
Buffets: An Efficient and Composable Storage Idiom for
Explicit Decoupled Data Orchestration

Michael Pellauer∗ Yakun Sophia Shao∗ Jason Clemons∗ Neal Crago∗ Kartik Hegde†

Rangharajan Ventakesan∗ Stephen W. Keckler∗ Christopher W. Fletcher† Joel Emer∗‡

∗Nvidia †University of Illinois, Urbana-Champaign ‡MIT
{mpellauer, sshao, jclemons, ncrago, rangharajanv, skeckler, jemer}@nvidia.com

{kvhegde2, cwfletch}@illinois.edu

ABSTRACT
Accelerators spend significant area and effort on custom on-chip

buffering. Unfortunately, these solutions are strongly tied to par-

ticular designs, hampering re-usability across other accelerators

or domains. We present buffets, an efficient and composable stor-

age idiom for the needs of accelerators that is independent of any

particular design. Buffets have several distinguishing character-

istics, including efficient decoupled fills and accesses with fine-

grained synchronization, hierarchical composition, and efficient

multi-casting. We implement buffets in RTL and show that they

only add 2% control overhead over an 8KB RAM. When compared

with DMA-managed double-buffered scratchpads and caches across

a range of workloads, buffets improve energy-delay-product by

1.53× and 5.39×, respectively.

CCS CONCEPTS
• Computer systems organization → Other architectures ;

• Software and its engineering→ Buffering ;

KEYWORDS
Accelerators, Staging Buffers, Data Orchestration, Synchronization

1 INTRODUCTION
Architects are increasingly turning to domain-specific accelerators

to satisfy the insatiable performance demands in areas like ma-

chine learning and image processing [6, 12, 18, 22, 27, 34, 35, 37].

Accelerators leverage dense, customized datapaths for computation,

but off-chip memory accesses remain slow and costly in compari-

son. Thus accelerators spend significant area for on-chip memory

hierarchies (Table 1).

A key difference from general-purpose processors is that accel-

erator architects leverage knowledge of the workload and domain

to achieve high-performance, energy-efficient data orchestration –

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASPLOS’19, April 13–17, 2019, Providence, RI, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00

https://doi.org/10.1145/3297858.3304025

Table 1: Percentage of area dedicated to on-chipmemory for
a selection of machine learning accelerators.

DaDianNao [5]: 48% Eyeriss [6]: 40%-93%

EIE [18]: 93% SCNN [35]: 57%

TPU [22] 35% PuDianNao [27] 63%

that is, the transfer of active regions in and out of the buffer hierar-

chy. We term this task explicit data orchestration, as the decisions
are under the direct control of the architects. Indeed, several con-

temporary accelerators—such as DaDianNao [5], Eyeriss [6] and

SCNN [35]—devote significant effort towards engineering custom

buffering arrangements and present their orchestration as a major

contribution inseparable from the architecture itself. Others men-

tion custom buffering in passing but focus their presentation on

other aspects such as novel datapaths [3, 19, 22, 28, 36]. Overall, a

significant cost of any accelerator is the data orchestration buffer

hierarchy, both in terms of area and effort.

A downside of this design-by-design approach is that the acceler-

ator community lacks a generalized, reusable storage hierarchy that

is not tied inextricably to any particular design or domain. Beyond

wasteful duplication of engineering effort, the lack of a consistent

abstraction for data movement, staging, and synchronization also

means a dearth of toolflows exist to auto-orchestrate data-sets and

generate control FSMs for data movement. In fast-moving applica-

tion domains like machine learning, there is a particular need to

decrease design effort, lest accelerators find themselves obsolete

before reaching the market.

In the general-purpose computing community, existing reusable

buffer idioms such as caches, scratchpads, and FIFOs have served

as the foundation for several toolsets, but these approaches are

ill-suited for the needs of accelerators. Caches direct too much area

and power into dynamically making implicit data orchestration

decisions, at odds with the desires of accelerator architects. FIFOs

are too inflexible to serve the complex data reuse and update pat-

terns of modern accelerator application domains. Scratchpads lack

synchronization, making them difficult to hierarchically compose.

This paper introduces buffets, a novel storage idiom for explicit

data orchestration. Buffets are efficient and composable, and are not

tied to any particular accelerator design or domain. The interface of

buffets raises the level of abstraction, encapsulating synchronization

in the staging buffer and thus lowering the complexity of designing

and verifying the accelerator itself. We make the following specific

contributions:

https://doi.org/10.1145/3297858.3304025

(1) We develop a novel taxonomy of buffering idioms and discuss

why an approach based on explicit decoupled data orchestration

(EDDO) is the best match for accelerators.

(2) We present detailed operational behavior for buffet interfacing.

We focus on efficient implementation of synchronization within

the buffet itself without remote polling or barriers.

(3) We present a scheme for seamlessly composing buffets into

hierarchies, similar to caches. We extend inter-buffet synchro-

nization to support multicast of data from a single buffet access,

an efficiency feature that is not available in traditional scratch-

pads or caches.

(4) We implement buffets in RTL and compare them to double-

buffered scratchpads and caches across a range of workloads,

and show that buffets improve energy-delay product by 1.53×

and 5.39×, respectively. We also show that buffet-based acceler-

ators achieve similar performance at 3.4× less area than caches.

To facilitate adoption, we provide an open-source reference im-

plementation of a buffet, written in Verilog, here:

https://github.com/cwfletcher/buffets

2 CLASSIFYING DATA ORCHESTRATION
Accelerator architects leverage their design-time knowledge of

workload characteristics and access patterns, allowing them to

extract benefits such as:

• Preemptively transferring exactly the data that will be refer-

enced in the future,

• Maximizing the number of accesses to data in the smallest,

fastest and most energy-efficient buffer,

• Staging data at the least-upper bound buffer between sharers in

the hierarchy,

• Overlapping the fill of the next data tile with the consumption

of the current data tile,

• Simultaneously broadcasting (or multi-casting) the result of a

buffer access to all consumers of the accessed data,

• Synchronizing data availability precisely and cheaply,

• And, removing data exactly when it is no longer needed.

Figure 1 shows a classification of traditional deployment scenar-

ios for reusable buffering idioms along two axes. (We discuss specific

contemporary related work in Section 7.) At a high level, the im-

plicit/explicit distinction refers to the level of workload knowledge

that can be leveraged to control staging buffer decisions, while the

coupled/decoupled axis refers to whether memory responses and

requests are round-trip or flow-forward. We now present a detailed

discussion of this taxonomy, and establish why these buffering

schemes are not able to sufficiently provide the accelerator features

described above. Table 2 presents a comparative summary of the

major points covered throughout the section.

2.1 Implicit versus Explicit Orchestration
In the general-purpose computing community, caches (Table 2A)

have served admirably as a reusable, modular buffer abstraction

based on load/store operations. Although the engineering and area

costs for a given cache hierarchy may be quite high, the effort is

often amortized across several design points with appropriate re-

parameterization. Caches have several desirable properties, such as

Coupled Decoupled

Implicit

DRAM

0x1000

way 0 way 1

Local
Response

Local
Request

Global
Request

Global
Response

0x1000

DRAM

Local
ResponseLocal

Request

AGEN

Global
Request

Global
Response

way 0 way 1

0x1000

0x1000

Cache Decoupled

Access-Execute

Explicit

DRAM

0x1000

0x1

Local
Response

Local
Request

Global
Request

Global
Response

0x1000

DRAM

0x1

Local
ResponseLocal

Request

Global
Request

Global
Response

AGEN

Scratchpad (e.g., DMA Engines

GPU shared memory) (EDDO - this work)

Figure 1: Taxonomy of data orchestration approaches, as
used in typical deployment scenarios.

composing invisibly into hierarchies. Memory-level parallelism—

both multiple outstanding fills, as well as concurrency between

fills and accesses to current contents—can be achieved using well-

studied additional hardware (often called lockup-free cache struc-
tures).

We say that caches perform implicit data orchestration as the

load request initiator does not directly control the cache hierarchy’s

decisions about whether the response data is retained at any given

level of the storage hierarchy, nor when it is removed. (In Figure 1

this is represented by the Global request/response being shielded

from the datapath.) Heuristic replacement policies are advantageous

in general-purpose scenarios because they are workload agnostic
1
.

On the other hand, for domain-specific accelerators, the area and

energy overheads for features like tag matches and associative sets

are considered unacceptable. It is notable that no contemporary

commercial machine learning ASICs incorporate caches.

One alternative is to use scratchpads (Table 2B), which expose

an address range of a particular staging buffer for loads/stores,

thereby enabling explicit and precise control over the orchestra-

tion. (In Figure 1 this is represented by the datapath managing

both local and global request/response.) A GPU’s shared memory
scratchpad [32] is the most widespread contemporary example of

this idiom for explicit data orchestration. The size and address range

of the scratchpad is exposed architecturally, and the transfer of data

into and out of the scratchpad is managed via explicit instructions.

While scratchpads avoid the hardware overheads of caches, ex-

tracting memory parallelism–both across fills and overlapping fills

1
As many programmers care more about optimization than portability, they often

reverse engineer the details of the cache hierarchy and replacement policy to try to

explicitly manipulate them. This is an indication that architects could provide more

officially-supported explicit data orchestration features in general-purpose processors.

https://github.com/cwfletcher/buffets

Table 2: Summary of properties of traditional data orchestration approaches in typical deployment scenarios. Shaded cells
indicate undesirable properties for domain-specific accelerators (thoughmay be acceptable for general-purpose architectures).

(A) Datapath + Cache (B) Datapath + Scratchpad (C) D.A.E. Dpaths + Cache (D) DMA + FIFO + Dpath (E) DMA + Buffet + Dpath

(Implicit, Coupled) (Explicit, Coupled) (Implicit, Decoupled) (Explicit, Decoupled) (Explicit, Decoupled)

Buffer Non-RAM Area High Low High Low Low

Buffer Access Energy High Low High Low Low

Placement Policy Workload-agnostic Workload-controlled Workload-agnostic Workload-controlled Workload-controlled

Achieving Multiple Complex Complex Complex Straightforward Straightforward

Fills in Flight (lockup-free structs.) (unrolling, multi-thread.) (lockup-free structs.) (credit scheme) (credit scheme)

Achieving Overlapped Complex Complex Straightforward Straightforward Straightforward

Fill and Access (static req. pipelining) (static req. pipelining) (dynamic rate matching) (dynamic rate matching) (dynamic rate matching)

Hierarchically Composable Yes No Yes Yes Yes

Landing Zone Hold Time Round-trip Round-trip Hop-to-hop Hop-to-hop Hop-to-hop

Access Multicast Dynamic coalescing Dynamic coalescing Workload-controlled Workload-controlled Workload-controlled

Data Availability Encapsulated Encapsulated Out-of-band Encapsulated Encapsulated

Synchronization (load-to-use) (load-to-use) (supplemental queue) (peek stalling) (read stalling)

Access Order Arbitrary Arbitrary Arbitrary Strict FIFO Arbitrary

In-Place Updates Yes Yes Yes No Yes

Removal Policy Workload-agnostic Workload-controlled Workload-agnostic Strict FIFO (or clear all) Workload-controlled

and accesses–is tedious and error-prone
2
, and as a result they are

difficult to compose into hierarchies.

2.2 Coupled versus Decoupled Orchestration
Caches and scratchpads both use a load/store paradigm where the

initiator of the request also receives the response. We call this a

coupled staging of data, reflected in the left column of Figure 1.

With this setup, synchronization between data demand and data

availability is efficient and intuitive—the requester is notified when

corresponding response returns (load-to-use). The disadvantage to

this approach is that it complicates overlapping the fill and access of

data tiles (e.g., double-buffering) as the single requester/consumer

must alternate between requesting and consuming responses. Ad-

ditionally, a “landing zone” for the incoming data tile must be held

reserved for the entire round-trip load latency, which increases

pressure on RAM resources that could otherwise be used for larger

tile sizes.

The alternative is to decouple the load request initiator from the

response receiver. (In Figure 1 this is represented by the request/re-

sponse arrows going to different modules). In this setup, a separate

hardware module (e.g., a DMA engine, or address generator (AGEN))
is responsible for pushing data into one or more functional units’

staging buffers.
3
To tolerate latency, these are often double-buffered

and hence sometimes referred to as ping-pong buffers [9, 10]. The

main advantage to this approach is that the requester can run at

its own rate, and can multicast data to multiple simultaneous con-

sumers. Additionally, the feed-forward nature of the pipeline means

that the tile landing zone only needs to be reserved proportional to

the latency between adjacent levels of the hierarchy, rather than the

entire hierarchy traversal round-trip, allowing for increased utiliza-

tion of equivalent RAM. Finally, this approach often can transmit

large blocks of data, i.e., bulk transfers, which are more efficient

2
GPU shared memory is paired with high multi-threading and loop unrolling to offset

these problems, but this complexity is considered unacceptable for fixed-function

accelerators.

3
Cache pre-fetching can be considered an example of decoupling. Consideration of

this large body of work is beyond the scope of this paper.

than small requests, which must dynamically re-coalesce accesses

to the same memory line.

This separate producer/consumer approach is similar to Smith’s

[42] decoupled access-execute (DAE) style of general-purpose com-

puting architecture (Table 2C). In a DAE organization two proces-

sors are connected by a hardware queue. The access processor is

responsible for performing all address calculations and generating

loads—analogous to the DMA engine. Load responses are passed

to the execute processor—analogous to an accelerator’s functional

units and their local staging buffers. DAE improves parallelism

and reduces the critical paths of instructions while allowing both

processors to compute at their natural rate. However, classical DAE

does not explicitly control data orchestration buffers—decisions

about staging data are still managed by the cache hierarchy, thus

Figure 1 categorizes DAE as implicit decoupled.

We advocate that the explicit decoupled data orchestration (EDDO)
approach best matches the needs of domain-specific accelerators,

as it allows for the best opportunities to leverage static workload

knowledge combined with efficient, high-performance hardware.

Hardware FIFOs [21, 46] (Table 2D) are one traditional reusable

EDDO staging buffer organization. The advantages are that FIFOs

cleanly encapsulate synchronization via head and tail pointers, and

are easily hierarchically composable. However, in practice FIFOs

are not flexible enough to meet the needs of modern accelerators,

which often require random access within an active window or

tile of data [4, 6, 13, 45]. Additionally, for data types such as the

partial sums in a convolutional neural net, staged data must be

modified several times in place before being drained [6, 29]. This is

not possible in single write-port FIFOs without costly re-circulation.

Thus our goal is to combine the efficient hardware of FIFOs with

the flexibility of scratchpads (Table 2E).

2.3 Synchronization Concerns
In a decoupled system, the timing of loading new tiles is a critical

correctness component, as initiating a transfer too early could

overwrite live data, and a transfer too late results in efficiency loss.

Some accelerators use systolic approaches to bound tile processing

DRAM

AGEN

DRAM

0x1

AGEN

Local
ResponseLocal

Request

Global
Request

Global
Response

AGEN DPATH

R
A
M

S
H
R
IN
K

FILL

READ UPDATE

S
ta
te

F
S
M

0x1000 AGEN

Figure 2: Buffet taxonomy characterization and operations.

time—essentially removing the need for synchronization hardware

beyond simple counters. However, these time bounds often become

overly conservative in realistic systems that have non-deterministic

latencies involving off-chip accesses, arbitrated networks-on-chip,

or functional units whose processing time involves conditional

execution. Therefore a reusable storage idiom cannot rely on them.

This paper assumes that accelerators are built using a standard

ready-valid (Rdy/Vld) micro-protocol for pipeline flow control as

in SystemC compilation [2, 31]. For example, a FIFO could assert

Pop.Rdy when it is non-empty, and dequeue the oldest element

when Pop.Vld is asserted.Without loss of generality, our techniques

can be applied using other micro-protocols such as Try/Ack. For

convenience, this paper uses an operation-centric terminology [20]

and assumes a straightforward translation into micro-protocol. For

example, with FIFOs the following pseudo-code:

qC.Push(qA.Pop() + qB.Pop())

is shorthand for “when qC is asserting Push.Rdy (not full) and qA
and qB are asserting Pop.Rdy (not empty), perform an addition and

assert allVlds.”We refer to themicro-protocol details as appropriate

for clarity in cases where this shorthand is not sufficient.

While circuit-level micro-protocols form the necessary ground-

work for adjacent stages of a properly synchronized accelerator,

they are not a complete solution for data orchestration, which is a

higher-level concern spanning remote producers and consumers. In

the remainder of this paper, we present an EDDO storage idiom that

encapsulates fine-grained synchronization within the staging buffer

operations themselves. Encapsulation increases composability and

re-usability, allowing accelerator architects to cheaply leverage the

benefits of EDDO for multiple application domains.

3 THE BUFFET STORAGE IDIOM
Figure 2 depicts the data orchestration model of a buffet. In refer-

ence to the taxonomy found in Table 1, buffets fall into the EDDO

quadrant, as data movement is explicit and they use decoupled fill

engines. The buffet approach expands the decoupling farther than

traditional DMA setups by also using decoupled address generators

to iterate over staged data. In Section 4 we discuss the composability

benefits of this organization.

Figure 2 also depicts the buffet’s operational interface.Within the

buffet, a finite-state machine controls the four fundamental storage

operations: Fill(data), Read(index), Update(index, data), and

FSM

S
ta

te

Head

Occupancy

+

+

UpToDate Scoreboard

RAM

U
p
d
a
te

D
a
ta

R/U Address

F
ill

D
a
ta

Fill Address

+N

++

1 2

FSM

D
R
A
M

AGEN
Credits

Data

Index

Data

-N Shrink (N)

4

A
G

E
N

C

CTRL

RF

DPATH

<=

R
e
a
d

D
a
ta

Ready

Ready

Ready

Data

Figure 3: Buffet implementation details.

Shrink(num). Upper-level modules in the hierarchy (e.g., DRAM)

initiate Fill operations and move new data into the buffet, while

lower-level modules (e.g., datapath) work with data in the buffet

using Read and Update operations. Finally, Shrink operations

remove data from the window.
4
Thus the lifetime of a piece of data

in the staging buffer can be described with the following regular

expression:

Eq. 1: Fill → (Read → Update?)∗ → Read → Shrink

Unlike scratchpad loads and stores, these operations encapsulate

synchronization. We now present a detailed description of buffets’

internal logic to arbitrate stalls.

3.1 Buffet Operational Behavior
Figure 3 presents a detailed architectural diagram of a buffet, and

Algorithm 1 shows specific behavior. Newly transferred data is

installed into the RAMvia the Fill logic, labeled❶. This path closely

matches a conventional FIFO—no remote address accompanies the

data, and placement is based on local address generation in the

order it is received. (This is not a fundamental restriction, but the

complexities of un-ordered Fill are beyond the scope of this paper.)

Unlike a FIFO, the Read ❷ request includes an externally-provided

index, allowing data to be read in a different order than it is received.

The index is relative to the window, so 0 represents the oldest

installed datum in the staging buffer. It is not legal for the index to

exceed the physical size of the RAM.

Logic ensures that reading a position outside the active window

will stall until the data arrives, similar reading an empty FIFO. How-

ever, the presence of this index means that buffet read stalling must

be handled differently than traditional FIFOs, such as one generated

by commercial tools [21, 46]. In these circuits Pop.Vld is asserted

whenever the FIFO is non-empty. In buffets, the presence of the re-

quested data is a function of the index. Therefore we use a separate

read response path, represented by the "read_rsp_out.Send()" oper-

ation. ReadRsp.Vld is only asserted when the requested data has

been filled, as in caches. For simplicity we present read responses

returning in the same order as requests—sufficient for the needs

4
We choose the name buffet due to similarities with actual restaurants, where waiters

bring out new dishes (fill) which are repeatedly iterated over by diners (read) until

a course change (shrink). Of course, in restaurants diners are not allowed to return

modified dishes to the buffet (update), due to food safety concerns!

Algorithm 1 Buffet Operational Details

// Initialize a buffet
function Init(sz)

head = 0;

occupancy = 0;

size = sz;

credit_out.Send(size);

end function
// Emplace new data for staging.
function Fill(data)

slot = (head + occupancy) % size;

buffer[slot] = data;

SetUpToDate(slot, true);

occupancy++;

end function
// Iterate over staged data.
function Read(index, will_update)

slot = head + index % size;

wait_until(index < occupancy && IsUpToDate(slot));

read_rsp_out.Send(buffer[slot]);

SetUpToDate(slot, !will_update);

end function
// Update previously read locations.
function Update(index, data)

slot = (head + index) % size;

buffer[slot] = data;

SetUpToDate(slot, true);

end function
// Unstage data and free room for more Fills.
function Shrink(num)

wait_until(num < occupancy);

head = (head + num) % size;

occupancy = occupancy - num;

credit_out.Send(num);

end function

of most accelerators—but this is not fundamental (as in caches). In

scenarios where blocking is harmful, a supplemental non-blocking

Check(index) operation can be added to test whether a certain

index is in range.

Beyond indexed reads, a significant distinction from a FIFO is

that data elements within the active window can be modified in-

place, which we call the Update ❸ path. Internal logic stalls the

modification of the RAM until both an index and a data element

are asserting Vld. Thus the index generation FSM and datapath

can produce at different rates, and the system can tolerate dynamic

timing variation. Semantically distinguishing RAM writes into Fill

and Update operations raises the level of abstraction, allowing

buffets to use customized synchronization logic for each case, as

discussed below.

Finally, the Shrink path ❹ depicts the logic for removing staged

data from the buffet. This operation takes a size parameter and

removes that many elements from the active window. This oper-

ation simply updates internal scoreboarding—no data movement

occurs. A credit is released to the Fill address generator indicating

room for another bulk transfer. Accelerators that modify in-place

data should drain it via the standard Read path before invoking

Shrink. We advocate that the same index generation FSM that

iterates staged data should generate calls to Shrink, removing the

FILL

READ

SHRINK

UPDATEFSM

Synchonized via hardware
(a b: b may stall until a occurs)

Synchronized implicitly
(a b: b occurs regardless of a)

increment
occupancy
set up to date

implied if data is
guaranteed to be read

(otherwise Shrink checks
occupancy <= num)

serialized
by same

set up to date

modified values
will be read for drain

data was
obtained via
proceeding
read

at least once

send
credit

Figure 4: Operation synchronization relationships.

need for explicit stall logic between index-based read requests and

re-basing of the oldest element in the active window. This arrange-

ment is not fundamental, but for simplicity of synchronization we

use this presentation for the remainder of this paper.

3.2 Buffet Synchronization Details
We leverage the semantics of buffet operations to provide fine-

grained synchronization with minimal logic and stalls. The cases

where explicit hardware synchronization is required are repre-

sented by the “wait_until” calls in Algorithm 1. Many other cases

of synchronization can be handled without the need for explicit

hardware support because of the order of operations in Equation

1, as shown in Figure 4. For example, because modified values are

always Read before Shrink, we do not need synchronization logic

between Update and Shrink—they are transitively synchronized

through Read.

Because modification of data by the datapath can take notable la-

tency, buffets add RAW-hazard checks, which we present abstractly

as an “UpToDate" scoreboard with perfect knowledge. In practice,

any physically efficient tracker can be used, including imprecise

hashing schemes. For simplicity, we present will_update as a

parameter to Read that indicates that the datapath will modify the

currently staged value—many alternative interfacing paradigms can

be conceived of, including Lock() methods. If a subsequent Read

requests an index that is undergoing modification, the response is

stalled from returning—indistinguishable from reading an index

that has not yet been filled. Fill operations do not need to perform

this check. Thus we can improve energy efficiency and performance

using higher-level knowledge.

Encapsulating hazard detection inside the buffering interface

removes the need for engineering custom stall logic on a per-

deployment basis. Tomeet the efficiency demands of domain-specific

accelerators, buffets provide options for design-time customization.

If the architects can prove that no RAW hazard is possible, then

the RAW hazard detection logic can be statically removed via a

parameter. Similarly, if Fills are proven to be mutually exclusive

with Updates then they can share a write port rather than using a

more expensive RAM with multiple write ports. Finally, for buffets

that hold read-only data the entire Update path can be removed.

The goal is to allow designers to quickly construct a functionally

(A) Weight-Stationary Algorithm

(B) Tiled Weight-Stationary

for f : [0..F)
 for o : [0..O)
 output[o] += input[o+f]
 * filter[f]

...

Filter

Input

...

...

1

2
1

2

1

1

2

for nf : [0..F_NumTiles)
 for no : [0..O_NumTiles)
 for tf : [0..F_TileSize)
 for to : [0..O_TileSize)
 f = nf * F_TileSize + tf
 o = no * O_TileSize + to
 output[o] += input[o+f]
 * filter[f]

...

Filter

Input

...

1

2

...

3

4 1

2

3
4

1

2 2

1
1

1
1

1
1

1

1

2

...

Figure 5: 1D Convolution example orchestration approach.

correct orchestration hierarchy that can serve as a starting point

for optimization refinements.

Another case for design-time optimization is the synchroniza-

tion between Shrink and Fill. Algorithm 1 conservatively uses

explicit synchronization for Shrink: e.g., “wait_until(num < occu-

pancy)”. This logic can be removed at design time if the architects

can prove each staged data element will be read at least once. Fig-

ure 4 depicts this as implicitly synchronized, as we expect this to

be the more common case. Synchronization with the external fill

request generator is handled via backwards credit flow—similar to

a network-on-chip protocol, discussed in detail in Section 4.

3.3 Example Orchestration with Buffets
Figure 5A shows an example 1-dimensional convolution that demon-

strates the use of buffets for EDDO. We purposely choose a weight-

stationary dataflow [6] which involves re-loading partial sums

several times until the final sum is produced to demonstrate all

buffet features. These same principles generalize to other dataflows

of full convolutional neural networks and other kernels.

The baseline formulation maximizes reuse of filter weights with

only a single on-chip register, but it must resort to expensive off-

chip accesses for inputs and outputs (if 2× the size of O is larger

than on-chip buffering). Figure 5B shows a more realistic tiled

formulation. This introduces some re-reads of weights, but signifi-

cantly reduces reloads of inputs and outputs as the tiles can be held

resident on-chip.

Figure 6 shows a straightforward accelerator implementation of

this algorithm using buffets. This accelerator uses separate buffers

per datatype—similar to an instance of Eyeriss [6] with a single

processing element and a different dataflow. Following the EDDO

principles, separate address generation FSMs (labeled ❶) generate

requests to the DRAM that install data into the staging buffers.

The weight-stationary dataflow means that the weights are staged

once while input and output tiles are re-staged per weight tile.

The “wait_until” in the transfer FSMs ❷ represents blocking until

sufficient credit is available. The backwards path that increments

the credit count is not shown.

Looking in-depth at the Read FSMs ❸, we highlight several

points that distinguish buffets from FIFOs. First, both the input and

output buffet are performing window-based access relative to the

oldest element. Second, the size-based shrink gives more control

over data liveness—the input is reading a tile volume larger than

its shrink, and so represents a sliding window. Finally, the Output

buffet is being used to perform in-place updates of staged sums.

Each sum is modified F_TileSize times per tile. The buffet’s

internal scoreboarding ensures that subsequent Reads will block

on previous Updates—a scenario which could occur if the MACC

datapath was implemented as pipeline with internal latency. As

stated above, unnecessary scoreboard logic can be removed using

design-time parameterization. In this algorithm, every partial-sum

output that is read is also modified, so the accelerator can use

the ReadAndUpdateOutput FSM to generate Read and Update

indices. Other scenarios can require separate index generators for

these two classes.

Furthermore, the Read FSMs reveal some key ways that buffets

differ from traditional scratchpads. In a scratchpad, read requests re-

turn the current RAM value, so it is the responsibility of the iterator

FSM to not issue a read request until it knows the desired data has

been staged. Buffets’ encapsulation of fine-grained synchronization

means that no explicit checks are present in the Read FSM. The

index generator issues Read operations at its natural rate—if the

requested data is not available, then the read_rsp.Vld signals will

stall the Datapath FSM ❹, as described in 3.1. Furthermore, with

scratchpads all accesses are done via absolute addresses into the

underlying RAM, which places the burden of dividing the RAM

into active and inactive regions onto the index generator. With buf-

fets, the FSMs contain no explicit base address manipulation, nor

wrapping-around of addresses relative to the size of the RAM. This

hardware has not disappeared, but has been encapsulated inside

the buffet, simplifying the creation of the index generation FSM to

only repetition counts, bounds, and offsets.

This encapsulation of the modular arithmetic is important for

another reason: offset-based indexing separates the size of the active

tile from the size of the underlying storage which is pre-buffering

future tiles. One way this manifests is that Figure 6 does not specify

concrete sizes for the underlying RAM. If it is equal to the tile

size, no pre-buffering will occur, as each buffet can only hold the

active window. If it is twice the tile size, then the arrangement is

equivalent to traditional double-buffering. It can also be set to any

arbitrary constant. This flexibility has an important implication:

the functionality of the FSMs in Figure 6 is unchanged across all

these options, and do not need any alteration or re-verification

if the underlying RAM size of the buffets is increased as part of

design-space exploration. This will not affect correctness, only

performance as more room is available to pre-fill future tiles.

Designers often talk about double-, triple-, or even quad-buffering,

but extra buffering should not be limited to multiples of tile size.

By changing the Fill FSMs to transfer after receiving smaller credit

totals such as 1/4, or 1/8 tile (or even arbitrary absolute values un-

related to tile size) architects can determine the optimal buffering

needed to tolerate the forward latency through the memory system,

which is unlikely to be an exact multiple of tile size. Additionally, if

Input
Read
AGEN

DRAM

Input
Buffet

Filter
Read
AGEN

Output
Rd/Up
AGEN

Filter
Buffet

Output
Buffet

Input
Fill
AGEN

Filter
Fill
AGEN

Output
Fill
AGEN

function FILLOUTPUT()
 for nf : [0..F_NumTiles)
 for no : [0..O_NumTiles)
 TransferOutputTile(no * O_TileSize, O_TileSize);

function FILLFILTER()
 for nf : [0..F_NumTiles)
 TransferFilterTile(nf * F_TileSize, F_TileSize);

function FILLINPUT()
 halo_size = O_TileSize - F_TileSize + 1;
 for nf : [0..F_NumTiles)
 tile_base = nf * F_TileSize;
 TransferInputTile(tile_base, halo_size);
 for no : [0..O_NumTiles)
 TransferInputTile(tile_base + halo_size +
 no * O_TileSize, O_TileSize);

function READANDUPDATEOUTPUT()
 for n : [0..F_NumTiles * O_NumTiles)
 for tf : [0..F_TileSize)
 for to : [0..O_TileSize)
 output_buffet.Read(to);
 output_buffet.update_idx_in.
 Send(to);
 // Drain of modified values omitted
 output_buffet.Shrink(O_TileSize);

function DATAPATH()
 inp = input_buffet.read_rsp_out.Recv();
 wt = filter_buffet.read_rsp_out.Recv();
 psum = output_buffet.read_rsp_out.Recv();
 psum += inp * wt;
 output_buffet.update_data_in.Send(psum);

All tile transfer functions above follow this form:

3

4

1

function READFILTER()
 for n : [0..F_NumTiles * O_NumTiles)
 for tf : [0..F_TileSize)
 filter_buffet.Read(tf);
 filter_buffet.Shrink(F_TileSize);

function READINPUT()
 for n : [0..F_NumTiles * O_NumTiles)
 for tf : [0..F_TileSize)
 for to : [0..O_TileSize)
 input_buffet.Read(tf+to);
 // Retain some overlap for next tile
 // (sliding window)
 input_buffet.Shrink(O_TileSize);

2function TRANSFEROUTPUTTILE(base, size)
 wait _until(output_credit >= size);
 // This can be implemented as bulk transfer:
 for x : [0..size)
 output_buffet.Fill(output[base+x]);
 output_credit -= size;

Figure 6: Basic accelerator of the example from Figure 5 using buffets, with pseudo-code describing the EDDO data transfers.

some datapaths are farther from the memory buffets’ encapsulation

makes it straightforward to give them more buffering for extra la-

tency tolerance without altering their logic. In effect, this approach

makes the staging buffer RAM sizes a low-level micro-architectural

feature that can be determined late in the design process based

on underlying physical properties, rather than a first-order design

consideration.

3.4 Automatically Deriving Configuration
The EDDO approach requires the implementation of separate index

generation engines per buffet. These iteration loops all relate to the

original tiling and inter-tile schedule chosen by the architects using

workload knowledge. As a specific example, the loop for ReadFil-

ter in Figure 6 removes the O_TileSize loop level because in

the original algorithm (Figure 5) the variable o is not used to index

the filter array. This implies that the same filter weight value is

being held local to the datapath while the input and output changes

with o—hence the name “weight stationary”. Similarly, the sliding

window on the input buffet is created by addition of the f offset

into the input vector.

We believe that automatic derivation of control FSMs from a

single tiling specification is feasible future work. This has been

accomplished before for specific high-value domains [16, 40] but

not in a generalized tool. The domain-specific nature of accelerators

limits the data orchestration patterns that need to be supported by

automatic generation solutions. Furthermore, architects of accelera-

tors can always fall back on handcrafting the data flows if the tools

fail. The design of such tools is beyond the scope of this paper.

In summary, buffets’ encapsulation of synchronization into the

operational interface allows design to more productively occur at a

higher level of abstraction. We view buffets as combining the best

AGEN

AGEN

AGEN

DRAM

L3 Buffet L2 Buffet L1 BuffetDRAM

AGEN

AGEN

AGEN

AGEN

AGEN

Figure 7: An example buffet hierarchy.

properties of FIFOs, N -buffered scratchpads, and custom sliding

window buffers. In the next section we will demonstrate that these

same features also enable composition of buffet hierarchies.

4 COMPOSITION OF BUFFETS
No staging buffer can be considered entirely in isolation. Domain-

specific accelerators require the ability to hierarchically stage and

distribute data, which facilitates maximizing data reuse from small

buffers physically co-located with functional units. This section

describes the interaction, modularity, and composability of buffets.

4.1 Buffet Hierarchies
Multiple levels of buffets can be seamlessly arranged into a hierar-

chy, as shown in Figure 7. An upstream buffet’s address generation

FSM’s Read operations take on a role similar to a traditional DMA

engine, driving data to Fill the next buffet using the crediting mech-

anism presented previously. The downstream buffet’s Read FSM

blocks locally, without any external polling. Thus serially compos-

ing N buffets requires N +1 address generators, not 2N . Larger tiles

are staged, then broken down and distributed to lower levels for

further staging and processing. We show data as flowing through

all levels, but this is not fundamental—fills can bypass intermedi-

ate levels as appropriate. The data also need not be inclusive as

upstream buffets can shrink away data before it is fully consumed

downstream.

Importantly, a hierarchy of buffets allows applications to fully

exploit data reuse at each level in the hierarchy. Unlike FIFOs,

buffets’ arbitrary iteration ordering means that data iteration order

can be changed at each address generation level. This both allows

interleaving of tile delivery across lower levels and altering the

data layout in the memory dynamically so that each level may use

a customized layout.

Backwards paths to return modified data to larger, upper-level

buffets are accomplished using the Update functionality. Thus the

slot for the value is held in a non-up-to-date state by the upper-

level buffet until the modified value is produced. As a result Update

traffic does need any kind of credit-check mechanism. Additionally,

there is no requirement that modified values pass through all levels

of staging buffer during writeback. Accelerators can provision con-

nectivity to transmit results from the datapath directly to higher

levels, or to off-chip memory.

As both Read and Update requests are generated locally, any

given index FSM only needs to concern itself with generating ad-

dresses sized to its local RAM. This means that low-bitwidth address

calculation datapaths can be used rather than 32 or 64-bit address

arithmetic. (Domain-specific accelerators generally do not use ad-

dress translation for on-chip accesses, but it is not uncommon to

use large-bitwidth addressing to ease system integration.) As a sec-

ondary benefit, addresses are never transmitted remotely between

buffets, which can reduce transfer bandwidth and energy compared

to traditional memories.

Buffets make no assumptions about being deployed with direct

connections between levels, or being connected via a network-on-

chip. In the latter case, buffets’ credit flow for forward Fills and use

of Update for backward writeback of modified values act as a guar-

antee of deadlock freedom, as any injected data will be uncondition-

ally drained—a so-called “consumption assumption”. This guarantee

can simplify network flow-control design and verification, and re-

sult in simpler hardware. For example, buffet-based accelerators

may require fewer or no virtual channels for correctness—though

they still may still be employed for routing algorithm or quality-of-

service reasons. Furthermore, a buffet’s Fill path may be directly

attached to the output of a router port, essentially supplanting the

need for separate egress buffer hardware.

4.2 Sharing Fills via Multicast
If the transport substrate supports broadcast or multicast, either via

dedicated wires or a network, then buffets can leverage it. Multicast

is a significant source of energy efficiency, as it means the output of

one access to a large physical RAM can be delivered efficiently to all

consumers in the EDDO specification. Leveraging static workload

knowledge is more area- and energy- efficient than dynamically

detecting and coalescing multiple requests to the same address

for nf : [0..F_NumTiles/F_NumPartitions)
 for no : [0..O_NumTiles/O_NumPartitions)
 parallel for pf : [0..F_NumPartitions)
 parallel for po : [0..O_NumPartitions)
 for tf : [0..F_TileSize)
 for to : [0..O_TileSize)
 f = nf * F_NumPartitions
 * F_TileSize
 + pf * F_TileSize + tf
 o = no * O_NumPartitions
 * O_TileSize
 + po * O_TileSize + to
 output[o] += input[o+f]
 * filter[f]

...

Filter

Input

...

1

2 2

halo

1

2

3

4

halo halo

p

p

1

2

1
1 1 1

111

...

...2

p

3

p

4

Figure 8: Parallel partitioned version of Figure 5.

in a cache or scratchpad hierarchy, and does not rely on multiple

requests arriving within a limited time window.

To achieve multicast we use a straightforward extension of the

credit scheme presented in Section 3. The Fill FSM’s credit register

is extended to a vector tracking credits of multiple target buffets.

All downstream targets must have sufficient room before a transfer

can be initiated, and credits are decremented from all targeted

counters upon transmission. Finally, the backwards credit path

is supplemented with an ID field indicating from which buffet

the credit originated, which is used to increment the appropriate

counter in the credit vector. An extension of this scheme uses run-

time configurable routes and IDs allows the design of accelerators

with dynamically reconfigurable buffet hierarchies.

4.3 Sharing Physical RAMs Efficiently
Scenarios exist where it is advantageous for multiple buffets at the

same level of the hierarchy to share a single physical RAM. Sharing

can avoid internal space fragmentation due to RAM size constraints

and decrease per RAM overheads. Additionally, architects may wish

to exploit dynamically reconfiguring buffet sizes so that more space

can be allocated to the most critical data structure.

To implement this feature, we supplement the logical buffet

bookkeeping with base and bound registers. All increments to

the head pointer are carried out modulo base and bound. Various

multi-port and/or banking schemes can be used to maximize RAM

efficiency by matching the required bandwidth across data types.

For example, the accelerator previously presented in Figure 6 uses

a weight stationary dataflow which means that new filter weights

are only required every O_TileSize cycles, whereas new inputs

and outputs are required every cycle. Therefore it may be profitable

for the filters to share the same RAM as either the inputs or outputs,

but multiplex the inputs and outputs themselves would reduce

throughput more significantly.

Overall, RAM-sharing buffets represent a combination of design-

time customization and runtime flexibility. The aim is that these

design-time parameters allow buffet deployments to approach the

efficiency of ad-hoc accelerator-specific buffer schemes with mini-

mal engineering effort and without sacrificing re-usability.

AGEN

Input
Filter
Output DRAM

Input
Filter
Output

AGEN
I F O

IB

FB
OB

AGEN
I F O

IB

FB
OB

AGEN
I F O

IB

FB
OB

AGEN
I F O

IB

FB
OB

AGEN
I F O

IB

FB
OB

AGEN
I F O

IB

FB
OB

L
2

B
u

ff
et

L
1

B
u

ff
et

D
R

A
M

DRAM to L2 Transfers:
Input: Broadcast
Filter: Unicast (partitioned)
Output: Unicast (cross-partition reduction)

L2 to L1 Transfers:
Input: Unicast w/Multicast halos
Filter: Broadcast
Output: Unicast (partitioned)

Figure 9: Example accelerator derived from the EDDO in Fig-
ure 8 with multiple levels of buffets sharing RAMs. For sim-
plicity, paths for cross-partition reduction of partial sums
are not shown.

4.4 Example of Hierarchical Orchestration
We now revisit the 1-dimensional convolution example presented

in Section 3.3 in the context of a more realistic accelerator with par-

allel functional units, a multi-level buffet hierarchy, and physically

shared RAM. Figure 8 shows an extension of the weight-stationary

dataflow by spatially partitioning individual tiles across the sep-

arate functional units—represented by parallel-for loops. We use

the term “partition” to refer to tiles that are executed by parallel

hardware instances. As the number of partitions is a design-time

parameter, any remaining mismatch between data size must be

handled as passes in the outer loop. We omit edge cases from the

algorithm.

Figure 9 shows the accelerator that results from this EDDO archi-

tecturewhenF_NumPartitions=2 andO_NumPartitions=2.
Buffets within a level share the same multi-banked RAM, which

could potentially allow F_TileSize and O_TileSize to be

configured at runtime, with the constraint that the total tile size

across all data types size fits in the underlying RAM. This dataflow

employs separate partitions updating the same partial sum, and

so requires an additional datapath for reduction before updating

DRAM. This path is not shown in the figure as it has no effect on

the underlying orchestration patterns.

Despite the pedagogical nature of this accelerator, it has several

interesting characteristics. First, each L2 buffet holds a disjoint filter

tile, so the L2 filter buffets are filled via unicast from DRAM. The

delivery of tiles can either be interleaved or serial, as determined by

the iteration order of the Read index generation FSM. Partitioning

filters means that inputs are broadcast from DRAM to L2, as the

same input must be convolved against all weights (excepting the

edges).

The L2 buffets’ Read FSMs distribute the second level of spatial

partitioning. Each L1 processes a different output tile against the

same weights, therefore output tiles are now unicast. One the other

F_NumPartitions 10

O_NumParititions 10

Total Functional Units 100

F_TileSize 256

O_TileSize 1024

Indiv. L2 Buffet Size 45.5 KB

Total L2 Buffet Size 455.0 KB

Indiv. L1 Buffet Size 5.0 KB

Total L1 Buffet Size 500.0 KB

Input size 1.64 MB

Filter size 74 KB

Input:Filter ratio 21.78

Figure 10: Analysis of the impact of enabling multicast on a
Figure 9-style accelerator.

hand, the filter tiles are now broadcast from the L2 to all connected

L1s. For inputs, the tile is unicast, but the halo region depicted in

Figure 8 can be multicast simultaneously to two L1 buffets. In the

steady state, this savings is doubled because of overlap with both

previous and next partitions.

Multicast can represent a significant savings. Figure 10 shows

an analysis of two Figure 9-style accelerators that differ only in

support of multicast. No standard 1D convolutional benchmark

exists, so we approximated data set sizes by examining the work to

produce one output channel of VGG-Net16 [41], convolutional layer

13 and projecting the data ratios down into one dimension, giving

an input size 21.78× larger than the filter. The multicast version

reduces traffic between staging buffers to 58.9% of the unicast-only

arrangement, and therefore performs only 58.9% of RAM accesses

as well.

5 EVALUATION
In this section, we present an evaluation using buffets. We first

discuss our evaluation methodology and experimental setup (Sec-

tion 5.1). We then evaluate buffet-integrated accelerators compared

with state-of-the-art accelerator memory systems (Section 5.2 and

Section 5.3). In particular, we show that using buffets can result

in significant better performance and energy efficiency than using

DMA- and cache-based memory system.

5.1 Methodology
To better understand the costs of buffets, we implemented a buffet

in RTL. The design supports all the buffet operations and is fully

parameterizable so that it can be attached to RAM of different sizes.

We synthesize the design with Synopsys Design Compiler with

a commercial 16nm technology with a 1GHz frequency. We use

Synopsys PrimeTime PX for accurate power analysis.

Table 3 shows the area and energy characterization of a buffet

designed for an 8KB RAM, a representative RAM size in commonly-

used accelerator kernels. RAM estimates are based on CACTI [26]

with the same technology. We demonstrate that buffets are a light-

weight mechanism that can be efficiently integrated as an accelera-

tor’s on-chip RAM.

(a) triad (b) reduction (c) scan (d) sort

(e) md (f) stencil (g) gemm (h) fft

Figure 11: Power-Performance Pareto frontiers for buffet-, DMA-, and cache-based accelerator designs for SHOC benchmarks.
Energy-optimal points are shown as stars.

To capture cycle-level behavior of buffets on a range of differ-

ent accelerator benchmarks, we use a modified version of gem5-

Aladdin [39]. Gem5-Aladdin is a cycle-level, power-performance-

area simulator that captures the behaviors of both CPUs and spe-

cialized accelerators. Specifically, gem5-Aladdin models two types

of memory systems for accelerators: DMA-managed scratchpad and

private cache. We augment gem5-Aladdin’s DMA-managed scratch-

pad model to support the buffet operations and proposed hardware

components. The area and energy costs of a buffet are based on our

RTL implementation. Our evaluations run on eight workloads from

the SHOC benchmark suite [11], the same benchmark suite that

was validated in Aladdin [38].

5.2 Buffet versus DMA versus Cache
To quantify the performance and energy efficiency of accelera-

tors that integrate buffets, we perform a comprehensive design

space exploration sweeping a range of accelerator design param-

eters, listed in Table 4. In this analysis, we fix algorithmic design

choices, e.g., tile sizes, for all the configurations. Figure 11 shows

the performance-power Pareto curves for each SHOC benchmark,

distinguished by memory system types: cache, DMA with double-

buffering (DB), and a buffet. The energy-optimal design point for

each memory system is labeled with a star of the corresponding

color. All the DMA design points apply double-buffering for better

throughput.

Table 3: Buffet Area and Energy Characterization.

Component Area (um2
) Area % Energy (p J /Access) Energy %

Buffet Control 446 2% 0.47 14%

RAM 17,571 98% 2.98 86%

Total 18,016 100% 3.45 100%

We see that a buffet-based memory system delivers better per-

formance and power efficiency than DMA- and cache-based sys-

tems across all the benchmarks. Cache-based designs tend to have

higher power cost and lower performance due to cache’s expen-

sive structures, e.g., tag array and MSHR, to support implicit data

orchestration. Buffet’s advantage over DMA is more pronounced

for benchmarks in the top row, because these benchmarks are

streaming applications without much local reuse. In this case, the

execution of these kernels is heavily data movement constrained.

Buffet’s fine-grained synchronization between Fill and Read op-

erations efficiently overlap the data movement and execution. In

addition, compared to DMA-managed double-buffering, a buffet-

based design does not require an over-provisioned on-chip RAM, as

the fine-grained overlapping opportunity is captured within a tile,

leading to better power efficiency. In contrast, benchmarks in the

second row have more data reuse and spend most of their execution

time performing computation. As a result, we see the performance

difference between buffet- and DMA-based accelerator designs is

smaller. However, a buffet-based accelerator design still achieves

lower power, and smaller area cost, as RAM over-provisioning is

not needed.

Table 4: Design Space Parameters.

Parameters Values

[start:step:end]

Data Orchestration Buffet, DMA,

Cache

Datapath Lanes [1:2:8]

Pipelining Enable/Disable

Scratchpad Band-

width

[1:2:8]

Parameters Values

[start:step:end]

Hardware

Prefetchers

Strided

Cache Size [1KB:2:32KB]

Frequency 1GHz

System Bus

Width

32b

Figure 12: EDP comparison for buffet-,
DMA-, and cache-based accelerator de-
signs.

Figure 13: Area comparison for buffet-,
DMA-, and cache-based accelerator de-
signs.

Figure 14: Design spaces of buffet- and
DMA-based GEMM accelerators with
the same on-chip RAM size.

Figure 12 and Figure 13 show the energy and area breakdowns

of the energy-optimal design points (stars in Figure 11) for buffet-,

DMA-, and cache-based accelerator designs. Buffet-based acceler-

ator design overall achieves 2.3× energy reduction compared to

DMA-based designs and 4.5× compared to cache-based designs. As

mentioned previously, buffets generally require less storage space

than DMA-based designs due to fine-grained data transfer and lack

of double-buffering, leading to 2.1× area efficiency compared to

double-buffered DMA.

5.3 Algorithm-Memory System Co-Design
Tile-size is an important algorithmic parameter that is highly de-

pendent on available physical RAM and communication latency.

Buffets’ fine-grained synchronization support removes the strict

need for over-provisioning physical RAM sizes in the design process.

As a result, buffet-based accelerators can support much larger tiles

with the same physical RAM budget, compared to double-buffered

scratchpad for DMA-based memory system.

Figure 14 quantifies the benefits of buffet’s efficient use of on-chip

RAM. In this experiment, we focus on the design spaces of a tiled-

GEMM accelerator with buffet- and DMA-based memory system

under the same physical RAM budget. Buffet-based accelerators

of tile size 32 delivers significantly better performance and power

efficiency compared to DMA-based design of tile size 16. With

buffet’s fine-grained synchronization between Fill and Read, a

buffet-based design can dedicate the entire on-chip RAM for a

single tile, while double-buffered DMA must dedicate half of its

physical RAM for next tile. In this case, a larger tile in a buffet

enables more data reuse for each tiled computation and reduces the

overall DRAM accesses, leading to better overall energy efficiency.

6 EXPERIENCES USING BUFFETS
We have taped out two domain-specific neural net accelerator test

chips using buffets to store tiles of weights, inputs, and partial sums.

We now share our non-quantitative learnings from this experience.

Test Chips: The first accelerator (details in [23]–although to

avoid confusion the term “buffet” is not used in that work) is a

proof-of-concept prototype that uses three levels of buffets: private

L1s, shared L2, and an off-chip L3. Buffets for weights, inputs, and

sums share the same RAM banks and individual buffets can be

dynamically resized to use more or less memory. Design-time cus-

tomizations are: (A) removing update paths from all buffets except

sums, (B) multiplexing RAM ports for writes and fills, and (C) using

bulk RAW-hazard tracking. The second chip is an efficient, special-

ized accelerator that was derived from the first with high design

productivity. This uses private L1s and distributed L2s. Buffet RAM

is hard-partitioned across data types, reducing area and energy.

Details of this chip are not yet published.

Design Effort: One benefit was that buffets eliminate the need

for designing customized data movement engine for inputs, weights,

and sums. For example: weights, inputs, and partial sums have dis-

tinct data access patterns. Instead of spending engineering effort

to design customized FSMs for each individual data type, we di-

rectly instantiate buffets with different design-time customizations

to support these different access patterns. Second, buffets signifi-

cantly simplify the data delivery and computation overlap in the

system. For example, instead of manually designing double- or

triple-buffering mechanism in hardware, buffets use the Shrink

operation to signal the available space in the consumer and use the

tail pointer to indicate data availability.

Using Buffets: One lesson is that buffets’ flexible Shrink size

results in a tradeoff between convenience and efficiency. Small

shrinks are generally easier to generate addresses for—as they bet-

ter leverage the encapsulation of modular arithmetic—but result in

more credit-flow traffic and smaller bulk transfers. A second lesson

is that the contiguous Shrink requires that data layout match un-

staging order rather than access order. For example, simultaneously

shrinking 1 column of each input channel requires a non-standard

column-major/channel-minor memory order. This was not a re-

striction in practice as we used buffets’ flexible access order in the

L2 to transpose tile layout while filling the L1s.

7 RELATEDWORK
A variety of approaches have been used for the data orchestration of

accelerators. Many accelerators use a customized buffering solution

based on their application [5, 6, 15, 35, 47]. While these proprietary

buffering designs are efficient, they require significant engineering

effort. The accelerator community needs a general reusable accel-

erator storage design to provide high performance with minimal

effort. Buffets fill this need as an efficient and full featured solution

for accelerator designs. Table 5 provides a comparison of buffets to

Table 5: Categorizing storage idioms for accelerators.

Jenga [44] Implicit Coupled

DeSC [17] Explicit Decoupled

PDAE Cache Prefetch [4] Implicit Coupled

PDAE DAE [4] Implicit Decoupled

Stash [24] Implicit Coupled

Accelerator Store [30] Explicit Coupled

Patch Memory [8] Implicit Coupled

LEAP Scratchpads [1] Implicit Coupled

CoRAM [7] Explicit Coupled

Stream dataflow [33] Explicit Decoupled

other works that provide general storage solutions for accelerators.

Table 6 provides a detailed comparison of buffets to previous works

that use the explicit decoupled idioms.

Jenga [44] treats the cache SRAM banks as a general pool that

can be used to create distributed virtual cache hierarchies that are

targeted to given application. This solution uses the implicit coupled

idioms to provide a cache based solution. This approach provides a

more efficient solution than a traditional cache but still has more

overhead than an explicitly managed memory architecture.

Decoupled Supply-Compute (DeSC) [17] uses a traditional DAE

approach to divide memory accesses instructions from compute

instructions and place them on separate datapaths, connected by

a queue. However, the queue size in DESC is not architecturally

visible, and therefore cannot be used as an explicit target for de-

termining data tiling size. Additionally, DeSC uses a traditional

DAE FIFO queue which prevents random iteration without trans-

ferring the data to the L0 registers thus limiting access order and

preventing in-place updates. It also has a high non-RAM overhead

associated with having a full OoO processor as the access engine.

Prefetching with decouple access-execute (PDAE) [4] has two hi-

erarchies for data orchestration. PDAE uses a prefetching cache for

acceleratorswith regular access patterns and a traditional decoupled-

access-execute approach for systems with irregular access patterns.

The prefetching cache has traditional cache overheads while the

DAE approach has similar iteration restrictions as DeSC. Buffets

provide a general structure that can be used with minimal overhead.

Stash [24] is a data staging scheme for accelerators that makes

scratchpads more like caches. It unifies scratchpads into the global

address space like a cache, but uses a specific user-provided trans-

lation function to fill the scratchpad on a miss. Translation reduces

the number of explicit operations required to fill the scratchpad

though the creation of a load-and-store-scratchpad. Stash does not

use a decoupled fill approach, and explicit double-buffering is still

required for concurrency.

The Accelerator Store [30] is a shared memory scratchpad that

allows multiple logical buffers to be mapped onto a single scratch-

pad, similar to buffets. The logical buffers can be configured in

FIFO, random-access, or a hybrid mode. However RAMs are di-

rectly accessed by explicit datapath load/store (or get/put for FIFO

mode) operations, without any dedicated index generators and

synchronized using bulk interrupts.

Patch Memory [8] is a domain-specific scratchpad specifically

designed for data tiling in image processing accelerators. Users

define patch parameters and a dataflow order between patches, and

Table 6: Comparison of contemporary explicit decoupled
data orchestration approaches with categories from Table 2.

DeSC [17] Stream dataflow [33] Buffet

Non-RAM Area High Low Low

Access Energy Low Low Low

Placement Workload- Workload- Workload-

Policy controlled controlled controlled

Multiple Straight- Straight- Straight-

Fills in Flight forward forward forward

Overlapped Straight- No Straight-

Fill and Access forward forward

Hier. Composable No No Yes

Access Workload- Workload- Workload-

Multicast controlled controlled controlled

Data Availability Encapsulated Explicit Encapsulated

Synchronization (peek stalling) (barrier) (read stalling)

Access Order Limited OoO Arbitrary Arbitrary

In-Place Updates No No Yes

Removal Workload- Workload- Workload-

Policy controlled controlled controlled

the data is filled in a DAE style. Iterations into the patch use explicit

loads and stores from the datapath without DAE. Patch memory is

not hierarchically composable.

LEAP Scratchpads [1] are a memory architecture for FPGAs

that allow users to define logically separate scratchpads that are

mapped onto a unified cache structure with tags and traditional fill-

on-load behavior. Concurrent accesses are possible to other logical

scratchpads while one scratchpad is filling. Based on the use of

caches, they are hierarchically composable.

CoRAM [7] is a memory architecture for FPGAs used as acceler-

ators. CoRAM defines a set of operations that is used to construct

custom fill engines and scratchpads that are programmed into the

FPGA’s logic and block RAM. Fine-grained synchronization is pos-

sible directly through FPGA signals. However CoRAM does not

use DAE for iteration accesses, but rather a traditional load/store

interface. Additionally no indication is given of an ability to com-

pose CoRAM hierarchically, though this may be possible given the

generality of the CoRAM operations.

Stream-dataflow [33] is an architecture and programming model

based on streams and CGRAs. The data is stored locally in a scratch-

pad and streamed into a dataflow CGRA for efficient acceleration.

The architecture uses an address generators for accessing the mem-

ory system and scratchpad. However, the synchronization of the

accesses requires the use of explicit barriers. This need of barrier

prevents overlapping fill and access. The Stream-dataflow architec-

ture does not support in-place updates due to the flow of the data

through the system. Furthermore their memory system was not

designed to be composable.

8 DISCUSSION AND FUTUREWORK
The domain-specific accelerator era of heterogeneous computing is

poised to tackle key problems in compute through the integration

of application specific engines. However, achieving this efficiency

requires tremendous effort to design and verify a wide variety

of accelerators. We have identified commonalities in the efficient

transfer and staging of data that can be leveraged to generate a

design effort and area efficient generalized accelerator memory

system.

In this paper we made several contributions towards achiev-

ing a practical, reusable, accelerator-agnostic buffering idiom. We

discussed why reusable idioms that have worked well in the general-

purpose computing space fall short for accelerators. Through our

taxonomy of approaches, we identified explicit decoupled data

orchestration (EDDO) as the tactic that best allows accelerator ar-

chitects to leverage their static workload knowledge for efficiency.

We described buffets’ operational behavior, and why encapsulat-

ing synchronization within the buffer interface increases efficiency

and lowers design effort. We demonstrated the compositionality

of buffets, and discussed the benefits multicast can bring. When

compared with DMA managed double-buffered scratchpads and

caches across a range of workloads, buffets offer 1.53× and 5.39×

energy-delay product advantage respectively. With respect to area,

we implement buffets in RTL and show that buffet-based accelera-

tors achieve similar performance at 3.4× less area than caches, and

2% control overhead over an 8KB RAM.

We see many future extensions for this work. A key compo-

nent is the development of a domain-agnostic auto-orchestration

toolflow that can generate accelerator FSMs and hardware configu-

rations. We believe that run-time reconfiguration of orchestration

patterns can be added into this toolflow as well. This feature allows

data orchestration to be tuned to the particular sizes and ratios

of the current data-set, rather than settling for an average-case

approach, which has shown to be advantageous for individual ac-

celerators [14, 25, 29, 43]. We hope that accelerator-independent

EDDO abstractions such as buffets help bring together the neces-

sary engineering effort to create such a toolflow, rather than each

accelerator creating their own tools. To facilitate adoption, we pro-

vide an open-source reference implementation of a buffet, written

in Verilog, here:

https://github.com/cwfletcher/buffets

ACKNOWLEDGMENTS
The authors would like to thank Adrian Sampson and the anony-

mous reviewers for feedback that greatly improved this paper.

Michael Fetterman, Thomas Bourgeat, Arvind, Daniel Sanchez, Hy-

oukjun Kwon, Tushar Krishna, Aamer Jaleel, Angshuman Parashar,

and Sean Treichler contributed valuable discussions and feedback.

This research was, in part, funded by the U.S. Government under

the DARPA Software Defined Hardware (SDH) program (HR0011-

18-3-0007). The views and conclusions contained in this document

are those of the authors and should not be interpreted as repre-

senting the official policies, either expressed or implied, of the U.S.

Government.

REFERENCES
[1] M. Adler, K. E. Fleming, A. Parashar, M. Pellauer, and J. Emer. Leap Scratch-

pads: Automatic Memory and Cache Management for Reconfigurable Logic. In

Proceedings of the International Symposium on Field Programmable Gate Arrays
(FPGA), pages 25–28, February 2011.

[2] Cadence. Stratus High-Level Synthesis Reference Guide, 2015.
[3] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam. DianNao: A

Small-footprint High-throughput Accelerator for Ubiquitous Machine-learning.

In Proceedings of the International Conference on Architectural Support for Pro-
gramming Languages and Operation Systems (ASPLOS), pages 269–284, 2014.

[4] T. Chen and G. E. Suh. Efficient data supply for hardware accelerators with

prefetching and access/execute decoupling. In The Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2016.

[5] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, and

O. Temam. DaDianNao: A Machine-Learning Supercomputer. In Proceedings
of the International Symposium on Microarchitecture (MICRO), pages 609–622,
December 2014.

[6] Y. H. Chen, J. Emer, and V. Sze. Eyeriss: A Spatial Architecture for Energy-Efficient

Dataflow for Convolutional Neural Networks. In Proceedings of the International
Symposium on Computer Architecture (ISCA), pages 367–379, June 2016.

[7] E. S. Chung, J. C. Hoe, and K. Mai. CoRAM: An In-fabric Memory Architecture

for FPGA-based Computing. In Proceedings of the International Symposium on
Field Programmable Gate Arrays (FPGA), pages 97–106, February 2011.

[8] J. Clemons, C. C. Cheng, I. Frosio, D. Johnson, and S. W. Keckler. A Patch

Memory System for Image Processing and Computer Vision. In Proceedings of
the International Symposium on Microarchitecture (MICRO), pages 1–13, October
2016.

[9] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, K. Gururaj, and G. Reinman.

Accelerator-rich architectures: Opportunities and progresses. In Proceedings
of the Design Automation Conference (DAC), 2014.

[10] E. G. Cota, P. Mantovani, G. D. Guglielmo, and L. P. Carloni. An analysis of accel-

erator coupling in heterogeneous architectures. In 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), pages 1–6, June 2015.

[11] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford, V. Tip-

paraju, and J. S. Vetter. The scalable heterogeneous computing (shoc) benchmark

suite. In Proceedings of the 3rd Workshop on General-Purpose Computation on
Graphics Processing Units, 2010.

[12] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and O. Temam.

Shidiannao: Shifting vision processing closer to the sensor. In ACM SIGARCH
Computer Architecture News, volume 43, pages 92–104. ACM, 2015.

[13] C. F. Fajardo, Z. Fang, R. Iyer, G. F. Garcia, S. E. Lee, and L. Zhao. Buffer-integrated-

cache: A cost-effective sram architecture for handheld and embedded platforms.

In Proceedings of the Design Automation Conference (DAC), 2011.
[14] C. Farabet, B.Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. LeCun. Neuflow:

A runtime reconfigurable dataflow processor for vision. In Computer Vision and
Pattern Recognition Workshops (CVPRW), 2011.

[15] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo, S. Alka-

lay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel, A. Sapek, G. Weisz,

L. Woods, S. Lanka, S. K. Reinhardt, A. M. Caulfield, E. S. Chung, and D. Burger.

A configurable cloud-scale DNN processor for real-time AI. In The International
Symposium on Computer Architecture (ISCA), 2018.

[16] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang, and J. Cong.

Fp-dnn: An automated framework for mapping deep neural networks onto fpgas

with rtl-hls hybrid templates. 2017 IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pages 152–159, 2017.

[17] T. J. Ham, J. L. Aragón, and M. Martonosi. Desc: Decoupled supply-compute

communication management for heterogeneous architectures. In Proceedings
of the International Symposium on Microarchitecture (MICRO), pages 191–203,
December 2015.

[18] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally. EIE:

Efficient Inference Engine on Compressed Deep Neural Network. In Proceedings
of the International Symposium on Computer Architecture (ISCA), pages 243–254,
June 2016.

[19] K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, and C. W. Fletcher. Ucnn:

Exploiting computational reuse in deep neural networks via weight repetition. In

Proceedings of the 45th Annual International Symposium on Computer Architecture,
ISCA ’18, pages 674–687, Piscataway, NJ, USA, 2018. IEEE Press.

[20] J. C. Hoe and Arvind. Synthesis of operation-centric hardware descriptions. In

Proceedings of the 2000 IEEE/ACM International Conference on Computer-aided
Design, ICCAD ’00, pages 511–519, Piscataway, NJ, USA, 2000. IEEE Press.

[21] Intel. FIFO: Intel FPGA IP User Guide, 2018.
[22] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,

S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell,

M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland,

R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,

A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,

J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean,

https://github.com/cwfletcher/buffets

A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni,

K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek,

E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,

M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W.Wang,

E. Wilcox, and D. H. Yoon. In-Datacenter Performance Analysis of a Tensor

Processing Unit. In Proceedings of the International Symposium on Computer
Architecture (ISCA), pages 1–12, June 2017.

[23] B. Khailany, E. Khmer, R. Venkatesan, J. Clemons, J. S. Emer, M. Fojtik, A. Kline-

felter, M. Pellauer, N. Pinckney, Y. S. Shao, S. Srinath, C. Torng, S. L. Xi, Y. Zhang,

and B. Zimmer. A modular digital vlsi flow for high-productivity soc design. In

Proceedings of the 55th Annual Design Automation Conference, DAC ’18, pages

72:1–72:6, New York, NY, USA, 2018. ACM.

[24] R. Komuravelli, M. D. Sinclair, J. Alsop, M. Huzaifa, M. Kotsifakou, P. Srivastava,

S. V. Adve, and V. S. Adve. Stash: Have Your Scratchpad and Cache It Too. In

Proceedings of the International Symposium on Computer Architecture (ISCA),
pages 707–719, June 2015.

[25] H. Kwon, A. Samajdar, and T. Krishna. Maeri: Enabling flexible dataflow mapping

over dnn accelerators via reconfigurable interconnects. In Proceedings of the
International Conference on Architectural Support for Programming Languages and
Operation Systems (ASPLOS), 2018.

[26] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi. CACTI-P: Architecture-

level Modeling for SRAM-based Structures with Advanced Leakage Reduction

Techniques. In Proceedings of the International Conference on Computer-Aided
Design (ICCAD), pages 694–701, 2011.

[27] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou, and Y. Chen.

PuDianNao: A Polyvalent Machine Learning Accelerator. In Proceedings of the
International Conference on Architectural Support for Programming Languages and
Operation Systems (ASPLOS), pages 369–381, March 2015.

[28] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou, and Y. Chen.

Pudiannao: A polyvalent machine learning accelerator. SIGPLAN Not., 50(4):369–
381, Mar. 2015.

[29] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li. Flexflow: A flexible dataflow

accelerator architecture for convolutional neural networks. In The International
Symposium on High-Performance Computer Architecture (HPCA), 2017.

[30] M. J. Lyons, M. Hempstead, G.-Y. Wei, and D. Brooks. The Accelerator Store: A

Shared Memory Framework for Accelerator-based Systems. ACM Transactions
on Architecture and Code Optimization, 8(4):48:1–48:22, January 2012.

[31] Mentor Graphics. Catapult Synthesis User and Reference Manual, 2016.
[32] J. Nickolls and W. J. Dally. The GPU Computing Era. IEEE Micro, 30(2):56–69,

March 2010.

[33] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam. Stream-dataflow

acceleration. In Proceedings of the International Symposium on Computer Archi-
tecture (ISCA), 2017.

[34] NVIDIA Deep Learning Accelerator (NVDLA). http://nvdla.org, 2017.

[35] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer,

S. W. Keckler, and W. J. Dally. SCNN: An Accelerator for Compressed-sparse

Convolutional Neural Networks. In Proceedings of the International Symposium
on Computer Architecture (ISCA), pages 27–40, June 2017.

[36] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis, A. Pedram,

C. Kozyrakis, and K. Olukotun. Plasticine: A Reconfigurable Architecture For

Parallel Patterns. In Proceedings of the International Symposium on Computer
Architecture (ISCA), pages 389–402, June 2017.

[37] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis, and M. A.

Horowitz. Convolution engine: balancing efficiency & flexibility in specialized

computing. In ACM SIGARCH Computer Architecture News, volume 41, pages

24–35. ACM, 2013.

[38] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks. Aladdin: A Pre-RTL, Power-

Performance Accelerator Simulator Enabling Large Design Space Exploration of

Customized Architectures. In The 41st ACM/IEEE International Symposium on
Computer Architecture (ISCA), pages 97–108, 2014.

[39] Y. S. Shao, S. Xi, V. Srinivasan, G.-Y. Wei, and D. Brooks. Co-Designing Accelera-

tors and SoC Interfaces using gem5-Aladdin. In Proceedings of the International
Symposium on Microarchitecture (MICRO), 2016.

[40] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, and

H. Esmaeilzadeh. From high-level deep neural models to fpgas. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
1–12, Oct 2016.

[41] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-

Scale Image Recognition. CoRR, abs/1409.1556, 2014.
[42] J. E. Smith. Decoupled Access/Execute Computer Architectures. In Proceedings

of the International Symposium on Computer Architecture (ISCA), pages 112–119,
April 1982.

[43] L. Song, Y.Wang, Y. Han, X. Zhao, B. Liu, and X. Li. C-brain: A deep learning accel-

erator that tames the diversity of cnns through adaptive data-level parallelization.

In Proceedings of the Design Automation Conference (DAC), 2016.
[44] P.-A. Tsai, N. Beckmann, and D. Sanchez. Jenga: Software-defined cache hierar-

chies. In Proceedings of the International Symposium on Computer Architecture
(ISCA), 2017.

[45] L. Wu, A. Lottarini, T. Paine, M. Kim, and K. Ross. Q100: The architecture

and design of a database processing unit. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operation
Systems (ASPLOS), 2014.

[46] Xilinx. FIFO Generator v13.1: LogiCORE IP Product Guide, Vivado Design Suite,
2017.

[47] A. Yazdanbakhsh, K. Samadi, N. S. Kim, and H. Esmaeilzadeh. GANAX: a unified

mimd-simd acceleration for generative adversarial networks. In The International
Symposium on Computer Architecture (ISCA), 2018.

http://nvdla.org

	Abstract
	1 Introduction
	2 Classifying Data Orchestration
	2.1 Implicit versus Explicit Orchestration
	2.2 Coupled versus Decoupled Orchestration
	2.3 Synchronization Concerns

	3 The Buffet Storage Idiom
	3.1 Buffet Operational Behavior
	3.2 Buffet Synchronization Details
	3.3 Example Orchestration with Buffets
	3.4 Automatically Deriving Configuration

	4 Composition of Buffets
	4.1 Buffet Hierarchies
	4.2 Sharing Fills via Multicast
	4.3 Sharing Physical RAMs Efficiently
	4.4 Example of Hierarchical Orchestration

	5 Evaluation
	5.1 Methodology
	5.2 Buffet versus DMA versus Cache
	5.3 Algorithm-Memory System Co-Design

	6 Experiences using Buffets
	7 Related Work
	8 Discussion and Future Work
	References

