM can fill the issue buffer

with micro-ops from a single thread. As a result, SAM keeps

cycles lost to aborts and queue/conflict stalls nearly flat. This

comes at the price of higher wrong-path micro-ops and not-

ready stalls. But these inefficiencies are secondary, and SAM

is thus most effective when it can prioritize most aggressively.

D. Case Study: Throttling

Throttling, i.e., limiting the number of tasks executed in

parallel, is a general strategy to reduce aborts in speculative

systems. Prior work has designed transactional memory

schedulers that limit the number of concurrent transactions [4,

7, 8, 92], reacting to contention to reduce aborts. Throttling

can improve performance when tasks that ultimately abort slow

down committed tasks, as is the case with multithreaded cores.

However, we show that SAM is significantly more effective

than throttling: adaptively limiting the number of active threads

provides no benefit over SAM, and while throttling slightly

improves RR, a large gap remains between RR and SAM.

We implement a simple throttler that builds on two insights.

First, in all our applications, we observe there is a single thread

count that performs best, and there are no other local maxima.

Therefore, we use simple hill climbing to find the best number
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Figure 11. Average execution time and issue slot breakdown for in-order 64-
core (a) 8-threaded systems with RR and SAM, with and without throttling;
and (b) systems with dual-issue (baseline) and single-issue cores.

of threads per core. Second, many applications are either

stable or change slowly over time. Therefore, we perform hill

climbing as the application runs, incurring minimal cost.

Our throttler operates by periodically exploring nearby

thread counts, and settles on the count that performs best.

Since our applications are speculative, we use committed

instructions per cycle as the performance metric (i.e., we do

not consider executed instructions from tasks that later abort).

First, the throttler randomly chooses to either increase or de-

crease the number of active threads on every core in the system.

If performance improves at the new thread count, the throttler

continues changing the number of threads per core in the

same direction, until it either reaches the minimum/maximum

number of threads or performance degrades. If performance

degrades, the throttler goes back to the previous thread count.

This way, the throttler settles on the best-performing thread

count among the explored ones. Each measurement interval

is M cycles long, and the throttler stays at the new thread

count for S cycles. We tune M (50K−500K cycles) and S
(250K−2.5M cycles) on a per-application basis to provide

maximum benefit for each application.

RR with throttling yields marginal improvements, and a large

gap with SAM remains: As shown in Fig. 11(a), throttling

improves RR marginally, by 5.4% on average at 8 threads per

core. However, this is not sufficient to close the gap with SAM.

Moreover, throttling does not improve SAM’s performance.

Throttling with RR only helps reduce aborts incurred at higher

thread counts. In contrast, SAM reduces aborted instructions

and queue stalls by prioritizing instructions from tasks that

are likely to commit. Further, performance with throttling is

sensitive to the throttler’s interval lengths—no single length

performs best across all applications. Such careful parameter

tuning makes throttling harder to apply than SAM.

In summary, throttling is inferior to SAM, as applying it to

RR fails to capture most of SAM’s improvements.
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E. Sensitivity to Issue Width

Finally, Fig. 11(b) compares the behavior of a single-issue

in-order core to the baseline 2-wide issue core. With one thread

per core, the single-issue core performs 11% worse than the

baseline. RR’s performance degrades more rapidly beyond four

threads, and 8-threaded RR cores are worse than 2-threaded

cores. This happens because fewer threads are needed to

avoid most stalls in the narrower pipeline. By contrast, SAM’s

performance does not degrade with thread count, although its

benefits with increasing thread counts are reduced. Overall,

this result shows that SAM avoids pathologies even when

execution resources are more heavily contended.

VII. ADDITIONAL RELATED WORK

A. Multithreading in Speculative Parallelism

IMT [57] is perhaps the closest proposal to SAM. For a

multithreaded single-core TLS system, IMT prioritizes the

sole non-speculative thread when inter-thread dependences are

frequent. In contrast, SAM derives core-local priorities for all

cores and threads in the system. While IMT is sensible in a

1-core system, on the 512-thread system we evaluate, IMT

would have negligible impact by prioritizing the one thread

(system-wide) that runs the single non-speculative task.

Other work has supported speculative parallelization on

SMT cores, first in the context of TLS [3, 55, 87], and more

recently on HTM [59]. These proposals focus on tailoring

the versioning and conflict detection mechanisms to SMT

cores. However, these systems use conventional multithreading

policies, such as round-robin or ICount [82]. By contrast, SAM

shows that coordinating issue and conflict resolution priorities

makes speculation much more efficient.

Recent work has implemented HTM for GPUs [26, 27],

which have heavily multithreaded cores. Like the above

designs, this work focuses on tailoring speculative mechanisms

to the characteristics of GPUs, to cope with their large

numbers of threads and exploit their data-parallel nature. These

techniques also use conventional multithreading policies.

B. Prioritization in Non-Speculative Systems

Prior work has proposed SMT prioritization policies for

parallel programs. Tullsen et al. [84] propose fine-grain

synchronization techniques to accelerate lock-based programs.

Cai et al. [15] and Boneti et al. [12, 13] use SMT priorities

to address work imbalance in barrier-based programs. Beyond

SMT, ACS [80] and BIS [42] accelerate critical sections and

other bottlenecks in multithreaded programs by scheduling

them in fast cores on a heterogeneous system. These prior-

itization techniques are useful to accelerate non-speculative

synchronization constructs, but not speculative parallelism,

where all synchronization among tasks is implicit.

Prior work has also proposed many GPU thread (i.e., warp)

prioritization schemes [43, 48, 53, 68, 71]. These schemes

mainly seek to improve locality by limiting the number of

threads that are interleaved at fine granularity. Locality is the

overriding concern in GPUs because they are heavily threaded

and have very little on-chip storage per thread. However, issue

policies have a minor effect on locality for the number of

threads per core we consider.

Finally, some SMT systems expose issue priorities to

software [12, 29]. While our SAM implementation controls

priorities in hardware, software TM or TLS systems could

use this support to implement SAM.

VIII. CONCLUSION

We have shown that conventional multithreading policies

cause significant pathologies on speculative parallel programs:

increased aborts and added pressure on speculation resources.

We have presented speculation-aware multithreading (SAM), a

simple policy that addresses these pathologies. SAM prioritizes

threads by their conflict resolution priority. By focusing

execution resources on likely-to-commit tasks, SAM reduces

aborts and conflicts; and since these tasks commit earlier, SAM

also makes more effective use of speculation resources. As a

result, SAM improves the performance benefit of multithreaded

cores on speculative programs. On a 64-core system with 2-

wide issue in-order SMT cores, 8-threaded cores outperform

single-threaded ones by 2.33× on average with SAM, vs. by

1.85× with round-robin. SAM also reduces wasted work by

52%. With out-of-order execution, 8-threaded cores outperform

single-threaded cores by 1.52× with SAM vs only 1.11× with

ICount, and SAM reduces wasted work by 2×.
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