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Abstract—Deep Neural Networks (DNNs) have enabled state-
of-the-art accuracy on many challenging artificial intelligence
tasks. While most of the computation currently resides in the
cloud, it is desirable to embed DNN processing locally near
the sensor due to privacy, security, and latency concerns or
limitations in communication bandwidth. Accordingly, there has
been increasing interest in the research community to design
energy-efficient DNNs. However, estimating energy consumption
from the DNN model is much more difficult than other metrics
such as storage cost (model size) and throughput (number of
operations). This is due to the fact that a significant portion of
the energy is consumed by data movement, which is difficult
to extract directly from the DNN model. This work proposes
an energy estimation methodology that can estimate the energy
consumption of a DNN based on its architecture, sparsity,
and bitwidth. This methodology can be used to evaluate the
various DNN architectures and energy-efficient techniques that
are currently being proposed in the field and guide the design
of energy-efficient DNNs. We have released an online version
of the energy estimation tool at energyestimation.mit.edu. We
believe that this method will play a critical role in bridging the
gap between algorithm and hardware design and provide useful
insights for the development of energy-efficient DNNs.

Index Terms—Deep learning, deep neural network, energy
estimation, energy metric, machine learning.

I. INTRODUCTION

Deep neural networks (DNNs) have demonstrated state-

of-the-art performance on many artificial intelligence (AI)

applications, such as computer vision, speech recognition, ma-

chine translation, etc. However, DNN-based methods require

significantly more computation than the traditional methods,

which leads to high energy consumption. This not only in-

creases the operating cost of data centers, but also prevents

DNNs from being deployed on mobile devices, where the

energy budget is limited. Local processing on mobile devices

is becoming increasingly preferred due to privacy/security

concerns and latency requirements. Designing energy-efficient

DNNs is critical to realizing mobile AI applications.

To close the gap between DNN design and energy opti-

mization, we propose an energy estimation methodology for

DNNs in this paper. The proposed methodology will help

DNN designers understand the various design trade-offs and

enable them to use this knowledge to guide the design of

energy-efficient DNNs. For example, when designing a DNN,

several hyperparameters (e.g., number of layers, number of

filters in each layer, width and height of the filters, etc.) need

to be determined. These hyperparameters will have a profound

impact on the DNN’s accuracy and energy consumption. With

this methodology, the designer is able to analyze the impact of

each hyperparameter on energy to make a better decision. This

leads to a more energy-efficient DNN and hence enables more

DNN-based mobile applications. To enable fast and simple

DNN energy estimation, we made the energy estimation tool

available online at https://energyestimation.mit.edu/.

Although this paper focuses on deep convolutional neural

networks (DCNNs), the concepts discussed and the overall

conclusions also apply to other types of DNNs. DCNNs are

composed of several types of layers, such as convolution

(CONV), non-linearity, normalization, pooling, etc. Since the

CONV layers dominate the overall computation and energy

consumption, the proposed methodology focuses on estimating

the energy consumption of CONV layers as well as fully-

connected (FC) layers, which can be viewed as a special case

of CONV layers.

II. THE NECESSITY OF ENERGY ESTIMATION

A CONV layer takes the input feature maps (ifmaps) and

convolves them with a series of filters to generate the output

feature maps (ofmaps). Each step of the convolution involves

performing element-wise multiplication between the filter and

the ifmaps, and accumulating all the element-wise products to

compute an activation in the ofmaps. Since the accumulation

usually cannot be finished in one step, the accumulation is

performed in an iterative manner and the intermediate values

are called the partial sums. Therefore, the CONV operation

can be decomposed into a large number of multiplication-and-

accumulation (MAC) operations, which involve ifmaps, filters,

ofmaps and partial sums.

Current research on efficient DNN design mostly focuses

on reducing the number of filter weights and/or the number

of MACs; however, these metrics do not necessarily map to

energy consumption. There are two main reasons: 1) data

movement, rather than computation, dominates energy con-

sumption, and 2) the memory hierarchy and dataflow has a

large impact on the energy consumption of data movement.

Fig. 1 illustrates how a MAC is carried out on a hardware

platform. To perform a MAC, the arithmetic logic unit (ALU)

takes a filter weight and an ifmap activation, multiplies them

and adds the resulting product to the previous partial sum to

generate an updated partial sum. The three input values and

the output value are stored in memory. As shown in Fig. 2,

accessing a value in the external memory (DRAM in this

example) consumes significantly more energy than computing



ALU

Memory Read Memory Write

MemDRAM DRAM

MAC*

Extra levels of local memory hierarchy

Mem
WE
AC
PSt

PSt+1

Fig. 1. The memory hierarchy in modern hardware platforms. The arithmetic
logic unit (ALU) takes a filter weight (WE) and an input feature map activation
(AC), multiplies them and adds it to the previous partial sum (PSt) to generate
an updated partial sum (PSt+1). The three input values and the output value
are stored in the memory hierarchy.
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Fig. 2. An example of the energy consumption of memory access and
computation on a commercial 65nm process. The unit of energy is normalized
in terms of the energy for a MAC operation (i.e., 200 = energy of 200
MACs) [1].

a MAC. Because of this large gap in energy consumption

between external memory access and computation, modern

hardware systems insert extra levels of local memory on-

chip between the ALU and the external memory; this is

referred to as the memory hierarchy. According to Fig. 2, the

local memory levels consume lower energy than the external

memory at the cost of much smaller storage capacity. The

benefit of the memory hierarchy is that when a piece of

required data is read from the external memory, it can be

stored in some local memory levels where it can be reused

as many times as possible to amortize the high energy con-

sumption of the external memory access. However, memory

access from the local memory still consumes more energy

than computation and hence data movement dominates energy

consumption. For this reason, the number of MACs is not a

good metric for energy. Furthermore, the energy consumption

of the weights (along with other required data) depends on

their movement through the different memory levels, which

can vary significantly for different weights. As a result, the

number of weights is also not a good approximation for energy.

In summary, a direct energy metric is necessary for guiding

the energy-efficient DNN design. In the next section, we will

introduce the proposed energy estimation methodology, which

serves this purpose.

III. ENERGY ESTIMATION METHODOLOGY

A. Overview

The proposed energy estimation methodology estimates the

energy consumption of each layer individually, so that it can

give a layer-wise energy breakdown to help analyze the DNN.
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Fig. 3. The proposed energy estimation methodology.

Fig. 3 illustrates the proposed methodology. It takes the shape

configuration of a layer (e.g., number of filters, number of

ifmaps, width and height of the filters, etc.) and the values

and bitwidths of the filter weights and the ifmap activations

as inputs and estimates the energy consumption of the layer.

The network-wise energy is the summation of the energy of

all the layers.

We formulate the layer-wise energy as the following equa-

tion:

Elayer = Ecomp + Edata,

where Ecomp is the computation energy (the lower part of

Fig. 3), which corresponds to the energy of performing MACs,

and Edata is the data energy (the upper part of Fig. 3), which

corresponds to the energy of data movement. The data energy

can be further decomposed into the data energy of the three

data types, which are filters, ifmaps and ofmaps. The data

energy of the partial sums is included in that of the ofmaps.

For estimating the computation energy, we first calculate the

number of MACs and scale it by the hardware energy cost of

performing a MAC. Therefore, the computation energy only

depends on the number of MACs.

The data movement energy is more difficult to estimate than

the computation energy. As discussed in Sec. II, modern hard-

ware platforms use a memory hierarchy and how data moves

in the hierarchy (i.e., the dataflow) significantly influences

the energy consumption. Therefore, before estimating the data

energy, memory access optimization needs to be carried out

to find an efficient dataflow. The number of bits accessed at

each memory level is then calculated based on the dataflow

and scaled by the hardware energy cost of accessing one bit at

that memory level. The data energy is the sum of the energy

consumed at all the memory levels and does not only depend

on the number of MACs.

B. Memory Access Optimization

The goal of the memory access optimization is to find

an efficient dataflow that minimizes the energy consumption

under the hardware constraints. Ideally, we would like to

put all the data in the local memory to avoid access to the

expensive external memory (in terms of energy). However, it

is usually infeasible because the storage capacity of the local

memory is limited due to its high area cost. As a result, we

are only able to hold a chunk of data in the local memory at

a time and maximize its reuse.
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Fig. 4. Three types of data reuse opportunities in CONV and FC layers [1].
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Fig. 5. A few key dataflow parameters of the row-stationary dataflow [2].

The high-dimensional convolution in CONV layers has

three types of data reuse opportunities as shown in Fig. 4 [1].

• Convolutional reuse: The same filter weights and the

same ifmap activations can be reused to generate activa-

tions in an ofmap.

• Feature map reuse: The weights from different filters

can reuse the same ifmap activations to generate the

corresponding ofmap.

• Filter reuse: The same filter weights can be reused on

activations from different ifmaps when multiple images

are processed at once (i.e., batch processing).

Unfortunately, there is a trade-off between the three types

of data reuse under the hardware constraints. We take the

row-stationary dataflow [1], [2] as an example. Fig. 5 il-

lustrates a few key dataflow parameters used by the row-

stationary dataflow. The dataflow parameters govern how the

data is divided and moves through the memory hierarchy. For

instance, each chunk of feature maps contains n sets of q
feature maps, and each feature map has only w rows. Each

chunk of filters contains m filters, and each filter has only q
channels. Generally speaking, we would like to maximize the

size of the chunks to increase data reuse, but the chunks of

different data types share the same storage space and hence

compete with each other. For example, to increase the filter

reuse, we can enlarge the chunk of feature maps. However,

this decreases the feature map reuse because the size of the

filter chunk needs to be reduced due to the fixed storage

space. Moreover, the resulting dataflow of the memory access

optimization is influenced by the shape configuration of the

layer. For instance, if the width and the height of the filters

increase, we are forced to reduce other dataflow parameters,

such as the size of the feature map chunk, and this reduces

the corresponding data reuse. Therefore, to find an energy-

efficient dataflow, the memory access optimization solves an

optimization problem with the shape configuration as well as

the filter weights and the ifmap activations (will be discussed

in Sec. III-C) as the inputs. The objective is to minimize the

energy consumption under the constraints that the data chunks

must be able to fit in each local memory level.

C. Bitwidth and Sparsity

The proposed methodology also accounts for the impact of

bitwidths and sparsity. This allows for a more accurate analysis

of several well-known energy-efficient techniques, such as

network quantization [3] which affects bitwidth, and network

pruning [4] which affects sparsity.

• Bitwidth: For the computation energy, most of the en-

ergy is consumed by the multiplication operations. The

multiplication operation takes two inputs: a filter weight

and an ifmap activation. Therefore, the computation

energy scales linearly with the bitwidth of each input

and quadratically with the bitwidths of both inputs. For

the data energy, we estimate it based on the number

of bits accessed for each of the data types at each

memory level. The number of bits accessed scales linearly

with the corresponding bitwidth when the dataflow is

fixed. However, varying the bitwidths may change the

resulting dataflow of the memory access optimization.

For example, when the bitwidth of the ifmaps increases,

a given memory level may not be able to accommodate

the chunk. Thus, we are forced to find another dataflow

by performing the memory access optimization.

• Sparsity: There are two sources of sparsity. The first

source is the sparsity in the feature maps. ReLU non-

linearity is widely used in DNNs, especially for computer

vision applications. The ReLU non-linearity zeros out the

negative activations in the feature maps and generates

sparse feature maps. The second source is the sparsity in

the filters of pruned DNNs. To make DNN training easier,

the DNNs are usually over-parameterized. Therefore, a

large number of filter weights in a DNN are redundant.

Network pruning identifies and removes these redundant

weights from the DNN, which leads to sparse filters. To

factor in sparsity in the computation energy, we assume

that a multiplication can be skipped if at least one input

is zero because the output would be zero. For the data

energy, data compression techniques, such as the widely

adopted run-length encoding, can be applied to reduce

the number of bits accessed. To estimate energy more

precisely, the influence of data compression should be

considered in the memory access optimization.



D. Computing Memory Access and Number of MACs with a
Simulator

Computing the number of bits accessed and MACs becomes

more challenging when we factor in sparsity. With sparsity, the

number of bits depends on not only the shape configuration but

also the locations of non-zero values in the feature maps and

the filters. For example, when we use run-length encoding to

compress two streams, (0,1,0) and (0,0,1), the former stream

will have 2× number of bits of the latter one in the compressed

form. As a result, to get the accurate number of bits and MACs,

we need to build and run a simulator to determine how the data

is divided into chunks and moves in the memory hierarchy,

and then apply data compression on each chunk to compute

the number of bits accessed. Finally, we must simulate the

convolution operations to count the number of non-skipped

MACs, which requires the underlying filter weight values and

feature map activation values.

IV. ONLINE DNN ENERGY ESTIMATION TOOL

We provide an online DNN energy estimation tool to enable

fast and easy DNN energy estimation, which is available

at https://energyestimation.mit.edu/. As an example, the on-

line tool applies the proposed methodology on the Eyeriss

platform, which is an energy-efficient reconfigurable DNN

processor, with the row-stationary dataflow [2].

A. Computing Memory Access and Number of MACs with an
Analytical Method

While a simulator gives accurate numbers, it requires long

runtimes for large DNNs. Therefore, we developed an an-

alytical method that can be used instead of the simulator

described in Sec. III-D to compute the number of bits accessed

and MACs and uses pre-computed dataflows. Specifically, the

online tool uses methods to quickly approximate the number

of bits and MACs that do not depend on the locations of non-

zero values.

To compute the number of bits, the tool uses significance

map encoding instead of the run-length encoding. Significance

map encoding encodes a floating-point zero value into a one-

bit zero value and a floating-point non-zero value into a one-

bit one value followed by the original floating-point non-zero

value. Therefore, the number of bits in the encoded form only

depends on the number of non-zero values, irrespective of their

locations.

To compute the number of MACs, the tool scales the

number of MACs of the dense convolution by the percentage

of the non-zero values in the inputs. For instance, if 50% of the

ifmap activations and 40% of the filter weights are non-zero,

we only need to compute 20% of the total MACs of the dense

counterpart. As a result, the number of MACs only depends on

the shape configuration and the number of non-zeros values.

Table I compares the estimated energy using the sim-

ulator versus the analytical method on AlexNet [5] and

GoogLeNet [6]. The result shows that the difference is within

3% and the analytical method can be used as a fast alternative

to the simulator.

TABLE I
THE COMPARISON OF THE ESTIMATED ENERGY USING THE SIMULATOR

VERSUS THE ANALYTICAL METHOD.

DNN Simulation Analytical Method Difference
AlexNet [5] 4G 3.9G -2.5%

GoogLeNet [6] 7.6G 7.4G -2.6%
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Fig. 6. The estimated energy breakdown of AlexNet [5] generated by the
online DNN energy estimation tool at https://energyestimation.mit.edu/.

B. Tool Usage

The tool takes three inputs for each layer: 1) the shape

configuration of the layer, 2) the number of non-zero values

in the filters and the feature maps and 3) the bitwidths of the

filters and the feature maps. The output is a per-layer energy

breakdown and we can further decompose the total data energy

into the data energy of the three data types. For example, Fig. 6

shows the estimated energy of AlexNet using the online tool.

V. CASE STUDY

A. Understanding DNNs

With the proposed methodology and the tool, we are able

to evaluate different DNN architectures and energy-efficient

techniques to provide several key observations.

• Convolutional layers consume more energy than fully-
connected layers. According to Fig. 6, the energy con-

sumption of the CONV layers (layer 1-5, 72%) is higher

than that of the FC layers (layer 6-8, 28%) even though

the FC layers contain 96% of the total weights. The

reason is that the CONV layers involve significantly

more feature map data movement, which induces higher

feature-map-related energy consumption. We can also

observe that the energy consumption of the FC layers

is dominated by the weight energy. This is due to the

fact that there is no convolutional reuse in the FC layers.

• Deeper DNNs with fewer weights do not necessarily
consume less energy than shallower DNNs with more
weights. To reduce the model size without sacrificing

the accuracy, a common strategy is to make the DNN

much deeper (i.e., with more layers) and aggressively

reduce the size of each layer. However, this strategy

does not necessarily lead to lower energy consumption.

For example, SqueezeNet [9] is a DNN that has 2.3×
number of layers of AlexNet with 51.8× fewer weights.
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However, it still consumes more energy than AlexNet

(Fig. 7). The reason is that when a DNN becomes deeper,

it usually generates more feature map data movement and

the corresponding energy increase outweighs the energy

reduction in moving weights.

• Data movement is more expensive than computation.
One example is GoogLeNet [6]. In GoogLeNet, the

computation energy only accounts for 10% of the total

energy. In contrast, moving the feature maps consumes

68% of the total energy.

In summary, data movement dominates the energy consump-

tion and the data movement of feature maps needs to be taken

into account, which is usually overlooked.

B. Guiding Energy-Efficient DNN Design

In addition to providing insights for DNN design, the

proposed energy estimation methodology can be incorporated

into the optimization loop of techniques that aim to reduce

energy consumption. This is demonstrated in an approach

called energy-aware pruning (EAP) [4] (Fig. 8). EAP improves

network pruning primarily in two ways.

First, EAP uses the estimated energy to guide a layer-by-

layer pruning algorithm. A layer-by-layer pruning algorithm

picks one layer, prunes it, fixes it and moves on to prune

the next layer. As more layers are pruned, pruning gets more

difficult. Accordingly, the layers pruned early on tend to

have more weights removed. Thus, to achieve higher energy

reduction, EAP sorts the layers based on the estimated energy

consumption and starts pruning the layers that consume most

of the energy first.

Second, EAP prunes the weights having the smallest joint

influence on the ofmaps. In contrast, the magnitude-based

pruning methods (MBP) [7] remove the weights with the

smallest magnitude without considering the correlation be-

tween weights. EAP takes weight correlation into account and

is able to prune more weights with the same final accuracy.

Fig. 7 illustrates the accuracy-energy trade-off of well-

known DNNs and the corresponding DNNs pruned by EAP

and MBP [7] on the ImageNet dataset [8]. As we can see,

the DNNs pruned by EAP achieve better trade-off than the

non-pruned DNNs and the DNNs pruned by MBP. For exam-

ple, EAP reduces the energy consumption of the non-pruned

AlexNet by 3.7× and that of the MBP-pruned AlexNet by

1.7× with similar accuracy. The DNNs pruned by EAP are

available at [10].

VI. CONCLUSION

This work presents an energy estimation methodology for

DNNs based on the architecture, bitwidth and sparsity. Along

with the methodology, a corresponding online tool is provided

at https://energyestimation.mit.edu/. Based on the memory hi-

erarchy in modern hardware platforms and the energy analysis

of well-known DNNs, we show that 1) the number of weights

and MACs are not good metrics for energy, 2) data movement

is more expensive than computation, 3) the data movement of

feature maps needs to be taken into account. Moreover, we

show an example of how the energy estimation methodology

can be used to guide network pruning and achieve better

accuracy-energy trade-off. With this methodology and tool,

researchers are able to quantify the energy costs of different

design choices during design time and hence bridge the gap

between DNN algorithm/hardware design and energy opti-

mization.
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