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ABSTRACT
Deep neural networks (DNNs) are currently widely used for many
artificial intelligence (AI) applications including computer vision,
speech recognition, and robotics. While DNNs deliver state-of-
the-art accuracy on many AI tasks, it comes at the cost of high
computational complexity. Accordingly, there has been a significant
amount of research on the topic of energy-efficient processing of
DNNs, from the design of efficient DNN algorithms to the design of
efficient DNN processors. However, in surveying these techniques,
we found that there were certain limitations to the approaches used
in this large body of work that need to be addressed. First, the
number of weights and MACs are not sufficient for evaluating the
energy consumption of DNNs; rather than focusing of weights and
MACs, designers of efficient DNN algorithms should more directly
target energy and incorporate that into their design. Second, the
wide range techniques used for efficient DNN algorithm design has
resulted in a more diverse set of DNNs, and the DNN hardware used
to process these DNNs should be sufficiently flexible to support
these techniques efficiently. Many of the existing DNN processors
rely on certain properties of the DNN which cannot be guaranteed
(e.g., fixed weight sparsity, large number of channels, large batch
size). In this work, we highlight recent and ongoing work that aim
to address these limitations, namely energy-aware pruning, and
a flexible accelerator (Eyeriss v2) that is computationally efficient
across a wide range of diverse DNNs.
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1 INTRODUCTION
Deep neural networks (DNNs) have demonstrated state-of-the-art
performance on many artificial intelligence (AI) applications, such
as computer vision, speech recognition, and robotics. However,
DNN-based methods require significantly more computation than
traditional methods, which leads to high energy consumption. For
instance, object detection using DNNs requires 311× to 13,486×
more energy than traditional histogram of oriented gradients (HOG)
features as discussed in [15]. This not only increases the operat-
ing cost of data centers, but also is an impediment to deploying
DNNs on mobile devices, where the energy budget is limited. Local
processing on mobile devices is becoming increasingly preferred
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due to privacy/security concerns and latency requirements. Design-
ing energy-efficient DNNs and DNN processors is thus critical to
realizing mobile AI applications.

In recent years, researchers have approached this objective from
both the algorithm and hardware architecture perspective. When
summarizing this large body of work for our recent tutorial pa-
per [16], we noticed that there were significant limitations to exist-
ing approaches that needed to be addressed. In this work, we will
highlight these limitations and summarize our recent and ongoing
work that aims to address them.

2 ENERGY-AWARE ALGORITHM DESIGN
From the algorithm perspective, the focus of recent work hasmainly
been on reducing the number of weights and operations, specifically
multiplies and accumulates (MACs), as well as reducing bit-width.
Popular techniques to reduce the number of weights and operations
include pruning [5] to increase sparsity in weights, and compact
network architectures by changing filter shapes using filter decom-
position (e.g., SqueezeNet [8], MobileNet [7]).

While these approaches reduce the memory footprint, they do not
necessarily translate into a reduction in energy consumption or deliver
energy reduction that is proportional to the weight or MAC reduction.
For instance, while SqueezeNet requires 50× fewer weights than
AlexNet [10], it consumes more energy than AlexNet on a variety
of platforms [11, 17]. Another example is that pruning is most
effective on the fully connected (FC) layers [5]; however, the energy
consumption of a DNN is often dominated by the convolutional
(CONV) layers since they require significantly more feature map
data movement [2].

There are two main reasons why the number of weights and
MACs do not necessarily map to energy consumption: 1) data move-
ment, rather than computation, dominates energy consumption,
and 2) the memory hierarchy and dataflow have a large impact on
the energy consumption of data movement. The energy consump-
tion of the weights (along with other required data) depends on
their movement through the memory hierarchy, which can vary
significantly for different weights. Furthermore, the data movement
of feature maps needs to be taken into account. As a result, the
number of weights is also not a good approximation for energy.

To address the limitations in efficient algorithm design, we will
present an energy-aware design approach that directly targets the
energy consumption of DNNs. It uses an online DNN energy esti-
mation tool (https://energyestimation.mit.edu/) to enable fast and
easy DNN energy estimation. In addition to providing insights for
DNN design, this tool can be incorporated into the optimization
loop of techniques that aim to reduce energy consumption. This is
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Figure 1: The algorithm flow of energy-aware pruning [17].
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Figure 2: The accuracy-energy trade-off of DNNs pruned by
energy-aware pruning and magnitude-based pruning [5].

demonstrated in an approach called energy-aware pruning (EAP)
(Fig. 1), which was recently presented at CVPR 2017 [17].

EAP uses the energy to guide a layer-by-layer pruning algorithm.
A layer-by-layer pruning algorithm picks one layer, prunes it, fixes
it and moves on to prune the next layer. As more layers are pruned,
pruning gets more difficult. Accordingly, the layers pruned early on
tend to have more weights removed. Thus, to achieve higher energy
reduction, EAP prunes the layers that consume most of the energy
first. In addition, EAP prunes the weights that have the smallest
joint influence on the output feature map rather than the weights
with the smallest magnitude. By taking weight correlation into
account, EAP is able to prune more weights with the same accuracy
compared to existing magnitude-based pruning approaches [5].

EAP reduces the overall energy across all layers by 3.7× for
AlexNet, which is 1.74× more efficient than magnitude-based ap-
proaches [5] as shown in Fig. 2. Since it is well known that AlexNet
is over-parameterized, EAP was also applied to GoogleNet, which
is already a small DNN model, to show that it can achieve a 1.6×
energy reduction.

3 FLEXIBLE ENERGY-EFFICIENT
HARDWARE (EYERISS V2)

From the hardware architecture perspective, the focus of recent
work has mainly been on reducing the energy overhead for de-
livering the data to the MAC engines, as it is well known that
data movement consumes significantly more energy than compu-
tation [6].While existing specialized DNN hardware (ASIC, FPGA)
provide improved energy-efficiency compared to GPUs, they often
come at the cost of flexibility in terms of the types of layers (CONV
or FC) and the type of network architectures/filter shapes that it can
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Figure 3: While the MAC array provides data reuse of the
reads frommemory, the amount of reuse and utilization de-
pends on the filter shape, feature map and batch size

support; specifically, they rely on certain properties of the DNN in
order to achieve high energy-efficiency. However, the wide range
techniques used for efficient DNN algorithm design has resulted in
a more diverse set of DNNs, and there is no guarantee that the algo-
rithm designer will use a certain network architecture or efficient
design approach. Thus, DNN hardware needs to be flexible enough
to be efficient across all these possible combinations (dense/sparse,
number of channels, batch size).

Many of the existing specialized hardware in both academia [1,
12, 18] and industry [9, 13] use an architecture consisting of a large
MAC array that can exploit reuse of the weights and activations
as shown in Fig. 3(a). The degree of reuse and array utilization
depends on the number of output channels, and either the number
of input channels (Fig. 3(b)) or the feature map/batch size (Fig. 3(c)).
While this might be effective for traditional large DNNs such as
AlexNet that have many output channels, recent compact networks
such as MobileNet exploit group convolutions with fewer channels
per group. Furthermore, large batch sizes pose a problem for low
latency applications. Finally, it is difficult for these architectures to
exploit sparsity due to pruning.

Specialized sparse DNN processors, such as SCNN [14] and
EIE [4], have been designed to translate the sparsity from pruning
into improved energy efficiency by performing only the non-zero
MAC operations and moving/storing the data in compressed form.
While this is efficient for sparse DNNs, there would be significant
overhead for processing dense DNNs in the compressed format.
This is a challenge, since there is no guarantee of sparsity in the
DNN. Furthermore, SCNN is optimized for CONV layers while EIE
is optimized for FC layers.

To address this, wewill present the next generation of our Eyeriss
accelerator work [3], a flexible energy-efficient accelerator that can
efficiently support DNNswith both sparse and denseweights and/or
activations, along with the wider variety of filter shapes that result
from filter decomposition used for compact network architectures.
This is ongoing work targeted for publication in 2018.
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